1
|
Choudhary P, Aggarwal PR, Salvi P, Muthamilarasan M. Molecular insight into auxin signaling and associated network modulating stress responses in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109452. [PMID: 39733728 DOI: 10.1016/j.plaphy.2024.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/03/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Phytohormones are vital regulators of various signaling networks in plants. Among different phytohormones, auxin has been thoroughly studied for its role in regulating plants' growth, development, and stress response. One major function of auxin is modulating the developmental processes in response to environmental cues. Although extensive studies on Arabidopsis have advanced the knowledge of auxin biology, several studies on rice have uncovered key players regulated by auxin that play critical roles in coordinating auxin homeostasis and signaling involved in defense response. The emerging knowledge on auxin biology, auxin-regulated gene expression, and auxin-signaling in rice during various environmental stresses has provided insights into the possible mechanism of rice susceptibility or resistance to different abiotic and biotic stresses. The current review enumerates the possible mechanisms of stress-induced auxin homeostasis in rice. In addition, we provide an overview of the state of knowledge on auxin-mediated defense signaling in rice, highlighting its pivotal role in stress response. In particular, we discuss the auxin pathways and the dynamic regulation in response to biotic and abiotic stress. We highlight the novel findings in the diversity of auxin signaling in the model plant Arabidopsis with an aim to emphasize the need to translate these findings into agronomically and economically important cereals like rice. Addressing the complexity of auxin induction, signaling, and its associated molecular network, an in-depth investigation in rice is required to comprehend auxin-mediated spatial-temporal regulation of developmental processes during stress.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, 201309, Uttar Pradesh, India.
| | - Pooja R Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Praful Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, 140308, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
2
|
Quiñones CO, Gesto-Borroto R, Wilson RV, Hernández-Madrigal SV, Lorence A. Alternative pathways leading to ascorbate biosynthesis in plants: lessons from the last 25 years. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2644-2663. [PMID: 38488689 DOI: 10.1093/jxb/erae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/14/2024] [Indexed: 05/04/2024]
Abstract
l-Ascorbic acid (AsA) is an antioxidant with important roles in plant stress physiology, growth, and development. AsA also plays an essential role in human health, preventing scurvy. Humans do not synthesize AsA, which needs to be supplied via a diet rich in fresh produce. Research efforts have provided progress in the elucidation of a complex metabolic network with at least four routes leading to AsA formation in plants. In this review, three alternative pathways, namely the d-galacturonate, the l-gulose, and the myo-inositol pathways, are presented with the supporting evidence of their operation in multiple plant species. We critically discuss feeding studies using precursors and their conversion to AsA in plant organs, and research where the expression of key genes encoding enzymes involved in the alternative pathways showed >100% AsA content increase in the transgenics and in many cases accompanied by enhanced tolerance to multiple stresses. We propose that the alternative pathways are vital in AsA production in response to stressful conditions and to compensate in cases where the flux through the d-mannose/l-galactose pathway is reduced. The genes and enzymes that have been characterized so far in these alternative pathways represent important tools that are being used to develop more climate-tolerant crops.
Collapse
Affiliation(s)
- Cherryl O Quiñones
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Reinier Gesto-Borroto
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Rachael V Wilson
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Sara V Hernández-Madrigal
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Argelia Lorence
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
- Department of Chemistry and Physics, Arkansas State University, PO Box 419, State University, AR 72467, USA
| |
Collapse
|
3
|
Wang Y, Jiang C, Zhang X, Yan H, Yin Z, Sun X, Gao F, Zhao Y, Liu W, Han S, Zhang J, Zhang Y, Zhang Z, Zhang H, Li J, Xie X, Zhao Q, Wang X, Ye G, Li J, Ming R, Li Z. Upland rice genomic signatures of adaptation to drought resistance and navigation to molecular design breeding. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:662-677. [PMID: 37909415 PMCID: PMC10893945 DOI: 10.1111/pbi.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Upland rice is a distinctive drought-aerobic ecotype of cultivated rice highly resistant to drought stress. However, the genetic and genomic basis for the drought-aerobic adaptation of upland rice remains largely unclear due to the lack of genomic resources. In this study, we identified 25 typical upland rice accessions and assembled a high-quality genome of one of the typical upland rice varieties, IRAT109, comprising 384 Mb with a contig N50 of 19.6 Mb. Phylogenetic analysis revealed upland and lowland rice have distinct ecotype differentiation within the japonica subgroup. Comparative genomic analyses revealed that adaptive differentiation of lowland and upland rice is likely attributable to the natural variation of many genes in promoter regions, formation of specific genes in upland rice, and expansion of gene families. We revealed differentiated gene expression patterns in the leaves and roots of the two ecotypes and found that lignin synthesis mediated by the phenylpropane pathway plays an important role in the adaptive differentiation of upland and lowland rice. We identified 28 selective sweeps that occurred during domestication and validated that the qRT9 gene in selective regions can positively regulate drought resistance in rice. Eighty key genes closely associated with drought resistance were appraised for their appreciable potential in drought resistance breeding. Our study enhances the understanding of the adaptation of upland rice and provides a genome navigation map of drought resistance breeding, which will facilitate the breeding of drought-resistant rice and the "blue revolution" in agriculture.
Collapse
Affiliation(s)
- Yulong Wang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Conghui Jiang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Institute of Wetland Agriculture and EcologyShandong Academy of Agricultural SciencesJinanShandongChina
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of EducationFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Agricultural Genomics Institute in ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Huimin Yan
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice BiologyHenan Agricultural UniversityZhengzhouHenanChina
| | - Zhigang Yin
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xingming Sun
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Fenghua Gao
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yan Zhao
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Wei Liu
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Shichen Han
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jingjing Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yage Zhang
- Sanya Institute of Hainan Academy of Agricultural SciencesSanyaHainanChina
| | - Zhanying Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Hongliang Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jinjie Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xianzhi Xie
- Institute of Wetland Agriculture and EcologyShandong Academy of Agricultural SciencesJinanShandongChina
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice BiologyHenan Agricultural UniversityZhengzhouHenanChina
| | - Xiaoning Wang
- Sanya Institute of Hainan Academy of Agricultural SciencesSanyaHainanChina
| | - Guoyou Ye
- Agricultural Genomics Institute in ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
- Institution International Rice Research InstituteLos BañosLagunaPhilippines
| | - Junzhou Li
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice BiologyHenan Agricultural UniversityZhengzhouHenanChina
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of EducationFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Sanya Institute of Hainan Academy of Agricultural SciencesSanyaHainanChina
| |
Collapse
|
4
|
Zhou H, Wang Y, Zhang Y, Xiao Y, Liu X, Deng H, Lu X, Tang W, Zhang G. Comparative Analysis of Heat-Tolerant and Heat-Susceptible Rice Highlights the Role of OsNCED1 Gene in Heat Stress Tolerance. PLANTS 2022; 11:plants11081062. [PMID: 35448790 PMCID: PMC9026844 DOI: 10.3390/plants11081062] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
To elucidate the mechanism underlying the response of rice to heat stress (HS), the transcriptome profile of panicles was comparatively analyzed between the heat-tolerant line 252 (HTL252) and heat-susceptible line 082 (HSL082), two rice recombinant inbred lines (RILs). Our differentially expressed gene (DEG) analysis revealed that the DEGs are mainly associated with protein binding, catalysis, stress response, and cellular process. The MapMan analysis demonstrated that the heat-responsive (HR) genes for heat shock proteins, transcription factors, development, and phytohormones are specifically induced in HTL252 under HS. Based on the DEG analysis, the key gene OsNCED1 (Os02g0704000), which was induced under HS, was selected for further functional validation. Moreover, 9-cis-epoxycarotenoid dioxygenase (NCED) is a key rate-limiting enzyme in the ABA biosynthetic pathway. Overexpression of OsNCED1 improved the HS tolerance of rice at the heading and flowering stage. OsNCED1-overexpression plants exhibited significant increases in pollen viability, seed setting rate, superoxide dismutase (SOD) and peroxidase (POD) activities, while significantly lower electrolyte leakage and malondialdehyde (MDA) content relative to the wild type (WT). These results suggested that OsNCED1 overexpression can improve the heat tolerance of rice by enhancing the antioxidant capacity. Overall, this study lays a foundation for revealing the molecular regulatory mechanism underlying the response of rice to prolonged HS.
Collapse
Affiliation(s)
- Huang Zhou
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (Y.W.); (Y.Z.); (Y.X.); (X.L.); (H.D.); (X.L.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Hunan Agricultural University, Changsha 410128, China
| | - Yingfeng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (Y.W.); (Y.Z.); (Y.X.); (X.L.); (H.D.); (X.L.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Hunan Agricultural University, Changsha 410128, China
| | - Yijin Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (Y.W.); (Y.Z.); (Y.X.); (X.L.); (H.D.); (X.L.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Hunan Agricultural University, Changsha 410128, China
| | - Yunhua Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (Y.W.); (Y.Z.); (Y.X.); (X.L.); (H.D.); (X.L.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Hunan Agricultural University, Changsha 410128, China
| | - Xiong Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (Y.W.); (Y.Z.); (Y.X.); (X.L.); (H.D.); (X.L.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Hunan Agricultural University, Changsha 410128, China
| | - Huabing Deng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (Y.W.); (Y.Z.); (Y.X.); (X.L.); (H.D.); (X.L.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Hunan Agricultural University, Changsha 410128, China
| | - Xuedan Lu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (Y.W.); (Y.Z.); (Y.X.); (X.L.); (H.D.); (X.L.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Hunan Agricultural University, Changsha 410128, China
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (Y.W.); (Y.Z.); (Y.X.); (X.L.); (H.D.); (X.L.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Centre, Changsha 410125, China
- Correspondence: (W.T.); (G.Z.)
| | - Guilian Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (Y.W.); (Y.Z.); (Y.X.); (X.L.); (H.D.); (X.L.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (W.T.); (G.Z.)
| |
Collapse
|
5
|
Gour P, Kansal S, Agarwal P, Mishra BS, Sharma D, Mathur S, Raghuvanshi S. Variety-specific transcript accumulation during reproductive stage in drought-stressed rice. PHYSIOLOGIA PLANTARUM 2022; 174:e13585. [PMID: 34652858 DOI: 10.1111/ppl.13585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/23/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
The divergence of natural stress tolerance mechanisms between species is an intriguing phenomenon. To study it in rice, a comparative transcriptome analysis was carried out in 'heading' stage tissue (flag leaf, panicles and roots) of Nagina 22 (N22; drought-tolerant) and IR64 (drought-sensitive) plants subjected to field drought. Interestingly, N22 showed almost double the number of differentially expressed genes (DEGs) than IR64. Many DEGs colocalized within drought-related QTLs responsible for grain yield and drought tolerance and also associated with drought tolerance and critical drought-related plant traits such as leaf rolling, trehalose content, sucrose and cellulose content. Besides, co-expression analysis of the DEGs revealed several 'hub' genes known to actively regulate drought stress response. Strikingly, 1366 DEGs, including 21 'hub' genes, showed a distinct opposite regulation in the two rice varieties under similar drought conditions. Annotation of these variety-specific DEGs (VS-DEGs) revealed that they are distributed in various biological pathways. Furthermore, 103 VS-DEGs were found to physically interact with over 1300 genes, including 32 that physically interact with other VS-DEGs as well. The promoter region of these genes has sequence variations among the two rice varieties, which might be in part responsible for their unique expression pattern.
Collapse
Affiliation(s)
- Pratibha Gour
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Shivani Kansal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Priyanka Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | - Deepika Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Saloni Mathur
- National Institute of Plant Genome Research, New Delhi, India
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
6
|
Lin HH, Lin KH, Wu KF, Chen YC. Identification of Ipomoea batatas anti-cancer peptide (IbACP)-responsive genes in sweet potato leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110849. [PMID: 33691955 DOI: 10.1016/j.plantsci.2021.110849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
IbACP, Ipomoea batatas anti-cancer peptide, a sixteen-amino-acid peptide isolated from sweet potato leaves, is capable of mediating a rapid alkalinization of growth media in plant suspension cells. However, the biological roles of IbACP as a defense peptide have not been studied. The objective of this study was to investigate the effect of IbACP on the accumulation of reactive oxygen species (ROS) and the expression of the defense-related genes. IbACP treatment of sweet potato leaves resulted in marked accumulation of both superoxide ion (O2-) and hydrogen peroxide (H2O2). The activity of peroxidase (POD) was significantly enhanced by IbACP treatment, suggesting that high levels of POD antioxidant activity may be used to scavenge the excess H2O2 in sweet potato plants. The IbACP-related genes were identified by suppression subtractive hybridization (SSH), and were then classified and assigned to the following categories: defense, development, metabolism, signaling, gene expression, and abiotic stress. H2O2 acts as a second messenger for gene activation in some of the IbACP-triggered gene expressions. These results demonstrated that IbACP is part of an integrated strategy for genetic regulation in sweet potato. Our work highlights the function of IbACP and its potential use for enhancing stress tolerance in sweet potato, in an effort to improve our understanding of defense-response mechanisms.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11114, Taiwan
| | - Kuan-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11114, Taiwan
| | - Kuan-Fu Wu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, 700, Taiwan
| | - Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, 700, Taiwan.
| |
Collapse
|
7
|
Whankaew S, Kaewmanee S, Ruttajorn K, Phongdara A. Indel marker analysis of putative stress-related genes reveals genetic diversity and differentiation of rice landraces in peninsular Thailand. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1237-1247. [PMID: 32549686 PMCID: PMC7266884 DOI: 10.1007/s12298-020-00816-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 01/06/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Genetic assessment of rice landraces is important for germplasm evaluation and genetic resource utilization. Rice landraces in peninsular Thailand have adapted to unique environmental stresses over time and have great significance as a genetic resource for crop improvement. In this study, rice landraces derived from rice research centers and farmers from different areas of peninsular Thailand were genetically assessed using 16 polymorphic InDel markers from putative stress-related genes. A total of 36 alleles were obtained. The average PIC value was 0.27/marker. The FST varied from 0.46 to 1.00. Genetic diversity was observed both within and between populations. AMOVA indicated that genetic variations occurred mainly between populations (70%) rather than within populations (30%). The dendrogram, population structure, and PCoA scatter plot clearly demonstrated the differentiation of the two major groups, i.e., landraces from upland and lowland rice ecosystems. The unique alleles of Indel1922, -2543, -6746, -7447 and -8538, which lie in genes encoding putative WAX2, heavy metal-associated domain-containing protein, GA20ox2, PTF1, and PLETHORA2, respectively, were only found in rice from upland ecosystems. Putative WAX2, GA20ox2, and PLETHORA2 are likely related to drought and salt stress. Our findings demonstrate the diversity of landraces in peninsular Thailand. The preservation of these landraces should be facilitated with effective markers to maintain all variant alleles and to protect the genetic diversity. Indel1922, -2543, -6746, -7447 and -8538 have the potential to differentiate upland rice from lowland rice. Furthermore, Indel1922, -6746 and -8538 might be effective markers for drought and salt tolerance.
Collapse
Affiliation(s)
- Sukhuman Whankaew
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkhla, 90110 Thailand
| | - Siriluk Kaewmanee
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkhla, 90110 Thailand
| | - Kedsirin Ruttajorn
- Department of Biology, Faculty of Science, Thaksin University, Phatthalung, 93210 Thailand
| | - Amornrat Phongdara
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkhla, 90110 Thailand
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Songkhla, 90110 Thailand
| |
Collapse
|
8
|
Cao X, Wu L, Wu M, Zhu C, Jin Q, Zhang J. Abscisic acid mediated proline biosynthesis and antioxidant ability in roots of two different rice genotypes under hypoxic stress. BMC PLANT BIOLOGY 2020; 20:198. [PMID: 32384870 PMCID: PMC7206686 DOI: 10.1186/s12870-020-02414-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/29/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Abscisic acid (ABA) and proline play important roles in rice acclimation to different stress conditions. To study whether cross-talk exists between ABA and proline, their roles in rice acclimation to hypoxia, rice growth, root oxidative damage and endogenous ABA and proline accumulation were investigated in two different rice genotypes ('Nipponbare' (Nip) and 'Upland 502' (U502)). RESULTS Compared with U502 seedlings, Nip seedlings were highly tolerant to hypoxic stress, with increased plant biomass and leaf photosynthesis and decreased root oxidative damage. Hypoxia significantly stimulated the accumulation of proline and ABA in the roots of both cultivars, with a higher ABA level observed in Nip than in U502, whereas the proline levels showed no significant difference in the two cultivars. The time course variation showed that the root ABA and proline contents under hypoxia increased 1.5- and 1.2-fold in Nip, and 2.2- and 0.7-fold in U502, respectively, within the 1 d of hypoxic stress, but peak ABA production (1 d) occurred before proline accumulation (5 d) in both cultivars. Treatment with an ABA synthesis inhibitor (norflurazon, Norf) inhibited proline synthesis and simultaneously aggravated hypoxia-induced oxidative damage in the roots of both cultivars, but these effects were reversed by exogenous ABA application. Hypoxia plus Norf treatment also induced an increase in glutamate (the main precursor of proline). This indicates that proline accumulation is regulated by ABA-dependent signals under hypoxic stress. Moreover, genes involved in proline metabolism were differentially expressed between the two genotypes, with expression mediated by ABA under hypoxic stress. In Nip, hypoxia-induced proline accumulation in roots was attributed to the upregulation of OsP5CS2 and downregulation of OsProDH, whereas upregulation of OsP5CS1 combined with downregulation of OsProDH enhanced the proline level in U502. CONCLUSION These results suggest that the high tolerance of the Nip cultivar is related to the high ABA level and ABA-mediated antioxidant capacity in roots. ABA acts upstream of proline accumulation by regulating the expression of genes encoding the key enzymes in proline biosynthesis, which also partly improves rice acclimation to hypoxic stress. However, other signaling pathways enhancing tolerance to hypoxia in the Nip cultivar still need to be elucidated.
Collapse
Affiliation(s)
- Xiaochuang Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Longlong Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Meiyan Wu
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025 Hubei China
| | - Chunquan Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Qianyu Jin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Junhua Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, No. 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| |
Collapse
|
9
|
Li J, Guo X, Zhang M, Wang X, Zhao Y, Yin Z, Zhang Z, Wang Y, Xiong H, Zhang H, Todorovska E, Li Z. OsERF71 confers drought tolerance via modulating ABA signaling and proline biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:131-139. [PMID: 29576066 DOI: 10.1016/j.plantsci.2018.01.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/19/2018] [Accepted: 01/31/2018] [Indexed: 05/05/2023]
Abstract
Plants have evolved multiple protective strategies to adapt to adverse environmental conditions. Upland rice (UR) has evolved as a "drought-resistant type". However, little is known about genes or mechanisms in UR that underlying drought tolerance at the molecular level. Here we report isolation and functional characterization of the ERF gene, OsERF71, from the UR variety, IRAT109. The expression of OsERF71 was induced by abscisic acid (ABA) and various abiotic stresses preferentially in IRAT109 under ABA, dehydration, and polyethyleneglycol (PEG) treatments. OsERF71 was verified as a nuclear-localized protein and had transcriptional activity in yeast cells. Overexpression of the OsERF71 in Nipponbare demonstrated a significant increase in tolerance to drought stress and a reduced rate of water loss. In contrast, OsERF71 interference lines were sensitive to drought stress and exhibited a higher rate of water loss. OsERF71-overexpressing lines also showed enhanced tolerance to high salinity. Moreover, OsERF71 regulated the expression of several ABA- responsive and proline biosynthesis genes under drought stress, resulting in enhanced sensitivity to exogenous ABA treatment and proline accumulation. Accordingly, we suggest that OsERF71 plays a positive role in drought stress tolerance by increasing the expression of genes associated with ABA signaling and proline biosynthesis under stress.
Collapse
Affiliation(s)
- Jinjie Li
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, People's Republic of China
| | - Xiao Guo
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, People's Republic of China
| | - Minghui Zhang
- College of Life Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xin Wang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, People's Republic of China
| | - Yan Zhao
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, People's Republic of China
| | - Zhigang Yin
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, People's Republic of China
| | - Zhanying Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, People's Republic of China
| | - Yanming Wang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, People's Republic of China
| | - Haiyan Xiong
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, People's Republic of China
| | - Hongliang Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, People's Republic of China
| | | | - Zichao Li
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
10
|
Liang C, Wang W, Wang J, Ma J, Li C, Zhou F, Zhang S, Yu Y, Zhang L, Li W, Huang X. Identification of differentially expressed genes in sunflower (Helianthus annuus) leaves and roots under drought stress by RNA sequencing. BOTANICAL STUDIES 2017; 58:42. [PMID: 29071432 PMCID: PMC5656504 DOI: 10.1186/s40529-017-0197-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/02/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Sunflower is recognized as one of the most important oil plants with strong tolerance to drought in the world. In order to study the response mechanisms of sunflower plants to drought stress, gene expression profiling using high throughput sequencing was performed for seedling leaves and roots (sunflower inbred line R5) after 24 h of drought stress (15% PEG 6000). The transcriptome assembled using sequences of 12 samples was used as a reference. RESULTS 805 and 198 genes were identified that were differentially expressed in leaves and roots, respectively. Another 71 genes were differentially expressed in both organs, in which more genes were up-regulated than down-regulated. In agreement with results obtained for other crops or from previous sunflower studies, we also observed that nine genes may be associated with the response of sunflower to drought. CONCLUSIONS The results of this study may provide new information regarding the sunflower drought response, as well as add to the number of known genes associated with drought tolerance.
Collapse
Affiliation(s)
- Chunbo Liang
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Xuefu Road 368, Harbin, 150086 People’s Republic of China
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People’s Republic of China
| | - Wenjun Wang
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People’s Republic of China
| | - Jing Wang
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People’s Republic of China
| | - Jun Ma
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People’s Republic of China
| | - Cen Li
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People’s Republic of China
| | - Fei Zhou
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People’s Republic of China
| | - Shuquan Zhang
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People’s Republic of China
| | - Ying Yu
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People’s Republic of China
| | - Liguo Zhang
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People’s Republic of China
| | - Weizhong Li
- Crop Research and Breeding Center of Land-Reclamation of Heilongjiang Province, Harbin, 150036 People’s Republic of China
| | - Xutang Huang
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Xuefu Road 368, Harbin, 150086 People’s Republic of China
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 People’s Republic of China
| |
Collapse
|
11
|
Zhang C, Lin C, Fu F, Zhong X, Peng B, Yan H, Zhang J, Zhang W, Wang P, Ding X, Zhang W, Zhao L. Comparative transcriptome analysis of flower heterosis in two soybean F1 hybrids by RNA-seq. PLoS One 2017; 12:e0181061. [PMID: 28708857 PMCID: PMC5510844 DOI: 10.1371/journal.pone.0181061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 06/26/2017] [Indexed: 01/05/2023] Open
Abstract
Heterosis has been widely exploited as an approach to enhance crop traits during breeding. However, its underlying molecular genetic mechanisms remain unclear. Recent advances in RNA sequencing technology (RNA-seq) have provided an opportunity to conduct transcriptome profiling for heterosis studies. We used RNA-seq to analyze the flower transcriptomes of two F1 hybrid soybeans (HYBSOY-1 and HYBSOY-5) and their parents. More than 385 million high-quality reads were generated and aligned against the soybean reference genome. A total of 681 and 899 genes were identified as being differentially expressed between HYBSOY-1 and HYBSOY-5 and their parents, respectively. These differentially expressed genes (DEGs) were categorized into four major expression categories with 12 expression patterns. Furthermore, gene ontology (GO) term analysis showed that the DEGs were enriched in the categories metabolic process and catalytic activity, while Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis found that metabolic pathway and biosynthesis of secondary metabolites were enriched in the two F1 hybrids. Comparing the DEGs of the two F1 hybrids by GO term and KEGG pathway analyses identified 26 common DEGs that showed transgressive up-regulation, and which could be considered potential candidate genes for heterosis in soybean F1 hybrids. This identification of an extensive transcriptome dataset gives a comprehensive overview of the flower transcriptomes in two F1 hybrids, and provides useful information for soybean hybrid breeding. These findings lay the foundation for future studies on molecular mechanisms underlying soybean heterosis.
Collapse
Affiliation(s)
- Chunbao Zhang
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Chunjing Lin
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Fuyou Fu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, United States of America
| | - Xiaofang Zhong
- Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Bao Peng
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Hao Yan
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jingyong Zhang
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Weilong Zhang
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Pengnian Wang
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xiaoyang Ding
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Wei Zhang
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Limei Zhao
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
12
|
Analysis of drought-responsive signalling network in two contrasting rice cultivars using transcriptome-based approach. Sci Rep 2017; 7:42131. [PMID: 28181537 PMCID: PMC5299611 DOI: 10.1038/srep42131] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/30/2016] [Indexed: 12/14/2022] Open
Abstract
Traditional cultivars of rice in India exhibit tolerance to drought stress due to their inherent genetic variations. Here we present comparative physiological and transcriptome analyses of two contrasting cultivars, drought tolerant Dhagaddeshi (DD) and susceptible IR20. Microarray analysis revealed several differentially expressed genes (DEGs) exclusively in DD as compared to IR20 seedlings exposed to 3 h drought stress. Physiologically, DD seedlings showed higher cell membrane stability and differential ABA accumulation in response to dehydration, coupled with rapid changes in gene expression. Detailed analyses of metabolic pathways enriched in expression data suggest interplay of ABA dependent along with secondary and redox metabolic networks that activate osmotic and detoxification signalling in DD. By co-localization of DEGs with QTLs from databases or published literature for physiological traits of DD and IR20, candidate genes were identified including those underlying major QTL qDTY1.1 in DD. Further, we identified previously uncharacterized genes from both DD and IR20 under drought conditions including OsWRKY51, OsVP1 and confirmed their expression by qPCR in multiple rice cultivars. OsFBK1 was also functionally validated in susceptible PB1 rice cultivar and Arabidopsis for providing drought tolerance. Some of the DEGs mapped to the known QTLs could thus, be of potential significance for marker-assisted breeding.
Collapse
|
13
|
Li J, Li Y, Yin Z, Jiang J, Zhang M, Guo X, Ye Z, Zhao Y, Xiong H, Zhang Z, Shao Y, Jiang C, Zhang H, An G, Paek N, Ali J, Li Z. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H 2 O 2 signalling in rice. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:183-196. [PMID: 27420922 PMCID: PMC5258865 DOI: 10.1111/pbi.12601] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 05/18/2023]
Abstract
Drought is one of the major abiotic stresses that directly implicate plant growth and crop productivity. Although many genes in response to drought stress have been identified, genetic improvement to drought resistance especially in food crops is showing relatively slow progress worldwide. Here, we reported the isolation of abscisic acid, stress and ripening (ASR) genes from upland rice variety, IRAT109 (Oryza sativa L. ssp. japonica), and demonstrated that overexpression of OsASR5 enhanced osmotic tolerance in Escherichia coli and drought tolerance in Arabidopsis and rice by regulating leaf water status under drought stress conditions. Moreover, overexpression of OsASR5 in rice increased endogenous ABA level and showed hypersensitive to exogenous ABA treatment at both germination and postgermination stages. The production of H2 O2 , a second messenger for the induction of stomatal closure in response to ABA, was activated in overexpression plants under drought stress conditions, consequently, increased stomatal closure and decreased stomatal conductance. In contrast, the loss-of-function mutant, osasr5, showed sensitivity to drought stress with lower relative water content under drought stress conditions. Further studies demonstrated that OsASR5 functioned as chaperone-like protein and interacted with stress-related HSP40 and 2OG-Fe (II) oxygenase domain containing proteins in yeast and plants. Taken together, we suggest that OsASR5 plays multiple roles in response to drought stress by regulating ABA biosynthesis, promoting stomatal closure, as well as acting as chaperone-like protein that possibly prevents drought stress-related proteins from inactivation.
Collapse
Affiliation(s)
- Jinjie Li
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Yang Li
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Zhigang Yin
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Jihong Jiang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Minghui Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Xiao Guo
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Zhujia Ye
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Yan Zhao
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Haiyan Xiong
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Zhanying Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Yujie Shao
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Conghui Jiang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Hongliang Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| | - Gynheung An
- Department of Plant Systems Biotech and Crop Biotech InstituteKyung Hee UniversityYonginKorea
| | - Nam‐Chon Paek
- Department of Plant Science, Plant Genomics and Breeding InstituteResearch Institute for Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Jauhar Ali
- International Rice Research InstituteMetro ManilaPhilippines
| | - Zichao Li
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic ImprovementChina Agricultural UniversityBeijingPeople's Republic of China
| |
Collapse
|
14
|
Glaubitz U, Li X, Schaedel S, Erban A, Sulpice R, Kopka J, Hincha DK, Zuther E. Integrated analysis of rice transcriptomic and metabolomic responses to elevated night temperatures identifies sensitivity- and tolerance-related profiles. PLANT, CELL & ENVIRONMENT 2017; 40:121-137. [PMID: 27761892 DOI: 10.1111/pce.12850] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/12/2016] [Accepted: 10/15/2016] [Indexed: 05/05/2023]
Abstract
Transcript and metabolite profiling were performed on leaves from six rice cultivars under high night temperature (HNT) condition. Six genes were identified as central for HNT response encoding proteins involved in transcription regulation, signal transduction, protein-protein interactions, jasmonate response and the biosynthesis of secondary metabolites. Sensitive cultivars showed specific changes in transcript abundance including abiotic stress responses, changes of cell wall-related genes, of ABA signaling and secondary metabolism. Additionally, metabolite profiles revealed a highly activated TCA cycle under HNT and concomitantly increased levels in pathways branching off that could be corroborated by enzyme activity measurements. Integrated data analysis using clustering based on one-dimensional self-organizing maps identified two profiles highly correlated with HNT sensitivity. The sensitivity profile included genes of the functional bins abiotic stress, hormone metabolism, cell wall, signaling, redox state, transcription factors, secondary metabolites and defence genes. In the tolerance profile, similar bins were affected with slight differences in hormone metabolism and transcription factor responses. Metabolites of the two profiles revealed involvement of GABA signaling, thus providing a link to the TCA cycle status in sensitive cultivars and of myo-inositol as precursor for inositol phosphates linking jasmonate signaling to the HNT response specifically in tolerant cultivars.
Collapse
Affiliation(s)
- Ulrike Glaubitz
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Xia Li
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, 100081, China
| | - Sandra Schaedel
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
- ICRC Weyer GmbH, Bölschestraße 35, D-12587, Berlin, Germany
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Ronan Sulpice
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
- Plant Systems Biology Research Lab, Plant and AgriBiosciences Research Centre, Botany and Plant Science, National University of Galway, Galway, Ireland
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| |
Collapse
|
15
|
Comparative transcriptome analysis highlights the crucial roles of photosynthetic system in drought stress adaptation in upland rice. Sci Rep 2016; 6:19349. [PMID: 26777777 PMCID: PMC4726002 DOI: 10.1038/srep19349] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 12/01/2015] [Indexed: 11/19/2022] Open
Abstract
Drought stress is one of the major adverse environmental factors reducing plant growth. With the aim to elucidate the underlying molecular basis of rice response to drought stress, comparative transcriptome analysis was conducted between drought susceptible rice cultivar Zhenshan97 and tolerant cultivar IRAT109 at the seedling stage. 436 genes showed differential expression and mainly enriched in the Gene Ontology (GO) terms of stress defence. A large number of variations exist between these two genotypes including 2564 high-quality insertion and deletions (INDELs) and 70,264 single nucleotide polymorphism (SNPs). 1041 orthologous gene pairs show the ratio of nonsynonymous nucleotide substitution rate to synonymous nucleotide substitutions rate (Ka/Ks) larger than 1.5, indicating the rapid adaptation to different environments during domestication. GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of positive selection genes suggested that photosynthesis represents the most significant category. The collocation of positively selected genes with the QTLs of photosynthesis and the different photosynthesis performance of these two cultivars further illuminate the crucial function of photosynthesis in rice adaptation to drought stress. Our results also provide fruitful functional markers and candidate genes for future genetic research and improvement of drought tolerance in rice.
Collapse
|
16
|
Moumeni A, Satoh K, Venuprasad R, Serraj R, Kumar A, Leung H, Kikuchi S. Transcriptional profiling of the leaves of near-isogenic rice lines with contrasting drought tolerance at the reproductive stage in response to water deficit. BMC Genomics 2015; 16:1110. [PMID: 26715311 PMCID: PMC4696290 DOI: 10.1186/s12864-015-2335-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 12/19/2015] [Indexed: 02/05/2023] Open
Abstract
Background Drought tolerance is a complex quantitative trait that involves the coordination of a vast array of genes belonging to different pathways. To identify genes related to the drought-tolerance pathway in rice, we carried out gene-expression profiling of the leaves of near-isogenic lines (NILs) with similar genetic backgrounds and different set of QTLs but contrasting drought tolerance levels in response to long-term drought-stress treatments. This work will help differentiate mechanisms of tolerance in contrasting NILs and accelerate molecular breeding programs to improve drought tolerance in this crop. Results The two pairs of rice NILs, developed at the International Rice Research Institute, along with the drought-susceptible parent, IR64, showed distinct gene-expression profiles in leaves under different water-deficit (WD) treatments. Drought tolerance in the highly drought-tolerant NIL (DTN), IR77298-14-1-2-B-10, could be attributed to the up-regulation of genes with calcium ion binding, transferase, hydrolase and transcription factor activities, whereas in the moderate DTN, IR77298-5-6-B-18, genes with transporter, catalytic and structural molecule activities were up-regulated under WD. In IR77298-14-1-2-B-10, the induced genes were characterized by the presence of regulatory motifs in their promoters, including TGGTTAGTACC and ([CT]AAC[GT]G){2}, which are specific to the TFIIIA and Myb transcription factors, respectively. In IR77298-5-6-B-18, promoters containing a GCAC[AG][ACGT][AT]TCCC[AG]A[ACGT]G[CT] motif, common to MADS(AP1), HD-ZIP, AP2 and YABBY, were induced, suggesting that these factors may play key roles in the regulation of drought tolerance in these two DTNs under severe WD. Conclusions We report here that the two pairs of NILs with different levels of drought tolerance may elucidate potential mechanisms and pathways through transcriptome data from leaf tissue. The present study serves as a resource for marker discovery and provides detailed insight into the gene-expression profiles of rice leaves, including the main functional categories of drought-responsive genes and the genes that are involved in drought-tolerance mechanisms, to help breeders identify candidate genes (both up- and down-regulated) associated with drought tolerance and suitable targets for manipulating the drought-tolerance trait in rice. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2335-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ali Moumeni
- Rice Research Institute of Iran, Mazandaran Branch, Agricultural Research, Education and Extension Organization (AREEO), PO Box 145, Postal Code 46191-91951, Km8 Babol Rd., Amol, Mazandaran, Iran.
| | - Kouji Satoh
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Kan'non dai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan.
| | - Ramiah Venuprasad
- International Rice Research Institute, DAPO Box 7777, Metro Manila, 1301, Philippines. .,Africa Rice Centre (AfricaRice), Ibadan station, c/o IITA, PMB 5320 Oyo road, Ibadan, Nigeria.
| | - Rachid Serraj
- International Rice Research Institute, DAPO Box 7777, Metro Manila, 1301, Philippines. .,Agricultural Research (CGIAR ISPC), FAO, Rome, Italy.
| | - Arvind Kumar
- International Rice Research Institute, DAPO Box 7777, Metro Manila, 1301, Philippines.
| | - Hei Leung
- International Rice Research Institute, DAPO Box 7777, Metro Manila, 1301, Philippines.
| | - Shoshi Kikuchi
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Kan'non dai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan.
| |
Collapse
|
17
|
Qiao G, Wen XP, Zhang T. Molecular cloning and characterization of the light-harvesting chlorophyll a/b gene from the pigeon pea (Cajanus cajan). Appl Biochem Biotechnol 2015; 177:1447-55. [PMID: 26329890 DOI: 10.1007/s12010-015-1825-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/23/2015] [Indexed: 11/29/2022]
Abstract
Light-harvesting chlorophyll a/b-binding proteins (LHCB) have been implicated in the stress response. In this study, a gene encoding LHCB in the pigeon pea was cloned and characterized. Based on the sequence of a previously obtained 327 bp Est, a full-length 793 bp cDNA was cloned using the rapid amplification of cDNA ends (RACE) method. It was designated CcLHCB1 and encoded a 262 amino acid protein. The calculated molecular weight of the CcLHCB1 protein was 27.89 kDa, and the theoretical isoelectric point was 5.29. Homology search and sequence multi-alignment demonstrated that the CcLHCB1 protein sequence shared a high identity with LHCB from other plants. Bioinformatics analysis revealed that CcLHCB1 was a hydrophobic protein with three transmembrane domains. By fluorescent quantitative real-time polymerase chain reaction (PCR), CcLHCB1 mRNA transcripts were detectable in different tissues (leaf, stem, and root), with the highest level found in the leaf. The expression of CcLHCB1 mRNA in the leaves was up-regulated by drought stimulation and AM inoculation. Our results provide the basis for a better understanding of the molecular organization of LCHB and might be useful for understanding the interaction between plants and microbes in the future.
Collapse
Affiliation(s)
- Guang Qiao
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region and Ministry of Education, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, China
| | - Xiao-Peng Wen
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region and Ministry of Education, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, China.
| | - Ting Zhang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region and Ministry of Education, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
18
|
Lima JM, Nath M, Dokku P, Raman KV, Kulkarni KP, Vishwakarma C, Sahoo SP, Mohapatra UB, Mithra SVA, Chinnusamy V, Robin S, Sarla N, Seshashayee M, Singh K, Singh AK, Singh NK, Sharma RP, Mohapatra T. Physiological, anatomical and transcriptional alterations in a rice mutant leading to enhanced water stress tolerance. AOB PLANTS 2015; 7:plv023. [PMID: 25818072 PMCID: PMC4482838 DOI: 10.1093/aobpla/plv023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 02/26/2015] [Indexed: 05/04/2023]
Abstract
Water stress is one of the most severe constraints to crop productivity. Plants display a variety of physiological and biochemical responses both at the cellular and whole organism level upon sensing water stress. Leaf rolling, stomatal closure, deeper root penetration, higher relative water content (RWC) and better osmotic adjustment are some of the mechanisms that plants employ to overcome water stress. In the current study, we report a mutant, enhanced water stress tolerant1 (ewst1) with enhanced water stress tolerance, identified from the ethyl methanesulfonate-induced mutant population of rice variety Nagina22 by field screening followed by withdrawal of irrigation in pots and hydroponics (PEG 6000). Though ewst1 was morphologically similar to the wild type (WT) for 35 of the 38 morphological descriptors (except chalky endosperm/expression of white core, decorticated grain colour and grain weight), it showed enhanced germination in polyethylene glycol-infused medium. It exhibited increase in maximum root length without any significant changes in its root weight, root volume and total root number on crown when compared with the WT under stress in PVC tube experiment. It also showed better performance for various physiological parameters such as RWC, cell membrane stability and chlorophyll concentration upon water stress in a pot experiment. Root anatomy and stomatal microscopic studies revealed changes in the number of xylem and phloem cells, size of central meta-xylem and number of closed stomata in ewst1. Comparative genome-wide transcriptome analysis identified genes related to exocytosis, secondary metabolites, tryptophan biosynthesis, protein phosphorylation and other signalling pathways to be playing a role in enhanced response to water stress in ewst1. The possible involvement of a candidate gene with respect to the observed morpho-physiological and transcriptional changes and its role in stress tolerance are discussed. The mutant identified and characterized in this study will be useful for further dissection of water stress tolerance in rice.
Collapse
Affiliation(s)
- John Milton Lima
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India Department of Botany, North Orissa University, Baripada, Odisha, India
| | - Manoj Nath
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - Prasad Dokku
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - K V Raman
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - K P Kulkarni
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - C Vishwakarma
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - S P Sahoo
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - U B Mohapatra
- Department of Botany, North Orissa University, Baripada, Odisha, India
| | - S V Amitha Mithra
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - V Chinnusamy
- Indian Agricultural Research Institute, New Delhi, India
| | - S Robin
- Tamil Nadu Agricultural University, Coimbatore, India
| | - N Sarla
- Directorate of Rice Research, Hyderabad, India
| | - M Seshashayee
- University of Agricultural Sciences, Bangalore, India
| | - K Singh
- Punjab Agricultural University, Ludhiana, India
| | - A K Singh
- Indian Agricultural Research Institute, New Delhi, India
| | - N K Singh
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - R P Sharma
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - T Mohapatra
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India Present address: Central Rice Research Institute, Cuttack, Odisha, India
| |
Collapse
|
19
|
Shi L, Guo M, Ye N, Liu Y, Liu R, Xia Y, Cui S, Zhang J. Reduced ABA Accumulation in the Root System is Caused by ABA Exudation in Upland Rice (Oryza sativa L. var. Gaoshan1) and this Enhanced Drought Adaptation. ACTA ACUST UNITED AC 2015; 56:951-64. [DOI: 10.1093/pcp/pcv022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 02/04/2015] [Indexed: 12/19/2022]
|
20
|
Dansana PK, Kothari KS, Vij S, Tyagi AK. OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. PLANT CELL REPORTS 2014; 33:1425-40. [PMID: 24965356 DOI: 10.1007/s00299-014-1626-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 03/21/2014] [Accepted: 04/22/2014] [Indexed: 05/19/2023]
Abstract
OsiSAP1, an A20/AN1 zinc-finger protein, confers water-deficit stress tolerance at different stages of growth by affecting expression of several endogenous genes in transgenic rice. Transgenic lines have been generated from rice constitutively expressing OsiSAP1, an A20/AN1 zinc-finger containing stress-associated protein gene from rice, driven by maize UBIQUITIN gene promoter and evaluated for water-deficit stress tolerance at different stages of growth. Their seeds show early germination and seedlings grow better under water-deficit stress compared to non-transgenic (NT) rice. Leaves from transgenic seedlings showed lesser membrane damage and lipid peroxidation under water-deficit stress. Relatively lower rate of leaf water loss has been observed in detached intact leaves from transgenic plants during late vegetative stage. Delayed leaf rolling and higher relative water content were also observed in transgenic plants under progressive water-deficit stress during reproductive developmental stage. Although reduction in grain yield is observed under unstressed condition, the relative water-deficit stress-induced yield losses are lower in transgenic rice vis-à-vis NT plants thereby resulting in yield loss protection. Transcriptome analysis suggests that overexpression of OsiSAP1 in transgenic rice results in altered expression of several endogenous genes including those coding for transcription factors, membrane transporters, signaling components and genes involved in metabolism, growth and development. A total of 150 genes were found to be more than twofold up-regulated in transgenic rice of which 43 genes are known to be involved in stress response. Our results suggest that OsiSAP1 is a positive regulator of water-deficit stress tolerance in rice.
Collapse
Affiliation(s)
- Prasant K Dansana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | | | | | | |
Collapse
|
21
|
Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One 2014; 9:e92913. [PMID: 24667379 PMCID: PMC3965499 DOI: 10.1371/journal.pone.0092913] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 02/27/2014] [Indexed: 11/28/2022] Open
Abstract
MYB-type transcription factors (TFs) play essential roles in plant growth, development and respond to environmental stresses. Role of MYB-related TFs of rice in drought stress tolerance is not well documented. Here, we report the isolation and characterization of a novel MYB-related TF, OsMYB48-1, of rice. Expression of OsMYB48-1 was strongly induced by polyethylene glycol (PEG), abscisic acid (ABA), H2O2, and dehydration, while being slightly induced by high salinity and cold treatment. The OsMYB48-1 protein was localized in the nucleus with transactivation activity at the C terminus. Overexpression of OsMYB48-1 in rice significantly improved tolerance to simulated drought and salinity stresses caused by mannitol, PEG, and NaCl, respectively, and drought stress was caused by drying the soil. In contrast to wild type plants, the overexpression lines exhibited reduced rate of water loss, lower malondialdehyde (MDA) content and higher proline content under stress conditions. Moreover, overexpression plants were hypersensitive to ABA at both germination and post-germination stages and accumulated more endogenous ABA under drought stress conditions. Further studies demonstrated that overexpression of OsMYB48-1 could regulate the expression of some ABA biosynthesis genes (OsNCED4, OsNCED5), early signaling genes (OsPP2C68, OSRK1) and late responsive genes (RAB21, OsLEA3, RAB16C and RAB16D) under drought stress conditions. Collectively, these results suggested that OsMYB48-1 functions as a novel MYB-related TF which plays a positive role in drought and salinity tolerance by regulating stress-induced ABA synthesis.
Collapse
|
22
|
Zheng X, Chen L, Li M, Lou Q, Xia H, Wang P, Li T, Liu H, Luo L. Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance. PLoS One 2013; 8:e80253. [PMID: 24244664 PMCID: PMC3823650 DOI: 10.1371/journal.pone.0080253] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/01/2013] [Indexed: 11/19/2022] Open
Abstract
Adverse environmental conditions have large impacts on plant growth and crop production. One of the crucial mechanisms that plants use in variable and stressful natural environments is gene expression modulation through epigenetic modification. In this study, two rice varieties with different drought resistance levels were cultivated under drought stress from tilling stage to seed filling stage for six successive generations. The variations in DNA methylation of the original generation (G0) and the sixth generation (G6) of these two varieties in normal condition (CK) and under drought stress (DT) at seedling stage were assessed by using Methylation Sensitive Amplification Polymorphism (MSAP) method. The results revealed that drought stress had a cumulative effect on the DNA methylation pattern of both varieties, but these two varieties had different responses to drought stress in DNA methylation. The DNA methylation levels of II-32B (sensitive) and Huhan-3 (resistant) were around 39% and 32%, respectively. Genome-wide DNA methylation variations among generations or treatments accounted for around 13.1% of total MSAP loci in II-32B, but was only approximately 1.3% in Huhan-3. In II-32B, 27.6% of total differentially methylated loci (DML) were directly induced by drought stress and 3.2% of total DML stably transmitted their changed DNA methylation status to the next generation. In Huhan-3, the numbers were 48.8% and 29.8%, respectively. Therefore, entrainment had greater effect on Huhan-3 than on II-32B. Sequence analysis revealed that the DML were widely distributed on all 12 rice chromosomes and that it mainly occurred on the gene’s promoter and exon region. Some genes with DML respond to environmental stresses. The inheritance of epigenetic variations induced by drought stress may provide a new way to develop drought resistant rice varieties.
Collapse
Affiliation(s)
- Xiaoguo Zheng
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Mingshou Li
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Qiaojun Lou
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Hui Xia
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Pei Wang
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Tiemei Li
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Hongyan Liu
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Lijun Luo
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Agrobiological Gene Center, Shanghai, China
- * E-mail:
| |
Collapse
|
23
|
Swamy BPM, Kumar A. Genomics-based precision breeding approaches to improve drought tolerance in rice. Biotechnol Adv 2013; 31:1308-18. [PMID: 23702083 DOI: 10.1016/j.biotechadv.2013.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/23/2013] [Accepted: 05/08/2013] [Indexed: 12/15/2022]
Abstract
Rice (Oryza sativa L.), the major staple food crop of the world, faces a severe threat from widespread drought. The development of drought-tolerant rice varieties is considered a feasible option to counteract drought stress. The screening of rice germplasm under drought and its characterization at the morphological, genetic, and molecular levels revealed the existence of genetic variation for drought tolerance within the rice gene pool. The improvements made in managed drought screening and selection for grain yield under drought have significantly contributed to progress in drought breeding programs. The availability of rice genome sequence information, genome-wide molecular markers, and low-cost genotyping platforms now makes it possible to routinely apply marker-assisted breeding approaches to improve grain yield under drought. Grain yield QTLs with a large and consistent effect under drought have been indentified and successfully pyramided in popular rice mega-varieties. Various rice functional genomics resources, databases, tools, and recent advances in "-omics" are facilitating the characterization of genes and pathways involved in drought tolerance, providing the basis for candidate gene identification and allele mining. The transgenic approach is successful in generating drought tolerance in rice under controlled conditions, but field-level testing is necessary. Genomics-assisted drought breeding approaches hold great promise, but a well-planned integration with standardized phenotyping is highly essential to exploit their full potential.
Collapse
|
24
|
Insight into differential responses of upland and paddy rice to drought stress by comparative expression profiling analysis. Int J Mol Sci 2013; 14:5214-38. [PMID: 23459234 PMCID: PMC3634487 DOI: 10.3390/ijms14035214] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 01/30/2013] [Accepted: 02/05/2013] [Indexed: 12/13/2022] Open
Abstract
In this study, the drought responses of two genotypes, IRAT109 and Zhenshan 97 (ZS97), representing upland and paddy rice, respectively, were systematically compared at the morphological, physiological and transcriptional levels. IRAT109 has better performance in traits related to drought avoidance, such as leaf rolling, root volumes, the ratio of leaf water loss and relative conductivity. At the transcriptional level, more genes were induced by drought in IRAT109 at the early drought stage, but more genes had dynamic expression patterns in ZS97 at different drought degrees. Under drought conditions, more genes related to reproductive development and establishment of localization were repressed in IRAT109, but more genes involved in degradation of cellular components were induced in ZS97. By checking the expression patterns of 36 drought-responsive genes (located in 14 quantitative trail loci [QTL] intervals) in ZS97, IRAT109 and near isogenic lines (NILs) of the QTL intervals, we found that more than half of these genes had their expression patterns or expression levels changed in the NILs when compared to that in ZS97 or IRAT109. Our results may provide valuable information for dissecting the genetic bases of traits related to drought resistance, as well as for narrowing the candidate genes for the traits.
Collapse
|
25
|
Qu AL, Ding YF, Jiang Q, Zhu C. Molecular mechanisms of the plant heat stress response. Biochem Biophys Res Commun 2013; 432:203-7. [PMID: 23395681 DOI: 10.1016/j.bbrc.2013.01.104] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/24/2013] [Indexed: 11/30/2022]
Abstract
High temperature has become a global concern, which seriously affects the growth and production of plants, particularly crops. Thus, the molecular mechanism of the heat stress response and breeding of heat-tolerant plants is necessary to protect food production and ensure crop safety. This review elaborates on the response networks of heat stress in plants, including the Hsf and Hsp response pathways, the response of ROS and the network of the hormones. In addition, the production of heat stress response elements during particular physiological periods of the plant is described. We also discuss the existing problems and future prospects concerning the molecular mechanisms of the heat stress response in plants.
Collapse
Affiliation(s)
- Ai-Li Qu
- China Jiliang University, Xueyuan Road 258, Hangzhou 310018, China
| | | | | | | |
Collapse
|
26
|
Bhardwaj PK, Kapoor R, Mala D, Bhagwat G, Acharya V, Singh AK, Vats SK, Ahuja PS, Kumar S. Braving the attitude of altitude: Caragana jubata at work in cold desert of Himalaya. Sci Rep 2013; 3:1022. [PMID: 23289064 PMCID: PMC3535672 DOI: 10.1038/srep01022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/23/2012] [Indexed: 11/09/2022] Open
Abstract
The present work was conducted to understand the basis of adaptation in Caragana jubata in its niche environment at high altitude cold desert of Himalaya. Molecular data showed predominance of genes encoding chaperones and those involved in growth and development at low temperature (LT), a major cue operative at high altitude. Importantly, these genes expressed in C. jubata in its natural habitat. Their homologues in Arabidopsis thaliana, Oryza sativa, and Glycine max did not exhibit similar trend of gene expression at LT. Constitutive expression and a quick up-regulation of the above genes suggested the ability of C. jubata to adjust its cellular machinery to maintain growth and development in its niche. This was reflected in LT50 (the temperature at which 50% injury occurred) and LT mediated photosynthetic acclimatory response. Such molecular and physiological plasticity enables C. jubata to thrive in the high altitude cold desert of Himalayas.
Collapse
Affiliation(s)
- Pardeep Kumar Bhardwaj
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, P.O. Box 6, Palampur (H.P.) 176061, India
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Duan J, Zhang M, Zhang H, Xiong H, Liu P, Ali J, Li J, Li Z. OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 196:143-51. [PMID: 23017909 DOI: 10.1016/j.plantsci.2012.08.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/27/2012] [Accepted: 08/03/2012] [Indexed: 05/21/2023]
Abstract
Myo-inositol oxygenase (MIOX), a unique monooxygenase, catalyzes the oxidation of myo-inositol to d-glucuronic acid. However, the protective role of MIOX in plants against oxidative stress or drought stress remains unknown. In this study, the functional characterization of MIOX obtained from the cDNA library of upland rice (Oryza sativa L. cv. IRAT109), was performed. OsMIOX was expressed predominantly in the roots and induced by drought, H₂O₂, salt, cold and abscisic acid. The transgenic rice lines overexpressing OsMIOX showed obviously improved growth performance in the medium containing 200 mM mannitol. Further, the survival rate of leaves from the transgenic rice lines was significantly higher than that of the wild type plants under polyethylene glycol treatment. It was discovered that the activity of ROS-scavenging enzymes and proline content, as well as the transcript levels of many ROS scavenging genes were significantly increased in transgenic plants compared to the wild type plants under drought stress conditions. Together, these data suggest that OsMIOX has a specific function in drought stress tolerance by decreasing oxidative damage.
Collapse
Affiliation(s)
- Junzhi Duan
- Key Lab of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Todaka D, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K. Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. RICE (NEW YORK, N.Y.) 2012; 5:6. [PMID: 24764506 PMCID: PMC3834508 DOI: 10.1186/1939-8433-5-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 03/08/2012] [Indexed: 05/18/2023]
Abstract
Abiotic stress causes loss of crop production. Under abiotic stress conditions, expression of many genes is induced, and their products have important roles in stress responses and tolerance. Progress has been made in understanding the biological roles of regulons in abiotic stress responses in rice. A number of transcription factors (TFs) regulate stress-responsive gene expression. OsDREB1s and OsDREB2s were identified as abiotic-stress responsive TFs that belong to the AP2/ERF family. Similar to Arabidopsis, these DREB regulons were most likely not involved in the abscisic acid (ABA) pathway. OsAREBs such as OsAREB1 were identified as key components in ABA-dependent transcriptional networks in rice. OsNAC/SNACs including OsNAC6 were characterized as factors that regulate expression of genes important for abiotic stress responses in rice. Here, we review on the rice abiotic-stress responses mediated by transcriptional networks, with the main focus on TFs that function in abiotic stress responses and confer stress tolerance in rice.
Collapse
Affiliation(s)
- Daisuke Todaka
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Kazuo Nakashima
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Kazuo Shinozaki
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
29
|
Li J, Wang D, Xie Y, Zhang H, Hu G, Li J, Dai A, Liu L, Li Z. Development of upland rice introgression lines and identification of QTLs for basal root thickness under different water regimes. J Genet Genomics 2011; 38:547-56. [DOI: 10.1016/j.jgg.2011.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 08/01/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
|
30
|
Proteomics to identify pathogenesis-related proteins in rice roots under water deficit. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0054-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Lenka SK, Katiyar A, Chinnusamy V, Bansal KC. Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:315-27. [PMID: 20809928 DOI: 10.1111/j.1467-7652.2010.00560.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Genetic improvement in drought tolerance in rice is the key to save water for sustainable agriculture. Drought tolerance is a complex trait and involves interplay of a vast array of genes. Several genotypes of rice have evolved features that impart tolerance to drought and other abiotic stresses. Comparative analysis of drought stress-responsive transcriptome between drought-tolerant (DT) landraces/genotypes and drought-sensitive modern rice cultivars will unravel novel genetic regulatory mechanisms involved in stress tolerance. Here, we report transcriptome analysis in a highly DT rice landrace, Nagina 22 (N22), versus a high-yielding but drought-susceptible rice variety IR64. Both genotypes exhibited a diverse global transcriptional response under normal and drought conditions. Gene ontology (GO) analysis suggested that drought tolerance of N22 was attributable to the enhanced expression of several enzyme-encoding genes. Drought susceptibility of IR64 was attributable to significant down-regulation of regulatory components that confer drought tolerance. Pathway analysis unravelled significant up-regulation of several components of carbon fixation, glycolysis/gluconeogenesis and flavonoid biosynthesis and down-regulation of starch and sucrose metabolism in both the cultivars under drought. However, significant up-regulation of α-linolenic acid metabolic pathway observed in N22 under drought appears to be in good agreement with high drought tolerance of this genotype. Consensus cis-motif profiling of drought-induced co-expressed genes led to the identification of novel cis-motifs. Taken together, the results of the comparative transcriptome analysis led to the identification of specific genotype-dependent genes responsible for drought tolerance in the rice landrace N22.
Collapse
Affiliation(s)
- Sangram K Lenka
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, India
| | | | | | | |
Collapse
|
32
|
Cohen D, Bogeat-Triboulot MB, Tisserant E, Balzergue S, Martin-Magniette ML, Lelandais G, Ningre N, Renou JP, Tamby JP, Le Thiec D, Hummel I. Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genomics 2010; 11:630. [PMID: 21073700 PMCID: PMC3091765 DOI: 10.1186/1471-2164-11-630] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 11/12/2010] [Indexed: 12/18/2022] Open
Abstract
Background Comparative genomics has emerged as a promising means of unravelling the molecular networks underlying complex traits such as drought tolerance. Here we assess the genotype-dependent component of the drought-induced transcriptome response in two poplar genotypes differing in drought tolerance. Drought-induced responses were analysed in leaves and root apices and were compared with available transcriptome data from other Populus species. Results Using a multi-species designed microarray, a genomic DNA-based selection of probesets provided an unambiguous between-genotype comparison. Analyses of functional group enrichment enabled the extraction of processes physiologically relevant to drought response. The drought-driven changes in gene expression occurring in root apices were consistent across treatments and genotypes. For mature leaves, the transcriptome response varied weakly but in accordance with the duration of water deficit. A differential clustering algorithm revealed similar and divergent gene co-expression patterns among the two genotypes. Since moderate stress levels induced similar physiological responses in both genotypes, the genotype-dependent transcriptional responses could be considered as intrinsic divergences in genome functioning. Our meta-analysis detected several candidate genes and processes that are differentially regulated in root and leaf, potentially under developmental control, and preferentially involved in early and long-term responses to drought. Conclusions In poplar, the well-known drought-induced activation of sensing and signalling cascades was specific to the early response in leaves but was found to be general in root apices. Comparing our results to what is known in arabidopsis, we found that transcriptional remodelling included signalling and a response to energy deficit in roots in parallel with transcriptional indices of hampered assimilation in leaves, particularly in the drought-sensitive poplar genotype.
Collapse
Affiliation(s)
- David Cohen
- INRA, Nancy Université, UMR1137 Ecologie et Ecophysiologie Forestières, IFR 110 EFABA, F-54280 Champenoux, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ray S, Dansana PK, Giri J, Deveshwar P, Arora R, Agarwal P, Khurana JP, Kapoor S, Tyagi AK. Modulation of transcription factor and metabolic pathway genes in response to water-deficit stress in rice. Funct Integr Genomics 2010; 11:157-78. [PMID: 20821243 DOI: 10.1007/s10142-010-0187-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 08/10/2010] [Accepted: 08/16/2010] [Indexed: 01/04/2023]
Abstract
Water-deficit stress is detrimental for rice growth, development, and yield. Transcriptome analysis of 1-week-old rice (Oryza sativa L. var. IR64) seedling under water-deficit stress condition using Affymetrix 57 K GeneChip® has revealed 1,563 and 1,746 genes to be up- and downregulated, respectively. In an effort to amalgamate data across laboratories, we identified 5,611 differentially expressing genes under varying extrinsic water-deficit stress conditions in six vegetative and one reproductive stage of development in rice. Transcription factors (TFs) involved in ABA-dependent and ABA-independent pathways have been found to be upregulated during water-deficit stress. Members of zinc-finger TFs namely, C₂H₂, C₂C₂, C₃H, LIM, PHD, WRKY, ZF-HD, and ZIM, along with TF families like GeBP, jumonji, MBF1 and ULT express differentially under water-deficit conditions. NAC (NAM, ATAF and CUC) TF family emerges to be a potential key regulator of multiple abiotic stresses. Among the 12 TF genes that are co-upregulated under water-deficit, salt and cold stress conditions, five belong to the NAC TF family. We identified water-deficit stress-responsive genes encoding key enzymes involved in biosynthesis of osmoprotectants like polyols and sugars; amino acid and quaternary ammonium compounds; cell wall loosening and structural components; cholesterol and very long chain fatty acid; cytokinin and secondary metabolites. Comparison of genes responsive to water-deficit stress conditions with genes preferentially expressed during panicle and seed development revealed a significant overlap of transcriptome alteration and pathways.
Collapse
Affiliation(s)
- Swatismita Ray
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lata C, Sahu PP, Prasad M. Comparative transcriptome analysis of differentially expressed genes in foxtail millet (Setaria italica L.) during dehydration stress. Biochem Biophys Res Commun 2010; 393:720-7. [PMID: 20171162 DOI: 10.1016/j.bbrc.2010.02.068] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 02/10/2010] [Indexed: 11/26/2022]
Abstract
Dehydration stress is one of the most important abiotic stresses that adversely influence crop growth and productivity. With the aim to understand the molecular mechanisms underlying dehydration stress tolerance in foxtail millet (Setaria italica L.), a drought tolerant crop, we examined its transcriptome changes at two time points (early and late) of dehydration stress. Two suppression subtractive hybridization (SSH) forward libraries were constructed from 21-day old seedlings of tolerant cv. Prasad at 0.5 and 6h PEG-induced dehydration stress. A total of 327 unique ESTs were identified from both libraries and were classified into 11 different categories according to their putative functions. The plant response against dehydration stress was complex, representing major transcripts involved in metabolism, stress, signaling, transcription regulation, translation and proteolysis. By Reverse Northern (RN) technique we identified the differential expression pattern of 327 transcripts, 86 (about 26%) of which showed > or = 1.7-fold induction. Further the obtained results were validated by quantitative real-time PCR (qRT-PCR) to have a comparative expression profiling of randomly chosen 9 up-regulated transcripts (> or =2.5 fold induction) between cv. Prasad (tolerant) and cv. Lepakshi (sensitive) upon dehydration stress. These transcripts showed a differential expression pattern in both cultivars at different time points of stress treatment as analyzed by qRT-PCR. The possible relationship of the identified transcripts with dehydration tolerance mechanism is discussed.
Collapse
Affiliation(s)
- Charu Lata
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | |
Collapse
|
35
|
Gao F, Zhang H, Wang H, Gao H, Li Z. Comparative transcriptional profiling under drought stress between upland and lowland rice (Oryza sativa L.) using cDNA-AFLP. Sci Bull (Beijing) 2009. [DOI: 10.1007/s11434-009-0524-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Rabello AR, Guimarães CM, Rangel PHN, da Silva FR, Seixas D, de Souza E, Brasileiro ACM, Spehar CR, Ferreira ME, Mehta A. Identification of drought-responsive genes in roots of upland rice (Oryza sativa L). BMC Genomics 2008; 9:485. [PMID: 18922162 PMCID: PMC2605477 DOI: 10.1186/1471-2164-9-485] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 10/15/2008] [Indexed: 11/10/2022] Open
Abstract
Background Rice (Oryza sativa L.) germplasm represents an extraordinary source of genes that control traits of agronomic importance such as drought tolerance. This diversity is the basis for the development of new cultivars better adapted to water restriction conditions, in particular for upland rice, which is grown under rainfall. The analyses of subtractive cDNA libraries and differential protein expression of drought tolerant and susceptible genotypes can contribute to the understanding of the genetic control of water use efficiency in rice. Results Two subtractive libraries were constructed using cDNA of drought susceptible and tolerant genotypes submitted to stress against cDNA of well-watered plants. In silico analysis revealed 463 reads, which were grouped into 282 clusters. Several genes expressed exclusively in the tolerant or susceptible genotypes were identified. Additionally, proteome analysis of roots from stressed plants was performed and 22 proteins putatively associated to drought tolerance were identified by mass spectrometry. Conclusion Several genes and proteins involved in drought-response, as well as genes with no described homologs were identified. Genes exclusively expressed in the tolerant genotype were, in general, related to maintenance of turgor and cell integrity. In contrast, in the susceptible genotype, expression of genes involved in protection against cell damage was not detected. Several protein families identified in the proteomic analysis were not detected in the cDNA analysis. There is an indication that the mechanisms of susceptibility to drought in upland rice are similar to those of lowland varieties.
Collapse
Affiliation(s)
- Aline R Rabello
- Embrapa Recursos Genéticos e Biotecnologia, PqEB Av W5 Norte Final, CEP 70770-900, Brasília, DF, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Microarray analysis provides a bridge between the molecular genetic analysis of model organisms in laboratory settings and studies of physiology, development, and adaptation in the wild. By sampling species across a range of environments, it is possible to gain a broad picture of the genomic response to environmental perturbation. Incorporating estimates of genetic relationships into study designs will facilitate genomic analysis of environmental plasticity by aiding the identification of major regulatory loci in natural populations.
Collapse
|