1
|
Zhang H, Liu J, Zhao Y, Wang E, Zhou J, Chang K, Zhao X, Song B. Comprehensive metabolomics and transcriptomics analysis reveal the regulatory mechanism of StHY5 on anthocyanin accumulation in potato tubers. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112500. [PMID: 40204193 DOI: 10.1016/j.plantsci.2025.112500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Light is a key factor for inducing anthocyanin biosynthesis; however, its regulatory mode in potato anthocyanin biosynthesis remains unclear. Previous research identified a specific genotype that causes the tuber skin to gradually turn purple when exposed to light of different wavelengths. In the present study, we conducted metabolome and transcriptome analyses on tuber samples during anthocyanin accumulation. The metabolome data showed that the contents of naringenin chalcone, naringenin, dihydrokaempferol, and cyanidin gradually increased during anthocyanin accumulation. The transcriptome data showed that the expression levels of most structural genes increased gradually during anthocyanin accumulation, especially the StF3'H gene that promotes cyanidin formation. Moreover, the photo-responsive transcription factor StHY5 was specifically expressed at high levels before anthocyanin accumulation, occurring 2 h after light induction. Establishment of transgenic lines demonstrated that StHY5 overexpression could promote the accumulation of anthocyanin in potato tubers, along with a parallel increase in the transcription levels of StAN2, StMYBA1, StCHI, StF3H, StF3'H, and StDFR. Electrophoretic mobility shift and dual luciferase assays showed that StHY5 can enhance the promoter activity of the MYB transcription factors StAN2 and StMYBA1 as well as the structural genes StCHI and StF3H through binding to the G-box motif. StAN2 activated the expression of StF3'H (a newly identified purple gene locus in potato) and StDFR by binding to the MYB-binding site in the promoters, thereby promoting anthocyanin biosynthesis. This study provides a theoretical basis for revealing the molecular mechanism of light-regulated anthocyanin biosynthesis in potatoes.
Collapse
Affiliation(s)
- Huiling Zhang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China.
| | - Jingjing Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Yanan Zhao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Enshuang Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhua Zhou
- Zhengzhou Vegetable Research Institute, Zhengzhou 450015, China
| | - Kaixin Chang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Xijuan Zhao
- Hunan Agricultural University, Key Laboratory for Vegetable Biology of Hunan Province, Yuelu Mountain Laboratory, Changsha 410128, China.
| | - Botao Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Du H, Zhai Z, Pu J, Liang J, Wang R, Zhang Z, Wang P, Zhu Y, Huang L, Li D, Chen K, Zhu G, Zhang C. Two tandem R2R3 MYB transcription factor genes cooperatively regulate anthocyanin accumulation in potato tuber flesh. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1521-1534. [PMID: 39887502 PMCID: PMC12018810 DOI: 10.1111/pbi.14602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Anthocyanin biosynthesis and accumulation determines the colour of tuber flesh in potato (Solanum tuberosum) and influences nutritional quality. However, the regulatory mechanism behind anthocyanin biosynthesis in potato tuber flesh remains unclear. In this study, we identified the Pigmented tuber flesh (Pf) locus through a genome-wide association study using 135 diploid potato landraces. Genome editing of two tandem R2R3 MYB transcription factor genes, StMYB200 and StMYB210, within the Pf locus demonstrated that both genes are involved in anthocyanin biosynthesis in tuber flesh. Molecular and biochemical assays revealed that StMYB200 promotes StMYB210 transcription by directly binding to a 1.7-kb insertion present in the StMYB210 promoter, while StMYB210 also regulates its own expression. Furthermore, StMYB200 and StMYB210 both activated the expression of the basic helix-loop-helix transcription factor gene StbHLH1 and interacted with StbHLH1 to regulate anthocyanin biosynthesis. An analysis of the StMYB210 promoter in different diploid potato accessions showed that the 1.7-kb insertion is associated with flesh colour in potato. These findings reveal the genetic and molecular mechanism by which the Pf locus regulates anthocyanin accumulation in tuber flesh and provide an important reference for breeding new potato varieties with colourful flesh.
Collapse
Affiliation(s)
- Hui Du
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Zefeng Zhai
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Jin Pu
- Yunnan Key Laboratory of Potato BiologyThe AGISCAAS‐YNNU Joint Academy of Potato Sciences, Yunnan Normal UniversityKunmingChina
| | - Jun Liang
- Yunnan Key Laboratory of Potato BiologyThe AGISCAAS‐YNNU Joint Academy of Potato Sciences, Yunnan Normal UniversityKunmingChina
| | - Rongyan Wang
- Yunnan Key Laboratory of Potato BiologyThe AGISCAAS‐YNNU Joint Academy of Potato Sciences, Yunnan Normal UniversityKunmingChina
| | - Zhong Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Pei Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Yanhui Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Lian Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Dawei Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Kaiyuan Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Guangtao Zhu
- Yunnan Key Laboratory of Potato BiologyThe AGISCAAS‐YNNU Joint Academy of Potato Sciences, Yunnan Normal UniversityKunmingChina
| | - Chunzhi Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
3
|
Chen D, Wang C, Liu Y, Shen W, Cuimu Q, Zhang D, Zhu B, Chen L, Tan C. Systematic identification of R2R3-MYB S6 subfamily genes in Brassicaceae and its role in anthocyanin biosynthesis in Brassica crops. BMC PLANT BIOLOGY 2025; 25:290. [PMID: 40045187 PMCID: PMC11883967 DOI: 10.1186/s12870-025-06296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025]
Abstract
The Brassicaceae family includes Arabidopsis thaliana, various vegetables and oil crops. The R2R3-MYB genes of the S6 subfamily are crucial for regulating anthocyanin biosynthesis, however, their systematic identification in Brassicaceae plants is still incomplete. Here, we systematically identified homologous genes of R2R3-MYB transcription factors from the S6 subfamily across 31 Brassicaceae species. A total of 92 homologous genes were identified, with species representation ranging from 0 to 10 genes per species. Phylogenetic analysis classified these homologous genes into six distinct groups. Notably, approximately 70% of the homologous genes were found within the G6 group, indicating a high degree of evolutionary conservation. Furthermore, a phylogenetic analysis was conducted on 35 homologous genes obtained from six species within the U's triangle Brassica plants. The findings provided evidence of significant conservation among orthologous genes across species and demonstrated strong collinearity on subgenomic chromosomes, with notable tandem duplications observed on chromosomes A7 and C6. Subsequently, we predicted the cis-acting elements of these 35 homologous genes, and analyzed their structures, conserved motifs, and characteristic conserved domains, confirming the significant similarities between orthologous genes. Additionally, we employed white and purple flower rapeseed specimens to conduct qRT-PCR validation of the key genes and transcriptional regulators associated with the anthocyanin synthesis pathway. The results revealed significant differential expression of BnaPAP2.A7.b in purple flowers, alongside the differential expression of BnaPAP2.C6.d. Ultimately, based on previous research and the findings of this study, we propose a transcriptional regulatory framework to govern anthocyanin accumulation in distinct tissues or organs of B. napus. Our findings offer a novel perspective on the functional diversification of R2R3-MYB transcription factors within the S6 subfamily homologous genes, while also shedding light on the regulatory network governing anthocyanin biosynthesis in Brassicaceae species.
Collapse
Affiliation(s)
- Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Chenchen Wang
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Yi Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Wenjie Shen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Qiushi Cuimu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Dawei Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Bo Zhu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Lunlin Chen
- Nanchang Branch of National Center of Oilcrops Improvement, Jiangxi Province Key Laboratory of Oil Crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
4
|
Śliwka J, Wasilewicz-Flis I, Jakuczun H, Janiszewska M, Smyda-Dajmund P, McLean K, Zimnoch-Guzowska E, Bryan GJ, Sharma SK. Historical data provide new insights into inheritance of traits important for diploid potato breeding. PLANTA 2025; 261:69. [PMID: 40014142 PMCID: PMC11868143 DOI: 10.1007/s00425-025-04618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/13/2025] [Indexed: 02/28/2025]
Abstract
KEY MESSAGE Using a diploid potato diversity panel of 246 breeding lines, a genotyping-by-sequencing and a GWAS approach, we mapped QTL for ten traits important to potato breeders, including two previously unmapped traits: boiled tuber taste and pollen fertility. Potato breeding at the diploid level has a long history and has gained new impetus recently, when F1 hybrid breeding was made possible with the discovery of a dominant gene for self-compatibility. Our study deploys a unique diploid diversity panel with a broadened cultivated potato gene pool obtained as a result of introgressing valuable traits from wild potato relatives into the Solanum tuberosum background. Using historical phenotyping data collected between 1979 and 2017 for 246 diploid potato clones and high-density genotyping-by-sequencing, we mapped quantitative trait loci (QTL) for tuber yield, mean tuber weight, tuber shape and regularity, tuber eye depth, purple tuber skin colour, flesh colour, tuber starch content, boiled tuber taste (flavour) and pollen fertility. We found some QTL located in genomic regions described in earlier studies, e.g. the QTL for the tuber flesh colour on chromosome 3 overlapping with the location of beta-carotene hydroxylase gene. We identified novel QTL for mean tuber weight on chromosomes 8, 9 and 11 and for purple tuber skin colour on chromosomes 6, 7 and 8. QTL for boiled tuber taste and pollen fertility estimated by Lactofuchsin staining have not been mapped before. We found two regions on chromosome 10 affecting the boiled tuber taste, and QTL on chromosomes 2, 4, 5, 6, 9, and 12 for pollen fertility. Considering the increased interest in diploid hybrid potato breeding, the results presented here hold greater relevance and provide novel targets for potato breeding and research at the diploid level.
Collapse
Affiliation(s)
- Jadwiga Śliwka
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Młochów Division, Platanowa St. 19, 05-831, Młochów, Poland.
| | - Iwona Wasilewicz-Flis
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Młochów Division, Platanowa St. 19, 05-831, Młochów, Poland
| | - Henryka Jakuczun
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Młochów Division, Platanowa St. 19, 05-831, Młochów, Poland
| | - Marta Janiszewska
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Młochów Division, Platanowa St. 19, 05-831, Młochów, Poland
| | - Paulina Smyda-Dajmund
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Młochów Division, Platanowa St. 19, 05-831, Młochów, Poland
| | - Karen McLean
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Ewa Zimnoch-Guzowska
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Młochów Division, Platanowa St. 19, 05-831, Młochów, Poland
| | - Glenn J Bryan
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | - Sanjeev Kumar Sharma
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| |
Collapse
|
5
|
Zhang Z, Li H, Zhang L, Duan S, Li G, Duan Y. Fine Mapping and Candidate Genes Analysis for Regulatory Gene of Anthocyanin Synthesis in the Corolla, Shedding Light on Wild Potato Evolution. Int J Mol Sci 2025; 26:1966. [PMID: 40076591 PMCID: PMC11899842 DOI: 10.3390/ijms26051966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Petota includes more than 100 species (wild and cultivated), presenting a rich variety of corolla colors and associated traits. This variability provides important opportunities for investigating the differentiation of orthologous genes' functions and their evolutionary pathways. However, the genetic underpinnings of this diversity in corolla colors are still to be further explored. In our previous study, a locus responsible for corolla color in potato was mapped to a 740 kb region on chromosome 10, which contains the AN2 gene previously identified as a regulation gene for corolla color. In the present study, this locus was further refined to a 380 kb interval through recombinant analysis. Targeted analysis of anthocyanidins and carotenoids revealed that purple corollas exhibit significantly higher levels of petunidin and delphinidin, while showing significantly lower levels of lutein and β-carotene compared to yellow corollas. Transcriptome and qRT-PCR analysis indicated that StMYB180, rather than AN2, is the candidate gene responsible for regulating coloration, specifically on the abaxial side of the corolla in potato. Expression analysis revealed that StMYB180 is exclusively highly expressed in corolla and leaf tissues, with purple coloration on the abaxial side of both corollas and leaves. Phylogenetic analysis further suggests that corolla color-regulatory genes may be closely tied to the origin and evolutionary trajectory of potato species. This study provides valuable insights into the regulation of tissue-specific expression of anthocyanin biosynthesis in potato and lays the groundwork for understanding the evolution of orthologous genes in the Petota section.
Collapse
Affiliation(s)
| | | | | | | | - Guangcun Li
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (H.L.); (L.Z.); (S.D.)
| | - Yanfeng Duan
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (H.L.); (L.Z.); (S.D.)
| |
Collapse
|
6
|
He M, Ma X, Zhou Y, Wang F, Fang G, Wang J. Combined Metabolome and Transcriptome Analyses Reveals Anthocyanin Biosynthesis Profiles Between Purple and White Potatoes. Int J Mol Sci 2024; 25:12884. [PMID: 39684596 DOI: 10.3390/ijms252312884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Colored potatoes with red and purple skin or flesh possess significant nutritional value and health benefits due to their rich anthocyanin content. To investigate the genetic mechanisms underlying color formation, the high-anthocyanin-content purple-skinned and purple-fleshed potato line 15-12-16, and the white-skinned and white-fleshed Xiazhai 65 variety were used for ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) analysis, which was conducted to identify and quantify anthocyanins. RNA sequencing was performed to analyze the transcriptome. The results indicated a significant upregulation of genes within the anthocyanidin biosynthesis pathway in the purple potato, while these genes were either downregulated or absent in the white potato. The bHLH, MYB, and WRKY gene families exhibited a greater number of regulatory members, suggesting their pivotal role in color formation. Integrated analysis of the transcriptional and metabolic revealed that 12 differentially expressed genes (DEGs) related to the anthocyanidin biosynthetic had a significant correlation with 18 anthocyanin metabolites. Notably, the key gene St5GT in the anthocyanidin biosynthesis pathway was markedly upregulated in the purple skin and flesh. Furthermore, the overexpression of St5GT (PGSC0003DMG400004573) in tobacco contributed to anthocyanin accumulation. The expression of 10 DEGs was validated through quantitative real-time PCR. In conclusion, these findings provide new insights into anthocyanin biosynthesis and accumulation in purple potatoes, offering valuable candidate genes for the future breeding of colored potatoes.
Collapse
Affiliation(s)
- Miaomiao He
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- Key Laboratory of Qinghai-Tibetan Plateau Biotechnology (Qinghai University), Ministry of Education, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Engineering Research Center of Potato in Northwest Region, Ministry of Education, Xining 810016, China
| | - Xinping Ma
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- Key Laboratory of Qinghai-Tibetan Plateau Biotechnology (Qinghai University), Ministry of Education, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Engineering Research Center of Potato in Northwest Region, Ministry of Education, Xining 810016, China
| | - Yun Zhou
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- Key Laboratory of Qinghai-Tibetan Plateau Biotechnology (Qinghai University), Ministry of Education, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Engineering Research Center of Potato in Northwest Region, Ministry of Education, Xining 810016, China
| | - Fang Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- Key Laboratory of Qinghai-Tibetan Plateau Biotechnology (Qinghai University), Ministry of Education, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Engineering Research Center of Potato in Northwest Region, Ministry of Education, Xining 810016, China
| | - Guonan Fang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- Key Laboratory of Qinghai-Tibetan Plateau Biotechnology (Qinghai University), Ministry of Education, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Engineering Research Center of Potato in Northwest Region, Ministry of Education, Xining 810016, China
| | - Jian Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining 810016, China
- Key Laboratory of Qinghai-Tibetan Plateau Biotechnology (Qinghai University), Ministry of Education, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Engineering Research Center of Potato in Northwest Region, Ministry of Education, Xining 810016, China
| |
Collapse
|
7
|
Lee YS, Braun EL, Grotewold E. Evolutionary trajectory of transcription factors and selection of targets for metabolic engineering. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230367. [PMID: 39343015 PMCID: PMC11439498 DOI: 10.1098/rstb.2023.0367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 10/01/2024] Open
Abstract
Transcription factors (TFs) provide potentially powerful tools for plant metabolic engineering as they often control multiple genes in a metabolic pathway. However, selecting the best TF for a particular pathway has been challenging, and the selection often relies significantly on phylogenetic relationships. Here, we offer examples where evolutionary relationships have facilitated the selection of the suitable TFs, alongside situations where such relationships are misleading from the perspective of metabolic engineering. We argue that the evolutionary trajectory of a particular TF might be a better indicator than protein sequence homology alone in helping decide the best targets for plant metabolic engineering efforts. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Yun Sun Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824, USA
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL32611, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824, USA
| |
Collapse
|
8
|
Li M, Xiong Y, Yang X, Gao Y, Li K. Transcriptomic and Metabolic Analysis Reveals Genes and Pathways Associated with Flesh Pigmentation in Potato ( Solanum tuberosum) Tubers. Curr Issues Mol Biol 2024; 46:10335-10350. [PMID: 39329967 PMCID: PMC11430057 DOI: 10.3390/cimb46090615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Anthocyanins, flavonoid pigments, are responsible for the purple and red hues in potato tubers. This study analyzed tubers from four potato cultivars-red RR, purple HJG, yellow QS9, and white JZS8-to elucidate the genetic mechanisms underlying tuber pigmentation. Our transcriptomic analysis identified over 2400 differentially expressed genes between these varieties. Notably, genes within the flavonoid biosynthesis pathway were enriched in HJG and RR compared to the non-pigmented JZS8, correlating with their higher levels of anthocyanin precursors and related substances. Hierarchical clustering revealed inverse expression patterns for the key genes involved in anthocyanin metabolism between pigmented and non-pigmented varieties. Among these, several MYB transcription factors displayed strong co-expression with anthocyanin biosynthetic genes, suggesting a regulatory role. Specifically, the expression of 16 MYB genes was validated using qRT-PCR to be markedly higher in pigmented HJG and RR versus JZS8, suggesting that these MYB genes might be involved in tuber pigmentation. This study comprehensively analyzed the transcriptome of diverse potato cultivars, highlighting specific genes and metabolic pathways involved in tuber pigmentation. These findings provide potential molecular targets for breeding programs focused on enhancing tuber color.
Collapse
Affiliation(s)
- Man Li
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Yuting Xiong
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Xueying Yang
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Yuliang Gao
- Yanbian Agricultural Sciences Academy, Longjing 133400, China
| | - Kuihua Li
- Agricultural College, Yanbian University, Yanji 133002, China
| |
Collapse
|
9
|
Zhang Y, Pu Y, Zhang Y, Li K, Bai S, Wang J, Xu M, Liu S, Zhou Z, Wu Y, Hu R, Wu Q, Kear P, Du M, Qi J. Tuber transcriptome analysis reveals a novel WRKY transcription factor StWRKY70 potentially involved in potato pigmentation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108792. [PMID: 38851149 DOI: 10.1016/j.plaphy.2024.108792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Tuber flesh pigmentation, conferred by the presence of secondary metabolite anthocyanins, is one of many key agronomic traits for potato tubers. Although several genes of potato anthocyanin biosynthesis have been reported, transcription factors (TFs) contributing to tuber flesh pigmentation are still not fully understood. In this study, transcriptomic profiling of diploid potato accessions with or without tuber flesh pigmentation was conducted and genes of the anthocyanin biosynthesis pathway were found significantly enriched within the 1435 differentially expressed genes (DEGs). Weighted Gene Co-expression Network Analysis (WGCNA) and connectivity analysis pinpointed a subset of 173 genes closely related to the key biosynthetic gene StDFR. Of the eight transcription factors in the subset, group III WRKY StWRKY70, was chosen for showing high connectivity to StDFR and ten other anthocyanin biosynthetic genes and homology to known WRKYs of anthocyanin pathway. The transient activation assay showed StWRKY70 predominantly stimulated the expression of StDFR and StANS as well as the accumulation of anthocyanins by enhancing the function of the MYB transcription factor StAN1. Furthermore, the interaction between StWRKY70 and StAN1 was verified by Y2H and BiFC. Our analysis discovered a new transcriptional activator StWRKY70 which potentially involved in tuber flesh pigmentation, thus may lay the foundation for deciphering how the WRKY-MYB-bHLH-WD40 (WRKY-MBW) complex regulate the accumulation of anthocyanins and provide new strategies to breed for more nutritious potato varieties with enhanced tuber flesh anthocyanins.
Collapse
Affiliation(s)
- Yingying Zhang
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Yuanyuan Pu
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Yumeng Zhang
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Kexin Li
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Shunbuer Bai
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Jiajia Wang
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Mingxiang Xu
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Suhui Liu
- Shandong Agriculture and Engineering University, Jinan, 250100, Shandong, China
| | - Zijian Zhou
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Yuyu Wu
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Rong Hu
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Qian Wu
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Philip Kear
- International Potato Center (CIP), China Center for Asia Pacific, Beijing, 100081, China
| | - Miru Du
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Jianjian Qi
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
10
|
Martinez-Sanchez M, Hunter DA, Saei A, Andre CM, Varkonyi-Gasic E, Clark G, Barry E, Allan AC. SmuMYB113 is the determinant of fruit color in pepino ( Solanum muricatum). FRONTIERS IN PLANT SCIENCE 2024; 15:1408202. [PMID: 38966143 PMCID: PMC11222579 DOI: 10.3389/fpls.2024.1408202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Pepino (Solanum muricatum) is an herbaceous crop phylogenetically related to tomato and potato. Pepino fruit vary in color, size and shape, and are eaten fresh. In this study, we use pepino as a fruit model to understand the transcriptional regulatory mechanisms controlling fruit quality. To identify the key genes involved in anthocyanin biosynthesis in pepino, two genotypes were studied that contrasted in foliar and fruit pigmentation. Anthocyanin profiles were analyzed, as well as the expression of genes that encode enzymes for anthocyanin biosynthesis and transcriptional regulators using both RNA-seq and quantitative PCR. The differential expression of the transcription factor genes R2R3 MYB SmuMYB113 and R3MYB SmuATV suggested their association with purple skin and foliage phenotype. Functional analysis of these genes in both tobacco and pepino showed that SmuMYB113 activates anthocyanins, while SmuATV suppresses anthocyanin accumulation. However, despite elevated expression in all tissues, SmuMYB113 does not significantly elevate flesh pigmentation, suggesting a strong repressive background in fruit flesh tissue. These results will aid understanding of the differential regulation controlling fruit quality aspects between skin and flesh in other fruiting species.
Collapse
Affiliation(s)
- Marcela Martinez-Sanchez
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Donald A. Hunter
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research), Palmerston North, New Zealand
| | - Ali Saei
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Christelle M. Andre
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Glen Clark
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Emma Barry
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Xiao K, Tan F, Zhang A, Zhou Y, Zhu W, Bao C, Zha D, Wu X. Fine Mapping of Candidate Gene Controlling Anthocyanin Biosynthesis for Purple Peel in Solanum melongena L. Int J Mol Sci 2024; 25:5241. [PMID: 38791283 PMCID: PMC11121509 DOI: 10.3390/ijms25105241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Fruit color is an intuitive quality of horticultural crops that can be used as an evaluation criterion for fruit ripening and is an important factor affecting consumers' purchase choices. In this study, a genetic population from the cross of green peel 'Qidong' and purple peel '8 guo' revealed that the purple to green color of eggplant peel is dominant and controlled by a pair of alleles. Bulked segregant analysis (BSA), SNP haplotyping, and fine genetic mapping delimited candidate genes to a 350 kb region of eggplant chromosome 10 flanked by markers KA2381 and CA8828. One ANS gene (EGP22363) was predicted to be a candidate gene based on gene annotation and sequence alignment of the 350-kb region. Sequence analysis revealed that a single base mutation of 'T' to 'C' on the exon green peel, which caused hydrophobicity to become hydrophilic serine, led to a change in the three-level spatial structure. Additionally, EGP22363 was more highly expressed in purple peels than in green peels. Collectively, EGP22363 is a strong candidate gene for anthocyanin biosynthesis in purple eggplant peels. These results provide important information for molecular marker-assisted selection in eggplants, and a basis for analyzing the regulatory pathways responsible for anthocyanin biosynthesis in eggplants.
Collapse
Affiliation(s)
- Kai Xiao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| | - Feng Tan
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| | - Aidong Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| | - Yaru Zhou
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| | - Chonglai Bao
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Dingshi Zha
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| | - Xuexia Wu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (K.X.); (F.T.); (A.Z.); (Y.Z.); (W.Z.); (D.Z.)
| |
Collapse
|
12
|
Bonthala VS, Stich B. StCoExpNet: a global co-expression network analysis facilitates identifying genes underlying agronomic traits in potatoes. PLANT CELL REPORTS 2024; 43:117. [PMID: 38622429 PMCID: PMC11018665 DOI: 10.1007/s00299-024-03201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
KEY MESSAGE We constructed a gene expression atlas and co-expression network for potatoes and identified several novel genes associated with various agronomic traits. This resource will accelerate potato genetics and genomics research. Potato (Solanum tuberosum L.) is the world's most crucial non-cereal food crop and ranks third in food production after wheat and rice. Despite the availability of several potato transcriptome datasets at public databases like NCBI SRA, an effort has yet to be put into developing a global transcriptome atlas and a co-expression network for potatoes. The objectives of our study were to construct a global expression atlas for potatoes using publicly available transcriptome datasets, identify housekeeping and tissue-specific genes, construct a global co-expression network and identify co-expression clusters, investigate the transcriptional complexity of genes involved in various essential biological processes related to agronomic traits, and provide a web server (StCoExpNet) to easily access the newly constructed expression atlas and co-expression network to investigate the expression and co-expression of genes of interest. In this study, we used data from 2299 publicly available potato transcriptome samples obtained from 15 different tissues to construct a global transcriptome atlas. We found that roughly 87% of the annotated genes exhibited detectable expression in at least one sample. Among these, we identified 281 genes with consistent and stable expression levels, indicating their role as housekeeping genes. Conversely, 308 genes exhibited marked tissue-specific expression patterns. We exemplarily linked some co-expression clusters to important agronomic traits of potatoes, such as self-incompatibility, anthocyanin biosynthesis, tuberization, and defense responses against multiple pathogens. The dataset compiled here constitutes a new resource (StCoExpNet), which can be accessed at https://stcoexpnet.julius-kuehn.de . This transcriptome atlas and the co-expression network will accelerate potato genetics and genomics research.
Collapse
Affiliation(s)
- Venkata Suresh Bonthala
- Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| | - Benjamin Stich
- Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
- Julius Kühn-Institut (JKI), Institute for Breeding Research On Agricultural Crops, Rudolf-Schick-Platz 3a, OT Groß Lüsewitz, 18190, Sanitz, Germany
- Max Planck Institute for Plant Breeding Research, Köln, Germany
- Cluster of Excellence On Plant Sciences, From Complex Traits Towards Synthetic Modules, Düsseldorf, Germany
| |
Collapse
|
13
|
Chen BC, Wu XJ, Guo HC, Xiao JP. Effects of appropriate low-temperature treatment on the yield and quality of pigmented potato (Solanum tuberosum L.) tubers. BMC PLANT BIOLOGY 2024; 24:274. [PMID: 38605295 PMCID: PMC11007950 DOI: 10.1186/s12870-024-04951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Temperature is one of the important environmental factors affecting plant growth, yield and quality. Moreover, appropriately low temperature is also beneficial for tuber coloration. The red potato variety Jianchuanhong, whose tuber color is susceptible to temperature, and the purple potato variety Huaxinyangyu, whose tuber color is stable, were used as experimental materials and subjected to 20 °C (control check), 15 °C and 10 °C treatments during the whole growth period. The effects of temperature treatment on the phenotype, the expression levels of structural genes related to anthocyanins and the correlations of each indicator were analyzed. The results showed that treatment at 10 °C significantly inhibited the potato plant height, and the chlorophyll content and photosynthetic parameters in the leaves were reduced, and the enzyme activities of SOD and POD were significantly increased, all indicating that the leaves were damaged. Treatment at 10 °C also affected the tuberization of Huaxinyangyu and reduced the tuberization and coloring of Jianchuanhong, while treatment at 15 °C significantly increased the stem diameter, root-to-shoot ratio, yield and content of secondary metabolites, especially anthocyanins. Similarly, the expression of structural genes were enhanced in two pigmented potatoes under low-temperature treatment conditions. In short, proper low temperature can not only increase yield but also enhance secondary metabolites production. Previous studies have not focused on the effects of appropriate low-temperature treatment during the whole growth period of potato on the changes in metabolites during tuber growth and development, these results can provide a theoretical basis and technical guidance for the selection of pigmented potatoes with better nutritional quality planting environment and the formulation of cultivation measures.
Collapse
Affiliation(s)
- Bi-Cong Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan, 650051, China
| | - Xiao-Jie Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan, 650051, China
| | - Hua-Chun Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan, 650051, China
| | - Ji-Ping Xiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan, 650051, China.
| |
Collapse
|
14
|
Sonsungsan P, Nganga ML, Lieberman MC, Amundson KR, Stewart V, Plaimas K, Comai L, Henry IM. A k-mer-based bulked segregant analysis approach to map seed traits in unphased heterozygous potato genomes. G3 (BETHESDA, MD.) 2024; 14:jkae035. [PMID: 38366577 PMCID: PMC10989861 DOI: 10.1093/g3journal/jkae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
High-throughput sequencing-based methods for bulked segregant analysis (BSA) allow for the rapid identification of genetic markers associated with traits of interest. BSA studies have successfully identified qualitative (binary) and quantitative trait loci (QTLs) using QTL mapping. However, most require population structures that fit the models available and a reference genome. Instead, high-throughput short-read sequencing can be combined with BSA of k-mers (BSA-k-mer) to map traits that appear refractory to standard approaches. This method can be applied to any organism and is particularly useful for species with genomes diverged from the closest sequenced genome. It is also instrumental when dealing with highly heterozygous and potentially polyploid genomes without phased haplotype assemblies and for which a single haplotype can control a trait. Finally, it is flexible in terms of population structure. Here, we apply the BSA-k-mer method for the rapid identification of candidate regions related to seed spot and seed size in diploid potato. Using a mixture of F1 and F2 individuals from a cross between 2 highly heterozygous parents, candidate sequences were identified for each trait using the BSA-k-mer approach. Using parental reads, we were able to determine the parental origin of the loci. Finally, we mapped the identified k-mers to a closely related potato genome to validate the method and determine the genomic loci underlying these sequences. The location identified for the seed spot matches with previously identified loci associated with pigmentation in potato. The loci associated with seed size are novel. Both loci are relevant in future breeding toward true seeds in potato.
Collapse
Affiliation(s)
- Pajaree Sonsungsan
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mwaura Livingstone Nganga
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Meric C Lieberman
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Kirk R Amundson
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Victoria Stewart
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Kitiporn Plaimas
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Isabelle M Henry
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
15
|
Wang X, Zhou Y, You C, Yang J, Chen Z, Tang D, Ni J, Li P, Wang L, Zhu K, Deng W, Wu H, Bao R, Liu Z, Meng P, Yang S, Rong T, Liu J. Fine mapping and candidate gene analysis of qSRC3 controlling the silk color in maize (Zea mays L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:90. [PMID: 38555318 DOI: 10.1007/s00122-024-04598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/09/2024] [Indexed: 04/02/2024]
Abstract
KEY MESSAGE Fine mapping of the maize QTL qSRC3, responsible for red silk, uncovered the candidate gene ZmMYB20, which encodes an R2R3-MYB transcription factor, has light-sensitive expression, and putatively regulates genes expression associated with anthocyanin biosynthesis. Colorless silk is a key characteristic contributing to the visual quality of fresh corn intended for market distribution. Nonetheless, the identification of Mendelian trait loci and associated genes that control silk color has been scarce. In this study, a F2 population arising from the hybridization of the single-segment substitution line qSRC3MT1 with red silk, carrying an introgressed allele from teosinte (Zea mays ssp. mexicana), and the recurrent maize inbred line Mo17, characterized by light green silk, was utilized for fine mapping. We found that the red silk trait is controlled by a semi-dominant genetic locus known as qSRC3, and its expression is susceptible to light-mediated inhibition. Moreover, qSRC3 explained 68.78% of the phenotypic variance and was delimited to a 133.2 kb region, which includes three genes. Subsequent expression analyses revealed that ZmMYB20 (Zm00001d039700), which encodes an R2R3-MYB transcription factor, was the key candidate gene within qSRC3. Yeast one-hybrid and dual-luciferase reporter assays provided evidence that ZmMYB20 suppresses the expression of two crucial anthocyanin biosynthesis genes, namely ZmF3H and ZmUFGT, by directly binding to their respective promoter regions. Our findings underscore the significance of light-inhibited ZmMYB20 in orchestrating the spatial and temporal regulation of anthocyanin biosynthesis. These results advance the production of colorless silk in fresh corn, responding to the misconception that fresh corn with withered colored silk is not fresh and providing valuable genetic resources for the improvement of sweet and waxy maize.
Collapse
Affiliation(s)
- Xueying Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Zhou
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chong You
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinchang Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhengjie Chen
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dengguo Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jixing Ni
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Le Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kaili Zhu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wujiao Deng
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Haimei Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ruifan Bao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiqin Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pengxu Meng
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sijia Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
16
|
Chen BC, Wu XJ, Dong QJ, Xiao JP. Screening and functional analysis of StMYB transcription factors in pigmented potato under low-temperature treatment. BMC Genomics 2024; 25:283. [PMID: 38500027 PMCID: PMC10946176 DOI: 10.1186/s12864-024-10059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 01/29/2024] [Indexed: 03/20/2024] Open
Abstract
MYB transcription factors play an extremely important regulatory role in plant responses to stress and anthocyanin synthesis. Cloning of potato StMYB-related genes can provide a theoretical basis for the genetic improvement of pigmented potatoes. In this study, two MYB transcription factors, StMYB113 and StMYB308, possibly related to anthocyanin synthesis, were screened under low-temperature conditions based on the low-temperature-responsive potato StMYB genes family analysis obtained by transcriptome sequencing. By analyzed the protein properties and promoters of StMYB113 and StMYB308 and their relative expression levels at different low-temperature treatment periods, it is speculated that StMYB113 and StMYB308 can be expressed in response to low temperature and can promote anthocyanin synthesis. The overexpression vectors of StMYB113 and StMYB308 were constructed for transient transformation tobacco. Color changes were observed, and the expression levels of the structural genes of tobacco anthocyanin synthesis were determined. The results showed that StMYB113 lacking the complete MYB domain could not promote the accumulation of tobacco anthocyanins, while StMYB308 could significantly promote the accumulation involved in tobacco anthocyanins. This study provides a theoretical reference for further study of the mechanism of StMYB113 and StMYB308 transcription factors in potato anthocyanin synthesis.
Collapse
Affiliation(s)
- Bi-Cong Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, 650201, Yunnan, China
| | - Xiao-Jie Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, 650201, Yunnan, China
| | - Qiu-Ju Dong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, 650201, Yunnan, China
| | - Ji-Ping Xiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, 650201, Yunnan, China.
| |
Collapse
|
17
|
Zhang Z, Zhou D, Li S, Pan J, Liang J, Wu X, Wu XN, Krall L, Zhu G. Multiomics Analysis Reveals the Chemical and Genetic Bases of Pigmented Potato Tuber. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16402-16416. [PMID: 37856829 DOI: 10.1021/acs.jafc.3c04979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Anthocyanins and carotenoids determine the diversity of potato tuber flesh pigmentation; here, the underlying chemical and genetic bases were elucidated by multiomics analyses. A total of 31 anthocyanins and 30 carotenoids were quantified in five differently pigmented tubers. Cyanidin and pelargonidin derivatives determined the redness, while malvidin, petunidin, and delphinidin derivatives contributed to purpleness. Violaxanthin derivatives determined the light-yellow color, while zeaxanthin and antheraxanthin derivatives further enhanced the deep-yellow deposition. Integrated transcriptome and proteome analyses identified that F3'5'H highly enhanced anthocyanin biosynthesis in purple flesh and was responsible for metabolic divergence between red and purple samples. BCH2 significantly enhanced carotenoid biosynthesis in yellow samples and along with ZEP, NCED1, and CCD1 genes determined metabolic divergence between light and deep-yellow samples. The weighted correlation network analysis constructed a regulatory network revealing the central role of AN1 in regulating anthocyanin biosynthesis, and 10 new transcription factors related to anthocyanin and carotenoid metabolism regulation were identified. Our findings provide targeted genes controlling tuber pigmentation, which will be meaningful for the genetic manipulation of tuber quality improvement.
Collapse
Affiliation(s)
- Zhong Zhang
- Yunnan key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Dao Zhou
- Yunnan key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Shalan Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Jun Pan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Jun Liang
- Yunnan key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Xi Wu
- Yunnan key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Xu Na Wu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Leonard Krall
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Guangtao Zhu
- Yunnan key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| |
Collapse
|
18
|
D'Amelia V, Curaba J, Abid MA, Esposito S, Cavagnaro P, Carputo D, Iorizzo M. Functional characterization of DcMYB11, an R2R3 MYB associated with the purple pigmentation of carrot petiole. PLANTA 2023; 258:50. [PMID: 37488440 DOI: 10.1007/s00425-023-04200-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023]
Abstract
MAIN CONCLUSION DcMYB11, an R2R3 MYB gene associated with petiole anthocyanin pigmentation in carrot, was functionally characterized. A putative enhancer sequence is able to increase DcMYB11 activity. The accumulation of anthocyanin pigments can exhibit different patterns across plant tissues and crop varieties. This variability allowed the investigation of the molecular mechanisms behind the biosynthesis of these pigments in several plant species. Among crops, carrots have a well-defined anthocyanin pigmentation pattern depending on the genic background. In this work, we report on the discovery of DNA structural differences affecting the activity of an R2R3 MYB (encoded by DcMYB11) involved in anthocyanin regulation in carrot petiole. To this end, we first verified the function of DcMYB11 using heterologous systems and identified three different alleles which may explain differences in petiole pigmentation. Characterization of the DcMYB11 alleles at the 5' upstream sequence unveiled a sequence that functions as a putative enhancer. In conclusion, this study provides novel insight into the molecular mechanisms controlling anthocyanin accumulation in carrot. By these outcomes, we expanded our knowledge on the cis-regulatory sequences in plants.
Collapse
Affiliation(s)
- Vincenzo D'Amelia
- Institute of Bioscience and BioResources, National Research Council, Via Università 100, 80055, Portici, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Julien Curaba
- Horticulture Science Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Muhammad Ali Abid
- Horticulture Science Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Salvatore Esposito
- CREA Research Centre for Cereal and Industrial Crops (CREA-CI), 71122, Foggia, Italy
| | - Pablo Cavagnaro
- National Scientific and Technical Research Council (CONICET), National Institute of Agricultural Technology (INTA) E.E.A. La Consulta, La Consulta CC8, San Carlos, 5567, Mendoza, Argentina
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Massimo Iorizzo
- Horticulture Science Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA.
| |
Collapse
|
19
|
Xu J, Li Y, Kaur L, Singh J, Zeng F. Functional Food Based on Potato. Foods 2023; 12:foods12112145. [PMID: 37297391 DOI: 10.3390/foods12112145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Potato (Solanum tuberosum L.) has gradually become a stable food worldwide since it can be a practical nutritional supplement and antioxidant as well as an energy provider for human beings. Financially and nutritionally, the cultivation and utility of potatoes is worthy of attention from the world. Exploring the functionality and maximizing the utilization of its component parts as well as developing new products based on the potato is still an ongoing issue. To maximize the benefits of potato and induce new high-value products while avoiding unfavorable properties of the crop has been a growing trend in food and medical areas. This review intends to summarize the factors that influence changes in the key functional components of potatoes and to discuss the focus of referenced literature which may require further research efforts. Next, it summarizes the application of the latest commercial products and potential value of components existing in potato. In particular, there are several main tasks for future potato research: preparing starchy foods for special groups of people and developing fiber-rich products to supply dietary fiber intake, manufacturing bio-friendly and specific design films/coatings in the packaging industry, extracting bioactive proteins and potato protease inhibitors with high biological activity, and continuing to build and examine the health benefits of new commercial products based on potato protein. Notably, preservation methods play a key role in the phytochemical content left in foods, and potato performs superiorly to many common vegetables when meeting the demands of daily mineral intake and alleviating mineral deficiencies.
Collapse
Affiliation(s)
- Jian Xu
- Research & Development Center for Eco-Material and Eco-Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Li
- Research & Development Center for Eco-Material and Eco-Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lovedeep Kaur
- Riddet Institute, School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
| | - Jaspreet Singh
- Riddet Institute, School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
| | - Fankui Zeng
- Research & Development Center for Eco-Material and Eco-Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
20
|
Liu F, Zhao P, Chen G, Wang Y, Yang Y. A comparative analysis of small RNA sequencing data in tubers of purple potato and its red mutant reveals small RNA regulation in anthocyanin biosynthesis. PeerJ 2023; 11:e15349. [PMID: 37223121 PMCID: PMC10202107 DOI: 10.7717/peerj.15349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/13/2023] [Indexed: 05/25/2023] Open
Abstract
Anthocyanins are a group of natural pigments acting as stress protectants induced by biotic/abiotic stress in plants. Although the metabolic pathway of anthocyanin has been studied in potato, the roles of miRNAs on the metabolic pathway remain unclear. In this study, a purple tetraploid potato of SD92 and its red mutant of SD140 were selected to explore the regulation mechanism of miRNA in anthocyanin biosynthesis. A comparative analysis of small RNAs between SD92 and SD140 revealed that there were 179 differentially expressed miRNAs, including 65 up- and 114 down-regulated miRNAs. Furthermore, 31 differentially expressed miRNAs were predicted to potentially regulate 305 target genes. KEGG pathway enrichment analysis for these target genes showed that plant hormone signal transduction pathway and plant-pathogen interaction pathway were significantly enriched. The correlation analysis of miRNA sequencing data and transcriptome data showed that there were 140 negative regulatory miRNA-mRNA pairs. The miRNAs included miR171 family, miR172 family, miR530b_4 and novel_mir170. The mRNAs encoded transcription factors, hormone response factors and protein kinases. All these results indicated that miRNAs might regulate anthocyanin biosynthesis through transcription factors, hormone response factors and protein kinase.
Collapse
Affiliation(s)
- Fang Liu
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Peng Zhao
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Guangxia Chen
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yongqiang Wang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuanjun Yang
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
21
|
Li S, Li X, Wang X, Chang T, Peng Z, Guan C, Guan M. Flavonoid Synthesis-Related Genes Determine the Color of Flower Petals in Brassica napus L. Int J Mol Sci 2023; 24:ijms24076472. [PMID: 37047446 PMCID: PMC10094890 DOI: 10.3390/ijms24076472] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
The color of rapeseed (Brassica napus L.) petal is usually yellow but can be milky-white to orange or pink. Thus, the petal color is a popular target in rapeseed breeding programs. In his study, metabolites and RNA were extracted from the yellow (Y), yellow/purple (YP), light purple (LP), and purple (P) rapeseed petals. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), RNA-Seq, and quantitative real-time (qRT-PCR) analyses were performed to analyze the expression correlation of differential metabolites and differential genes. A total of 223 metabolites were identified in the petals of the three purple and yellow rapeseed varieties by UPLC-MS/MS. A total of 20511 differentially expressed genes (DEGs) between P, LP, YP, versus Y plant petals were detected. This study focused on the co-regulation of 4898 differential genes in the three comparison groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation and quantitative RT-PCR analysis showed that the expression of BnaA10g23330D (BnF3H) affects the synthesis of downstream peonidin and delphinidin and is a key gene regulating the purple color of petals in B. napus. L. The gene may play a key role in regulating rapeseed flower color; however, further studies are needed to verify this. These results deepen our understanding of the molecular mechanisms underlying petal color and provide the theoretical and practical basis for flower breeding targeting petal color.
Collapse
|
22
|
Liu Y, Li Y, Liu Z, Wang L, Lin-Wang K, Zhu J, Bi Z, Sun C, Zhang J, Bai J. Integrative analysis of metabolome and transcriptome reveals a dynamic regulatory network of potato tuber pigmentation. iScience 2023; 26:105903. [PMID: 36818280 PMCID: PMC9932491 DOI: 10.1016/j.isci.2022.105903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/12/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Potatoes consist of flavonoids that provide health benefits for human consumers. To learn more about how potato tuber flavonoid accumulation and flesh pigmentation are controlled, we analyzed the transcriptomic and metabolomic profile of potato tubers from three colored potato clones at three developmental phases using an integrated approach. From the 72 flavonoids identified in pigmented flesh, differential abundance was noted for anthocyanins, flavonols, and flavones. Weighted gene co-expression network analysis further allowed modules and candidate genes that positively or negatively regulate flavonoid biosynthesis to be identified. Furthermore, an R2R3-MYB repressor StMYB3 and an R3-MYB repressor StMYBATV involved in the modulation of anthocyanin biosynthesis during tuber development were identified. Both StMYB3 and StMYBATV could interact with the cofactor StbHLH1 and repress anthocyanin biosynthesis. Our results indicate a feedback regulatory mechanism of a coordinated MYB activator-repressor network on fine-tuning of potato tuber pigmentation during tuber development.
Collapse
Affiliation(s)
- Yuhui Liu
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanming Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Lei Wang
- Potato Research Center, Hebei North University, Zhangjiakou 075000, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Jinyong Zhu
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Junlian Zhang
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
23
|
Yang W, Feng L, Luo J, Zhang H, Jiang F, He Y, Li X, Du J, Owusu Adjei M, Luan A, Ma J. Genome-Wide Identification and Characterization of R2R3-MYB Provide Insight into Anthocyanin Biosynthesis Regulation Mechanism of Ananas comosus var. bracteatus. Int J Mol Sci 2023; 24:3133. [PMID: 36834551 PMCID: PMC9964748 DOI: 10.3390/ijms24043133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
The R2R3-MYB proteins comprise the largest class of MYB transcription factors, which play an essential role in regulating anthocyanin synthesis in various plant species. Ananas comosus var. bracteatus is an important colorful anthocyanins-rich garden plant. The spatio-temporal accumulation of anthocyanins in chimeric leaves, bracts, flowers, and peels makes it an important plant with a long ornamental period and highly improves its commercial value. We conducted a comprehensive bioinformatic analysis of the R2R3-MYB gene family based on genome data from A. comosus var. bracteatus. Phylogenetic analysis, gene structure and motif analysis, gene duplication, collinearity, and promoter analysis were used to analyze the characteristics of this gene family. In this work, a total of 99 R2R3-MYB genes were identified and classified into 33 subfamilies according to phylogenetic analysis, and most of them were localized in the nucleus. We found these genes were mapped to 25 chromosomes. Gene structure and protein motifs were conserved among AbR2R3-MYB genes, especially within the same subfamily. Collinearity analysis revealed four pairs of tandem duplicated genes and 32 segmental duplicates in AbR2R3-MYB genes, indicating that segmental duplication contributed to the amplification of the AbR2R3-MYB gene family. A total of 273 ABRE responsiveness, 66 TCA elements, 97 CGTCA motifs, and TGACG motifs were the main cis elements in the promoter region under response to ABA, SA, and MEJA. These results revealed the potential function of AbR2R3-MYB genes in response to hormone stress. Ten R2R3-MYBs were found to have high homology to MYB proteins reported to be involved in anthocyanin biosynthesis from other plants. RT-qPCR results revealed the 10 AbR2R3-MYB genes showed tissue-specific expression patterns, six of them expressed the highest in the flower, two genes in the bract, and two genes in the leaf. These results suggested that these genes may be the candidates that regulate anthocyanin biosynthesis of A. comosus var. bracteatus in the flower, leaf, and bract, respectively. In addition, the expressions of these 10 AbR2R3-MYB genes were differentially induced by ABA, MEJA, and SA, implying that these genes may play crucial roles in hormone-induced anthocyanin biosynthesis. Our study provided a comprehensive and systematic analysis of AbR2R3-MYB genes and identified the AbR2R3-MYB genes regulating the spatial-temporal anthocyanin biosynthesis in A. comosus var. bracteatus, which would be valuable for further study on the anthocyanin regulation mechanism of A. comosus var. bracteatus.
Collapse
Affiliation(s)
- Wei Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Lijun Feng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Jiaheng Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Huiling Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Fuxing Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Yehua He
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Juan Du
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Mark Owusu Adjei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Aiping Luan
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| |
Collapse
|
24
|
You Q, Li H, Wu J, Li T, Wang Y, Sun G, Li Z, Sun B. Mapping and validation of the epistatic D and P genes controlling anthocyanin biosynthesis in the peel of eggplant ( Solanum melongena L.) fruit. HORTICULTURE RESEARCH 2023; 10:uhac268. [PMID: 36789254 PMCID: PMC9923212 DOI: 10.1093/hr/uhac268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
Fruit color is an important trait influencing the commercial value of eggplant fruits. Three dominant genes (D, P and Y) cooperatively control the anthocyanin coloration in eggplant fruits, but none has been mapped. In this study, two white-fruit accessions (19 141 and 19 147) and their F2 progeny, with 9:7 segregation ratio of anthocyanin pigmented versus non-pigmented fruits, were used for mapping the D and P genes. A high-density genetic map was constructed with 5270 SNPs spanning 1997.98 cM. Three QTLs were identified, including two genes on chromosome 8 and one on chromosome 10. Gene expression analyses suggested that the SmANS on chromosome 8 and SmMYB1 on chromosome 10 were the putative candidate genes for P and D, respectively. We further identified (1) a SNP leading to a premature stop codon within the conserved PLN03176 domain of SmANS in 19 141, (2) a G base InDel in the promoter region leading to an additional cis-regulatory element and (3) a 6-bp InDel within the R2-MYB DNA binding domain of SmMYB1, in 19 147. Subsequently, these three variations were validated by PARMS technology as related to phenotypes in the F2 population. Moreover, silencing of SmANS or SmMYB1 in the purple red fruits of F1 (E3316) led to inhibition of anthocyanin biosynthesis in the peels. Conversely, overexpression of SmANS or SmMYB1 restored anthocyanin biosynthesis in the calli of 19 141 and 19 147 respectively. Our findings demonstrated the epistatic interactions underlying the white color of eggplant fruits, which can be potentially applied to breeding of eggplant fruit peel color.
Collapse
Affiliation(s)
| | | | | | - Tao Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Yikui Wang
- Institute of Vegetable, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | | | | | | |
Collapse
|
25
|
Wu X, Chen B, Xiao J, Guo H. Different doses of UV-B radiation affect pigmented potatoes' growth and quality during the whole growth period. FRONTIERS IN PLANT SCIENCE 2023; 14:1101172. [PMID: 36818873 PMCID: PMC9929570 DOI: 10.3389/fpls.2023.1101172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION UltraViolet- Biological (UV-B) plays an important role in plant growth and the formation of nutrients, especially secondary metabolites. METHODS To investigate the phenotypic changes, physiological responses, and internal genes expression of potatoes under enhanced UV-B radiation, two Yunnan native pigmented potatoes varieties named "Huaxinyangyu" and "Jianchuanhong" were exposed to different UV-B doses during whole growth duration. RESULTS Pearson correlation analysis and principal component analysis showed that the agronomic characters (i.e. plant height, pitch, stem diameter, and root shoot ratio) of plants treated with low dose ultraviolet (T1) did not change significantly compared with the absence of ultraviolet radiation (CK), even unit yield increased slightly; Similarly, under low UV-B radiation, photosynthetic and physiological parameters (photosynthetic rate, stomatal conductance, respiration rate, and transpiration rate) of leaves were significantly increased. In addition, low-dose UV-B treatment promoted the synthesis of tuber nutrients (e.g. phenols, chlorogenic acids, flavonoids, vitamin C, anthocyanins) and increased the expression of structural genes for anthocyanin synthesis. The number of nutrients and gene expression in tubers raised by the "Huaxinyangyu" was the highest at 84 days, and "Jianchuanhong" was the highest at 72 days. However, the higher dose of UV-B radiation (T2) will cause greater damage to the pigmented potatoes plants, making the plants reduce the yield, and significantly reduce the tuber nutrients. DISCUSSION This study showed that proper ultraviolet radiation will not harm pigmented potatoes, but also improve their oxidative stress tolerance, increase the structure genes expression of anthocyanins and continuously synthesize beneficial substances to improve the yield and quality of potato tubers.
Collapse
|
26
|
Zhao X, Zhang H, Liu T, Zhao Y, Hu X, Liu S, Lin Y, Song B, He C. Transcriptome analysis provides StMYBA1 gene that regulates potato anthocyanin biosynthesis by activating structural genes. FRONTIERS IN PLANT SCIENCE 2023; 14:1087121. [PMID: 36743487 PMCID: PMC9895859 DOI: 10.3389/fpls.2023.1087121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Anthocyanin biosynthesis is affected by light, temperature, and other environmental factors. The regulation mode of light on anthocyanin synthesis in apple, pear, tomato and other species has been reported, while not clear in potato. In this study, potato RM-210 tubers whose peel will turn purple gradually after exposure to light were selected. Transcriptome analysis was performed on RM-210 tubers during anthocyanin accumulation. The expression of StMYBA1 gene continued to increase during the anthocyanin accumulation in RM-210 tubers. Moreover, co-expression cluster analysis of differentially expressed genes showed that the expression patterns of StMYBA1 gene were highly correlated with structural genes CHS and CHI. The promoter activity of StMYBA1 was significantly higher in light conditions, and StMYBA1 could activate the promoter activity of structural genes StCHS, StCHI, and StF3H. Further gene function analysis found that overexpression of StMYBA1 gene could promote anthocyanin accumulation and structural gene expression in potato leaves. These results demonstrated that StMYBA1 gene promoted potato anthocyanin biosynthesis by activating the expression of structural genes under light conditions. These findings provide a theoretical basis and genetic resources for the regulatory mechanism of potato anthocyanin synthesis.
Collapse
Affiliation(s)
- Xijuan Zhao
- Engineering Research Center for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, China
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Huiling Zhang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Tengfei Liu
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yanan Zhao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Xinxi Hu
- Engineering Research Center for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, China
| | - Shengxuan Liu
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yuan Lin
- Engineering Research Center for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, China
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Changzheng He
- Engineering Research Center for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, China
| |
Collapse
|
27
|
A Novel R2R3-MYB Transcription Factor SbMYB12 Positively Regulates Baicalin Biosynthesis in Scutellaria baicalensis Georgi. Int J Mol Sci 2022; 23:ijms232415452. [PMID: 36555123 PMCID: PMC9778813 DOI: 10.3390/ijms232415452] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Scutellaria baicalensis Georgi is an annual herb from the Scutellaria genus that has been extensively used as a traditional medicine for over 2000 years in China. Baicalin and other flavonoids have been identified as the principal bioactive ingredients. The biosynthetic pathway of baicalin in S. baicalensis has been elucidated; however, the specific functions of R2R3-MYB TF, which regulates baicalin synthesis, has not been well characterized in S. baicalensis to date. Here, a S20 R2R3-MYB TF (SbMYB12), which encodes 263 amino acids with a length of 792 bp, was expressed in all tested tissues (mainly in leaves) and responded to exogenous hormone methyl jasmonate (MeJA) treatment. The overexpression of SbMYB12 significantly promoted the accumulation of flavonoids such as baicalin and wogonoside in S. baicalensis hairy roots. Furthermore, biochemical experiments revealed that SbMYB12 is a nuclear-localized transcription activator that binds to the SbCCL7-4, SbCHI-2, and SbF6H-1 promoters to activate their expression. These results illustrate that SbMYB12 positively regulates the generation of baicalin and wogonoside. In summary, this work revealed a novel S20 R2R3-MYB regulator and enhances our understanding of the transcriptional and regulatory mechanisms of baicalin biosynthesis, as well as sheds new light on metabolic engineering in S. baicalensis.
Collapse
|
28
|
Komatsuzaki A, Hoshino A, Otagaki S, Matsumoto S, Shiratake K. Genome-wide analysis of R2R3-MYB transcription factors in Japanese morning glory. PLoS One 2022; 17:e0271012. [PMID: 36264987 PMCID: PMC9584510 DOI: 10.1371/journal.pone.0271012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
The R2R3-MYB transcription factor is one of the largest transcription factor families in plants. R2R3-MYBs play a variety of functions in plants, such as cell fate determination, organ and tissue differentiations, primary and secondary metabolisms, stress and defense responses and other physiological processes. The Japanese morning glory (Ipomoea nil) has been widely used as a model plant for flowering and morphological studies. In the present study, 127 R2R3-MYB genes were identified in the Japanese morning glory genome. Information, including gene structure, protein motif, chromosomal location and gene expression, were assigned to the InR2R3-MYBs. Phylogenetic tree analysis revealed that the 127 InR2R3-MYBs were classified into 29 subfamilies (C1-C29). Herein, physiological functions of the InR2R3-MYBs are discussed based on the functions of their Arabidopsis orthologues. InR2R3-MYBs in C9, C15, C16 or C28 may regulate cell division, flavonol biosynthesis, anthocyanin biosynthesis or response to abiotic stress, respectively. C16 harbors the known anthocyanin biosynthesis regulator, InMYB1 (INIL00g10723), and putative anthocyanin biosynthesis regulators, InMYB2 (INIL05g09650) and InMYB3 (INIL05g09651). In addition, INIL05g09649, INIL11g40874 and INIL11g40875 in C16 were suggested as novel anthocyanin biosynthesis regulators. We organized the R2R3-MYB transcription factors in the morning glory genome and assigned information to gene and protein structures and presuming their functions. Our study is expected to facilitate future research on R2R3-MYB transcription factors in Japanese morning glory.
Collapse
Affiliation(s)
- Ayane Komatsuzaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Atsushi Hoshino
- National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Shungo Otagaki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shogo Matsumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
29
|
Anthocyanin Biosynthesis Induced by MYB Transcription Factors in Plants. Int J Mol Sci 2022; 23:ijms231911701. [PMID: 36233003 PMCID: PMC9570290 DOI: 10.3390/ijms231911701] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Anthocyanins act as polyphenolic pigment that is ubiquitously found in plants. Anthocyanins play a role not only in health-promoting as an antioxidant, but also in protection against all kinds of abiotic and biotic stresses. Most recent studies have found that MYB transcription factors (MYB TFs) could positively or negatively regulate anthocyanin biosynthesis. Understanding the roles of MYB TFs is essential in elucidating how MYB TFs regulate the accumulation of anthocyanin. In the review, we summarized the signaling pathways medicated by MYB TFs during anthocyanin biosynthesis including jasmonic acid (JA) signaling pathway, cytokinins (CKs) signaling pathway, temperature-induced, light signal, 26S proteasome pathway, NAC TFs, and bHLH TFs. Moreover, structural and regulator genes induced by MYB TFs, target genes bound and activated or suppressed by MYB TFs, and crosstalk between MYB TFs and other proteins, were found to be vitally important in the regulation of anthocyanin biosynthesis. In this study, we focus on the recent knowledge concerning the regulator signaling and mechanism of MYB TFs on anthocyanin biosynthesis, covering the signaling pathway, genes expression, and target genes and protein expression.
Collapse
|
30
|
Riveros-Loaiza LM, Benhur-Cardona N, Lopez-Kleine L, Soto-Sedano JC, Pinzón AM, Mosquera-Vásquez T, Roda F. Uncovering anthocyanin diversity in potato landraces (Solanum tuberosum L. Phureja) using RNA-seq. PLoS One 2022; 17:e0273982. [PMID: 36136976 PMCID: PMC9498938 DOI: 10.1371/journal.pone.0273982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Potato (Solanum tuberosum L.) is the third largest source of antioxidants in the human diet, after maize and tomato. Potato landraces have particularly diverse contents of antioxidant compounds such as anthocyanins. We used this diversity to study the evolutionary and genetic basis of anthocyanin pigmentation. Specifically, we analyzed the transcriptomes and anthocyanin content of tubers from 37 landraces with different colorations. We conducted analyses of differential expression between potatoes with different colorations and used weighted correlation network analysis to identify genes whose expression is correlated to anthocyanin content across landraces. A very significant fraction of the genes identified in these two analyses had annotations related to the flavonoid-anthocyanin biosynthetic pathway, including 18 enzymes and 5 transcription factors. Importantly, the causal genes at the D, P and R loci governing anthocyanin accumulation in potato cultivars also showed correlations to anthocyanin production in the landraces studied here. Furthermore, we found that 60% of the genes identified in our study were located within anthocyanin QTLs. Finally, we identified new candidate enzymes and transcription factors that could have driven the diversification of anthocyanins. Our results indicate that many anthocyanins biosynthetic genes were manipulated in ancestral potato breeding and can be used in future breeding programs.
Collapse
Affiliation(s)
- Luis Miguel Riveros-Loaiza
- Área Curricular de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, Medellín, Antioquia, Colombia
- Max Planck Tandem Group, Facultad de Ciencias, Universidad Nacional de Colombia Sede Bogotá, Bogotá, Colombia
| | - Nicolás Benhur-Cardona
- Departamento de Estadística, Facultad de Ciencias, Universidad Nacional de Colombia Sede Bogotá, Bogotá, Colombia
| | - Liliana Lopez-Kleine
- Departamento de Estadística, Facultad de Ciencias, Universidad Nacional de Colombia Sede Bogotá, Bogotá, Colombia
| | - Johana Carolina Soto-Sedano
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia Sede Bogotá, Bogotá, Colombia
| | | | - Teresa Mosquera-Vásquez
- Facultad de Ciencias Agrarias, Universidad Nacional de Colombia Sede Bogotá, Bogotá, Colombia
| | - Federico Roda
- Max Planck Tandem Group, Facultad de Ciencias, Universidad Nacional de Colombia Sede Bogotá, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
31
|
Recent Advances in Molecular Improvement for Potato Tuber Traits. Int J Mol Sci 2022; 23:ijms23179982. [PMID: 36077378 PMCID: PMC9456189 DOI: 10.3390/ijms23179982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Potato is an important crop due to its nutritional value and high yield potential. Improving the quality and quantity of tubers remains one of the most important breeding objectives. Genetic mapping helps to identify suitable markers for use in the molecular breeding, and combined with transgenic approaches provides an efficient way for gaining desirable traits. The advanced plant breeding tools and molecular techniques, e.g., TALENS, CRISPR-Cas9, RNAi, and cisgenesis, have been successfully used to improve the yield and nutritional value of potatoes in an increasing world population scenario. The emerging methods like genome editing tools can avoid incorporating transgene to keep the food more secure. Multiple success cases have been documented in genome editing literature. Recent advances in potato breeding and transgenic approaches to improve tuber quality and quantity have been summarized in this review.
Collapse
|
32
|
Achakkagari SR, Kyriakidou M, Gardner KM, De Koeyer D, De Jong H, Strömvik MV, Tai HH. Genome sequencing of adapted diploid potato clones. FRONTIERS IN PLANT SCIENCE 2022; 13:954933. [PMID: 36003817 PMCID: PMC9394749 DOI: 10.3389/fpls.2022.954933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Cultivated potato is a vegetatively propagated crop, and most varieties are autotetraploid with high levels of heterozygosity. Reducing the ploidy and breeding potato at the diploid level can increase efficiency for genetic improvement including greater ease of introgression of diploid wild relatives and more efficient use of genomics and markers in selection. More recently, selfing of diploids for generation of inbred lines for F1 hybrid breeding has had a lot of attention in potato. The current study provides genomics resources for nine legacy non-inbred adapted diploid potato clones developed at Agriculture and Agri-Food Canada. De novo genome sequence assembly using 10× Genomics and Illumina sequencing technologies show the genome sizes ranged from 712 to 948 Mbp. Structural variation was identified by comparison to two references, the potato DMv6.1 genome and the phased RHv3 genome, and a k-mer based analysis of sequence reads showed the genome heterozygosity range of 1 to 9.04% between clones. A genome-wide approach was taken to scan 5 Mb bins to visualize patterns of heterozygous deleterious alleles. These were found dispersed throughout the genome including regions overlapping segregation distortions. Novel variants of the StCDF1 gene conferring earliness of tuberization were found among these clones, which all produce tubers under long days. The genomes will be useful tools for genome design for potato breeding.
Collapse
Affiliation(s)
| | - Maria Kyriakidou
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Kyle M. Gardner
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - David De Koeyer
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - Hielke De Jong
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - Martina V. Strömvik
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Helen H. Tai
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| |
Collapse
|
33
|
Odgerel K, Jose J, Karsai-Rektenwald F, Ficzek G, Simon G, Végvári G, Bánfalvi Z. Effects of the repression of GIGANTEA gene StGI.04 on the potato leaf transcriptome and the anthocyanin content of tuber skin. BMC PLANT BIOLOGY 2022; 22:249. [PMID: 35596149 PMCID: PMC9121593 DOI: 10.1186/s12870-022-03636-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND GIGANTEA (GI) is a plant-specific, circadian clock-regulated, nuclear protein with pleiotropic functions found in many plant species. This protein is involved in flowering, circadian clock control, chloroplast biogenesis, carbohydrate metabolism, stress responses, and volatile compound synthesis. In potato (Solanum tuberosum L.), its only role appears to be tuber initiation; however, based on findings in other plant species, we hypothesised that the function of GI in potatoes is not restricted only to tuberisation. RESULTS To test this hypothesis, the expression of a GI gene in the commercial potato cultivar 'Désirée' was repressed, and the effects of repression at morphological and transcriptome level were investigated. Previously, two copies of GI genes in potato were found. A construct to reduce the mRNA levels of one of these genes (StGI.04) was assembled, and the effects of antisense repression were studied in greenhouse-grown plants. The highest level of repression reached around 50%. However, this level did not influence tuber formation and yield but did cause a reduction in tuber colour. Using high-performance liquid chromatography (HPLC), significant reductions in cyanidin 3,5-di-O-glucoside and pelargonidin 3,5-di-O-glucoside contents of tuber peels were detected. Anthocyanins are synthesized through a branch of the phenylpropanoid pathway. The transcriptome analysis indicated down-regulation in the expression of PHENYLALANINE AMMONIA LYASE (PAL), the LEUCOANTHOCYANIDIN OXIDISING enzyme gene LDOX, and the MYB-RELATED PROTEIN Hv1 (MYB-Hv1), a transcription factor coding gene, which is presumably involved in the regulation of flavonoid biosynthesis, in the leaves of a selected StGI.04-repressed line. Furthermore, alterations in expression of genes affecting the circadian clock, flowering, starch synthesis, and stress responses were detected in the leaves of the selected StGI.04-repressed line. CONCLUSIONS We tested the effects of antisense repression of StGI.04 expression in potatoes and found that as with GI in other plant species, it influences the expression of the key genes of the circadian clock, flowering, starch synthesis, and stress responses. Furthermore, we detected a novel function of a GI gene in influencing the anthocyanin synthesis and potato tuber skin colour.
Collapse
Affiliation(s)
- Khongorzul Odgerel
- Genetics and Biotechnology Institute, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. u. 4, Gödöllő, H-2100, Hungary
| | - Jeny Jose
- Genetics and Biotechnology Institute, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. u. 4, Gödöllő, H-2100, Hungary
- Centre for Agricultural Research, Eötvös Loránd Research Network, Brunszvik u. 2, Martonvásár, H-2462, Hungary
| | - Flóra Karsai-Rektenwald
- Genetics and Biotechnology Institute, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. u. 4, Gödöllő, H-2100, Hungary
| | - Gitta Ficzek
- Department of Fruit Growing, Institute of Horticulture, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, Budapest, H-1118, Hungary
| | - Gergely Simon
- Department of Fruit Growing, Institute of Horticulture, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, Budapest, H-1118, Hungary
| | - György Végvári
- Institute of Viticulture and Oenology, Faculty of Natural Sciences, Eszterházy Károly Catholic University, Eszterházy tér 1, Eger, H-3300, Hungary
| | - Zsófia Bánfalvi
- Genetics and Biotechnology Institute, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. u. 4, Gödöllő, H-2100, Hungary.
| |
Collapse
|
34
|
Ahn JY, Kim J, Yang JY, Lee HJ, Kim S, Cho KS, Lee SH, Kim JH, Lee TH, Hur Y, Shim D. Comparative Transcriptome Analysis between Two Potato Cultivars in Tuber Induction to Reveal Associated Genes with Anthocyanin Accumulation. Int J Mol Sci 2022; 23:ijms23073681. [PMID: 35409041 PMCID: PMC8998591 DOI: 10.3390/ijms23073681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
Anthocyanins are generally accumulated within a few layers, including the epidermal cells of leaves and stems in plants. Solanum tuberosum cv. ‘Jayoung’ (hereafter, JY) is known to accumulate anthocyanin both in inner tissues and skins. We discovered that anthocyanin accumulation in the inner tissues of JY was almost diminished (more than 95% was decreased) in tuber induction condition. To investigate the transcriptomic mechanism of anthocyanin accumulation in JY flesh, which can be modulated by growth condition, we performed mRNA sequencing with white-colored flesh tissue of Solanum tuberosum cv. ‘Atlantic’ (hereafter, ‘Daeseo’, DS) grown under canonical growth conditions, a JY flesh sample grown under canonical growth conditions, and a JY flesh sample grown under tuber induction conditions. We could identify 36 common DEGs (differentially expressed genes) in JY flesh from canonical growth conditions that showed JY-specifically increased or decreased expression level. These genes were enriched with flavonoid biosynthetic process terms in GO analysis, as well as gene set enrichment analysis (GSEA) analysis. Further in silico analysis on expression levels of anthocyanin biosynthetic genes including rate-limiting genes such as StCHS and StCHI followed by RT-PCR and qRT-PCR analysis showed a strong positive correlation with the observed phenotypes. Finally, we identified StWRKY44 from 36 common DEGs as a possible regulator of anthocyanin accumulation, which was further supported by network analysis. In conclusion, we identified StWRKY44 as a putative regulator of tuber-induction-dependent anthocyanin accumulation.
Collapse
Affiliation(s)
- Ju Young Ahn
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
| | - Jaewook Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
| | - Ju Yeon Yang
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
| | - Hyun Ju Lee
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
| | - Soyun Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
| | - Kwang-Soo Cho
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Admin-istration, Pyeongchang 25342, Korea;
| | - Sang-Ho Lee
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea;
| | - Jin-Hyun Kim
- Division of Genomics, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (J.-H.K.); (T.-H.L.)
| | - Tae-Ho Lee
- Division of Genomics, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (J.-H.K.); (T.-H.L.)
| | - Yoonkang Hur
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
- Correspondence: (Y.H.); (D.S.)
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
- Correspondence: (Y.H.); (D.S.)
| |
Collapse
|
35
|
Hoopes G, Meng X, Hamilton JP, Achakkagari SR, de Alves Freitas Guesdes F, Bolger ME, Coombs JJ, Esselink D, Kaiser NR, Kodde L, Kyriakidou M, Lavrijssen B, van Lieshout N, Shereda R, Tuttle HK, Vaillancourt B, Wood JC, de Boer JM, Bornowski N, Bourke P, Douches D, van Eck HJ, Ellis D, Feldman MJ, Gardner KM, Hopman JCP, Jiang J, De Jong WS, Kuhl JC, Novy RG, Oome S, Sathuvalli V, Tan EH, Ursum RA, Vales MI, Vining K, Visser RGF, Vossen J, Yencho GC, Anglin NL, Bachem CWB, Endelman JB, Shannon LM, Strömvik MV, Tai HH, Usadel B, Buell CR, Finkers R. Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity. MOLECULAR PLANT 2022; 15:520-536. [PMID: 35026436 DOI: 10.1016/j.molp.2022.01.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/19/2021] [Accepted: 01/07/2022] [Indexed: 05/11/2023]
Abstract
Cultivated potato is a clonally propagated autotetraploid species with a highly heterogeneous genome. Phased assemblies of six cultivars including two chromosome-scale phased genome assemblies revealed extensive allelic diversity, including altered coding and transcript sequences, preferential allele expression, and structural variation that collectively result in a highly complex transcriptome and predicted proteome, which are distributed across the homologous chromosomes. Wild species contribute to the extensive allelic diversity in tetraploid cultivars, demonstrating ancestral introgressions predating modern breeding efforts. As a clonally propagated autotetraploid that undergoes limited meiosis, dysfunctional and deleterious alleles are not purged in tetraploid potato. Nearly a quarter of the loci bore mutations are predicted to have a high negative impact on protein function, complicating breeder's efforts to reduce genetic load. The StCDF1 locus controls maturity, and analysis of six tetraploid genomes revealed that 12 allelic variants of StCDF1 are correlated with maturity in a dosage-dependent manner. Knowledge of the complexity of the tetraploid potato genome with its rampant structural variation and embedded deleterious and dysfunctional alleles will be key not only to implementing precision breeding of tetraploid cultivars but also to the construction of homozygous, diploid potato germplasm containing favorable alleles to capitalize on heterosis in F1 hybrids.
Collapse
Affiliation(s)
- Genevieve Hoopes
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaoxi Meng
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, USA
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Sai Reddy Achakkagari
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | | | - Marie E Bolger
- IBG-4 Bioinformatics, Forschungszentrum Jülich, Wilhelm Johnen Str, 52428 Jülich, Germany
| | - Joseph J Coombs
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Danny Esselink
- Plant Breeding, Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands
| | - Natalie R Kaiser
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; Bayer Crop Science, Woodland, CA 95695, USA
| | - Linda Kodde
- Plant Breeding, Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands
| | - Maria Kyriakidou
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Brian Lavrijssen
- Plant Breeding, Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands
| | - Natascha van Lieshout
- Plant Breeding, Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands
| | - Rachel Shereda
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Heather K Tuttle
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, USA
| | | | - Joshua C Wood
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Nolan Bornowski
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Peter Bourke
- Plant Breeding, Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands
| | - David Douches
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Herman J van Eck
- Plant Breeding, Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands
| | - Dave Ellis
- International Potato Center, 1895 Avenida La Molina, Lima, Peru
| | | | - Kyle M Gardner
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, Fredericton, NB E3B 4Z7, Canada
| | | | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Walter S De Jong
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853-1901, USA
| | - Joseph C Kuhl
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Richard G Novy
- USDA-ARS, Small Grains and Potato Germplasm Research, Aberdeen, ID 83210, USA
| | - Stan Oome
- HZPC Research B.V., Edisonweg 5, 8501 XG Joure, the Netherlands
| | - Vidyasagar Sathuvalli
- Department of Crop and Soil Science, Oregon State University, Hermiston, OR 97838, USA
| | - Ek Han Tan
- School of Biology and Ecology, University of Maine, 5735 Hitchner Hall Orono, ME 04469, USA
| | - Remco A Ursum
- HZPC Research B.V., Edisonweg 5, 8501 XG Joure, the Netherlands
| | - M Isabel Vales
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA
| | - Kelly Vining
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands
| | - Jack Vossen
- Plant Breeding, Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands
| | - G Craig Yencho
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609, USA
| | - Noelle L Anglin
- International Potato Center, 1895 Avenida La Molina, Lima, Peru; USDA-ARS, Small Grains and Potato Germplasm Research, Aberdeen, ID 83210, USA
| | - Christian W B Bachem
- Plant Breeding, Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands
| | - Jeffrey B Endelman
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Laura M Shannon
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Martina V Strömvik
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Helen H Tai
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, Fredericton, NB E3B 4Z7, Canada
| | - Björn Usadel
- IBG-4 Bioinformatics, Forschungszentrum Jülich, Wilhelm Johnen Str, 52428 Jülich, Germany; Institute for Biological Data Science, Heinrich Heine University, Düsseldorf, 40225 Düsseldorf, Germany
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA.
| | - Richard Finkers
- Plant Breeding, Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands.
| |
Collapse
|
36
|
Huang G, Liao X, Han Q, Zhou Z, Liang K, Li G, Yang G, Tembrock LR, Wang X, Wu Z. Integrated Metabolome and Transcriptome Analyses Reveal Dissimilarities in the Anthocyanin Synthesis Pathway Between Different Developmental Leaf Color Transitions in Hopea hainanensis (Dipterocarpaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:830413. [PMID: 35310646 PMCID: PMC8928120 DOI: 10.3389/fpls.2022.830413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 05/31/2023]
Abstract
Changes in plant leaf color during development are directly related to the accumulation or degradation of certain phytochemicals such as anthocyanins. Since some anthocyanins can be beneficial to human health and provide insights into the biology of leaves, the underlying processes and timing by which plants produce these molecules has been the focus of numerous studies. The tree species Hopea hainanensis generally produces green leaves at all growth stages; however, a few explored individuals have been identified possessing red leaves on the top of the seedlings at a young stage. While the phenomenon of leaf color varying with age has been studied in several species, the underlying mechanisms are largely unknown in H. hainanensis. Using a metabolomics approach, the young red leaves in H. hainanensis were found to contain higher levels of anthocyanins and flavonoids than the young green-leaved individuals. Among anthocyanins, pelargonidin and cyanidin were the most likely candidates contributing to the red color of the young leaves. Transcriptome results indicated the genes related to the production of these anthocyanins were significantly upregulated, leading to greater accumulation of red pigments. Specifically, the expression of several MYB and bHLH genes in young red leaf lines was significantly higher than that in the young green leaf lines, especially HhMYB66, HhMYB91, HhMYB6, and HhbHLH70. As such these four transcription factors are probably the main regulatory genes resulting in young red leaves in H. hainanensis. From these results, comparative analyses with other species can be made to better understand the evolution of pigment biosynthesis and how anthocyanins function in plant metabolism and evolution/adaptation.
Collapse
Affiliation(s)
- Guihua Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qiang Han
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Zaizhi Zhou
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Kunnan Liang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Guangyou Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Guang Yang
- Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| | - Luke R. Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Xianbang Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
37
|
D’Amelia V, Sarais G, Fais G, Dessì D, Giannini V, Garramone R, Carputo D, Melito S. Biochemical Characterization and Effects of Cooking Methods on Main Phytochemicals of Red and Purple Potato Tubers, a Natural Functional Food. Foods 2022; 11:foods11030384. [PMID: 35159533 PMCID: PMC8834363 DOI: 10.3390/foods11030384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Potato is a staple food crop and an important source of dietary energy. Its tubers contain several essential amino acids, vitamins, minerals and phytochemicals that contribute to the nutritional value of this important product. Recently, scientific interest has focused on purple and red potatoes that, due to the presence of anthocyanins, may be considered as natural powerful functional food. The aim of this study was to evaluate the characteristics of pigmented varieties, the types of anthocyanins accumulated and the level of both beneficial phytochemicals (vitamin C and chlorogenic acids, CGAs) and anti-nutritional compounds (glycoalkaloids) following various cooking methods. The analyses described the presence of a mix of several acylated anthocyanins in pigmented tubers along with high level of CGA. The amount of antioxidants was differently affected by heat treatments according to the type of molecule and the cooking methods used. In some cases, the beneficial compounds were made more available by heat treatments for the analytical detection as compared to raw materials. Data reported here describe both the agronomic properties of these pigmented varieties and the effects of food processing methods on bioactive molecules contained in this natural functional food. They may provide useful information for breeders aiming to develop new varieties that could include desirable agronomical and industrial processing traits.
Collapse
Affiliation(s)
- Vincenzo D’Amelia
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy;
| | - Giorgia Sarais
- Food Toxicology Unit, Department of Life and Environmental Science, Campus of Monserrato, University of Cagliari, 09042 Cagliari, Italy; (G.F.); (D.D.)
- Correspondence:
| | - Giacomo Fais
- Food Toxicology Unit, Department of Life and Environmental Science, Campus of Monserrato, University of Cagliari, 09042 Cagliari, Italy; (G.F.); (D.D.)
| | - Debora Dessì
- Food Toxicology Unit, Department of Life and Environmental Science, Campus of Monserrato, University of Cagliari, 09042 Cagliari, Italy; (G.F.); (D.D.)
| | - Vittoria Giannini
- Department of Agricultural Sciences, University of Sassari, Via Enrico de Nicola, 07100 Sassari, Italy; (V.G.); (S.M.)
| | - Raffaele Garramone
- Department of Agricultural Sciences, University of Naples, Via Università, 100, 80055 Portici, Italy; (R.G.); (D.C.)
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples, Via Università, 100, 80055 Portici, Italy; (R.G.); (D.C.)
| | - Sara Melito
- Department of Agricultural Sciences, University of Sassari, Via Enrico de Nicola, 07100 Sassari, Italy; (V.G.); (S.M.)
| |
Collapse
|
38
|
Li L, Li S, Ge H, Shi S, Li D, Liu Y, Chen H. A light-responsive transcription factor SmMYB35 enhances anthocyanin biosynthesis in eggplant (Solanum melongena L.). PLANTA 2021; 255:12. [PMID: 34860302 DOI: 10.1016/j.scienta.2021.110020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/03/2021] [Indexed: 05/29/2023]
Abstract
SmMYB35, a light-responsive R2R3-MYB transcription factor, positively regulates anthocyanin biosynthesis in eggplant by binding to the promoters of SmCHS, SmF3H, SmDFR, and SmANS and enhancing their activities. In addition, SmMYB35 interacts with SmTT8 and SmTTG1 to form a MBW complex, thereby enhancing anthocyanin biosynthesis. Eggplant is a vegetable rich in anthocyanins. SmMYB35, a light-responsive R2R3-MYB transcription factor, was isolated from eggplant and investigated for its biological functions. The results suggested that the expression of SmMYB35 was regulated by SmHY5 through directly binding to G-box in the promoter region, and the overexpression of SmMYB35 could increase the anthocyanin content in the stems and petals of the transgenic eggplants. SmMYB35 could also bind to the promoters of SmCHS, SmF3H, SmDFR, and SmANS and enhance their activities. In addition, SmMYB35 interacted with SmTT8 and SmTTG1 to form a MBW complex which enhanced anthocyanin biosynthesis. Taking together, we firstly verified that SmMYB35 promoted anthocyanin biosynthesis in plants. The results provide new insights into the regulatory effects of SmMYB35 on key anthocyanin biosynthetic genes and advance our understanding of the molecular mechanism of light-induced anthocyanin synthesis in eggplants.
Collapse
Affiliation(s)
- Linzhi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Shaohang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Haiyan Ge
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Suli Shi
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Dalu Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
39
|
Zhang H, Zhang Z, Zhao Y, Guo D, Zhao X, Gao W, Zhang J, Song B. StWRKY13 promotes anthocyanin biosynthesis in potato (Solanum tuberosum) tubers. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 49:102-114. [PMID: 34794538 DOI: 10.1071/fp21109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/22/2021] [Indexed: 05/24/2023]
Abstract
Although the role of WRKY transcription factors (TFs) in colour formation has been reported in several species, their function in potato (Solanum tuberosum L.) anthocyanin biosynthesis remains unclear. In this study, the potato WRKY gene StWRKY13 was isolated and characterised. Expression analysis revealed a significantly higher StWRKY13 expression in chromatic tubers than in yellow ones. Transient activation assays showed that StWRKY13 could enhance the role of StAN2 in promoting anthocyanin biosynthesis in tobacco (Nicotiana tabacum L.). Over-expressing the StWRKY13 gene promoted anthocyanin biosynthesis in potato tubers. Further investigations indicated that StWRKY13 could interact with the StCHS, StF3H, StDFR, and StANS gene promoters and significantly enhance their activities. Our findings showed that StWRKY13 could promote anthocyanin biosynthesis by activating StCHS, StF3H, StDFR, and StANS transcription in potato tubers, thereby supporting the theoretical basis for anthocyanins formation in coloured potato tubers.
Collapse
Affiliation(s)
- Huiling Zhang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Zhonghua Zhang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Yanan Zhao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Dalong Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Xijuan Zhao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, and Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; and College of Horticulture, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Wen Gao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Juping Zhang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, and Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
40
|
Liu D, Wei X, Sun D, Yang S, Su H, Wang Z, Zhao Y, Li L, Liang J, Yang L, Zhang X, Yuan Y. An SNP Mutation of Gene RsPP Converts Petal Color From Purple to White in Radish ( Raphanus sativus L.). FRONTIERS IN PLANT SCIENCE 2021; 12:643579. [PMID: 34149748 PMCID: PMC8210830 DOI: 10.3389/fpls.2021.643579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Along with being important pigments that determining the flower color in many plants, anthocyanins also perform crucial functions that attract pollinators and reduce abiotic stresses. Purple and white are two different colors of radish petals. In this study, two cDNA libraries constructed with purple and white petal plants were sequenced for transcriptome profiling. Transcriptome results implied that the expression level of the genes participating in the anthocyanin biosynthetic pathway was commonly higher in the purple petals than that in the white petals. In particular, two genes, F3'H and DFR, had a significantly higher expression pattern in the purple petals, suggesting the important roles these genes playing in radish petal coloration. BSA-seq aided-Next Generation Sequencing of two DNA pools revealed that the radish purple petal gene (RsPP) was located on chromosome 7. With additional genotyping of 617 F2 population plants, the RsPP was further confined within a region of 93.23 kb. Transcriptome and Sanger sequencing analysis further helped identify the target gene, Rs392880. Rs392880 is a homologous gene to F3'H, a key gene in the anthocyanin biosynthetic pathway. These results will aid in elucidating the molecular mechanism of plant petal coloration and developing strategies to modify flower color through genetic transformation.
Collapse
Affiliation(s)
- Dongming Liu
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Dongling Sun
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Henan Su
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lin Li
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jinfang Liang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
41
|
Jiu S, Guan L, Leng X, Zhang K, Haider MS, Yu X, Zhu X, Zheng T, Ge M, Wang C, Jia H, Shangguan L, Zhang C, Tang X, Abdullah M, Javed HU, Han J, Dong Z, Fang J. The role of VvMYBA2r and VvMYBA2w alleles of the MYBA2 locus in the regulation of anthocyanin biosynthesis for molecular breeding of grape (Vitis spp.) skin coloration. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1216-1239. [PMID: 33440072 PMCID: PMC8196647 DOI: 10.1111/pbi.13543] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/05/2020] [Accepted: 09/01/2020] [Indexed: 05/23/2023]
Abstract
In grape, MYBA1 and MYBA2 at the colour locus are the major genetic determinants of grape skin colour, and the mutation of two functional genes (VvMYBA1 and VvMYBA2) from these loci leads to white skin colour. This study aimed to elucidate the regulation of grape berry coloration by isolating and characterizing VvMYBA2w and VvMYBA2r alleles. The overexpression of VvMYBA2r up-regulated the expression of anthocyanin biosynthetic genes and resulted in higher anthocyanin accumulation in transgenic tobacco than wild-type (WT) plants, especially in flowers. However, the ectopic expression of VvMYBA2w inactivated the expression of anthocyanin biosynthetic genes and could not cause obvious phenotypic modulation in transgenic tobacco. Unlike in VvMYBA2r, CA dinucleotide deletion shortened the C-terminal transactivation region and disrupted the transcriptional activation activity of VvMYBA2w. The results indicated that VvMYBA2r positively regulated anthocyanin biosynthesis by forming the VvMYBA2r-VvMYCA1-VvWDR1 complex, and VvWDR1 enhanced anthocyanin accumulation by interacting with the VvMYBA2r-VvMYCA1 complex; however, R44 L substitution abolished the interaction of VvMYBA2w with VvMYCA1. Meanwhile, both R44 L substitution and CA dinucleotide deletion seriously affected the efficacy of VvMYBA2w to regulate anthocyanin biosynthesis, and the two non-synonymous mutations were additive in their effects. Investigation of the colour density and MYB haplotypes of 213 grape germplasms revealed that dark-skinned varieties tended to contain HapC-N and HapE2, whereas red-skinned varieties contained high frequencies of HapB and HapC-Rs. Regarding ploidy, the higher the number of functional alleles present in a variety, the darker was the skin colour. In summary, this study provides insight into the roles of VvMYBA2r and VvMYBA2w alleles and lays the foundation for the molecular breeding of grape varieties with different skin colour.
Collapse
Affiliation(s)
- Songtao Jiu
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
- Department of Plant ScienceSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Le Guan
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Xiangpeng Leng
- College of HorticultureQingdao Agricultural UniversityQingdaoShandong ProvinceChina
| | - Kekun Zhang
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Muhammad Salman Haider
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Xiang Yu
- School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xudong Zhu
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Ting Zheng
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Mengqing Ge
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Chen Wang
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Haifeng Jia
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Lingfei Shangguan
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Caixi Zhang
- Department of Plant ScienceSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoping Tang
- Shanxi Academy of Agricultural Sciences Pomology InstituteTaiguShanxi ProvinceChina
| | - Muhammad Abdullah
- Department of Plant ScienceSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hafiz Umer Javed
- Department of Plant ScienceSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jian Han
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Zhigang Dong
- Shanxi Academy of Agricultural Sciences Pomology InstituteTaiguShanxi ProvinceChina
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
42
|
Parra-Galindo MA, Soto-Sedano JC, Mosquera-Vásquez T, Roda F. Pathway-based analysis of anthocyanin diversity in diploid potato. PLoS One 2021; 16:e0250861. [PMID: 33914830 PMCID: PMC8084248 DOI: 10.1371/journal.pone.0250861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/14/2021] [Indexed: 12/21/2022] Open
Abstract
Anthocyanin biosynthesis is one of the most studied pathways in plants due to the important ecological role played by these compounds and the potential health benefits of anthocyanin consumption. Given the interest in identifying new genetic factors underlying anthocyanin content we studied a diverse collection of diploid potatoes by combining a genome-wide association study and pathway-based analyses. By using an expanded SNP dataset, we identified candidate genes that had not been associated with anthocyanin variation in potatoes, namely a Myb transcription factor, a Leucoanthocyanidin dioxygenase gene and a vacuolar membrane protein. Importantly, a genomic region in chromosome 10 harbored the SNPs with strongest associations with anthocyanin content in GWAS. Some of these SNPs were associated with multiple anthocyanin compounds and therefore could underline the existence of pleiotropic genes or anthocyanin biosynthetic clusters. We identified multiple anthocyanin homologs in this genomic region, including four transcription factors and five enzymes that could be governing anthocyanin variation. For instance, a SNP linked to the phenylalanine ammonia-lyase gene, encoding the first enzyme in the phenylpropanoid biosynthetic pathway, was associated with all of the five anthocyanins measured. Finally, we combined a pathway analysis and GWAS of other agronomic traits to identify pathways related to anthocyanin biosynthesis in potatoes. We found that methionine metabolism and the production of sugars and hydroxycinnamic acids are genetically correlated to anthocyanin biosynthesis. The results contribute to the understanding of anthocyanins regulation in potatoes and can be used in future breeding programs focused on nutraceutical food.
Collapse
Affiliation(s)
| | - Johana Carolina Soto-Sedano
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia
| | - Teresa Mosquera-Vásquez
- Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia
| | - Federico Roda
- Max Planck Tandem Group, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia
| |
Collapse
|
43
|
Hellmann H, Goyer A, Navarre DA. Antioxidants in Potatoes: A Functional View on One of the Major Food Crops Worldwide. Molecules 2021; 26:2446. [PMID: 33922183 PMCID: PMC8122721 DOI: 10.3390/molecules26092446] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
With a growing world population, accelerating climate changes, and limited arable land, it is critical to focus on plant-based resources for sustainable food production. In addition, plants are a cornucopia for secondary metabolites, of which many have robust antioxidative capacities and are beneficial for human health. Potato is one of the major food crops worldwide, and is recognized by the United Nations as an excellent food source for an increasing world population. Potato tubers are rich in a plethora of antioxidants with an array of health-promoting effects. This review article provides a detailed overview about the biosynthesis, chemical and health-promoting properties of the most abundant antioxidants in potato tubers, including several vitamins, carotenoids and phenylpropanoids. The dietary contribution of diverse commercial and primitive cultivars are detailed and document that potato contributes much more than just complex carbohydrates to the diet. Finally, the review provides insights into the current and future potential of potato-based systems as tools and resources for healthy and sustainable food production.
Collapse
Affiliation(s)
- Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Aymeric Goyer
- Hermiston Agricultural Research and Extension Center, Department of Botany and Plant Pathology, Oregon State University, Hermiston, OR 97838, USA;
| | | |
Collapse
|
44
|
Plant Polyphenols-Biofortified Foods as a Novel Tool for the Prevention of Human Gut Diseases. Antioxidants (Basel) 2020; 9:antiox9121225. [PMID: 33287404 PMCID: PMC7761854 DOI: 10.3390/antiox9121225] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022] Open
Abstract
Plant food biofortification is recently receiving remarkable attention, as it aims to increase the intake of minerals, vitamins, or antioxidants, crucial for their contribution to the general human health status and disease prevention. In this context, the study of the plant’s secondary metabolites, such as polyphenols, plays a pivotal role for the development of a new generation of plant crops, compensating, at least in part, the low nutritional quality of Western diets with a higher quality of dietary sources. Due to the prevalent immunomodulatory activity at the intestinal level, polyphenols represent a nutritionally relevant class of plant secondary metabolites. In this review, we focus on the antioxidant and anti-inflammatory properties of different classes of polyphenols with a specific attention to their potential in the prevention of intestinal pathological processes. We also discuss the latest biotechnology strategies and new advances of genomic techniques as a helpful tool for polyphenols biofortification and the development of novel, healthy dietary alternatives that can contribute to the prevention of inflammatory bowel diseases.
Collapse
|
45
|
Laimbeer FPE, Bargmann BOR, Holt SH, Pratt T, Peterson B, Doulis AG, Buell CR, Veilleux RE. Characterization of the F Locus Responsible for Floral Anthocyanin Production in Potato. G3 (BETHESDA, MD.) 2020; 10:3871-3879. [PMID: 32855168 PMCID: PMC7534420 DOI: 10.1534/g3.120.401684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/21/2020] [Indexed: 01/06/2023]
Abstract
Anthocyanins are pigmented secondary metabolites produced via the flavonoid biosynthetic pathway and play important roles in plant stress responses, pollinator attraction, and consumer preference. Using RNA-sequencing analysis of a cross between diploid potato (Solanum tuberosum L.) lines segregating for flower color, we identified a homolog of the ANTHOCYANIN 2 (AN2) gene family that encodes a MYB transcription factor, herein termed StFlAN2, as the regulator of anthocyanin production in potato corollas. Transgenic introduction of StFlAN2 in white-flowered homozygous doubled-monoploid plants resulted in a recovery of purple flowers. RNA-sequencing revealed the specific anthocyanin biosynthetic genes activated by StFlAN2 as well as expression differences in genes within pathways involved in fruit ripening, senescence, and primary metabolism. Closer examination of the locus using genomic sequence analysis revealed a duplication in the StFlAN2 locus closely associated with gene expression that is likely attributable to nearby genetic elements. Taken together, this research provides insight into the regulation of anthocyanin biosynthesis in potato while also highlighting how the dynamic nature of the StFlAN2 locus may affect expression.
Collapse
Affiliation(s)
- F Parker E Laimbeer
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg VA 24061
| | | | - Sarah H Holt
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg VA 24061
| | - Trenton Pratt
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg VA 24061
| | - Brenda Peterson
- Department of Biology, University of North Carolina, Chapel Hill NC 27599
| | - Andreas G Doulis
- Hellenic Agricultural Organization DEMETER (ex. NAGREF), Heraklion, Greece
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing MI 48824
| | - Richard E Veilleux
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg VA 24061
| |
Collapse
|
46
|
D'Amelia V, Villano C, Batelli G, Çobanoğlu Ö, Carucci F, Melito S, Chessa M, Chiaiese P, Aversano R, Carputo D. Genetic and epigenetic dynamics affecting anthocyanin biosynthesis in potato cell culture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110597. [PMID: 32771154 DOI: 10.1016/j.plantsci.2020.110597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Anthocyanins are antioxidant pigments widely used in drugs and food preparations. Flesh-coloured tubers of the cultivated potato Solanum tuberosum are important sources of different anthocyanins. Due to the high degree of decoration achieved by acylation, anthocyanins from potato are very stable and suitable for the food processing industry. The use of cell culture allows to extract anthocyanins on-demand, avoiding seasonality and consequences associated with land-based-tuber production. However, a well-known limit of cell culture is the metabolic instability and loss of anthocyanin production during successive subcultures. To get a general picture of mechanisms responsible for this instability, we explored both genetic and epigenetic regulation that may affect anthocyanin production in cell culture. We selected two clonally related populations of anthocyanin-producing (purple) and non-producing (white) potato cells. Through targeted molecular investigations, we identified and functionally characterized an R3-MYB, here named StMYBATV. This transcription factor can interact with bHLHs belonging to the MBW (R2R3-MYB, bHLH and WD40) anthocyanin activator complex and, potentially, may interfere with its formation. Genome methylation analysis revealed that, for several genomic loci, anthocyanin-producing cells were more methylated than clonally related white cells. In particular, we localized some methylation events in ribosomal protein-coding genes. Overall, our study explores novel molecular aspects associated with loss of anthocyanins in cell culture systems.
Collapse
Affiliation(s)
- Vincenzo D'Amelia
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy; Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Giorgia Batelli
- National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Özmen Çobanoğlu
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Francesca Carucci
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Sara Melito
- Department of Agricultural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Mario Chessa
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Pasquale Chiaiese
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy.
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy.
| |
Collapse
|
47
|
Genome-wide analysis and expression profiles of the StR2R3-MYB transcription factor superfamily in potato (Solanum tuberosum L.). Int J Biol Macromol 2020; 148:817-832. [PMID: 31962068 DOI: 10.1016/j.ijbiomac.2020.01.167] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/29/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022]
Abstract
MYB transcription factors comprise one of the largest families in plant kingdom, which play a variety of functions in plant developmental processes and defence responses, the R2R3-MYB members are the predominant form found in higher plants. In the present study, a total of 111 StR2R3-MYB transcription factors were identified and further phylogenetically classified into 31 subfamilies, as supported by highly conserved gene structures and motifs. Collinearity analysis showed that the segmental duplication events played a crucial role in the expansion of StR2R3-MYB gene family. Synteny analysis indicated that 37 and 13 StR2R3-MYB genes were orthologous to Arabidopsis and wheat (Triticum aestivum), respectively, and these gene pairs have evolved under strong purifying selection. RNA-seq data from different tissues and abiotic stresses revealed tissue-preferential and abiotic stress-responsive StR2R3-MYB genes. We further analyzed StR2R3-MYB genes might be involved in anthocyanin biosynthesis and drought stress by using RNA-seq data of pigmented tetraploid potato cultivars and drought-sensitive and -tolerant tetraploid potato cultivars under drought stress, respectively. Moreover, EAR motifs were found in 21 StR2R3-MYB proteins and 446 pairs of proteins were predicted to interact with 21 EAR motif-containing StR2R3-MYB proteins by constructing the interaction network with medium confidence (0.4). Additionally, Gene Ontology (GO) analysis of the 21 EAR motif-containing StR2R3-MYB proteins was performed to further investigate their functions. This work will facilitate future biologically functional studies of potato StR2R3-MYB transcription factors and enrich the knowledge of MYB superfamily genes in plant species.
Collapse
|
48
|
Li H, Yang Z, Zeng Q, Wang S, Luo Y, Huang Y, Xin Y, He N. Abnormal expression of bHLH3 disrupts a flavonoid homeostasis network, causing differences in pigment composition among mulberry fruits. HORTICULTURE RESEARCH 2020; 7:83. [PMID: 32528695 PMCID: PMC7261776 DOI: 10.1038/s41438-020-0302-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 05/18/2023]
Abstract
Mulberry fruits with high concentrations of anthocyanins are favored by consumers because of their good taste, bright color, and high nutritional value. However, neither the regulatory mechanism controlling flavonoid biosynthesis in mulberry nor the molecular basis of different mulberry fruit colors is fully understood. Here, we report that a flavonoid homeostasis network comprising activation and feedback regulation mechanisms determines mulberry fruit color. In vitro and in vivo assays showed that MYBA-bHLH3-TTG1 regulates the biosynthesis of anthocyanins, while TT2L1 and TT2L2 work with bHLH3 or GL3 and form a MYB-bHLH-WD40 (MBW) complex with TTG1 to regulate proanthocyanidin (PA) synthesis. Functional and expression analyses showed that bHLH3 is a key regulator of the regulatory network controlling mulberry fruit coloration and that MYB4 is activated by MBW complexes and participates in negative feedback control of the regulatory network to balance the accumulation of anthocyanins and proanthocyanidins. Our research demonstrates that the interaction between bHLH3 and MYB4 in the homeostasis regulatory network ensures that the fruits accumulate desirable flavonoids and that this network is stable in pigment-rich mulberry fruits. However, the abnormal expression of bHLH3 disrupts the balance of the network and redirects flavonoid metabolic flux in pale-colored fruits, resulting in differences in the levels and proportions of anthocyanins, flavones, and flavonols among differently colored mulberry fruits (red, yellow, and white). The results of our study reveal the molecular basis of the diversity of mulberry fruit colors.
Collapse
Affiliation(s)
- Han Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Zhen Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Qiwei Zeng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Shibo Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Yiwei Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Yan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Youchao Xin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, 400715 Chongqing, P.R. China
| |
Collapse
|
49
|
Gao J, Shen L, Yuan J, Zheng H, Su Q, Yang W, Zhang L, Nnaemeka VE, Sun J, Ke L, Sun Y. Functional analysis of GhCHS, GhANR and GhLAR in colored fiber formation of Gossypium hirsutum L. BMC PLANT BIOLOGY 2019; 19:455. [PMID: 31664897 PMCID: PMC6819470 DOI: 10.1186/s12870-019-2065-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/02/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND The formation of natural colored fibers mainly results from the accumulation of different anthocyanidins and their derivatives in the fibers of Gossypium hirsutum L. Chalcone synthase (CHS) is the first committed enzyme of flavonoid biosynthesis, and anthocyanidins are transported into fiber cells after biosynthesis mainly by Anthocyanidin reductase (ANR) and Leucoanthocyanidin reductase (LAR) to present diverse colors with distinct stability. The biochemical and molecular mechanism of pigment formation in natural colored cotton fiber is not clear. RESULTS The three key genes of GhCHS, GhANR and GhLAR were predominantly expressed in the developing fibers of colored cotton. In the GhCHSi, GhANRi and GhLARi transgenic cottons, the expression levels of GhCHS, GhANR and GhLAR significantly decreased in the developing cotton fiber, negatively correlated with the content of anthocyanidins and the color depth of cotton fiber. In colored cotton Zongxu1 (ZX1) and the GhCHSi, GhANRi and GhLARi transgenic lines of ZX1, HZ and ZH, the anthocyanidin contents of the leaves, cotton kernels, the mixture of fiber and seedcoat were all changed and positively correlated with the fiber color. CONCLUSION The three genes of GhCHS, GhANR and GhLAR were predominantly expressed early in developing colored cotton fibers and identified to be a key genes of cotton fiber color formation. The expression levels of the three genes affected the anthocyanidin contents and fiber color depth. So the three genes played a crucial part in cotton fiber color formation and has important significant to improve natural colored cotton quality and create new colored cotton germplasm resources by genetic engineering.
Collapse
Affiliation(s)
- Jianfang Gao
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Li Shen
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Jingli Yuan
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Hongli Zheng
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Quansheng Su
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Weiguang Yang
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Liqing Zhang
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Vitalis Ekene Nnaemeka
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Jie Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Liping Ke
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Yuqiang Sun
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| |
Collapse
|
50
|
Jung S, Venkatesh J, Kang MY, Kwon JK, Kang BC. A non-LTR retrotransposon activates anthocyanin biosynthesis by regulating a MYB transcription factor in Capsicum annuum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110181. [PMID: 31481212 DOI: 10.1016/j.plantsci.2019.110181] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 05/20/2023]
Abstract
The flavonoid compound anthocyanin is an important plant metabolite with nutritional and aesthetic value as well as anti-oxidative capacity. MYB transcription factors are key regulators of anthocyanin biosynthesis in plants. In pepper (Capsicum annuum), the CaAn2 gene, encoding an R2R3 MYB transcription factor, regulates anthocyanin biosynthesis. However, no functional study or structural analysis of functional and dysfunctional CaAn2 alleles has been performed. Here, to elucidate the function of CaAn2, we generated transgenic Nicotiana benthamiana and Arabidopsis thaliana plants expressing CaAn2. All of the tissues in these plants were purple. Promoter analysis of CaAn2 in purple C. annuum 'KC00134' plants revealed the insertion of a non-long terminal repeat (LTR) retrotransposon designated Ca-nLTR-A. To determine the promoter activity and functional domain of Ca-nLTR-A, various constructs carrying different domains of Ca-nLTR-A fused with GUS were transformed into N. benthamiana. Promoter analysis showed that the 3' untranslated region (UTR) of the second open reading frame of Ca-nLTR-A is responsible for CaAn2 expression in 'KC00134'. Sequence analysis of Ca-nLTR-A identified transcription factor binding sites known to regulate anthocyanin biosynthesis. This study indicates that insertion of a non-LTR retrotransposon in the promoter may activate expression of CaAn2 by recruiting transcription factors at the 3' UTR and thus provides the first example of exaptation of a non-LTR retrotransposon into a new promoter in plants.
Collapse
Affiliation(s)
- Soyoung Jung
- Department of Plant Science, Plant Genomics & Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jelli Venkatesh
- Department of Plant Science, Plant Genomics & Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min-Young Kang
- Department of Plant Science, Plant Genomics & Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jin-Kyung Kwon
- Department of Plant Science, Plant Genomics & Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics & Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|