1
|
Tang Y, Zhang G, Jiang X, Shen S, Guan M, Tang Y, Sun F, Hu R, Chen S, Zhao H, Li J, Lu K, Yin N, Qu C. Genome-Wide Association Study of Glucosinolate Metabolites (mGWAS) in Brassica napus L. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030639. [PMID: 36771722 PMCID: PMC9921834 DOI: 10.3390/plants12030639] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 06/12/2023]
Abstract
Glucosinolates (GSLs) are secondary plant metabolites that are enriched in rapeseed and related Brassica species, and they play important roles in defense due to their anti-nutritive and toxic properties. Here, we conducted a genome-wide association study of six glucosinolate metabolites (mGWAS) in rapeseed, including three aliphatic glucosinolates (m145 gluconapin, m150 glucobrassicanapin and m151 progoitrin), one aromatic glucosinolate (m157 gluconasturtiin) and two indole glucosinolates (m165 indolylmethyl glucosinolate and m172 4-hydroxyglucobrassicin), respectively. We identified 113 candidate intervals significantly associated with these six glucosinolate metabolites. In the genomic regions linked to the mGWAS peaks, 187 candidate genes involved in glucosinolate biosynthesis (e.g., BnaMAM1, BnaGGP1, BnaSUR1 and BnaMYB51) and novel genes (e.g., BnaMYB44, BnaERF025, BnaE2FC, BnaNAC102 and BnaDREB1D) were predicted based on the mGWAS, combined with analysis of differentially expressed genes. Our results provide insight into the genetic basis of glucosinolate biosynthesis in rapeseed and should facilitate marker-based breeding for improved seed quality in Brassica species.
Collapse
Affiliation(s)
- Yunshan Tang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Guorui Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Xinyue Jiang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Shulin Shen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Mingwei Guan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Yuhan Tang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Fujun Sun
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Ran Hu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Si Chen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Huiyan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Nengwen Yin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
2
|
Rasheed A, Ahmad J, Nadeem M, Rashid MAR, Azeem F. Microsatellite markers-aided dissection of iron, zinc and cadmium accumulation potential in Triticum aestivum. PeerJ 2023; 11:e15229. [PMID: 37090115 PMCID: PMC10117381 DOI: 10.7717/peerj.15229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Background Wheat is a staple cereal food around the globe. It provides a significant source of proteins, carbohydrates, and other micronutrients to humans. When grown on cadmium (Cd) contaminated soils, the uptake of trace elements e.g., iron (Fe) and zinc (Zn) has also been affected drastically that in turn affected the wheat grain. Methods In this study, wheat accessions were used to investigate the impact of soil application of Zn (5 mg/kg, 20 mg/kg) and Cd (0 mg/kg, 10 mg/kg) on accumulation of these elements in wheat grains. A total of 45 Fe, Zn, and Cd transporter-related genes were used to design 101 gene-specific SSR (simple sequence repeat) markers. Results In response to Cd stress, application of 20 mg/Kg Zn improved Fe (64.6 ug/g) and Zn (48.3 ug/g) accumulation in wheat grains as well as agronomic traits. Marker trait association revealed that SSR markers based on NAM-B1 gene (PR01 and PR02) were associated with Zn accumulation. Similarly, SSR markers based on TaVTL5-2B_5 (PR19 PR20), TaVTL5-2B_2 (PR25, PR26), TaVTL5-2D_3 (PR30), TaVTL2-2A (PR31), TaVTL1-6A (PR32), and TaVTL2-2D_1 (PR37) were significantly associated with Fe accumulation, while HMA3-5B1 (PR62) and TaNRAMP3-7D (PR89) were linked to Cd accumulation in grains. The highly associated markers may be used in marker-assisted selection of suitable wheat genotypes for breeding bio-fortified varieties with low Cd accumulation.
Collapse
Affiliation(s)
- Asima Rasheed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Javed Ahmad
- Wheat Research Institute, Ayub Agricultural Research Institute (AARI), Faisalabad, Punjab, Pakistan
| | - Majid Nadeem
- Wheat Research Institute, Ayub Agricultural Research Institute (AARI), Faisalabad, Punjab, Pakistan
| | - Muhammad Abdul Rehman Rashid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| |
Collapse
|
3
|
Chao H, Li H, Yan S, Zhao W, Chen K, Wang H, Raboanatahiry N, Huang J, Li M. Further insight into decreases in seed glucosinolate content based on QTL mapping and RNA-seq in Brassica napus L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2969-2991. [PMID: 35841418 DOI: 10.1007/s00122-022-04161-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
The QTL hotspots determining seed glucosinolate content instead of only four HAG1 loci and elucidation of a potential regulatory model for rapeseed SGC variation. Glucosinolates (GSLs) are amino acid-derived, sulfur-rich secondary metabolites that function as biopesticides and flavor compounds, but the high seed glucosinolate content (SGC) reduces seed quality for rapeseed meal. To dissect the genetic mechanism and further reduce SGC in rapeseed, QTL mapping was performed using an updated high-density genetic map based on a doubled haploid (DH) population derived from two parents that showed significant differences in SGC. In 15 environments, a total of 162 significant QTLs were identified for SGC and then integrated into 59 consensus QTLs, of which 32 were novel QTLs. Four QTL hotspot regions (QTL-HRs) for SGC variation were discovered on chromosomes A09, C02, C07 and C09, including seven major QTLs that have previously been reported and four novel major QTLs in addition to HAG1 loci. SGC was largely determined by superimposition of advantage allele in the four QTL-HRs. Important candidate genes directly related to GSL pathways were identified underlying the four QTL-HRs, including BnaC09.MYB28, BnaA09.APK1, BnaC09.SUR1 and BnaC02.GTR2a. Related differentially expressed candidates identified in the minor but environment stable QTLs indicated that sulfur assimilation plays an important rather than dominant role in SGC variation. A potential regulatory model for rapeseed SGC variation constructed by combining candidate GSL gene identification and differentially expressed gene analysis based on RNA-seq contributed to a better understanding of the GSL accumulation mechanism. This study provides insights to further understand the genetic regulatory mechanism of GSLs, as well as the potential loci and a new route to further diminish the SGC in rapeseed.
Collapse
Affiliation(s)
- Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuxiang Yan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weiguo Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, 712100, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, 712100, China
| | - Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
4
|
Klimenko IA, Volovik VT, Antonov AA, Dushkin VA, Shamustakimova AO, Mavlyutov YM. Investigation of genetic polymorphism of Russian rape and turnip rape varieties using SSR and SRAP markers. Vavilovskii Zhurnal Genet Selektsii 2022; 26:349-358. [PMID: 35860676 PMCID: PMC9259662 DOI: 10.18699/vjgb-22-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/09/2022] [Accepted: 03/09/2021] [Indexed: 11/19/2022] Open
Abstract
Rapeseed (Brassica napus L.) and turnip rape (B. rapa L. subsp. campestris (L.)) are important agricultural plants widely used for food, fodder and technical purposes and as green manure. Over the past decades, a large number of perspective varieties that are being currently cultivated in every region of Russia have been developed. To increase the breeding efficiency and facilitate the seed production, modern molecular-genetic techniques should be introduced as means to estimate species and varietal diversity. The objective of the presented research study was to investigate DNA polymorphism of the rapeseed and turnip rape varieties developed at Federal Williams Research Center of Forage Production and Agroecology and detect informative markers for varietal identification and genetic certification. To genotype 18 gDNA samples, 42 and 25 combinations of respective SSR and SRAP primers were used. The results obtained demonstrate that SRAP markers were more effective for polymorphism analysis: 36 % of the tested markers revealed genetic polymorphism compared with only 16.7 % of microsatellite loci. Molecular markers to detect differences at interspecific and intervarietal levels have also been found. For the investigated set, such microsatellite loci as Na12A02, Ni2C12, Ni02-D08a, Ra02-E01, Ni03H07а and SRAP-marker combinations as F13-R9, Me4-R7, F11-Em2, F10-R7, F9-Em2 and F9-R8 proved to be informative. Application of the two marker techniques made it possible to detect a higher level of DNA polymorphism in plants of different types (spring and winter varieties) if compared against the intervarietal differences within a species or a group. According to Nei’s genetic diversity index, in the cluster of winter rapeseed, VIK 2 and Gorizont varieties had the longest genetic distance, and in the spring cluster, these were Novosel and Veles. A high level of similarity was found between Vikros and Bizon winter rapeseed varieties. The results obtained have a high practical value for varietal specification of seed material and genetic certification of rapeseed and turnip rape varieties.
Collapse
Affiliation(s)
- I. A. Klimenko
- Federal Williams Research Center of Forage Production and Agroecology
| | - V. T. Volovik
- Federal Williams Research Center of Forage Production and Agroecology
| | - A. A. Antonov
- Federal Williams Research Center of Forage Production and Agroecology
| | - V. A. Dushkin
- Federal Williams Research Center of Forage Production and Agroecology
| | | | - Yu. M. Mavlyutov
- Federal Williams Research Center of Forage Production and Agroecology
| |
Collapse
|
5
|
Wang Y, Wang Q, Sun H, Zhang Z, Qian H, Zhao X, He H, Zhang L. Glucosinolate Profiles in Different Organs of 111 Radish Accessions and Candidate Genes Involved in Converting Glucobrassicin to 4-Hydroxyglucobrassicin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:488-497. [PMID: 34985889 DOI: 10.1021/acs.jafc.1c05107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glucosinolate (GSL) not only has highly physiological function for plants but also has considerable human interest. We analyzed the GSL compositions and levels in four organs of 111 radish accessions. Seven major GSLs were detected (approximately 5-245 μmol g-1 DW), among which 4-(methylsulfinyl)but-3-enyl GSL and 4-methylsulfanyl-3-butenyl GSL were the dominant GSLs. GSL levels varied substantially among species and groups, and some genotypes/groups with special GSL profiles were identified. The total GSL level was higher in seeds than in sprouts, taproots, and leaves. Additionally, a correlation analysis revealed that seed 4-(methylsulfinyl)but-3-enyl GSL levels were highly correlated with sprout GSL levels. Moreover, a candidate gene (RsCYP81F2.3) encoding an enzyme that catalyzes the conversion of indol-3-ylmethyl GSL to 4-hydroxyindol-3-ylmethyl GSL was identified based on the detection and analysis of three radish accessions with relatively high indol-3-ylmethyl GSL, low 4-hydroxyindol-3-ylmethyl GSL, and 4-methoxyindol-3-ylmethyl GSL levels in their seeds. Our results provide some insights for finding materials and genes relevant for breeding new varieties with ideal GSL compositions and levels.
Collapse
Affiliation(s)
- Yanping Wang
- Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Qingbiao Wang
- Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Honghe Sun
- Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Ziye Zhang
- Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Huihui Qian
- Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Xuezhi Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hongju He
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Li Zhang
- Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| |
Collapse
|
6
|
Lee KJ, Sebastin R, Cho GT, Yoon M, Lee GA, Hyun DY. Genetic Diversity and Population Structure of Potato Germplasm in RDA-Genebank: Utilization for Breeding and Conservation. PLANTS (BASEL, SWITZERLAND) 2021; 10:752. [PMID: 33921437 PMCID: PMC8068792 DOI: 10.3390/plants10040752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022]
Abstract
Potato (Solanum tuberosum L.) is an important staple food and economic crop in many countries. It is of critical importance to understand the genetic diversity and population structure for effective collection, conservation, and utilization of potato germplasm. Thus, the objective of the present study was to investigate the genetic diversity and population structure of potato germplasm conserved in the National Agrobiodiversity Center (NAC) of South Korea to provide basic data for future preservation and breeding of potato genetic resources. A total of 24 simple sequence repeat (SSR) markers were used to assess the genetic diversity and population structure of 482 potato accessions. A total of 257 alleles were detected, with an average of 10.71 alleles per locus. Analysis of molecular variance showed that 97% of allelic diversity was attributed to individual accessions within the population, while only 3% was distributed among populations. Results of genetic structure analysis based on STRUCTURE and discriminant analysis of principal components revealed that 482 potato accessions could be divided into two main subpopulations. Accessions of subpopulation 1 mainly belonged to cultivars and breeding lines. Accessions of subpopulations 2 basically corresponded to wild relatives of potatoes. Results of this study provide useful information for potato improvement and conservation programs, although further studies are needed for a more accurate evaluation of genetic diversity and phenotypic traits of potatoes.
Collapse
Affiliation(s)
- Kyung-Jun Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Jeol-labuk-do, Korea; (K.-J.L.); (R.S.); (G.-T.C.); (M.Y.); (G.-A.L.)
- Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Jeollanam-do, Korea
| | - Raveendar Sebastin
- National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Jeol-labuk-do, Korea; (K.-J.L.); (R.S.); (G.-T.C.); (M.Y.); (G.-A.L.)
| | - Gyu-Taek Cho
- National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Jeol-labuk-do, Korea; (K.-J.L.); (R.S.); (G.-T.C.); (M.Y.); (G.-A.L.)
| | - Munsup Yoon
- National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Jeol-labuk-do, Korea; (K.-J.L.); (R.S.); (G.-T.C.); (M.Y.); (G.-A.L.)
| | - Gi-An Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Jeol-labuk-do, Korea; (K.-J.L.); (R.S.); (G.-T.C.); (M.Y.); (G.-A.L.)
| | - Do-Yoon Hyun
- National Agrobiodiversity Center, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Jeol-labuk-do, Korea; (K.-J.L.); (R.S.); (G.-T.C.); (M.Y.); (G.-A.L.)
| |
Collapse
|
7
|
Pacifico D, Lanzanova C, Pagnotta E, Bassolino L, Mastrangelo AM, Marone D, Matteo R, Lo Scalzo R, Balconi C. Sustainable Use of Bioactive Compounds from Solanum Tuberosum and Brassicaceae Wastes and by-Products for Crop Protection-A Review. Molecules 2021; 26:2174. [PMID: 33918886 PMCID: PMC8070479 DOI: 10.3390/molecules26082174] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/24/2022] Open
Abstract
Defatted seed meals of oleaginous Brassicaceae, such as Eruca sativa, and potato peel are excellent plant matrices to recover potentially useful biomolecules from industrial processes in a circular strategy perspective aiming at crop protection. These biomolecules, mainly glycoalkaloids and phenols for potato and glucosinolates for Brassicaceae, have been proven to be effective against microbes, fungi, nematodes, insects, and even parasitic plants. Their role in plant protection is overviewed, together with the molecular basis of their synthesis in plant, and the description of their mechanisms of action. Possible genetic and biotechnological strategies are presented to increase their content in plants. Genetic mapping and identification of closely linked molecular markers are useful to identify the loci/genes responsible for their accumulation and transfer them to elite cultivars in breeding programs. Biotechnological approaches can be used to modify their allelic sequence and enhance the accumulation of the bioactive compounds. How the global challenges, such as reducing agri-food waste and increasing sustainability and food safety, could be addressed through bioprotector applications are discussed here.
Collapse
Affiliation(s)
- Daniela Pacifico
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Chiara Lanzanova
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Eleonora Pagnotta
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Laura Bassolino
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Anna Maria Mastrangelo
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Daniela Marone
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Roberto Matteo
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| | - Roberto Lo Scalzo
- CREA Council for Agricultural Research and Economics—Research Centre for Engineering and Agro-Food Processing, 00198 Rome, Italy;
| | - Carlotta Balconi
- CREA Council for Agricultural Research and Economics—Research Centre for Cereal and Industrial Crops, 00198 Rome, Italy; (C.L.); (E.P.); (L.B.); (A.M.M.); (D.M.); (C.B.); (R.M.)
| |
Collapse
|
8
|
Werner CR, Gaynor RC, Gorjanc G, Hickey JM, Kox T, Abbadi A, Leckband G, Snowdon RJ, Stahl A. How Population Structure Impacts Genomic Selection Accuracy in Cross-Validation: Implications for Practical Breeding. FRONTIERS IN PLANT SCIENCE 2020; 11:592977. [PMID: 33391305 PMCID: PMC7772221 DOI: 10.3389/fpls.2020.592977] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/24/2020] [Indexed: 05/27/2023]
Abstract
Over the last two decades, the application of genomic selection has been extensively studied in various crop species, and it has become a common practice to report prediction accuracies using cross validation. However, genomic prediction accuracies obtained from random cross validation can be strongly inflated due to population or family structure, a characteristic shared by many breeding populations. An understanding of the effect of population and family structure on prediction accuracy is essential for the successful application of genomic selection in plant breeding programs. The objective of this study was to make this effect and its implications for practical breeding programs comprehensible for breeders and scientists with a limited background in quantitative genetics and genomic selection theory. We, therefore, compared genomic prediction accuracies obtained from different random cross validation approaches and within-family prediction in three different prediction scenarios. We used a highly structured population of 940 Brassica napus hybrids coming from 46 testcross families and two subpopulations. Our demonstrations show how genomic prediction accuracies obtained from among-family predictions in random cross validation and within-family predictions capture different measures of prediction accuracy. While among-family prediction accuracy measures prediction accuracy of both the parent average component and the Mendelian sampling term, within-family prediction only measures how accurately the Mendelian sampling term can be predicted. With this paper we aim to foster a critical approach to different measures of genomic prediction accuracy and a careful analysis of values observed in genomic selection experiments and reported in literature.
Collapse
Affiliation(s)
- Christian R. Werner
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Research Centre, Midlothian, United Kingdom
| | - R. Chris Gaynor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Research Centre, Midlothian, United Kingdom
| | - Gregor Gorjanc
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Research Centre, Midlothian, United Kingdom
| | - John M. Hickey
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Research Centre, Midlothian, United Kingdom
| | | | | | | | - Rod J. Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Andreas Stahl
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
- Julius Kuehn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| |
Collapse
|
9
|
Induction of Glucoraphasatin Biosynthesis Genes by MYB29 in Radish ( Raphanus sativus L.) Roots. Int J Mol Sci 2020; 21:ijms21165721. [PMID: 32785002 PMCID: PMC7461053 DOI: 10.3390/ijms21165721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Glucoraphasatin (GRH) is a specific aliphatic glucosinolate (GSL) that is only abundant in radish (Raphanus sativus L.). The gene expression regulating GRH biosynthesis in radish is still poorly understood. We employed a total of 59 radish accessions to analyze GSL profiles and showed that GRH was specific and predominant among the aliphatic GSLs in radish roots. We selected five accessions roots with high, moderate and low GSL biosynthesis, respectively, to conduct a comparative transcriptome analysis and the qRT-PCR of the biosynthesis genes for aliphatic GSLs. In this study, among all the accessions tested, roots with the accession RA157-74 had a high GRH content and showed a significant expression of the aliphatic GSL biosynthesis genes. We defined the genes involved in the GRH biosynthesis process and found that they were regulated by a transcription factor (RSG00789) at the MYB29 locus in radish roots. We found 13 aliphatic GSL biosynthesis genes regulated by the RSG00789 gene in the GRH biosynthesis pathway.
Collapse
|
10
|
Fu F, Zhang X, Liu F, Peng G, Yu F, Fernando D. Identification of resistance loci in Chinese and Canadian canola/rapeseed varieties against Leptosphaeria maculans based on genome-wide association studies. BMC Genomics 2020; 21:501. [PMID: 32693834 PMCID: PMC7372758 DOI: 10.1186/s12864-020-06893-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/07/2020] [Indexed: 01/08/2023] Open
Abstract
Background The fungal pathogen Leptosphaeria maculans (Lm). causes blackleg disease on canola/rapeseed in many parts of the world. It is important to use resistant cultivars to manage the disease and minimize yield losses. In this study, twenty-two Lm isolates were used to identify resistance genes in a collection of 243 canola/rapeseed (Brassica napus L.) accessions from Canada and China. These Lm isolates carry different compliments of avirulence genes, and the investigation was based on a genome-wide association study (GWAS) and genotype-by-sequencing (GBS). Results Using the CROP-SNP pipeline, a total of 81,471 variants, including 78,632 SNPs and 2839 InDels, were identified. The GWAS was performed using TASSEL 5.0 with GLM + Q model. Thirty-two and 13 SNPs were identified from the Canadian and Chinese accessions, respectively, tightly associated with blackleg resistance with P values < 1 × 10− 4. These SNP loci were distributed on chromosomes A03, A05, A08, A09, C01, C04, C05, and C07, with the majority of them on A08 followed by A09 and A03. The significant SNPs identified on A08 were all located in a 2010-kb region and associated with resistance to 12 of the 22 Lm isolates. Furthermore, 25 resistance gene analogues (RGAs) were identified in these regions, including two nucleotide binding site (NBS) domain proteins, fourteen RLKs, three RLPs and six TM-CCs. These RGAs can be the potential candidate genes for blackleg resistance. Conclusion This study provides insights into potentially new genomic regions for discovery of additional blackleg resistance genes. The identified regions associated with blackleg resistance in the germplasm collection may also contribute directly to the development of canola varieties with novel resistance genes against blackleg of canola.
Collapse
Affiliation(s)
- Fuyou Fu
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.,Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Xuehua Zhang
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Fei Liu
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Gary Peng
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Fengqun Yu
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada.
| | - Dilantha Fernando
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
11
|
Profiling of Individual Desulfo-Glucosinolate Content in Cabbage Head ( Brassica oleracea var. capitata) Germplasm. Molecules 2020; 25:molecules25081860. [PMID: 32316621 PMCID: PMC7221891 DOI: 10.3390/molecules25081860] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Individual glucosinolates (GSLs) were assessed to select cabbage genotypes for a potential breeding program. One hundred forty-six cabbage genotypes from different origins were grown in an open field from March to June 2019; the cabbage heads were used for GSL analyses. Seven aliphatics [glucoiberin (GIB), progoitrin (PRO), epi-progoitrin (EPI), sinigrin (SIN), glucoraphanin (GRA), glucoerucin (GER) and gluconapin (GNA)], one aromatic [gluconasturtiin (GNS)] and four indolyl GSLs [glucobrassicin (GBS), 4-hydroxyglucobrassicin (4HGBS), 4-methoxyglucobrassicin (4MGBS), neoglucobrassicin (NGBS)] were found this study. Significant variation was observed in the individual GSL content and in each class of GSLs among the cabbage genotypes. Aliphatic GSLs were predominant (58.5%) among the total GSLs, followed by indolyl GSL (40.7%) and aromatic GSLs (0.8%), showing 46.4, 51.2 and 137.8% coefficients of variation, respectively. GIB, GBS and NGBS were the most common GSLs found in all genotypes. GBS was the most dominant GSL, with an average value of 3.91 µmol g−1 (0.79 to 13.14 µmol g−1). SIN, GIB, PRO and GRA were the other major GSLs, showing average values of 3.45, 1.50, 0.77 and 0.62 µmol g−1, respectively. The genotypes with relatively high contents of GBS, SIN, GIB and GRA warrant detailed studies for future breeding programs since the hydrolysis products of these GSLs have several anti-cancer properties.
Collapse
|
12
|
Liu Y, Zhou X, Yan M, Wang P, Wang H, Xin Q, Yang L, Hong D, Yang G. Fine mapping and candidate gene analysis of a seed glucosinolate content QTL, qGSL-C2, in rapeseed (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:479-490. [PMID: 31832742 DOI: 10.1007/s00122-019-03479-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
QTL mapping and candidate gene analysis indicate that allelic variations in BnaC2.MYB28 resulted from homeologous exchange and determine difference in seed glucosinolate content. A low seed glucosinolate content has long been an important breeding objective in rapeseed improvement. However, the molecular mechanisms underlying seed GSL content variations remain to be elucidated in allotetraploid Brassica napus. Here, we developed a double haploid population from a cross between two B. napus accessions that possess relatively low, but significantly different seed GSL contents and identified a major QTL, qGSL-C2, on chromosome C02 that explains 30.88-72.87% of the phenotypic variation observed in five environments. Using near-isogenic lines, we further delimited qGSL-C2 to a physical region of 49 kb on the B. rapa chromosome A02 which is highly homologous to the target C02 interval. Among five candidate genes, BnaC2.MYB28, a homologue of the Arabidopsis MYB28 encoding a putative R2R3-MYB-type transcription factor functioning in aliphatic methionine-derived GSL synthesis, was most likely to be the target gene underlying the QTL. Sequence analysis revealed multiple insertion/deletion and SNP variations in the genomic region between the alleles of the NILs. Furthermore, the allelic variations in BnaC2.MYB28 in the natural B. napus population were significantly associated with seed GSL content. Remarkably, the phylogenetic analysis and sequence comparison suggested that while the BnaC2.MYB28 allele from the parental line G120 was inherited from B. oleracea BolC2.MYB28, its counterpart from the other parent, 9172, most likely evolved from B. rapa BraA2.MYB28 via possible homeologous exchange. Our study promotes greater understanding of the molecular regulation of seed GSL content and provides useful molecular markers for seed GSL improvement in B. napus.
Collapse
Affiliation(s)
- Ying Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Xin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liyong Yang
- Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Zhu Q, King GJ, Liu X, Shan N, Borpatragohain P, Baten A, Wang P, Luo S, Zhou Q. Identification of SNP loci and candidate genes related to four important fatty acid composition in Brassica napus using genome wide association study. PLoS One 2019; 14:e0221578. [PMID: 31442274 PMCID: PMC6707581 DOI: 10.1371/journal.pone.0221578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/11/2019] [Indexed: 12/16/2022] Open
Abstract
Rapeseed oil (canola, Brassica napus L.) is an important healthy vegetable oil throughout the world, the nutritional and economical value of which largely depends on its seed fatty acid composition. In this study, based on 201,187 SNP markers developed from the SLAF-seq (specific locus amplified fragment sequencing), a genome wide association study of four important fatty acid content traits (erucic acid, oleic acid, linoleic acid and linolenic acid) in a panel of 300 inbred lines of rapeseed in two environments (JXAU and JXRIS) was carried out. A total of 148 SNP loci significantly associated with these traits were detected by MLM model analysis respectively, and 30 SNP loci on A08 and C03 chromosomes were detected in three traits of erucic acid, oleic acid and linoleic acid contents simultaneously. Furthermore, 108 highly favorable alleles for increasing oleic acid and linoleic acid content, also for decreasing erucic acid content simultaneously were observed. By a basic local alignment search tool (BLAST) search with in a distance of 100 Kb around these significantly SNP-trait associations, we identified 20 orthologs of the functional candidate genes related to fatty acid biosynthesis, including the known vital fatty acid biosynthesis genes of BnaA.FAE1 and BnaC. FAE1 on the A08 and C03 chromosomes, and other potential candidate genes involving in the fatty acid biosynthesis pathway, such as the orthologs genes of FAD2, LACS09, KCS17, CER4, TT16 and ACBP5. This study lays a basis for uncovering the genetic variations and the improvement of fatty acid composition in B. napus.
Collapse
Affiliation(s)
- Qianglong Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Xingyue Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Nan Shan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | | | - Abdul Baten
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Putao Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Sha Luo
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Qinghong Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
- * E-mail:
| |
Collapse
|
14
|
Beszterda M, Nogala‐Kałucka M. Current Research Developments on the Processing and Improvement of the Nutritional Quality of Rapeseed (
Brassica napus
L.). EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Monika Beszterda
- Department of Biochemistry and Food AnalysisPoznan University of Life SciencesMazowiecka 4860‐623PoznanPoland
| | - Małgorzata Nogala‐Kałucka
- Department of Biochemistry and Food AnalysisPoznan University of Life SciencesMazowiecka 4860‐623PoznanPoland
| |
Collapse
|
15
|
Lu K, Wei L, Li X, Wang Y, Wu J, Liu M, Zhang C, Chen Z, Xiao Z, Jian H, Cheng F, Zhang K, Du H, Cheng X, Qu C, Qian W, Liu L, Wang R, Zou Q, Ying J, Xu X, Mei J, Liang Y, Chai YR, Tang Z, Wan H, Ni Y, He Y, Lin N, Fan Y, Sun W, Li NN, Zhou G, Zheng H, Wang X, Paterson AH, Li J. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun 2019; 10:1154. [PMID: 30858362 PMCID: PMC6411957 DOI: 10.1038/s41467-019-09134-9] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 02/22/2019] [Indexed: 12/12/2022] Open
Abstract
Brassica napus (2n = 4x = 38, AACC) is an important allopolyploid crop derived from interspecific crosses between Brassica rapa (2n = 2x = 20, AA) and Brassica oleracea (2n = 2x = 18, CC). However, no truly wild B. napus populations are known; its origin and improvement processes remain unclear. Here, we resequence 588 B. napus accessions. We uncover that the A subgenome may evolve from the ancestor of European turnip and the C subgenome may evolve from the common ancestor of kohlrabi, cauliflower, broccoli, and Chinese kale. Additionally, winter oilseed may be the original form of B. napus. Subgenome-specific selection of defense-response genes has contributed to environmental adaptation after formation of the species, whereas asymmetrical subgenomic selection has led to ecotype change. By integrating genome-wide association studies, selection signals, and transcriptome analyses, we identify genes associated with improved stress tolerance, oil content, seed quality, and ecotype improvement. They are candidates for further functional characterization and genetic improvement of B. napus. Brassica napus is a globally important oil crop, but the origin of the allotetraploid genome and its improvement process are largely unknown. Here, the authors take a population genetic approach to resolve its origin and evolutionary history, and identify candidate genes related to important agricultural traits.
Collapse
Affiliation(s)
- Kun Lu
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - Lijuan Wei
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China
| | - Xiaolong Li
- Biomarker Technologies Corporation, 101300, Beijing, China
| | - Yuntong Wang
- Biomarker Technologies Corporation, 101300, Beijing, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, 100081, Beijing, China
| | - Miao Liu
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Chao Zhang
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Zhiyou Chen
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Zhongchun Xiao
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Hongju Jian
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, 100081, Beijing, China
| | - Kai Zhang
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - Xinchao Cheng
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - Cunming Qu
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - Rui Wang
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - Qingyuan Zou
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Jiamin Ying
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Xingfu Xu
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China
| | - Jiaqing Mei
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China
| | - Ying Liang
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - You-Rong Chai
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - Zhanglin Tang
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - Huafang Wan
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Yu Ni
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China
| | - Yajun He
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Na Lin
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Yonghai Fan
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Wei Sun
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China
| | - Nan-Nan Li
- Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China
| | - Gang Zhou
- Biomarker Technologies Corporation, 101300, Beijing, China
| | - Hongkun Zheng
- Biomarker Technologies Corporation, 101300, Beijing, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, 100081, Beijing, China.
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia, 30605, USA.
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, 400715, Chongqing, China. .,Academy of Agricultural Sciences, Southwest University, Beibei, 400715, Chongqing, China. .,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, 400715, Chongqing, China.
| |
Collapse
|
16
|
Wang Y, Rashid MAR, Li X, Yao C, Lu L, Bai J, Li Y, Xu N, Yang Q, Zhang L, Bryan GJ, Sui Q, Pan Z. Collection and Evaluation of Genetic Diversity and Population Structure of Potato Landraces and Varieties in China. FRONTIERS IN PLANT SCIENCE 2019; 10:139. [PMID: 30846993 PMCID: PMC6393402 DOI: 10.3389/fpls.2019.00139] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/28/2019] [Indexed: 05/26/2023]
Abstract
China is the world's leading country for potato production but potato is not native to China. To gain insights into the genetic diversity of potato germplasm various studies have been performed but no study has been reported for potato landraces in China. To improve the available genepool for future potato breeding programs, a diverse population containing 292 genotypes (including foreign elite lines, local landraces and cultivars) was developed and genotyped using 30 SSR markers covering the entire potato genome. A total of 174 alleles were detected with an average of 5.5 alleles per locus. The model-based structure analysis discriminated the population into two main sub-groups, which can be further subdivided into seven groups based on collection sites. One sub-group (P1) revealed less genetic diversity than other (P2) and contained a higher number of commercial cultivars possibly indicating a slight reduction in diversity due to selection in breeding programs. The P2 sub-group showed a wider range of genetic diversity with more new and unique alleles attained from wild relatives. The potato landraces, clustered in sub-population P1 may be derived from historical population imported from ancient European and International Potato Center genotypes while sub-population P2 may be derived from modern populations from International Potato Center and European genotypes. It is proposed that in the first step, the potato genotypes were introduced from Europe to China, domesticated as landraces, and then hybridized for modern cultivars.
Collapse
Affiliation(s)
- Ying Wang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Muhammad Abdul Rehman Rashid
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Plant Breeding and Genetics, University of Agriculture Faisalabad, Burewala, Pakistan
| | - Xianping Li
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Chunguang Yao
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Lili Lu
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jianming Bai
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yanshan Li
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ningsheng Xu
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Qiongfen Yang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Linhai Zhang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Qijun Sui
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Scientific Observing and Experimental Station of Potato and Rapeseed in Yunnan-Guizhou Plateau, Ministry of Agriculture, Kunming, China
| | - Zhechao Pan
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Scientific Observing and Experimental Station of Potato and Rapeseed in Yunnan-Guizhou Plateau, Ministry of Agriculture, Kunming, China
| |
Collapse
|
17
|
The effects of promoter variations of the N-Methylcanadine 1-Hydroxylase (CYP82Y1) gene on the noscapine production in opium poppy. Sci Rep 2018; 8:4973. [PMID: 29563567 PMCID: PMC5862900 DOI: 10.1038/s41598-018-23351-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 03/09/2018] [Indexed: 11/18/2022] Open
Abstract
Noscapine is an antitumor alkaloid produced in opium poppy (Papaver somniferum) and some members of the Papaveraceae family. It has been primarily used for its antitussive effects; more recently, its anticancer properties were shown. Herein, we detected an SSR embedded in the promoter region of the CYP82Y1 gene, which was found to be the first committed-step enzyme in the noscapine biosynthesis pathway, using the MISA program. Some collected ecotypes of P. somniferum were investigated for understanding of SSRs role in the regulation of gene expression and metabolite content. Quantitative PCR showed that a variation in the motif repeat number (either a decrease or increase) down-regulated the expression of the CYP82Y1 gene. Furthermore, the analysis of noscapine content suggested that a variation in the promoter region influence noscapine amount. Moreover, P. bracteatum was analyzed in both transcript and metabolite levels, and illustrated much less expression and metabolite level in comparison to P. somniferum. By exploiting the transcriptome data from the eight genera of the Papaveraceae family, we found that noscapine biosynthesis genes are present in P. bracteatum and are not shared in other genera of the Papaveraceae family. This results may explain production of a confined metabolite within a genus.
Collapse
|
18
|
Thorwarth P, Yousef EAA, Schmid KJ. Genomic Prediction and Association Mapping of Curd-Related Traits in Gene Bank Accessions of Cauliflower. G3 (BETHESDA, MD.) 2018; 8:707-718. [PMID: 29255118 PMCID: PMC5919744 DOI: 10.1534/g3.117.300199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023]
Abstract
Genetic resources are an important source of genetic variation for plant breeding. Genome-wide association studies (GWAS) and genomic prediction greatly facilitate the analysis and utilization of useful genetic diversity for improving complex phenotypic traits in crop plants. We explored the potential of GWAS and genomic prediction for improving curd-related traits in cauliflower (Brassica oleracea var. botrytis) by combining 174 randomly selected cauliflower gene bank accessions from two different gene banks. The collection was genotyped with genotyping-by-sequencing (GBS) and phenotyped for six curd-related traits at two locations and three growing seasons. A GWAS analysis based on 120,693 single-nucleotide polymorphisms identified a total of 24 significant associations for curd-related traits. The potential for genomic prediction was assessed with a genomic best linear unbiased prediction model and BayesB. Prediction abilities ranged from 0.10 to 0.66 for different traits and did not differ between prediction methods. Imputation of missing genotypes only slightly improved prediction ability. Our results demonstrate that GWAS and genomic prediction in combination with GBS and phenotyping of highly heritable traits can be used to identify useful quantitative trait loci and genotypes among genetically diverse gene bank material for subsequent utilization as genetic resources in cauliflower breeding.
Collapse
Affiliation(s)
- Patrick Thorwarth
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599 Stuttgart, Germany
| | - Eltohamy A A Yousef
- Department of Horticulture, Faculty of Agriculture, University of Suez Canal, Ismailia 41522, Egypt
| | - Karl J Schmid
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
19
|
He Y, Fu Y, Hu D, Wei D, Qian W. QTL Mapping of Seed Glucosinolate Content Responsible for Environment in Brassica napus. FRONTIERS IN PLANT SCIENCE 2018; 9:891. [PMID: 29997644 PMCID: PMC6030674 DOI: 10.3389/fpls.2018.00891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/07/2018] [Indexed: 05/05/2023]
Abstract
Glucosinolates (GSLs) are a major class of secondary metabolites. The content of seed GSL is largely regulated by environments in rapeseed (Brassica napus). However, the genetic control of seed GSL content responsible for environment in B. napus has been poorly understood. In the current study, a doubled haploid (DH) population from a cross between winter and semi-winter lines of rapeseed was grown in two distinct eco-environments, Germany and China, to evaluate the eco-environment effect and dissect the quantitative trait loci (QTL) responsible for environment for seed GSL in rapeseed. The deviation value of GSL content between eco-environments (GSLE) was calculated for each line in the DH population and the QTLs for GSLE were detected. GSLE ranged from -46.90 to 36.13 μmol g-1 meal in the DH population, suggesting the prominent eco-environmental effects for seed GSL in rapeseed. Four QTLs for GSLE were identified on chromosomes A04, A06, and A09 explaining 4.70∼9.93% of the phenotypic variation. Comparison of QTLs of seed GSL content between different eco-environments found three QTLs for GSL on A02 from 37.6 to 45.4 cM, A04 from 0 to 17.2 cM, and A09 from 67.0 to 98.6 cM exhibited significant difference of QTL effect between the German and Chinese eco-environments (P < 0.01), indicating the environment sensibility of these loci on seed GSL content. Moreover, flowering time (FT), an important environment adaptation trait in plant, was also investigated in this study. Comparative QTL analysis among GSLE, GSL, and FT revealed that three regions on chromosomes A02, A04, and A09 not only exhibited significant differences in QTL effect between Germany and China, but also co-located with the QTL intervals of GSLE and FT. Our results revealed that most of the GSL loci can influence GSL accumulation under different eco-environments, whereas the three QTL intervals on A02, A04, and A09 might be sensitive to the eco-environments for seed GSL content.
Collapse
Affiliation(s)
- Yajun He
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Ying Fu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dingxue Hu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Dayong Wei
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- *Correspondence: Wei Qian,
| |
Collapse
|
20
|
Havlickova L, He Z, Wang L, Langer S, Harper AL, Kaur H, Broadley MR, Gegas V, Bancroft I. Validation of an updated Associative Transcriptomics platform for the polyploid crop species Brassica napus by dissection of the genetic architecture of erucic acid and tocopherol isoform variation in seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:181-192. [PMID: 29124814 PMCID: PMC5767744 DOI: 10.1111/tpj.13767] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/06/2017] [Accepted: 10/30/2017] [Indexed: 05/21/2023]
Abstract
An updated platform was developed to underpin association genetics studies in the polyploid crop species Brassica napus (oilseed rape). Based on 1.92 × 1012 bases of leaf mRNAseq data, functional genotypes, comprising 355 536 single-nucleotide polymorphism markers and transcript abundance were scored across a genetic diversity panel of 383 accessions using a transcriptome reference comprising 116 098 ordered coding DNA sequence (CDS) gene models. The use of the platform for Associative Transcriptomics was first tested by analysing the genetic architecture of variation in seed erucic acid content, as high-erucic rapeseed oil is highly valued for a variety of applications in industry. Known loci were identified, along with a previously undetected minor-effect locus. The platform was then used to analyse variation for the relative proportions of tocopherol (vitamin E) forms in seeds, and the validity of the most significant markers was assessed using a take-one-out approach. Furthermore, the analysis implicated expression variation of the gene Bo2g050970.1, an orthologue of VTE4 (which encodes a γ-tocopherol methyl transferase converting γ-tocopherol into α-tocopherol) associated with the observed trait variation. The establishment of the first full-scale Associative Transcriptomics platform for B. napus enables rapid progress to be made towards an understanding of the genetic architecture of trait variation in this important species, and provides an exemplar for other crops.
Collapse
Affiliation(s)
| | - Zhesi He
- Department of BiologyUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Lihong Wang
- Department of BiologyUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Swen Langer
- Department of BiologyUniversity of YorkHeslingtonYorkYO10 5DDUK
| | | | - Harjeevan Kaur
- Department of BiologyUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Martin R. Broadley
- Plant and Crop Sciences DivisionSchool of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLE12 5RDUK
| | - Vasilis Gegas
- Limagrain UK Ltd.Joseph Nickerson Research CentreRothwellLN7 6DTUK
| | - Ian Bancroft
- Department of BiologyUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
21
|
Qu C, Jia L, Fu F, Zhao H, Lu K, Wei L, Xu X, Liang Y, Li S, Wang R, Li J. Genome-wide association mapping and Identification of candidate genes for fatty acid composition in Brassica napus L. using SNP markers. BMC Genomics 2017; 18:232. [PMID: 28292259 PMCID: PMC5351109 DOI: 10.1186/s12864-017-3607-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/03/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND B. napus (oilseed) is an important source of edible vegetable oil, and its nutritional and economic value is determined by its fatty acid composition and content. RESULTS Using the Brassica 60 K SNP array, we performed a genome-wide association study of fatty acid composition in a population of 520 genetically diverse oilseed accessions. Using the PCA + K model in TASSEL 5.2.1, we identified 62 genomic regions that were significantly associated with the composition of seven fatty acids, and five consensus regions that mapped to the A2, A8, A9, C1, and C3 chromosomes, respectively, of the Brassica napus Darmor-bzh genome. We then identified 24 orthologs of the functional candidate genes involved in fatty acid biosynthesis, excluding BnaA.FAE1 and BnaC.FAE1 on the A8 and C3 homologous genome blocks, which are known to have critical roles in the fatty acid biosynthesis pathway, and potential orthologs of these genes (e.g., LACS9, KCR1, FAB1, LPAT4, KCS17, CER4, TT16, and ACBP5). CONCLUSIONS Our results demonstrate the power of association mapping in identifying genes of interest in B. napus and provide insight into the genetic basis of fatty acid biosynthesis in B. napus. Furthermore, our findings may facilitate marker-based breeding efforts aimed at improving fatty acid composition and quality in B. napus.
Collapse
Affiliation(s)
- Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Ledong Jia
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Fuyou Fu
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN, 47907-2054, USA
| | - Huiyan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Ying Liang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Shimeng Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China
| | - Rui Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China. .,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China.
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China. .,Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing, 400716, China.
| |
Collapse
|
22
|
Pradhan SK, Barik SR, Sahoo A, Mohapatra S, Nayak DK, Mahender A, Meher J, Anandan A, Pandit E. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice. PLoS One 2016; 11:e0160027. [PMID: 27494320 PMCID: PMC4975506 DOI: 10.1371/journal.pone.0160027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/12/2016] [Indexed: 11/23/2022] Open
Abstract
Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright’s F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.
Collapse
Affiliation(s)
- Sharat Kumar Pradhan
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Saumya Ranjan Barik
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Ambika Sahoo
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Sudipti Mohapatra
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Deepak Kumar Nayak
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Anumalla Mahender
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Jitandriya Meher
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Annamalai Anandan
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Elssa Pandit
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| |
Collapse
|
23
|
Gyawali S, Harrington M, Durkin J, Horner K, Parkin IAP, Hegedus DD, Bekkaoui D, Buchwaldt L. Microsatellite markers used for genome-wide association mapping of partial resistance to Sclerotinia sclerotiorum in a world collection of Brassica napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2016; 36:72. [PMID: 27330402 PMCID: PMC4889634 DOI: 10.1007/s11032-016-0496-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/23/2016] [Indexed: 05/18/2023]
Abstract
The fungal pathogen Sclerotinia sclerotiorum causes stem rot of oilseed rape (Brassica napus) worldwide. In preparation for genome-wide association mapping (GWAM) of sclerotinia resistance in B. napus, 152 accessions from diverse geographical regions were screened with a single Canadian isolate, #321. Plants were inoculated by attaching mycelium plugs to the main stem at full flower. Lesion lengths measured 7, 14 and 21 days after inoculation were used to calculate the area under the disease progress curve (AUDPC). Depth of penetration was noted and used to calculate percent soft and collapsed lesions (% s + c). The two disease traits were highly correlated (r = 0.93). Partially resistant accessions (AUDPC <7 and % s + c <2) were identified primarily from South Korea and Japan with a few from Pakistan, China and Europe. Genotyping of accessions with 84 simple sequence repeat markers provided 690 polymorphic loci for GWAM. The general linear model in TASSEL best fitted the data when adjusted for population structure (STRUCTURE), GLM + Q. After correction for positive false discovery rate, 34 loci were significantly associated with both disease traits of which 21 alleles contributed to resistance, while the remaining enhanced susceptibility. The phenotypic variation explained by the loci ranged from 6 to 25 %. Five loci mapped to published quantitative trait loci conferring sclerotinia resistance in Chinese lines.
Collapse
Affiliation(s)
- Sanjaya Gyawali
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N0X2 Canada
- />International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Myrtle Harrington
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N0X2 Canada
| | - Jonathan Durkin
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N0X2 Canada
| | - Kyla Horner
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N0X2 Canada
| | - Isobel A. P. Parkin
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N0X2 Canada
| | - Dwayne D. Hegedus
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N0X2 Canada
| | - Diana Bekkaoui
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N0X2 Canada
| | - Lone Buchwaldt
- />Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N0X2 Canada
| |
Collapse
|
24
|
Wang H, Khera P, Huang B, Yuan M, Katam R, Zhuang W, Harris-Shultz K, Moore KM, Culbreath AK, Zhang X, Varshney RK, Xie L, Guo B. Analysis of genetic diversity and population structure of peanut cultivars and breeding lines from China, India and the US using simple sequence repeat markers. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:452-465. [PMID: 26178804 DOI: 10.1111/jipb.12380] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/13/2015] [Indexed: 06/04/2023]
Abstract
Cultivated peanut is grown worldwide as rich-source of oil and protein. A broad genetic base is needed for cultivar improvement. The objectives of this study were to develop highly informative simple sequence repeat (SSR) markers and to assess the genetic diversity and population structure of peanut cultivars and breeding lines from different breeding programs in China, India and the US. A total of 111 SSR markers were selected for this study, resulting in a total of 472 alleles. The mean values of gene diversity and polymorphic information content (PIC) were 0.480 and 0.429, respectively. Country-wise analysis revealed that alleles per locus in three countries were similar. The mean gene diversity in the US, China and India was 0.363, 0.489 and 0.47 with an average PIC of 0.323, 0.43 and 0.412, respectively. Genetic analysis using the STRUCTURE divided these peanut lines into two populations (P1, P2), which was consistent with the dendrogram based on genetic distance (G1, G2) and the clustering of principal component analysis. The groupings were related to peanut market types and the geographic origin with a few admixtures. The results could be used by breeding programs to assess the genetic diversity of breeding materials to broaden the genetic base and for molecular genetics studies.
Collapse
Affiliation(s)
- Hui Wang
- Fujian Agricultural and Forestry University, College of Plant Protection, Fuzhou, 350002, China
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31794, USA
- USDA-ARS, Crop Protection and Management Research Unit, Tifton, GA, 31794, USA
- Shandong Peanut Research Institute, Qingdao, 266100, China
| | - Pawan Khera
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31794, USA
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, India
| | - Bingyan Huang
- Henan Academy of Agricultural Sciences, Cash Crops Research Institute, Zhengzhou, 450002, China
| | - Mei Yuan
- Shandong Peanut Research Institute, Qingdao, 266100, China
| | - Ramesh Katam
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Weijian Zhuang
- Fujian Agricultural and Forestry University, College of Crop Science, Fuzhou, 350002, China
| | | | - Kim M Moore
- AgResearch Consultants, Shingler Little River Road, Sumner, GA, 31789, USA
| | - Albert K Culbreath
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31794, USA
| | - Xinyou Zhang
- Henan Academy of Agricultural Sciences, Cash Crops Research Institute, Zhengzhou, 450002, China
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, India
| | - Lianhui Xie
- Fujian Agricultural and Forestry University, College of Plant Protection, Fuzhou, 350002, China
| | - Baozhu Guo
- USDA-ARS, Crop Protection and Management Research Unit, Tifton, GA, 31794, USA
| |
Collapse
|
25
|
Li LF, Olsen KM. To Have and to Hold: Selection for Seed and Fruit Retention During Crop Domestication. Curr Top Dev Biol 2016; 119:63-109. [PMID: 27282024 DOI: 10.1016/bs.ctdb.2016.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Crop domestication provides a useful model system to characterize the molecular and developmental bases of morphological variation in plants. Among the most universal changes resulting from selection during crop domestication is the loss of seed and fruit dispersal mechanisms, which greatly facilitates harvesting efficiency. In this review, we consider the molecular genetic and developmental bases of the loss of seed shattering and fruit dispersal in six major crop plant families, three of which are primarily associated with seed crops (Poaceae, Brassicaceae, Fabaceae) and three of which are associated with fleshy-fruited crops (Solanaceae, Rosaceae, Rutaceae). We find that the developmental basis of the loss of seed/fruit dispersal is conserved in a number of independently domesticated crops, indicating the widespread occurrence of developmentally convergent evolution in response to human selection. With regard to the molecular genetic approaches used to characterize the basis of this trait, traditional biparental quantitative trait loci mapping remains the most commonly used strategy; however, recent advances in next-generation sequencing technologies are now providing new avenues to map and characterize loss of shattering/dispersal alleles. We anticipate that continued application of these approaches, together with candidate gene analyses informed by known shattering candidate genes from other crops, will lead to a rapid expansion of our understanding of this critical domestication trait.
Collapse
Affiliation(s)
- L-F Li
- Washington University in St. Louis, St. Louis, MO, United States; Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, PR China.
| | - K M Olsen
- Washington University in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
26
|
Li J, Bus A, Spamer V, Stich B. Comparison of statistical models for nested association mapping in rapeseed (Brassica napus L.) through computer simulations. BMC PLANT BIOLOGY 2016; 16:26. [PMID: 26810901 PMCID: PMC4727311 DOI: 10.1186/s12870-016-0707-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 01/07/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND Rapeseed (Brassica napus L.) is an important oilseed crop throughout the world, serving as source for edible oil and renewable energy. Development of nested association mapping (NAM) population and methods is of importance for quantitative trait locus (QTL) mapping in rapeseed. The objectives of the research were to compare the power of QTL detection 1- β(∗) (β(∗) is the empirical type II error rate) (i) of two mating designs, double haploid (DH-NAM) and backcross (BC-NAM), (ii) of different statistical models, and (iii) for different genetic situations. RESULTS The computer simulations were based on the empirical data of a single nucleotide polymorphism (SNP) set of 790 SNPs from 30 sequenced conserved genes of 51 accessions of world-wide diverse B. napus germplasm. The results showed that a joint composite interval mapping (JCIM) model had significantly higher power of QTL detection than a single marker model. The DH-NAM mating design showed a slightly higher power of QTL detection than the BC-NAM mating design. The JCIM model considering QTL effects nested within subpopulations showed higher power of QTL detection than the JCIM model considering QTL effects across subpopulations, when examing a scenario in which there were interaction effects by a few QTLs interacting with a few background markers as well as a scenario in which there were interaction effects by many QTLs (≥ 25) each with more than 10 background markers and the proportion of total variance explained by the interactions was higher than 75 %. CONCLUSIONS The results of our study support the optimal design as well as analysis of NAM populations, especially in rapeseed.
Collapse
Affiliation(s)
- Jinquan Li
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Köln, 50829, Germany.
| | - Anja Bus
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Köln, 50829, Germany.
| | - Viola Spamer
- Syngenta Seeds GmbH, Zum Knipkenbach 20, Bad Salzuflen, 32107, Germany.
| | - Benjamin Stich
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Köln, 50829, Germany.
| |
Collapse
|
27
|
Yi G, Lim S, Chae WB, Park JE, Park HR, Lee EJ, Huh JH. Root Glucosinolate Profiles for Screening of Radish (Raphanus sativus L.) Genetic Resources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:61-70. [PMID: 26672790 DOI: 10.1021/acs.jafc.5b04575] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Radish (Raphanus sativus L.), a root vegetable, is rich in glucosinolates (GLs), which are beneficial secondary metabolites for human health. To investigate the genetic variations in GL content in radish roots and the relationship with other root phenotypes, we analyzed 71 accessions from 23 different countries for GLs using HPLC. The most abundant GL in radish roots was glucoraphasatin, a GL with four-carbon aliphatic side chain. The content of glucoraphasatin represented at least 84.5% of the total GL content. Indolyl GL represented only 3.1% of the total GL at its maximum. The principal component analysis of GL profiles with various root phenotypes showed that four different genotypes exist in the 71 accessions. Although no strong correlation with GL content and root phenotype was observed, the varied GL content levels demonstrate the genetic diversity of GL content, and the amount that GLs could be potentially improved by breeding in radishes.
Collapse
Affiliation(s)
| | | | - Won Byoung Chae
- Department of Horticultural Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration , Wanju-gun, Jeollabuk-do 55365, Korea
| | | | | | | | | |
Collapse
|
28
|
Körber N, Bus A, Li J, Parkin IAP, Wittkop B, Snowdon RJ, Stich B. Agronomic and Seed Quality Traits Dissected by Genome-Wide Association Mapping in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:386. [PMID: 27066036 PMCID: PMC4814720 DOI: 10.3389/fpls.2016.00386] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/14/2016] [Indexed: 05/18/2023]
Abstract
In Brassica napus breeding, traits related to commercial success are of highest importance for plant breeders. However, such traits can only be assessed in an advanced developmental stage. Molecular markers genetically linked to such traits have the potential to accelerate the breeding process of B. napus by marker-assisted selection. Therefore, the objectives of this study were to identify (i) genome regions associated with the examined agronomic and seed quality traits, (ii) the interrelationship of population structure and the detected associations, and (iii) candidate genes for the revealed associations. The diversity set used in this study consisted of 405 B. napus inbred lines which were genotyped using a 6K single nucleotide polymorphism (SNP) array and phenotyped for agronomic and seed quality traits in field trials. In a genome-wide association study, we detected a total of 112 associations between SNPs and the seed quality traits as well as 46 SNP-trait associations for the agronomic traits with a P < 1.28e-05 (Bonferroni correction of α = 0.05) for the inbreds of the spring and winter trial. For the seed quality traits, a single SNP-sulfur concentration in seeds (SUL) association explained up to 67.3% of the phenotypic variance, whereas for the agronomic traits, a single SNP-blossom color (BLC) association explained up to 30.2% of the phenotypic variance. In a basic local alignment search tool (BLAST) search within a distance of 2.5 Mbp around these SNP-trait associations, 62 hits of potential candidate genes with a BLAST-score of ≥100 and a sequence identity of ≥70% to A. thaliana or B. rapa could be found for the agronomic SNP-trait associations and 187 hits of potential candidate genes for the seed quality SNP-trait associations.
Collapse
Affiliation(s)
- Niklas Körber
- Quantitative Crop Genetics, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- Plant Breeding and Biotechnology, Institute of Crop Science and Resource Conservation, University of BonnBonn, Germany
- *Correspondence: Niklas Körber
| | - Anja Bus
- Quantitative Crop Genetics, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- Plant Breeding and Biotechnology, Institute of Crop Science and Resource Conservation, University of BonnBonn, Germany
| | - Jinquan Li
- Quantitative Crop Genetics, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | | | - Benjamin Wittkop
- Department of Plant Breeding, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig UniversityGiessen, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig UniversityGiessen, Germany
| | - Benjamin Stich
- Quantitative Crop Genetics, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- Benjamin Stich
| |
Collapse
|
29
|
Genome-Wide Analysis of Seed Acid Detergent Lignin (ADL) and Hull Content in Rapeseed (Brassica napus L.). PLoS One 2015; 10:e0145045. [PMID: 26673885 PMCID: PMC4684223 DOI: 10.1371/journal.pone.0145045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/29/2015] [Indexed: 11/19/2022] Open
Abstract
A stable yellow-seeded variety is the breeding goal for obtaining the ideal rapeseed (Brassica napus L.) plant, and the amount of acid detergent lignin (ADL) in the seeds and the hull content (HC) are often used as yellow-seeded rapeseed screening indices. In this study, a genome-wide association analysis of 520 accessions was performed using the Q + K model with a total of 31,839 single-nucleotide polymorphism (SNP) sites. As a result, three significant associations on the B. napus chromosomes A05, A09, and C05 were detected for seed ADL content. The peak SNPs were within 9.27, 14.22, and 20.86 kb of the key genes BnaA.PAL4, BnaA.CAD2/BnaA.CAD3, and BnaC.CCR1, respectively. Further analyses were performed on the major locus of A05, which was also detected in the seed HC examination. A comparison of our genome-wide association study (GWAS) results and previous linkage mappings revealed a common chromosomal region on A09, which indicates that GWAS can be used as a powerful complementary strategy for dissecting complex traits in B. napus. Genomic selection (GS) utilizing the significant SNP markers based on the GWAS results exhibited increased predictive ability, indicating that the predictive ability of a given model can be substantially improved by using GWAS and GS.
Collapse
|
30
|
Tanhuanpää P, Erkkilä M, Tenhola-Roininen T, Tanskanen J, Manninen O. SNP diversity within and among Brassica rapa accessions reveals no geographic differentiation. Genome 2015; 59:11-21. [PMID: 26694015 DOI: 10.1139/gen-2015-0118] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic diversity was studied in a collection of 61 accessions of Brassica rapa, which were mostly oil-type turnip rapes but also included two oil-type subsp. dichotoma and five subsp. trilocularis accessions, as well as three leaf-type subspecies (subsp. japonica, pekinensis, and chinensis) and five turnip cultivars (subsp. rapa). Two-hundred and nine SNP markers, which had been discovered by amplicon resequencing, were used to genotype 893 plants from the B. rapa collection using Illumina BeadXpress. There was great variation in the diversity indices between accessions. With STRUCTURE analysis, the plant collection could be divided into three groups that seemed to correspond to morphotype and flowering habit but not to geography. According to AMOVA analysis, 65% of the variation was due to variation within accessions, 25% among accessions, and 10% among groups. A smaller subset of the plant collection, 12 accessions, was also studied with 5727 GBS-SNPs. Diversity indices obtained with GBS-SNPs correlated well with those obtained with Illumina BeadXpress SNPs. The developed SNP markers have already been used and will be used in future plant breeding programs as well as in mapping and diversity studies.
Collapse
Affiliation(s)
- P Tanhuanpää
- a Green Technology, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - M Erkkilä
- b Internal Expert Services, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - T Tenhola-Roininen
- a Green Technology, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - J Tanskanen
- a Green Technology, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - O Manninen
- c Boreal Plant Breeding Ltd., FI-31600 Jokioinen, Finland
| |
Collapse
|
31
|
Kumar M, Choi JY, Kumari N, Pareek A, Kim SR. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica. FRONTIERS IN PLANT SCIENCE 2015; 6:688. [PMID: 26388887 PMCID: PMC4559640 DOI: 10.3389/fpls.2015.00688] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/20/2015] [Indexed: 05/19/2023]
Abstract
Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the "candidate genes" and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops.
Collapse
Affiliation(s)
- Manu Kumar
- Plant Molecular Biology Laboratory, Department of Life Science, Sogang University, SeoulSouth Korea
| | - Ju-Young Choi
- Plant Molecular Biology Laboratory, Department of Life Science, Sogang University, SeoulSouth Korea
| | - Nisha Kumari
- College of Medicine, Seoul National University, SeoulSouth Korea
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Science, Jawaharlal Nehru University, New DelhiIndia
| | - Seong-Ryong Kim
- Plant Molecular Biology Laboratory, Department of Life Science, Sogang University, SeoulSouth Korea
| |
Collapse
|
32
|
Luo H, Wang X, Zhan G, Wei G, Zhou X, Zhao J, Huang L, Kang Z. Genome-Wide Analysis of Simple Sequence Repeats and Efficient Development of Polymorphic SSR Markers Based on Whole Genome Re-Sequencing of Multiple Isolates of the Wheat Stripe Rust Fungus. PLoS One 2015; 10:e0130362. [PMID: 26068192 PMCID: PMC4467034 DOI: 10.1371/journal.pone.0130362] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/18/2015] [Indexed: 12/30/2022] Open
Abstract
The biotrophic parasitic fungus Puccinia striiformis f. sp. tritici (Pst) causes stripe rust, a devastating disease of wheat, endangering global food security. Because the Pst population is highly dynamic, it is difficult to develop wheat cultivars with durable and highly effective resistance. Simple sequence repeats (SSRs) are widely used as molecular markers in genetic studies to determine population structure in many organisms. However, only a small number of SSR markers have been developed for Pst. In this study, a total of 4,792 SSR loci were identified using the whole genome sequences of six isolates from different regions of the world, with a marker density of one SSR per 22.95 kb. The majority of the SSRs were di- and tri-nucleotide repeats. A database containing 1,113 SSR markers were established. Through in silico comparison, the previously reported SSR markers were found mainly in exons, whereas the SSR markers in the database were mostly in intergenic regions. Furthermore, 105 polymorphic SSR markers were confirmed in silico by their identical positions and nucleotide variations with INDELs identified among the six isolates. When 104 in silico polymorphic SSR markers were used to genotype 21 Pst isolates, 84 produced the target bands, and 82 of them were polymorphic and revealed the genetic relationships among the isolates. The results show that whole genome re-sequencing of multiple isolates provides an ideal resource for developing SSR markers, and the newly developed SSR markers are useful for genetic and population studies of the wheat stripe rust fungus.
Collapse
Affiliation(s)
- Huaiyong Luo
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, People's Republic of China
| | - Xiaojie Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, People's Republic of China
| | - Gangming Zhan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, People's Republic of China
| | - Guorong Wei
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, People's Republic of China
| | - Xinli Zhou
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, People's Republic of China
| | - Jing Zhao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, People's Republic of China
| | - Lili Huang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, People's Republic of China
| | - Zhensheng Kang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
33
|
Körber N, Bus A, Li J, Higgins J, Bancroft I, Higgins EE, Parkin IAP, Salazar-Colqui B, Snowdon RJ, Stich B. Seedling development traits in Brassica napus examined by gene expression analysis and association mapping. BMC PLANT BIOLOGY 2015; 15:136. [PMID: 26055390 PMCID: PMC4459455 DOI: 10.1186/s12870-015-0496-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/20/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND An optimal seedling development of Brassica napus plants leads to a higher yield stability even under suboptimal growing conditions and has therefore a high importance for plant breeders. The objectives of our study were to (i) examine the expression levels of candidate genes in seedling leaves of B. napus and correlate these with seedling development as well as (ii) detect genome regions associated with gene expression levels and seedling development traits in B. napus by genome-wide association mapping. RESULTS The expression levels of the 15 candidate genes examined in the 509 B. napus inbreds showed an averaged standard deviation of 5.6 across all inbreds and ranged from 3.2 to 8.8. The gene expression differences between the 509 B. napus inbreds were more than adequate for the correlation with phenotypic variation of seedling development. The average of the absolute value correlations of the correlation coefficients of 0.11 were observed with a range from 0.00 to 0.39. The candidate genes GER1, AILP1, PECT, and FBP were strongly correlated with the seedling development traits. In a genome-wide association study, we detected a total of 63 associations between single nucleotide polymorphisms (SNPs) and the seedling development traits and 31 SNP-gene associations for the candidate genes with a P-value < 0.0001. For the projected leaf area traits we identified five different association hot spots on the chromosomes A2, A7, C3, C6, and C7. CONCLUSION A total of 99.4% of the adjacent SNPs on the A genome and 93.0% of the adjacent SNPs on the C genome had a distance smaller than the average range of linkage disequilibrium. Therefore, this genome-wide association study is expected to result on average in 14.7% of the possible power. Compared to previous studies in B. napus, the SNP marker density of our study is expected to provide a higher power to detect SNP-trait/-gene associations in the B. napus diversity set. The large number of associations detected for the examined 14 seedling development traits indicated that these are genetically complex inherited. The results of our analyses suggested that the studied genes ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit (RBC) on the chromosomes A4 and C4 and fructose-1,6-bisphosphatase precursor (FBP) on the chromosomes A9 and C8 are cis-regulated.
Collapse
Affiliation(s)
- Niklas Körber
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Köln, 50829, Germany.
- Institute of Crop Science and Resource Conservation, Plant Breeding and Biotechnology, University of Bonn, Katzenburgweg 5, Bonn, 53115, Germany.
| | - Anja Bus
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Köln, 50829, Germany.
- Institute of Crop Science and Resource Conservation, Plant Breeding and Biotechnology, University of Bonn, Katzenburgweg 5, Bonn, 53115, Germany.
| | - Jinquan Li
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Köln, 50829, Germany.
| | - Janet Higgins
- The Genome Analysis Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Ian Bancroft
- John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, UK.
- Department of Biology, Wentworth Way, University of York, Heslington, York, YO41 5DD, UK.
| | - Erin Eileen Higgins
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N OX2, Canada.
| | | | - Bertha Salazar-Colqui
- Department of Plant Breeding, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany.
| | - Rod John Snowdon
- Department of Plant Breeding, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany.
| | - Benjamin Stich
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Köln, 50829, Germany.
| |
Collapse
|
34
|
Fu Y, Lu K, Qian L, Mei J, Wei D, Peng X, Xu X, Li J, Frauen M, Dreyer F, Snowdon RJ, Qian W. Development of genic cleavage markers in association with seed glucosinolate content in canola. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1029-37. [PMID: 25748114 DOI: 10.1007/s00122-015-2487-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 02/24/2015] [Indexed: 05/21/2023]
Abstract
The orthologues of Arabidopsis involved in seed glucosinolates metabolism within QTL confidence intervals were identified, and functional markers were developed to facilitate breeding for ultra-low glucosinolates in canola. Further reducing the content of seed glucosinolates will have a positive impact on the seed quality of canola (Brassica napus). In this study 43 quantitative trait loci (QTL) for seed glucosinolate (GSL) content in a low-GSL genetic background were mapped over seven environments in Germany and China in a doubled haploid population from a cross between two low-GSL oilseed rape parents with transgressive segregation. By anchoring these QTL to the reference genomes of B. rapa and B. oleracea, we identified 23 orthologues of Arabidopsis involved in GSL metabolism within the QTL confidence intervals. Sequence polymorphisms between the corresponding coding regions of the parental lines were used to develop cleaved amplified polymorphic site markers for two QTL-linked genes, ISOPROPYLMALATE DEHYDROGENASE1 and ADENOSINE 5'-PHOSPHOSULFATE REDUCTASE 3. The genic cleavage markers were mapped in the DH population into the corresponding intervals of QTL explaining 3.36-6.88 and 4.55-8.67 % of the phenotypic variation for seed GSL, respectively. The markers will facilitate breeding for ultra-low seed GSL content in canola.
Collapse
Affiliation(s)
- Ying Fu
- College of Agronomy and Biotechnology, Southwest University, 400716, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping. BMC Genomics 2015; 16:379. [PMID: 25962630 PMCID: PMC4427920 DOI: 10.1186/s12864-015-1607-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/01/2015] [Indexed: 12/15/2022] Open
Abstract
Background Harvest index (HI), the ratio of grain yield to total biomass, is considered as a measure of biological success in partitioning assimilated photosynthate to the harvestable product. While crop production can be dramatically improved by increasing HI, the underlying molecular genetic mechanism of HI in rapeseed remains to be shown. Results In this study, we examined the genetic architecture of HI using 35,791 high-throughput single nucleotide polymorphisms (SNPs) genotyped by the Illumina BrassicaSNP60 Bead Chip in an association panel with 155 accessions. Five traits including plant height (PH), branch number (BN), biomass yield per plant (BY), harvest index (HI) and seed yield per plant (SY), were phenotyped in four environments. HI was found to be strongly positively correlated with SY, but negatively or not strongly correlated with PH. Model comparisons revealed that the A–D test (ADGWAS model) could perfectly balance false positives and statistical power for HI and associated traits. A total of nine SNPs on the C genome were identified to be significantly associated with HI, and five of them were identified to be simultaneously associated with HI and SY. These nine SNPs explained 3.42 % of the phenotypic variance in HI. Conclusions Our results showed that HI is a complex polygenic phenomenon that is strongly influenced by both environmental and genotype factors. The implications of these results are that HI can be increased by decreasing PH or reducing inefficient transport from pods to seeds in rapeseed. The results from this association mapping study can contribute to a better understanding of natural variations of HI, and facilitate marker-based breeding for HI. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1607-0) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Khan D, Millar JL, Girard IJ, Chan A, Kirkbride RC, Pelletier JM, Kost S, Becker MG, Yeung EC, Stasolla C, Goldberg RB, Harada JJ, Belmonte MF. Transcriptome atlas of the Arabidopsis funiculus--a study of maternal seed subregions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:41-53. [PMID: 0 DOI: 10.1111/tpj.12790] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/19/2015] [Accepted: 01/26/2015] [Indexed: 05/02/2023]
Abstract
The funiculus anchors the structurally complex seed to the maternal plant, and is the only direct route of transport for nutrients and maternal signals to the seed. While our understanding of seed development is becoming clearer, current understanding of the genetics and cellular mechanisms that contribute to funiculus development is limited. Using laser microdissection combined with global RNA-profiling experiments we compared the genetic profiles of all maternal and zygotic regions and subregions during seed development. We found that the funiculus is a dynamic region of the seed that is enriched for mRNAs associated with hormone metabolism, molecular transport, and metabolic activities corresponding to biological processes that have yet to be described in this maternal seed structure. We complemented our genetic data with a complete histological analysis of the funiculus from the earliest stages of development through to seed maturation at the light and electron microscopy levels. The anatomy revealed signs of photosynthesis, the endomembrane system, cellular respiration, and transport within the funiculus, all of which supported data from the transcriptional analysis. Finally, we studied the transcriptional programming of the funiculus compared to other seed subregions throughout seed development. Using newly designed in silico algorithms, we identified a number of transcriptional networks hypothesized to be responsible for biological processes like auxin response and glucosinolate biosynthesis found specifically within the funiculus. Taken together, patterns of gene activity and histological observations reveal putative functions of the understudied funiculus region and identify predictive transcriptional circuits underlying these biological processes in space and time.
Collapse
Affiliation(s)
- Deirdre Khan
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Luo H, Wang X, Zhan G, Wei G, Zhou X, Zhao J, Huang L, Kang Z. Genome-Wide Analysis of Simple Sequence Repeats and Efficient Development of Polymorphic SSR Markers Based on Whole Genome Re-Sequencing of Multiple Isolates of the Wheat Stripe Rust Fungus. PLoS One 2015. [PMID: 26448643 DOI: 10.1145/2818302] [Citation(s) in RCA: 1309] [Impact Index Per Article: 130.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The biotrophic parasitic fungus Puccinia striiformis f. sp. tritici (Pst) causes stripe rust, a devastating disease of wheat, endangering global food security. Because the Pst population is highly dynamic, it is difficult to develop wheat cultivars with durable and highly effective resistance. Simple sequence repeats (SSRs) are widely used as molecular markers in genetic studies to determine population structure in many organisms. However, only a small number of SSR markers have been developed for Pst. In this study, a total of 4,792 SSR loci were identified using the whole genome sequences of six isolates from different regions of the world, with a marker density of one SSR per 22.95 kb. The majority of the SSRs were di- and tri-nucleotide repeats. A database containing 1,113 SSR markers were established. Through in silico comparison, the previously reported SSR markers were found mainly in exons, whereas the SSR markers in the database were mostly in intergenic regions. Furthermore, 105 polymorphic SSR markers were confirmed in silico by their identical positions and nucleotide variations with INDELs identified among the six isolates. When 104 in silico polymorphic SSR markers were used to genotype 21 Pst isolates, 84 produced the target bands, and 82 of them were polymorphic and revealed the genetic relationships among the isolates. The results show that whole genome re-sequencing of multiple isolates provides an ideal resource for developing SSR markers, and the newly developed SSR markers are useful for genetic and population studies of the wheat stripe rust fungus.
Collapse
Affiliation(s)
- Huaiyong Luo
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, People's Republic of China
| | - Xiaojie Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, People's Republic of China
| | - Gangming Zhan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, People's Republic of China
| | - Guorong Wei
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, People's Republic of China
| | - Xinli Zhou
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, People's Republic of China
| | - Jing Zhao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, People's Republic of China
| | - Lili Huang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, People's Republic of China
| | - Zhensheng Kang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
38
|
Lu G, Harper AL, Trick M, Morgan C, Fraser F, O'Neill C, Bancroft I. Associative transcriptomics study dissects the genetic architecture of seed glucosinolate content in Brassica napus. DNA Res 2014; 21:613-25. [PMID: 25030463 PMCID: PMC4263295 DOI: 10.1093/dnares/dsu024] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/16/2014] [Indexed: 11/12/2022] Open
Abstract
Breeding new varieties with low seed glucosinolate (GS) concentrations has long been a prime target in Brassica napus. In this study, a novel association mapping methodology termed 'associative transcriptomics' (AT) was applied to a panel of 101 B. napus lines to define genetic regions and also candidate genes controlling total seed GS contents. Over 100,000 informative single-nucleotide polymorphisms (SNPs) and gene expression markers (GEMs) were developed for AT analysis, which led to the identification of 10 SNP and 7 GEM association peaks. Within these peaks, 26 genes were inferred to be involved in GS biosynthesis. A weighted gene co-expression network analysis provided additional 40 candidate genes. The transcript abundance in leaves of two candidate genes, BnaA.GTR2a located on chromosome A2 and BnaC.HAG3b on C9, was correlated with seed GS content, explaining 18.8 and 16.8% of phenotypic variation, respectively. Resequencing of genomic regions revealed six new SNPs in BnaA.GTR2a and four insertions or deletions in BnaC.HAG3b. These deletion polymorphisms were then successfully converted into polymerase chain reaction-based diagnostic markers that can, due to high linkage disequilibrium observed in these regions of the genome, be used for marker-assisted breeding for low seed GS lines.
Collapse
Affiliation(s)
- Guangyuan Lu
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York YO10 5DD, UK Oil Crops Research Institute, CAAS, Wuhan 430062, Hubei, China
| | - Andrea L Harper
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Martin Trick
- John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| | - Colin Morgan
- John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| | - Fiona Fraser
- John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| | - Carmel O'Neill
- John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| | - Ian Bancroft
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
39
|
Li F, Chen B, Xu K, Wu J, Song W, Bancroft I, Harper AL, Trick M, Liu S, Gao G, Wang N, Yan G, Qiao J, Li J, Li H, Xiao X, Zhang T, Wu X. Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res 2014; 21:355-67. [PMID: 24510440 PMCID: PMC4131830 DOI: 10.1093/dnares/dsu002] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/08/2014] [Indexed: 11/12/2022] Open
Abstract
Association mapping can quickly and efficiently dissect complex agronomic traits. Rapeseed is one of the most economically important polyploid oil crops, although its genome sequence is not yet published. In this study, a recently developed 60K Brassica Infinium(®) SNP array was used to analyse an association panel with 472 accessions. The single-nucleotide polymorphisms (SNPs) of the array were in silico mapped using 'pseudomolecules' representative of the genome of rapeseed to establish their hypothetical order and to perform association mapping of seed weight and seed quality. As a result, two significant associations on A8 and C3 of Brassica napus were detected for erucic acid content, and the peak SNPs were found to be only 233 and 128 kb away from the key genes BnaA.FAE1 and BnaC.FAE1. BnaA.FAE1 was also identified to be significantly associated with the oil content. Orthologues of Arabidopsis thaliana HAG1 were identified close to four clusters of SNPs associated with glucosinolate content on A9, C2, C7 and C9. For seed weight, we detected two association signals on A7 and A9, which were consistent with previous studies of quantitative trait loci mapping. The results indicate that our association mapping approach is suitable for fine mapping of the complex traits in rapeseed.
Collapse
Affiliation(s)
- Feng Li
- Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong Second Road, Hubei Province, Wuhan 430062, China
| | - Biyun Chen
- Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong Second Road, Hubei Province, Wuhan 430062, China
| | - Kun Xu
- Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong Second Road, Hubei Province, Wuhan 430062, China
| | - Jinfeng Wu
- Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong Second Road, Hubei Province, Wuhan 430062, China
| | - Weilin Song
- Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong Second Road, Hubei Province, Wuhan 430062, China
| | - Ian Bancroft
- Department of Biology, University of York, York, UK
| | | | - Martin Trick
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Shengyi Liu
- Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong Second Road, Hubei Province, Wuhan 430062, China
| | - Guizhen Gao
- Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong Second Road, Hubei Province, Wuhan 430062, China
| | - Nian Wang
- Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong Second Road, Hubei Province, Wuhan 430062, China
| | - Guixin Yan
- Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong Second Road, Hubei Province, Wuhan 430062, China
| | - Jiangwei Qiao
- Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong Second Road, Hubei Province, Wuhan 430062, China
| | - Jun Li
- Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong Second Road, Hubei Province, Wuhan 430062, China
| | - Hao Li
- Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong Second Road, Hubei Province, Wuhan 430062, China
| | - Xin Xiao
- Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong Second Road, Hubei Province, Wuhan 430062, China
| | - Tianyao Zhang
- Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong Second Road, Hubei Province, Wuhan 430062, China
| | - Xiaoming Wu
- Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong Second Road, Hubei Province, Wuhan 430062, China
| |
Collapse
|
40
|
Wang N, Li F, Chen B, Xu K, Yan G, Qiao J, Li J, Gao G, Bancroft I, Meng J, King GJ, Wu X. Genome-wide investigation of genetic changes during modern breeding of Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1817-29. [PMID: 24947439 DOI: 10.1007/s00122-014-2343-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/29/2014] [Indexed: 05/18/2023]
Abstract
Considerable genome variation had been incorporated within rapeseed breeding programs over past decades. In past decades, there have been substantial changes in phenotypic properties of rapeseed as a result of extensive breeding effort. Uncovering the underlying patterns of allelic variation in the context of genome organisation would provide knowledge to guide future genetic improvement. We assessed genome-wide genetic changes, including population structure, genetic relatedness, the extent of linkage disequilibrium, nucleotide diversity and genetic differentiation based on F ST outlier detection, for a panel of 472 Brassica napus inbred accessions using a 60 k Brassica Infinium® SNP array. We found genetic diversity varied in different sub-groups. Moreover, the genetic diversity increased from 1950 to 1980 and then remained at a similar level in China and Europe. We also found ~6-10 % genomic regions revealed high F ST values. Some QTLs previously associated with important agronomic traits overlapped with these regions. Overall, the B. napus C genome was found to have more high F ST signals than the A genome, and we concluded that the C genome may contribute more valuable alleles to generate elite traits. The results of this study indicate that considerable genome variation had been incorporated within rapeseed breeding programs over past decades. These results also contribute to understanding the impact of rapeseed improvement on available genome variation and the potential for dissecting complex agronomic traits.
Collapse
Affiliation(s)
- Nian Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ishida M, Hara M, Fukino N, Kakizaki T, Morimitsu Y. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. BREEDING SCIENCE 2014; 64:48-59. [PMID: 24987290 PMCID: PMC4031110 DOI: 10.1270/jsbbs.64.48] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/24/2014] [Indexed: 05/18/2023]
Abstract
Unique secondary metabolites, glucosinolates (S-glucopyranosyl thiohydroximates), are naturally occurring S-linked glucosides found mainly in Brassicaceae plants. They are enzymatically hydrolyzed to produce sulfate ions, D-glucose, and characteristic degradation products such as isothiocyanates. The functions of glucosinolates in the plants remain unclear, but isothiocyanates possessing a pungent or irritating taste and odor might be associated with plant defense from microbes. Isothiocyanates have been studied extensively in experimental in vitro and in vivo carcinogenesis models for their cancer chemopreventive properties. The beneficial isothiocyanates, glucosinolates that are functional for supporting human health, have received attention from many scientists studying plant breeding, plant physiology, plant genetics, and food functionality. This review presents a summary of recent topics related with glucosinolates in the Brassica family, along with a summary of the chemicals, metabolism, and genes of glucosinolates in Brassicaceae. The bioavailabilities of isothiocyanates from certain functional glucosinolates and the importance of breeding will be described with emphasis on glucosinolates.
Collapse
Affiliation(s)
- Masahiko Ishida
- NARO Institute of Vegetable and Tea Science, Tsukuba Vegetable Research Station,
3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666,
Japan
- Corresponding author (e-mail: )
| | - Masakazu Hara
- Research Institute of Green Science and Technology, Shizuoka University,
836 Ohya, Shizuoka 422-8529,
Japan
| | - Nobuko Fukino
- NARO Institute of Vegetable and Tea Science,
360 Kusawa, Ano, Tsu, Mie 514-2392,
Japan
| | - Tomohiro Kakizaki
- NARO Institute of Vegetable and Tea Science,
360 Kusawa, Ano, Tsu, Mie 514-2392,
Japan
| | - Yasujiro Morimitsu
- The Department of Food and Nutritional Sciences, The Graduate School of Humanities and Sciences, Ochanomizu University,
2-1-1 Otsuka, Bunkyo, Tokyo 112-8610,
Japan
| |
Collapse
|
42
|
Sotelo T, Soengas P, Velasco P, Rodríguez VM, Cartea ME. Identification of metabolic QTLs and candidate genes for glucosinolate synthesis in Brassica oleracea leaves, seeds and flower buds. PLoS One 2014; 9:e91428. [PMID: 24614913 PMCID: PMC3948865 DOI: 10.1371/journal.pone.0091428] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/11/2014] [Indexed: 12/29/2022] Open
Abstract
Glucosinolates are major secondary metabolites found in the Brassicaceae family. These compounds play an essential role in plant defense against biotic and abiotic stresses, but more interestingly they have beneficial effects on human health. We performed a genetic analysis in order to identify the genome regions regulating glucosinolates biosynthesis in a DH mapping population of Brassica oleracea. In order to obtain a general overview of regulation in the whole plant, analyses were performed in the three major organs where glucosinolates are synthesized (leaves, seeds and flower buds). Eighty two significant QTLs were detected, which explained a broad range of variability in terms of individual and total glucosinolate (GSL) content. A meta-analysis rendered eighteen consensus QTLs. Thirteen of them regulated more than one glucosinolate and its content. In spite of the considerable variability of glucosinolate content and profiles across the organ, some of these consensus QTLs were identified in more than one tissue. Consensus QTLs control the GSL content by interacting epistatically in complex networks. Based on in silico analysis within the B. oleracea genome along with synteny with Arabidopsis, we propose seven major candidate loci that regulate GSL biosynthesis in the Brassicaceae family. Three of these loci control the content of aliphatic GSL and four of them control the content of indolic glucosinolates. GSL-ALK plays a central role in determining aliphatic GSL variation directly and by interacting epistatically with other loci, thus suggesting its regulatory effect.
Collapse
Affiliation(s)
- Tamara Sotelo
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - Víctor M. Rodríguez
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - María Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Department of Plant Genetics, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| |
Collapse
|
43
|
Cai D, Xiao Y, Yang W, Ye W, Wang B, Younas M, Wu J, Liu K. Association mapping of six yield‑related traits in rapeseed (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:85-96. [PMID: 24121524 DOI: 10.1007/s00122-013-2203-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 09/22/2013] [Indexed: 05/18/2023]
Abstract
Yield is one of the most important traits for rapeseed (Brassica napus L.) breeding, but its genetic basis remains largely ambiguous. Association mapping has provided a robust approach to understand the genetic basis of complex agronomic traits in crops. In this study, a panel of 192 inbred lines of B. napus from all over the world was genotyped using 451 single-locus microsatellite markers and 740 amplified fragment length polymorphism markers. Six yield-related traits of these inbred lines were investigated in three consecutive years with three replications, and genome-wide association studies were conducted for these six traits. Using the model controlling both population structure and relative kinship (Q + K), a total of 43 associations (P < 0.001) were detected using the means of the six yield-related traits across 3 years, with two to fourteen markers associated with individual traits. Among these, 18 markers were repeatedly detected in at least 2 years, and 12 markers were located within or close to QTLs identified in previous studies. Six markers commonly associated with correlated traits. Conditional association analysis indicated that five of the associations between markers and correlated traits are caused by one QTL with pleiotropic effects, and the remaining association is caused by linked but independent QTLs. The combination of favorable alleles of multiple associated markers significantly enhances trait performance, illustrating a great potential of utilization of the associations in rapeseed breeding programs.
Collapse
|
44
|
HUANG L, REN XP, ZHANG XJ, CHEN YN, JIANG HF. Association Analysis of Agronomic Traits and Resistance to Aspergillus flavus in the ICRISAT Peanut Mini-Core Collection. ZUOWU XUEBAO 2013. [DOI: 10.3724/sp.j.1006.2012.00935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Sanyal A, Linder CR. Plasticity and constraints on fatty acid composition in the phospholipids and triacylglycerols of Arabidopsis accessions grown at different temperatures. BMC PLANT BIOLOGY 2013; 13:63. [PMID: 23594395 PMCID: PMC3637579 DOI: 10.1186/1471-2229-13-63] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 03/18/2013] [Indexed: 05/10/2023]
Abstract
BACKGROUND Natural selection acts on multiple traits in an organism, and the final outcome of adaptive evolution may be constrained by the interaction of physiological and functional integration of those traits. Fatty acid composition is an important determinant of seed oil quality. In plants the relative proportions of unsaturated fatty acids in phospholipids and seed triacylglycerols often increases adaptively in response to lower growing temperatures to increase fitness. Previous work produced evidence of genetic constraints between phospholipids and triacylglycerols in the widely studied Arabidopsis lines Col and Ler, but because these lines are highly inbred, the correlations might be spurious. In this study, we grew 84 wild Arabidopsis accessions at two temperatures to show that genetic correlation between the fatty acids of the two lipid types is not expected and one should not influence the other and seed oil evolution and also tested for the adaptive response of fatty acids to latitude and temperature. RESULTS As expected no significant correlations between the two lipids classes at either growing temperature were observed. The saturated fatty acids and erucic acid of triacylglycerols followed a significant latitudinal cline, while the fatty acids in phospholipids did not respond to latitude as expected. The expected plastic response to temperature was observed for all the triacylglycerol fatty acids whereas only oleic acid showed the expected pattern in phospholipids. Considerable phenotypic variation of the fatty acids in both the lipid types was seen. CONCLUSION We report the first evidence supporting adaptive evolution of seed triacylglycerols in Arabidopsis on a latitudinal cline as seen in other species and also their plastic adaptive response to growing temperature. We show that as expected there is no genetic correlations between the fatty acids in triacylglycerols and phospholipids, indicating selection can act on seed triacylglycerols without being constrained by the fatty acid requirements of the phospholipids. Phospholipid fatty acids do not respond to latitude and temperature as seen elsewhere and needs further investigation. Thus, the adaptive response of Arabidopsis and the genetic tools available for manipulating Arabidopsis, makes it an excellent system for studying seed oil evolution and also for breeding seed oil crops especially the Brassica species.
Collapse
Affiliation(s)
- Anushree Sanyal
- Section of Integrative Biology, School of Biological Sciences, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Agronomy, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Craig Randal Linder
- Section of Integrative Biology, School of Biological Sciences, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
46
|
Calviño M, Messing J. Discovery of MicroRNA169 gene copies in genomes of flowering plants through positional information. Genome Biol Evol 2013; 5:402-17. [PMID: 23348041 PMCID: PMC3590774 DOI: 10.1093/gbe/evt015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2013] [Indexed: 12/02/2022] Open
Abstract
Expansion and contraction of microRNA (miRNA) families can be studied in sequenced plant genomes through sequence alignments. Here, we focused on miR169 in sorghum because of its implications in drought tolerance and stem-sugar content. We were able to discover many miR169 copies that have escaped standard genome annotation methods. A new miR169 cluster was found on sorghum chromosome 1. This cluster is composed of the previously annotated sbi-MIR169o together with two newly found MIR169 copies, named sbi-MIR169t and sbi-MIR169u. We also found that a miR169 cluster on sorghum chr7 consisting of sbi-MIR169l, sbi-MIR169m, and sbi-MIR169n is contained within a chromosomal inversion of at least 500 kb that occurred in sorghum relative to Brachypodium, rice, foxtail millet, and maize. Surprisingly, synteny of chromosomal segments containing MIR169 copies with linked bHLH and CONSTANS-LIKE genes extended from Brachypodium to dictotyledonous species such as grapevine, soybean, and cassava, indicating a strong conservation of linkages of certain flowering and/or plant height genes and microRNAs, which may explain linkage drag of drought and flowering traits and would have consequences for breeding new varieties. Furthermore, alignment of rice and sorghum orthologous regions revealed the presence of two additional miR169 gene copies (miR169r and miR169s) on sorghum chr7 that formed an antisense miRNA gene pair. Both copies are expressed and target different set of genes. Synteny-based analysis of microRNAs among different plant species should lead to the discovery of new microRNAs in general and contribute to our understanding of their evolution.
Collapse
|
47
|
Huang L, Jiang H, Ren X, Chen Y, Xiao Y, Zhao X, Tang M, Huang J, Upadhyaya HD, Liao B. Abundant microsatellite diversity and oil content in wild Arachis species. PLoS One 2012; 7:e50002. [PMID: 23185514 PMCID: PMC3502184 DOI: 10.1371/journal.pone.0050002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 10/15/2012] [Indexed: 01/05/2023] Open
Abstract
The peanut (Arachis hypogaea) is an important oil crop. Breeding for high oil content is becoming increasingly important. Wild Arachis species have been reported to harbor genes for many valuable traits that may enable the improvement of cultivated Arachis hypogaea, such as resistance to pests and disease. However, only limited information is available on variation in oil content. In the present study, a collection of 72 wild Arachis accessions representing 19 species and 3 cultivated peanut accessions were genotyped using 136 genome-wide SSR markers and phenotyped for oil content over three growing seasons. The wild Arachis accessions showed abundant diversity across the 19 species. A. duranensis exhibited the highest diversity, with a Shannon-Weaver diversity index of 0.35. A total of 129 unique alleles were detected in the species studied. A. rigonii exhibited the largest number of unique alleles (75), indicating that this species is highly differentiated. AMOVA and genetic distance analyses confirmed the genetic differentiation between the wild Arachis species. The majority of SSR alleles were detected exclusively in the wild species and not in A. hypogaea, indicating that directional selection or the hitchhiking effect has played an important role in the domestication of the cultivated peanut. The 75 accessions were grouped into three clusters based on population structure and phylogenic analysis, consistent with their taxonomic sections, species and genome types. A. villosa and A. batizocoi were grouped with A. hypogaea, suggesting the close relationship between these two diploid wild species and the cultivated peanut. Considerable phenotypic variation in oil content was observed among different sections and species. Nine alleles were identified as associated with oil content based on association analysis, of these, three alleles were associated with higher oil content but were absent in the cultivated peanut. The results demonstrated that there is great potential to increase the oil content in A. hypogaea by using the wild Arachis germplasm.
Collapse
Affiliation(s)
- Li Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoping Ren
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xinyan Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Mei Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jiaquan Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
48
|
Körber N, Wittkop B, Bus A, Friedt W, Snowdon RJ, Stich B. Seedling development in a Brassica napus diversity set and its relationship to agronomic performance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1275-87. [PMID: 22782254 DOI: 10.1007/s00122-012-1912-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/05/2012] [Indexed: 05/21/2023]
Abstract
Brassica napus L. is the leading European oilseed crop and has therefore a high economical importance. The objectives of our study were to examine (1) the patterns of phenotypic diversity in a species-wide B. napus germplasm set of 518 inbreds with respect to various seedling development, agronomic, and seed quality traits as well as (2) the interrelationship of the examined traits and their use in selection on correlated traits. The B. napus germplasm set was evaluated in greenhouse and field trials for several seedling development, agronomic, and seed quality traits. The traits were highly correlated within the individual trait categories and moderately correlated between the different trait categories. We observed differences in phenotypic diversity among the examined eight germplasm types. The reduction of phenotypic diversity was on average more pronounced for the seedling development traits than for the agronomic and seed quality traits, suggesting that plant breeders need to introgress new genetic variation with respect to the former.
Collapse
Affiliation(s)
- Niklas Körber
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Xiao Y, Cai D, Yang W, Ye W, Younas M, Wu J, Liu K. Genetic structure and linkage disequilibrium pattern of a rapeseed (Brassica napus L.) association mapping panel revealed by microsatellites. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:437-47. [PMID: 22437490 DOI: 10.1007/s00122-012-1843-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 03/05/2012] [Indexed: 05/04/2023]
Abstract
Understanding the population structure and linkage disequilibrium (LD) is a prerequisite for association mapping of complex traits in a target population. In this study, we assessed the genetic diversity, population structure and the extent of LD in a panel of 192 inbred lines of Brassica napus from all over the world using 451 single-locus microsatellite markers. The inbred lines could be divided into P1 and P2 groups by a model-based population structure analysis. Out of the 142 inbred lines in the P1 group, 126 lines were from China and Japan, and the remaining 16 lines were from Europe, Canada and Australia. In the P2 group, 33 out of the 50 lines were from Europe, Canada, and Australia, and the remaining 17 lines were from China. Structure analysis further divided each group into two subgroups. AMOVA, pairwise F (ST) and neutrality analyses confirmed the differentiation between groups and subgroups. More than 80 % of the pairwise kinship estimates between inbred lines were <0.05, indicating that relative kinship is weak in our panel. Only 6 % linked marker pairs showed LD, suggesting the low level of LD in this association panel. The LD decayed within 0.5-1 cM at the genome level, and varied considerably across each group and subgroup, due to the population size, genetic background and genetic drift. The characterization of the population structure and LD patterns would be useful for performing association studies for complex agronomic traits in rapeseed.
Collapse
Affiliation(s)
- Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Geleta M, Heneen WK, Stoute AI, Muttucumaru N, Scott RJ, King GJ, Kurup S, Bryngelsson T. Assigning Brassica microsatellite markers to the nine C-genome chromosomes using Brassica rapa var. trilocularis-B. oleracea var. alboglabra monosomic alien addition lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:455-66. [PMID: 22422193 DOI: 10.1007/s00122-012-1845-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/05/2012] [Indexed: 05/05/2023]
Abstract
Brassica rapa var. trilocularis-B. oleracea var. alboglabra monosomic alien addition lines (MAALs) were used to assign simple sequence repeat (SSR) markers to the nine C-genome chromosomes. A total of 64 SSR markers specific to single C-chromosomes were identified. The number of specific markers for each chromosome varied from two (C3) to ten (C4, C7 and C9), where the designation of the chromosomes was according to Cheng et al. (Genome 38:313-319, 1995). Seventeen additional SSRs, which were duplicated on 2-5 C-chromosomes, were also identified. Using the SSR markers assigned to the previously developed eight MAALs and recently obtained aneuploid plants, a new Brassica rapa-B. oleracea var. alboglabra MAAL carrying the alien chromosome C7 was identified and developed. The application of reported genetically mapped SSR markers on the nine MAALs contributed to the determination of the correspondence between numerical C-genome cytological (Cheng et al. in Genome 38:313-319, 1995) and linkage group designations. This correspondence facilitates the integration of C-genome genetic information that has been generated based on the two designation systems and accordingly increases our knowledge about each chromosome. The present study is a significant contribution to genetic linkage analysis of SSR markers and important agronomic traits in B. oleracea and to the potential use of the MAALs in plant breeding.
Collapse
Affiliation(s)
- Mulatu Geleta
- Department of Plant Breeding and Biotechnology, Swedish University of Agricultural Sciences, 230 53, Alnarp, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|