1
|
Wen Q, Wang S, Zhang X, Zhou Z. Recent advances of NLR receptors in vegetable disease resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112224. [PMID: 39142606 DOI: 10.1016/j.plantsci.2024.112224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Plants mainly depend on both cell-surface and intracellular receptors to defend against various pathogens. The nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular receptors that recognize pathogen effectors. The first NLR was cloned thirty years ago. Genomic sequencing and biotechnologies accelerated NLR gene isolation. NLR genes have been proven useful in breeding disease resistant crops. Here, we summarized the current knowledge of strategies for NLR gene isolation and provided a list of NLRs cloned in vegetables. We also discussed the mechanisms underlying NLR gene function, the challenges of NLRs in vegetable breeding and directions for future studies.
Collapse
Affiliation(s)
- Qing Wen
- Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Shaoyun Wang
- Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaoyang Zhou
- Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Angmo D, Sharma SP, Kalia A. Breeding strategies for late blight resistance in potato crop: recent developments. Mol Biol Rep 2023; 50:7879-7891. [PMID: 37526862 DOI: 10.1007/s11033-023-08577-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/01/2023] [Indexed: 08/02/2023]
Abstract
Late blight (LB) is a serious disease that affects potato crop and is caused by Phytophthora infestans. Fungicides are commonly used to manage this disease, but this practice has led to the development of resistant strains and it also poses serious environmental and health risks. Therefore, breeding for resistance development can be the most effective strategies to control late blight. Various Solanum species have been utilized as a source of resistance genes to combat late blight disease. Several potential resistance genes and quantitative resistance loci (QRLs) have been identified and mapped through the application of molecular techniques. Furthermore, molecular markers closely linked to resistance genes or QRLs have been utilized to hasten the breeding process. However, the use of single-gene resistance can lead to the breakdown of resistance within a short period. To address this, breeding programs are now being focused on development of durable and broad-spectrum resistant cultivars by combining multiple resistant genes and QRLs using advanced molecular breeding tools such as marker-assisted selection (MAS) and cis-genic approaches. In addition to the strategies mentioned earlier, somatic hybridization has been utilized for the development and characterization of interspecific somatic hybrids. To further broaden the scope of late blight resistance breeding, approaches such as genomic selection, RNAi silencing, and various genome editing techniques can be employed. This study provides an overview of recent advances in various breeding strategies and their applications in improving the late blight resistance breeding program.
Collapse
Affiliation(s)
- Dechen Angmo
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, Punjab, India.
| | - Sat Pal Sharma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| |
Collapse
|
3
|
Late Blight Resistance Conferred by Rpi-Smira2/R8 in Potato Genotypes In Vitro Depends on the Genetic Background. PLANTS 2022; 11:plants11101319. [PMID: 35631743 PMCID: PMC9145795 DOI: 10.3390/plants11101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/28/2022]
Abstract
Potato production worldwide is threatened by late blight, caused by the oomycete Phytophthora infestans (Mont.) de Bary. Highly resistant potato cultivars were developed in breeding programs, using resistance gene pyramiding methods. In Sárpo Mira potatoes, five resistance genes (R3a, R3b, R4, Rpi-Smira1, and Rpi-Smira2/R8) are reported, with the latter gene assumed to be the major contributor. To study the level of late blight resistance conferred by the Rpi-Smira2/R8 gene, potato genotypes with only the Rpi-Smira2/R8 gene were selected from progeny population in which susceptible cultivars were crossed with Sárpo Mira. Ten R8 potato genotypes were obtained using stepwise marker-assisted selection, and agroinfiltration of the avirulence effector gene Avr4. Nine of these R8 genotypes were infected with both Slovenian P. infestans isolates and aggressive foreign isolates. All the progeny R8 genotypes are resistant to the Slovenian P. infestans isolate 02_07, and several show milder late blight symptoms than the corresponding susceptible parent after inoculation with other isolates. When inoculated with foreign P. infestans isolates, the genotype C571 shows intermediate resistance, similar to that of Sárpo Mira. These results suggest that Rpi-Smira2/R8 contributes to late blight resistance, although this resistance is not guaranteed solely by the presence of the R8 in the genome.
Collapse
|
4
|
Paluchowska P, Śliwka J, Yin Z. Late blight resistance genes in potato breeding. PLANTA 2022; 255:127. [PMID: 35576021 PMCID: PMC9110483 DOI: 10.1007/s00425-022-03910-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Using late blight resistance genes targeting conservative effectors of Phytophthora infestans and the constructing gene pyramids may lead to durable, broad-spectrum resistance, which could be accelerated through genetic engineering. Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. In 2020, potato production was estimated to be more than 359 million tons according to the Food and Agriculture Organization (FAO). Potato is affected by many pathogens, among which Phytophthora infestans, causing late blight, is of the most economic importance. Crop protection against late blight requires intensive use of fungicides, which has an impact on the environment and humans. Therefore, new potato cultivars have been bred using resistance genes against P. infestans (Rpi genes) that originate from wild relatives of potato. Such programmes were initiated 100 years ago, but the process is complex and long. The development of genetic engineering techniques has enabled the direct transfer of resistance genes from potato wild species to cultivars and easier pyramiding of multiple Rpi genes, which potentially increases the durability and spectrum of potato resistance to rapidly evolving P. infestans strains. In this review, we summarize the current knowledge concerning Rpi genes. We also discuss the use of Rpi genes in breeding as well as their detection in existing potato cultivars. Last, we review new sources of Rpi genes and new methods used to identify them and discuss interactions between P. infestans and host.
Collapse
Affiliation(s)
- Paulina Paluchowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland.
| | - Jadwiga Śliwka
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| | - Zhimin Yin
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
5
|
Sharma S, Sundaresha S, Bhardwaj V. Biotechnological approaches in management of oomycetes diseases. 3 Biotech 2021; 11:274. [PMID: 34040923 DOI: 10.1007/s13205-021-02810-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/24/2021] [Indexed: 11/26/2022] Open
Abstract
Plant pathogenic oomycetes cause significant impact on agriculture and, therefore, their management is utmost important. Though conventional methods to combat these pathogens (resistance breeding and use of fungicides) are available but these are limited by the availability of resistant cultivars due to evolution of new pathogenic races, development of resistance in the pathogens against agrochemicals and their potential hazardous effects on the environment and human health. This has fuelled a continual search for novel and alternate strategies for management of phytopathogens. The recent advances in oomycetes genome (Phytophthora infestans, P. ramorum, P. sojae, Pythium ultimum, Albugo candida etc.) would further help in understanding host-pathogen interactions essentially needed for designing effective management strategies. In the present communication the novel and alternate strategies for the management of oomycetes diseases are discussed.
Collapse
Affiliation(s)
- Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - S Sundaresha
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| |
Collapse
|
6
|
Karki HS, Jansky SH, Halterman DA. Screening of Wild Potatoes Identifies New Sources of Late Blight Resistance. PLANT DISEASE 2021; 105:368-376. [PMID: 32755364 DOI: 10.1094/pdis-06-20-1367-re] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Late blight (LB) of potato is considered one of the most devastating plant diseases in the world. Most cultivated potatoes are susceptible to this disease. However, wild relatives of potatoes are an excellent source of LB resistance. We screened 384 accessions of 72 different wild potato species available from the U.S. Potato GeneBank against the LB pathogen Phytophthora infestans in a detached leaf assay (DLA). P. infestans isolates US-23 and NL13316 were used in the DLA to screen the accessions. Although all plants in 273 accessions were susceptible, all screened plants in 39 accessions were resistant. Resistant and susceptible plants were found in 33 accessions. All tested plants showed a partial resistance phenotype in two accessions, segregation of resistant and partial resistant plants in nine accessions, segregation of partially resistant and susceptible plants in four accessions, and segregation of resistant, partially resistant, and susceptible individuals in 24 accessions. We found several species that were never before reported to be resistant to LB: Solanum albornozii, S. agrimoniifolium, S. chomatophilum, S. ehrenbergii, S. hypacrarthrum, S. iopetalum, S. palustre, S. piurae, S. morelliforme, S. neocardenasii, S. trifidum, and S. stipuloideum. These new species could provide novel sources of LB resistance. P. infestans clonal lineage-specific screening of selected species was conducted to identify the presence of RB resistance. We found LB resistant accessions in Solanum verrucosum, Solanum stoloniferum, and S. morelliforme that were susceptible to the RB overcoming isolate NL13316, indicating the presence of RB-like resistance in these species.
Collapse
Affiliation(s)
- Hari S Karki
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706
| | - Shelly H Jansky
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706
| | - Dennis A Halterman
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706
| |
Collapse
|
7
|
Zhang F, Chen H, Zhang X, Gao C, Huang J, Lü L, Shen D, Wang L, Huang C, Ye W, Zheng X, Wang Y, Vossen JH, Dong S. Genome Analysis of Two Newly Emerged Potato Late Blight Isolates Sheds Light on Pathogen Adaptation and Provides Tools for Disease Management. PHYTOPATHOLOGY 2021; 111:96-107. [PMID: 33026300 DOI: 10.1094/phyto-05-20-0208-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytophthora infestans, the causal agent of the Irish Potato Famine in the 1840s, is one of the most destructive crop pathogens that threaten global food security. Host resistance (R) genes may help to control the disease, but recognition by through the gene products can be evaded by newly emerging isolates. Such isolates are dangerous as they may cause disease outbreaks under favorable conditions. However, our lack of knowledge about adaptation in these isolates jeopardizes an apt response to resistance breakdown. Here we performed genome and transcriptome sequencing of HB1501 and HN1602, two field isolates from distinct Chinese geographic regions. We found extensive polymorphisms in these isolates, including gene copy number variations, nucleotide polymorphisms, and gene expression changes. Effector encoding genes, which contribute to virulence, show distinct expression landscapes in P. infestans isolates HB1501 and HN1602. In particular, polymorphisms at multiple effectors required for recognition (Avr loci) enabled these isolates to overcome corresponding R gene based resistance. Although the isolates evolved multiple strategies to evade recognition, we experimentally verified that several R genes such as R8, RB, and Rpi-vnt1.1 remain effective against these isolates and are valuable to potato breeding in the future. In summary, rapid characterization of the adaptation in emerging field isolates through genomic tools inform rational agricultural management to prevent potential future epidemics.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xinjie Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuyun Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Li Lü
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Luyao Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, 518120, China
| | - Chong Huang
- National Agro-Tech Extension and Service Center, Maizidian Street, No. 20, Beijing, 100125, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jack H Vossen
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Elnahal ASM, Li J, Wang X, Zhou C, Wen G, Wang J, Lindqvist-Kreuze H, Meng Y, Shan W. Identification of Natural Resistance Mediated by Recognition of Phytophthora infestans Effector Gene Avr3aEM in Potato. FRONTIERS IN PLANT SCIENCE 2020; 11:919. [PMID: 32636869 PMCID: PMC7318898 DOI: 10.3389/fpls.2020.00919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/05/2020] [Indexed: 05/13/2023]
Abstract
Late blight is considered the most renowned devastating potato disease worldwide. Resistance gene (R)-based resistance to late blight is the most effective method to inhibit infection by the causal agent Phytophthora infestans. However, the limited availability of resistant potato varieties and the rapid loss of R resistance, caused by P. infestans virulence variability, make disease control rely on fungicide application. We employed an Agrobacterium tumefaciens-mediated transient gene expression assay and effector biology approach to understand late blight resistance of Chinese varieties that showed years of promising field performance. We are particularly interested in PiAvr3aEM , the most common virulent allele of PiAvr3aKI that triggers a R3a-mediated hypersensitive response (HR) and late blight resistance. Through our significantly improved A. tumefaciens-mediated transient gene expression assay in potato using cultured seedlings, we characterized two dominant potato varieties, Qingshu9 and Longshu7, in China by transient expression of P. infestans effector genes. Transient expression of 10 known avirulence genes showed that PiAvr4 and PiAvr8 (PiAvrsmira2) could induce HR in Qingshu9, and PiAvrvnt1.1 in Longshu7, respectively. Our study also indicated that PiAvr3aEM is recognized by these two potato varieties, and is likely involved in their significant field performance of late blight resistance. The identification of natural resistance mediated by PiAvr3aEM recognition in Qingshu9 and Longshu7 will facilitate breeding for improved potato resistance against P. infestans.
Collapse
Affiliation(s)
- Ahmed S. M. Elnahal
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jinyang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaoxia Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Chenyao Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Guohong Wen
- Institute of Potato Research, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Jian Wang
- Institute of Biotechnology, Qinghai Academy of Agricultural Sciences, Xining, China
| | | | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- *Correspondence: Weixing Shan,
| |
Collapse
|
9
|
Kapos P, Devendrakumar KT, Li X. Plant NLRs: From discovery to application. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:3-18. [PMID: 30709490 DOI: 10.1016/j.plantsci.2018.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/09/2023]
Abstract
Plants require a complex immune system to defend themselves against a wide range of pathogens which threaten their growth and development. The nucleotide-binding leucine-rich repeat proteins (NLRs) are immune sensors that recognize effectors delivered by pathogens. The first NLR was cloned more than twenty years ago. Since this initial discovery, NLRs have been described as key components of plant immunity responsible for pathogen recognition and triggering defense responses. They have now been described in most of the well-studied mulitcellular plant species, with most having large NLR repertoires. As research has progressed so has the understanding of how NLRs interact with their recognition substrates and how they in turn activate downstream signalling. It has also become apparent that NLR regulation occurs at the transcriptional, post-transcriptional, translational, and post-translational levels. Even before the first NLR was cloned, breeders were utilising such genes to increase crop performance. Increased understanding of the mechanistic details of the plant immune system enable the generation of plants resistant against devastating pathogens. This review aims to give an updated summary of the NLR field.
Collapse
Affiliation(s)
- Paul Kapos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
10
|
Jiang R, Li J, Tian Z, Du J, Armstrong M, Baker K, Tze-Yin Lim J, Vossen JH, He H, Portal L, Zhou J, Bonierbale M, Hein I, Lindqvist-Kreuze H, Xie C. Potato late blight field resistance from QTL dPI09c is conferred by the NB-LRR gene R8. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1545-1555. [PMID: 29385612 PMCID: PMC5889011 DOI: 10.1093/jxb/ery021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/16/2018] [Indexed: 05/24/2023]
Abstract
Following the often short-lived protection that major nucleotide binding, leucine-rich-repeat (NB-LRR) resistance genes offer against the potato pathogen Phytophthora infestans, field resistance was thought to provide a more durable alternative to prevent late blight disease. We previously identified the QTL dPI09c on potato chromosome 9 as a more durable field resistance source against late blight. Here, the resistance QTL was fine-mapped to a 186 kb region. The interval corresponds to a larger, 389 kb, genomic region in the potato reference genome of Solanum tuberosum Group Phureja doubled monoploid clone DM1-3 (DM) and from which functional NB-LRRs R8, R9a, Rpi-moc1, and Rpi_vnt1 have arisen independently in wild species. dRenSeq analysis of parental clones alongside resistant and susceptible bulks of the segregating population B3C1HP showed full sequence representation of R8. This was independently validated using long-range PCR and screening of a bespoke bacterial artificial chromosome library. The latter enabled a comparative analysis of the sequence variation in this locus in diverse Solanaceae. We reveal for the first time that broad spectrum and durable field resistance against P. infestans is conferred by the NB-LRR gene R8, which is thought to provide narrow spectrum race-specific resistance.
Collapse
Affiliation(s)
- Rui Jiang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, P. R. China, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jingcai Li
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, P. R. China, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- School of Life Sciences, Huanggang Normal College, Huanggang, Hubei, China
| | - Zhendong Tian
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province, Wuhan, China
| | - Juan Du
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, China
| | - Miles Armstrong
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, UK
| | - Katie Baker
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, UK
| | - Joanne Tze-Yin Lim
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, UK
| | - Jack H Vossen
- Wageningen UR Plant Breeding, Wageningen University and Research, AJ Wageningen, The Netherlands
| | - Huan He
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province, Wuhan, China
| | | | - Jun Zhou
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, P. R. China, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
| | | | - Ingo Hein
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, UK
| | | | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, P. R. China, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
11
|
Panthee DR, Piotrowski A, Ibrahem R. Mapping Quantitative Trait Loci (QTL) for Resistance to Late Blight in Tomato. Int J Mol Sci 2017; 18:E1589. [PMID: 28737680 PMCID: PMC5536076 DOI: 10.3390/ijms18071589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 11/17/2022] Open
Abstract
Late blight caused by Phytophthora infestans (Montagne, Bary) is a devastating disease of tomato worldwide. There are three known major genes, Ph-1, Ph-2, and Ph-3, conferring resistance to late blight. In addition to these three genes, it is also believed that there are additional factors or quantitative trait loci (QTL) conferring resistance to late blight. Precise molecular mapping of all those major genes and potential QTL is important in the development of suitable molecular markers and hence, marker-assisted selection (MAS). The objective of the present study was to map the genes and QTL associated with late blight resistance in a tomato population derived from intra-specific crosses. To achieve this objective, a population, derived from the crossings of NC 1CELBR × Fla. 7775, consisting of 250 individuals at F2 and F2-derived families, were evaluated in replicated trials. These were conducted at Mountain Horticultural Crops Reseach & Extension Center (MHCREC) at Mills River, NC, and Mountain Research Staion (MRS) at Waynesville, NC in 2011, 2014, and 2015. There were two major QTL associated with late blight resistance located on chromosomes 9 and 10 with likelihood of odd (LOD) scores of more than 42 and 6, explaining 67% and 14% of the total phenotypic variation, respectively. The major QTLs are probably caused by the Ph-2 and Ph-3 genes. Furthermore, there was a minor QTL on chromosomes 12, which has not been reported before. This minor QTL may be novel and may be worth investigating further. Source of resistance to Ph-2, Ph-3, and this minor QTL traces back to line L3707, or Richter's Wild Tomato. The combination of major genes and minor QTL may provide a durable resistance to late blight in tomato.
Collapse
Affiliation(s)
- Dilip R Panthee
- Department of Horticultural Science, North Carolina State University, Mountain Horticultural Crops Research and Extension Center, 455 Research Drive, Mills River, NC 28759, USA.
| | - Ann Piotrowski
- Department of Horticultural Science, North Carolina State University, Mountain Horticultural Crops Research and Extension Center, 455 Research Drive, Mills River, NC 28759, USA.
| | - Ragy Ibrahem
- Department of Horticultural Science, North Carolina State University, Mountain Horticultural Crops Research and Extension Center, 455 Research Drive, Mills River, NC 28759, USA.
| |
Collapse
|
12
|
Vossen JH, van Arkel G, Bergervoet M, Jo KR, Jacobsen E, Visser RGF. The Solanum demissum R8 late blight resistance gene is an Sw-5 homologue that has been deployed worldwide in late blight resistant varieties. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1785-96. [PMID: 27314264 PMCID: PMC4983296 DOI: 10.1007/s00122-016-2740-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/04/2016] [Indexed: 05/22/2023]
Abstract
The potato late blight resistance gene R8 has been cloned. R8 is found in five late blight resistant varieties deployed in three different continents. R8 recognises Avr8 and is homologous to the NB-LRR protein Sw-5 from tomato. The broad spectrum late blight resistance gene R8 from Solanum demissum was cloned based on a previously published coarse map position on the lower arm of chromosome IX. Fine mapping in a recombinant population and bacterial artificial chromosome (BAC) library screening resulted in a BAC contig spanning 170 kb of the R8 haplotype. Sequencing revealed a cluster of at least ten R gene analogues (RGAs). The seven RGAs in the genetic window were subcloned for complementation analysis. Only one RGA provided late blight resistance and caused recognition of Avr8. From these results, it was concluded that the newly cloned resistance gene was indeed R8. R8 encodes a typical intracellular immune receptor with an N-terminal coiled coil, a central nucleotide binding site and 13 C-terminal leucine rich repeats. Phylogenetic analysis of a set of representative Solanaceae R proteins shows that R8 resides in a clearly distinct clade together with the Sw-5 tospovirus R protein from tomato. It was found that the R8 gene is present in late blight resistant potato varieties from Europe (Sarpo Mira), USA (Jacqueline Lee, Missaukee) and China (PB-06, S-60). Indeed, when tested under field conditions, R8 transgenic potato plants showed broad spectrum resistance to the current late blight population in the Netherlands, similar to Sarpo Mira.
Collapse
Affiliation(s)
- Jack H Vossen
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands.
| | - Gert van Arkel
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Marjan Bergervoet
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Kwang-Ryong Jo
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Evert Jacobsen
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| |
Collapse
|
13
|
Chen XR, Brurberg MB, Elameen A, Klemsdal SS, Martinussen I. Expression of resistance gene analogs in woodland strawberry (Fragaria vesca) during infection with Phytophthora cactorum. Mol Genet Genomics 2016; 291:1967-78. [PMID: 27447867 PMCID: PMC4990625 DOI: 10.1007/s00438-016-1232-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/12/2016] [Indexed: 01/08/2023]
Abstract
Important losses in strawberry production are often caused by the oomycete Phytophthora cactorum, the causal agent of crown rot. However, very limited studies at molecular levels exist of the mechanisms related to strawberry resistance against this pathogen. To begin to rectify this situation, a PCR-based approach (NBS profiling) was used to isolate strawberry resistance gene analogs (RGAs) with altered expression in response to P. cactorum during a time course (2, 4, 6, 24, 48, 96 and 192 h post-infection). Twenty-three distinct RGA fragments of the NB-LRR type were identified from a resistance genotype (Bukammen) of the wild species Fragaria vesca. The gene transcriptional profiles after infection showed that the response of most RGAs was quicker and stronger in the resistance genotype (Bukammen) than in the susceptible one (FDP821) during the early infection stage. The transcriptional patterns of one RGA (RGA109) were further monitored and compared during the P. cactorum infection of two pairs of resistant and susceptible genotype combinations (Bukammen/FDP821 and FDR1218/1603). The 5′ end sequence was cloned, and its putative protein was characteristic of NBS-LRR R protein. Our results yielded a first insight into the strawberry RGAs responding to P. cactorum infection at molecular level.
Collapse
Affiliation(s)
- Xiao-Ren Chen
- Norwegian Institute of Bioeconomy Research, Box 115, 1431, Ås, Norway.,College of Horticulture and Plant Protection, Yangzhou University, Wenhui Eastern Road 48, Yangzhou, 225009, Jiangsu Province, China
| | | | | | | | - Inger Martinussen
- Norwegian Institute of Bioeconomy Research, Box 115, 1431, Ås, Norway.
| |
Collapse
|
14
|
Mosquera T, Alvarez MF, Jiménez-Gómez JM, Muktar MS, Paulo MJ, Steinemann S, Li J, Draffehn A, Hofmann A, Lübeck J, Strahwald J, Tacke E, Hofferbert HR, Walkemeier B, Gebhardt C. Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease. PLoS One 2016; 11:e0156254. [PMID: 27281327 PMCID: PMC4900573 DOI: 10.1371/journal.pone.0156254] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/08/2016] [Indexed: 11/18/2022] Open
Abstract
The oomycete Phytophthora infestans causes late blight of potato, which can completely destroy the crop. Therefore, for the past 160 years, late blight has been the most important potato disease worldwide. The identification of cultivars with high and durable field resistance to P. infestans is an objective of most potato breeding programs. This type of resistance is polygenic and therefore quantitative. Its evaluation requires multi-year and location trials. Furthermore, quantitative resistance to late blight correlates with late plant maturity, a negative agricultural trait. Knowledge of the molecular genetic basis of quantitative resistance to late blight not compromised by late maturity is very limited. It is however essential for developing diagnostic DNA markers that facilitate the efficient combination of superior resistance alleles in improved cultivars. We used association genetics in a population of 184 tetraploid potato cultivars in order to identify single nucleotide polymorphisms (SNPs) that are associated with maturity corrected resistance (MCR) to late blight. The population was genotyped for almost 9000 SNPs from three different sources. The first source was candidate genes specifically selected for their function in the jasmonate pathway. The second source was novel candidate genes selected based on comparative transcript profiling (RNA-Seq) of groups of genotypes with contrasting levels of quantitative resistance to P. infestans. The third source was the first generation 8.3k SolCAP SNP genotyping array available in potato for genome wide association studies (GWAS). Twenty seven SNPs from all three sources showed robust association with MCR. Some of those were located in genes that are strong candidates for directly controlling quantitative resistance, based on functional annotation. Most important were: a lipoxygenase (jasmonate pathway), a 3-hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate pathway), a P450 protein (terpene biosynthesis), a transcription factor and a homolog of a major gene for resistance to P. infestans from the wild potato species Solanum venturii. The candidate gene approach and GWAS complemented each other as they identified different genes. The results of this study provide new insight in the molecular genetic basis of quantitative resistance in potato and a toolbox of diagnostic SNP markers for breeding applications.
Collapse
Affiliation(s)
- Teresa Mosquera
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Maria Fernanda Alvarez
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - José M. Jiménez-Gómez
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Institute Jean-Pierre Bourgin, INRA, AgroParis Tech, CNRS, Université Paris-Saclay, Versailles, France
| | - Meki Shehabu Muktar
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Sebastian Steinemann
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jinquan Li
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Astrid Draffehn
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrea Hofmann
- Department of Genomics, Life & Brain Center, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Jens Lübeck
- SaKa-Pflanzenzucht GmbH & Co. KG, 24340, Windeby, Germany
| | | | | | | | - Birgit Walkemeier
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Christiane Gebhardt
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail:
| |
Collapse
|
15
|
Down-regulation of Arabidopsis DND1 orthologs in potato and tomato leads to broad-spectrum resistance to late blight and powdery mildew. Transgenic Res 2015; 25:123-38. [PMID: 26577903 PMCID: PMC4762934 DOI: 10.1007/s11248-015-9921-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/07/2015] [Indexed: 11/15/2022]
Abstract
Multiple susceptibility genes (S), identified in Arabidopsis, have been shown to be functionally conserved in crop plants. Mutations in these S genes result in resistance to different pathogens, opening a new way to achieve plant disease resistance. The aim of this study was to investigate the role of Defense No Death1 (DND1) in susceptibility of tomato and potato to late blight (Phytophthora infestans). In Arabidopsis, the dnd1 mutant has broad-spectrum resistance against several fungal, bacterial, and viral pathogens. However this mutation is also associated with a dwarfed phenotype. Using an RNAi approach, we silenced AtDND1 orthologs in potato and tomato. Our results showed that silencing of the DND1 ortholog in both crops resulted in resistance to the pathogenic oomycete P. infestans and to two powdery mildew species, Oidium neolycopersici and Golovinomyces orontii. The resistance to P. infestans in potato was effective to four different isolates although the level of resistance (complete or partial) was dependent on the aggressiveness of the isolate. In tomato, DND1-silenced plants showed a severe dwarf phenotype and autonecrosis, whereas DND1-silenced potato plants were not dwarfed and showed a less pronounced autonecrosis. Our results indicate that S gene function of DND1 is conserved in tomato and potato. We discuss the possibilities of using RNAi silencing or loss-of-function mutations of DND1 orthologs, as well as additional S gene orthologs from Arabidopsis, to breed for resistance to pathogens in crop plants.
Collapse
|
16
|
Genetic Linkage Mapping of Economically Important Traits in Cultivated Tetraploid Potato (Solanum tuberosum L.). G3-GENES GENOMES GENETICS 2015; 5:2357-64. [PMID: 26374597 PMCID: PMC4632055 DOI: 10.1534/g3.115.019646] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The objective of this study was to construct a single nucleotide polymorphism (SNP)-based genetic map at the cultivated tetraploid level to locate quantitative trait loci (QTL) contributing to economically important traits in potato (Solanum tuberosum L.). The 156 F1 progeny and parents of a cross (MSL603) between “Jacqueline Lee” and “MSG227-2” were genotyped using the Infinium 8303 Potato Array. Furthermore, the progeny and parents were evaluated for foliar late blight reaction to isolates of the US-8 genotype of Phytophthora infestans (Mont.) de Bary and vine maturity. Linkage analyses and QTL mapping were performed using a novel approach that incorporates allele dosage information. The resulting genetic maps contained 1972 SNP markers with an average density of 1.36 marker per cM. QTL mapping identified the major source of late blight resistance in “Jacqueline Lee.” The best SNP marker mapped ∼0.54 Mb from a resistance hotspot on the long arm of chromosome 9. For vine maturity, the major-effect QTL was located on chromosome 5 with allelic effects from both parents. A candidate SNP marker for this trait mapped ∼0.25 Mb from the StCDF1 gene, which is a candidate gene for the maturity trait. The identification of markers for P. infestans resistance will enable the introgression of multiple sources of resistance through marker-assisted selection. Moreover, the discovery of a QTL for late blight resistance not linked to the QTL for vine maturity provides the opportunity to use marker-assisted selection for resistance independent of the selection for vine maturity classifications.
Collapse
|
17
|
Jo KR, Visser RGF, Jacobsen E, Vossen JH. Characterisation of the late blight resistance in potato differential MaR9 reveals a qualitative resistance gene, R9a, residing in a cluster of Tm-2 (2) homologs on chromosome IX. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:931-41. [PMID: 25725999 PMCID: PMC4544503 DOI: 10.1007/s00122-015-2480-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/09/2015] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE The durable late blight resistance in potato plant Ma R9 is genetically characterized. A novel R -gene is mapped. The monogenic nature and map positions of R9 are negated and rectified. Late blight of potato (Solanum tuberosum), caused by Phytophthora infestans, can effectively be managed by genetic resistance. The MaR9 differential plant provides durable resistance to a broad spectrum of late blight strains. This resistance is brought about by at least seven genes derived from S. demissum including R1, Rpi-abpt1, R3a, R3b, R4, R8 and, so far uncharacterized resistance gene(s). Here we set out to genetically characterize this additional resistance in MaR9. Three BC1 populations derived from MaR9 were identified that segregated for IPO-C resistance but that lacked R8. One BC1 population showed a continuous scale of resistance phenotypes, suggesting that multiple quantitative resistance genes were segregating. In two other BC1 populations resistance and susceptibility were segregating in a 1:1 ratio, suggesting a single qualitative resistance gene (R9a). A chromosome IX PCR marker, 184-81, fully co-segregated with R9a. The map position of R9a on the distal end of the lower arm of chromosome IX was confirmed using PCR markers GP101 and Stm1021. Successively, cluster-directed profiling (CDP) was carried out, revealing six closely linked markers. CDP(Sw)58, CDP(Sw)59 and CDP(Sw5)10 flanked the R9a gene at the distal end (5.8 cM) and, as expected, were highly homologous to Sw-5. CDP(Tm2)2 flanked R9a on the proximal side (2.9 cM). CDP(Tm2)6 and CDP(Tm2)7 fully co-segregated with resistance and had high homology to Tm-2 (2) , showing that R9a resides in a cluster of NBS-LRR genes with homology to Tm-2 (2) . Besides R9a, additional resistance of quantitative nature is found in MaR9, which remains to be genetically characterized.
Collapse
Affiliation(s)
- Kwang-Ryong Jo
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
- Graduate School Experimental Plant Sciences, Wageningen, The Netherlands
| | - Richard G. F. Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Evert Jacobsen
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Jack H. Vossen
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|
18
|
Castañeda-Álvarez NP, de Haan S, Juárez H, Khoury CK, Achicanoy HA, Sosa CC, Bernau V, Salas A, Heider B, Simon R, Maxted N, Spooner DM. Ex situ conservation priorities for the wild relatives of potato (solanum L. Section petota). PLoS One 2015; 10:e0122599. [PMID: 25923711 PMCID: PMC4414521 DOI: 10.1371/journal.pone.0122599] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/11/2015] [Indexed: 12/28/2022] Open
Abstract
Crop wild relatives have a long history of use in potato breeding, particularly for pest and disease resistance, and are expected to be increasingly used in the search for tolerance to biotic and abiotic stresses. Their current and future use in crop improvement depends on their availability in ex situ germplasm collections. As these plants are impacted in the wild by habitat destruction and climate change, actions to ensure their conservation ex situ become ever more urgent. We analyzed the state of ex situ conservation of 73 of the closest wild relatives of potato (Solanum section Petota) with the aim of establishing priorities for further collecting to fill important gaps in germplasm collections. A total of 32 species (43.8%), were assigned high priority for further collecting due to severe gaps in their ex situ collections. Such gaps are most pronounced in the geographic center of diversity of the wild relatives in Peru. A total of 20 and 18 species were assessed as medium and low priority for further collecting, respectively, with only three species determined to be sufficiently represented currently. Priorities for further collecting include: (i) species completely lacking representation in germplasm collections; (ii) other high priority taxa, with geographic emphasis on the center of species diversity; (iii) medium priority species. Such collecting efforts combined with further emphasis on improving ex situ conservation technologies and methods, performing genotypic and phenotypic characterization of wild relative diversity, monitoring wild populations in situ, and making conserved wild relatives and their associated data accessible to the global research community, represent key steps in ensuring the long-term availability of the wild genetic resources of this important crop.
Collapse
Affiliation(s)
- Nora P. Castañeda-Álvarez
- Decision and Policy Analysis Program, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Stef de Haan
- Global Program Genetic Resources, International Potato Center (CIP), Lima, Peru
| | - Henry Juárez
- Global Program Genetic Resources, International Potato Center (CIP), Lima, Peru
| | - Colin K. Khoury
- Decision and Policy Analysis Program, International Center for Tropical Agriculture (CIAT), Cali, Colombia
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, The Netherlands
| | - Harold A. Achicanoy
- Decision and Policy Analysis Program, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Chrystian C. Sosa
- Decision and Policy Analysis Program, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Vivian Bernau
- Decision and Policy Analysis Program, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Alberto Salas
- Global Program Genetic Resources, International Potato Center (CIP), Lima, Peru
| | - Bettina Heider
- Global Program Genetic Resources, International Potato Center (CIP), Lima, Peru
| | - Reinhard Simon
- Integrated IT and Computational Research Unit, International Potato Center (CIP), Lima, Peru
| | - Nigel Maxted
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - David M. Spooner
- USDA-ARS, Vegetable Crop Research Unit, Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
19
|
Vleeshouwers VGAA, Oliver RP. Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:40-50. [PMID: 27839074 DOI: 10.1094/mpmi-10-13-0313-ta.testissue] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Collapse
Affiliation(s)
- Vivianne G A A Vleeshouwers
- 1 Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard P Oliver
- 2 Australian Centre for Necrotrophic Fungal Pathogens, Curtin University, Perth WA 6845, Australia
| |
Collapse
|
20
|
Vleeshouwers VGAA, Oliver RP. Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:17-27. [PMID: 27839075 DOI: 10.1094/mpmi-10-13-0313-cr.testissue] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Collapse
Affiliation(s)
- Vivianne G A A Vleeshouwers
- 1 Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard P Oliver
- 2 Australian Centre for Necrotrophic Fungal Pathogens, Curtin University, Perth WA 6845, Australia
| |
Collapse
|
21
|
Zhang C, Liu L, Wang X, Vossen J, Li G, Li T, Zheng Z, Gao J, Guo Y, Visser RGF, Li J, Bai Y, Du Y. The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1353-64. [PMID: 24756242 PMCID: PMC4035550 DOI: 10.1007/s00122-014-2303-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/24/2014] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE Ph-3 is the first cloned tomato gene for resistance to late blight and encodes a CC-NBS-LRR protein. Late blight, caused by Phytophthora infestans, is one of the most destructive diseases in tomato. The resistance (R) gene Ph-3, derived from Solanum pimpinellifolium L3708, provides resistance to multiple P. infestans isolates and has been widely used in tomato breeding programmes. In our previous study, Ph-3 was mapped into a region harbouring R gene analogues (RGA) at the distal part of long arm of chromosome 9. To further narrow down the Ph-3 interval, more recombinants were identified using the flanking markers G2-4 and M8-2, which defined the Ph-3 gene to a 26 kb region according to the Heinz1706 reference genome. To clone the Ph-3 gene, a bacterial artificial chromosome (BAC) library was constructed using L3708 and one BAC clone B25E21 containing the Ph-3 region was identified. The sequence of the BAC clone B25E21 showed that only one RGA was present in the target region. A subsequent complementation analysis demonstrated that this RGA, encoding a CC-NBS-LRR protein, was able to complement the susceptible phenotype in cultivar Moneymaker. Thus this RGA was considered the Ph-3 gene. The predicted Ph-3 protein shares high amino acid identity with the chromosome-9-derived potato resistance proteins against P. infestans (Rpi proteins).
Collapse
Affiliation(s)
- Chunzhi Zhang
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancunnandajie 12, 100081 Beijing, People’s Republic of China
| | - Lei Liu
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancunnandajie 12, 100081 Beijing, People’s Republic of China
| | - Xiaoxuan Wang
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancunnandajie 12, 100081 Beijing, People’s Republic of China
| | - Jack Vossen
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Guangcun Li
- Institute of
Vegetables and Flowers, Shandong Academy of Agricultural Sciences, 250100 Jinan, People’s Republic of China
| | - Tao Li
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancunnandajie 12, 100081 Beijing, People’s Republic of China
| | - Zheng Zheng
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancunnandajie 12, 100081 Beijing, People’s Republic of China
| | - Jianchang Gao
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancunnandajie 12, 100081 Beijing, People’s Republic of China
| | - Yanmei Guo
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancunnandajie 12, 100081 Beijing, People’s Republic of China
| | - Richard G. F. Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Junming Li
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancunnandajie 12, 100081 Beijing, People’s Republic of China
| | - Yuling Bai
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Yongchen Du
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancunnandajie 12, 100081 Beijing, People’s Republic of China
| |
Collapse
|
22
|
Lindqvist-Kreuze H, Gastelo M, Perez W, Forbes GA, de Koeyer D, Bonierbale M. Phenotypic stability and genome-wide association study of late blight resistance in potato genotypes adapted to the tropical highlands. PHYTOPATHOLOGY 2014; 104:624-633. [PMID: 24423400 DOI: 10.1094/phyto-10-13-0270-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Potato genotypes from a breeding population adapted to tropical highlands were analyzed for the stability of late blight resistance and also for marker-phenotype association. We harmonized the historical evaluation data, consisting of observations spanning 6 years from two field sites utilizing a resistance scale constructed by comparing the area under the disease progress curve (AUDPC) values of 172 genotypes with that of susceptible control 'Yungay'. In total, 70 potato genotypes had a coefficient of variability <0.5 and were considered stable across the environments tested. A principal component analysis demonstrated that the ensemble of experiments formed two distinct groups that reflect the stability of genotype resistance to late blight. Phytophthora infestans isolates present in the experimental fields belonged to the EC-1 clonal lineage and showed variation in virulence beyond the concept of the avirulence determined by the conventionally used R1-R11 differential set. A single-nucleotide polymorphism (SNP) marker on chromosome 9 was associated with late blight resistance and linked to instability. Genotypes with either AACC or AAAC combinations for this SNP were highly resistant only in some environments, while the genotypes with the AAAA combination had more moderate levels of resistance but were stable across environments.
Collapse
|
23
|
Vleeshouwers VGAA, Oliver RP. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:196-206. [PMID: 24405032 DOI: 10.1094/mpmi-10-13-0313-ia] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.
Collapse
|
24
|
Tomczyńska I, Jupe F, Hein I, Marczewski W, Śliwka J. Hypersensitive response to Potato virus Y in potato cultivar Sárpo Mira is conferred by the Ny- Smira gene located on the long arm of chromosome IX. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2014; 34:471-480. [PMID: 25076838 PMCID: PMC4092237 DOI: 10.1007/s11032-014-0050-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/03/2014] [Indexed: 05/29/2023]
Abstract
Potato virus Y (PVY, Potyvirus) is the fifth most important plant virus worldwide in terms of economic and scientific impact. It infects members of the family Solanaceae and causes losses in potato, tomato, tobacco, pepper and petunia production. In potato and its wild relatives, two types of resistance genes against PVY have been identified. While Ry genes confer symptomless extreme resistance, Ny genes cause a hypersensitive response visible as local necrosis that may also be able to prevent the virus from spreading under certain environmental conditions. The potato cultivar Sárpo Mira originates from Hungary and is highly resistant to PVY, although the source of this resistance remains unknown. We show that cv. Sárpo Mira reacts with a hypersensitive response leading to necrosis after PVYNTN infection in detached leaf, whole plant and grafting assays. The hypersensitivity to PVYNTN segregated amongst 140 individuals of tetraploid progeny of cvs. Sárpo Mira × Maris Piper in a 1:1 ratio, indicating that it was conferred by a single, dominant gene in simplex. Moreover, we identified five DNA markers linked to this trait and located the underlying locus (Ny-Smira) to the long arm of potato chromosome IX. This position corresponds to the location of the Rychc and Ny-1 genes for PVY resistance. A simple PCR marker, located 1 cM from the Ny-Smira gene, can be recommended for selection of PVY-resistant progeny of cv. Sárpo Mira.
Collapse
Affiliation(s)
- Iga Tomczyńska
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Centre, Platanowa 19, 05-831 Młochów, Poland
| | - Florian Jupe
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
- Cell and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA UK
| | - Ingo Hein
- Cell and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA UK
| | - Waldemar Marczewski
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Centre, Platanowa 19, 05-831 Młochów, Poland
| | - Jadwiga Śliwka
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Centre, Platanowa 19, 05-831 Młochów, Poland
| |
Collapse
|
25
|
Vossen JH, Dezhsetan S, Esselink D, Arens M, Sanz MJ, Verweij W, Verzaux E, van der Linden CG. Novel applications of motif-directed profiling to identify disease resistance genes in plants. PLANT METHODS 2013; 9:37. [PMID: 24099459 PMCID: PMC3853995 DOI: 10.1186/1746-4811-9-37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/02/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND Molecular profiling of gene families is a versatile tool to study diversity between individual genomes in sexual crosses and germplasm. Nucleotide binding site (NBS) profiling, in particular, targets conserved nucleotide binding site-encoding sequences of resistance gene analogs (RGAs), and is widely used to identify molecular markers for disease resistance (R) genes. RESULTS In this study, we used NBS profiling to identify genome-wide locations of RGA clusters in the genome of potato clone RH. Positions of RGAs in the potato RH and DM genomes that were generated using profiling and genome sequencing, respectively, were compared. Largely overlapping results, but also interesting discrepancies, were found. Due to the clustering of RGAs, several parts of the genome are overexposed while others remain underexposed using NBS profiling. It is shown how the profiling of other gene families, i.e. protein kinases and different protein domain-coding sequences (i.e., TIR), can be used to achieve a better marker distribution. The power of profiling techniques is further illustrated using RGA cluster-directed profiling in a population of Solanum berthaultii. Multiple different paralogous RGAs within the Rpi-ber cluster could be genetically distinguished. Finally, an adaptation of the profiling protocol was made that allowed the parallel sequencing of profiling fragments using next generation sequencing. The types of RGAs that were tagged in this next-generation profiling approach largely overlapped with classical gel-based profiling. As a potential application of next-generation profiling, we showed how the R gene family associated with late blight resistance in the SH*RH population could be identified using a bulked segregant approach. CONCLUSIONS In this study, we provide a comprehensive overview of previously described and novel profiling primers and their genomic targets in potato through genetic mapping and comparative genomics. Furthermore, it is shown how genome-wide or fine mapping can be pursued by choosing different sets of profiling primers. A protocol for next-generation profiling is provided and will form the basis for novel applications. Using the current overview of genomic targets, a rational choice can be made for profiling primers to be employed.
Collapse
Affiliation(s)
- Jack H Vossen
- Plant Breeding, Wageningen University and Research Center, Wageningen, Netherlands
| | - Sara Dezhsetan
- Department of Agronomy & Plant Breeding, Faculty of Agricultural Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Danny Esselink
- Plant Breeding, Wageningen University and Research Center, Wageningen, Netherlands
| | - Marjon Arens
- Plant Breeding, Wageningen University and Research Center, Wageningen, Netherlands
| | - Maria J Sanz
- Department of Cell Biology and Genetics, University of Alcala, Madrid, Spain
| | | | - Estelle Verzaux
- Plant Breeding, Wageningen University and Research Center, Wageningen, Netherlands
- Current address: Universidad Técnica del Norte, Ibarra, Equador
| | | |
Collapse
|
26
|
Zhang C, Liu L, Zheng Z, Sun Y, Zhou L, Yang Y, Cheng F, Zhang Z, Wang X, Huang S, Xie B, Du Y, Bai Y, Li J. Fine mapping of the Ph-3 gene conferring resistance to late blight (Phytophthora infestans) in tomato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2643-53. [PMID: 23921955 DOI: 10.1007/s00122-013-2162-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/12/2013] [Indexed: 05/23/2023]
Abstract
Late blight, caused by the oomycete pathogen Phytophthora infestans (Mont.) de Bary, is a devastating disease for tomato and potato crops. In the past decades, many late blight resistance (R) genes have been characterized in potato. In contrast, less work has been conducted on tomato. The Ph-3 gene from Solanum pimpinellifolium was introgressed into cultivated tomatoes and conferred broad-spectrum resistance to P. infestans. It was previously assigned to the long arm of chromosome 9. In this study, a high-resolution genetic map covering the Ph-3 locus was constructed using an F2 population of a cross between Solanum lycopersicum CLN2037B (containing Ph-3) and S. lycopersicum LA4084. Ph-3 was mapped in a 0.5 cM interval between two markers, Indel_3 and P55. Eight putative genes were found in the corresponding 74 kb region of the tomato Heinz1706 reference genome. Four of these genes are resistance gene analogs (RGAs) with a typical nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 domain. Each RGA showed high homology to the late blight R gene Rpi-vnt1.1 from Solanum venturii. Transient gene silencing indicated that a member of this RGA family is required for Ph-3-mediated resistance to late blight in tomato. Furthermore, this RGA family was also found in the potato genome, but the number of the RGAs was higher than in tomato.
Collapse
Affiliation(s)
- Chunzhi Zhang
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancunnandajie 12, Beijing, 100081, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rodewald J, Trognitz B. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. MOLECULAR PLANT PATHOLOGY 2013; 14:740-57. [PMID: 23710878 PMCID: PMC6638693 DOI: 10.1111/mpp.12036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Resistance genes against Phytophthora infestans (Rpi genes), the most important potato pathogen, are still highly valued in the breeding of Solanum spp. for enhanced resistance. The Rpi genes hitherto explored are localized most often in clusters, which are similar between the diverse Solanum genomes. Their distribution is not independent of late maturity traits. This review provides a summary of the most recent important revelations on the genomic position and cloning of Rpi genes, and the structure, associations, mode of action and activity spectrum of Rpi and corresponding avirulence (Avr) proteins. Practical implications for research into and application of Rpi genes are deduced and combined with an outlook on approaches to address remaining issues and interesting questions. It is evident that the potential of Rpi genes has not been exploited fully.
Collapse
Affiliation(s)
- Jan Rodewald
- Department of Health and Environment, Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria.
| | | |
Collapse
|
28
|
Sanz MJ, Loarce Y, Fominaya A, Vossen JH, Ferrer E. Identification of RFLP and NBS/PK profiling markers for disease resistance loci in genetic maps of oats. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:203-218. [PMID: 22948438 DOI: 10.1007/s00122-012-1974-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023]
Abstract
Two of the domains most widely shared among R genes are the nucleotide binding site (NBS) and protein kinase (PK) domains. The present study describes and maps a number of new oat resistance gene analogues (RGAs) with two purposes in mind: (1) to identify genetic regions that contain R genes and (2) to determine whether RGAs can be used as molecular markers for qualitative loci and for QTLs affording resistance to Puccinia coronata. Such genes have been mapped in the diploid A. strigosa × A. wiestii (Asw map) and the hexaploid MN841801-1 × Noble-2 (MN map). Genomic and cDNA NBS-RGA probes from oat, barley and wheat were used to produce RFLPs and to obtain markers by motif-directed profiling based on the NBS (NBS profiling) and PK (PK profiling) domains. The efficiency of primers used in NBS/PK profiling to amplify RGA fragments was assessed by sequencing individual marker bands derived from genomic and cDNA fragments. The positions of 184 markers were identified in the Asw map, while those for 99 were identified in the MN map. Large numbers of NBS and PK profiling markers were found in clusters across different linkage groups, with the PK profiling markers more evenly distributed. The location of markers throughout the genetic maps and the composition of marker clusters indicate that NBS- and PK-based markers cover partly complementary regions of oat genomes. Markers of the different classes obtained were found associated with the two resistance loci, PcA and R-284B-2, mapped on Asw, and with five out of eight QTLs for partial resistance in the MN map. 53 RGA-RFLPs and 187 NBS/PK profiling markers were also mapped on the hexaploid map A. byzantina cv. Kanota × A. sativa cv. Ogle. Significant co-localization was seen between the RGA markers in the KO map and other markers closely linked to resistance loci, such as those for P. coronata and barley yellow dwarf virus (Bydv) that were previously mapped in other segregating populations.
Collapse
Affiliation(s)
- M J Sanz
- Department of Cell Biology and Genetics, University of Alcalá, Campus Universitario, Ctra. Madrid-Barcelona km 33,600, Alcalá de Henares, 28871 Madrid, Spain
| | | | | | | | | |
Collapse
|
29
|
Golas TM, van de Geest H, Gros J, Sikkema A, D'Agostino N, Nap JP, Mariani C, Allefs JJHM, Rieu I. Comparative next-generation mapping of the Phytophthora infestans resistance gene Rpi-dlc2 in a European accession of Solanum dulcamara. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:59-68. [PMID: 22907632 DOI: 10.1007/s00122-012-1959-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/27/2012] [Indexed: 05/08/2023]
Abstract
Phytophthora infestans, the causal agent of late blight, remains the main threat to potato production worldwide. Screening of 19 accessions of Solanum dulcamara with P. infestans isolate Ipo82001 in detached leaf assays revealed strong resistance in an individual belonging to accession A54750069-1. This plant was crossed with a susceptible genotype, and an F(1) population consisting of 63 individuals was obtained. This population segregated for resistance in 1:1 ratio, both in detached leaf assays and in an open-field experiment. Presence of the formerly mapped Rpi-dlc1 gene as the cause of the observed segregating resistance could be excluded. Subsequently, AFLP analyses using 128 primer combinations enabled identification of five markers linked to a novel resistance gene named Rpi-dlc2. AFLP markers did not show sequence similarity to the tomato and potato genomes, hampering comparative genetic positioning of the gene. For this reason we used next-generation mapping (NGM), an approach that exploits direct sequencing of DNA (in our case: cDNA) pools from bulked segregants to calculate the genetic distance between SNPs and the locus of interest. Plotting of these genetic distances on the tomato and potato genetic map and subsequent PCR-based marker analysis positioned the gene on chromosome 10, in a region overlapping with the Rpi-ber/ber1 and -ber2 loci from S. berthaultii. Pyramiding of Rpi-dlc2 and Rpi-dlc1 significantly increased resistance to P. infestans, compared with individuals containing only one of the genes, showing the usefulness of this strategy to enhance resistance against Phytophthora.
Collapse
Affiliation(s)
- T M Golas
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Li J, Lindqvist-Kreuze H, Tian Z, Liu J, Song B, Landeo J, Portal L, Gastelo M, Frisancho J, Sanchez L, Meijer D, Xie C, Bonierbale M. Conditional QTL underlying resistance to late blight in a diploid potato population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1339-1350. [PMID: 22274766 DOI: 10.1007/s00122-012-1791-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 01/11/2012] [Indexed: 05/31/2023]
Abstract
A large number of quantitative trait loci (QTL) for resistance to late blight of potato have been reported with a "conventional" method in which each phenotypic trait reflects the cumulative genetic effects for the duration of the disease process. However, as genes controlling response to disease may have unique contributions with specific temporal features, it is important to consider the phenotype as dynamic. Here, using the net genetic effects evidenced at consecutive time points during disease development, we report the first conditional mapping of QTL underlying late blight resistance in potato under five environments in Peru. Six conditional QTL were mapped, one each on chromosome 2, 7 and 12 and three on chromosome 9. These QTL represent distinct contributions to the phenotypic variation at different stages of disease development. By comparison, when conventional mapping was conducted, only one QTL was detected on chromosome 9. This QTL was the same as one of the conditional QTL. The results imply that conditional QTL reflect genes that function at particular stages during the host-pathogen interaction. The dynamics revealed by conditional QTL mapping could contribute to the understanding of the molecular mechanism of late blight resistance and these QTL could be used to target genes for marker development or manipulation to improve resistance.
Collapse
Affiliation(s)
- Jingcai Li
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Ministry of Education, National Center for Vegetable Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kim HJ, Lee HR, Jo KR, Mortazavian SMM, Huigen DJ, Evenhuis B, Kessel G, Visser RGF, Jacobsen E, Vossen JH. Broad spectrum late blight resistance in potato differential set plants MaR8 and MaR9 is conferred by multiple stacked R genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:923-35. [PMID: 22109085 PMCID: PMC3284673 DOI: 10.1007/s00122-011-1757-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 11/05/2011] [Indexed: 05/20/2023]
Abstract
Phytophthora infestans is the causal agent of late blight in potato. The Mexican species Solanum demissum is well known as a good resistance source. Among the 11 R gene differentials, which were introgressed from S. demissum, especially R8 and R9 differentials showed broad spectrum resistance both under laboratory and under field conditions. In order to gather more information about the resistance of the R8 and R9 differentials, F1 and BC1 populations were made by crossing Mastenbroek (Ma) R8 and R9 clones to susceptible plants. Parents and offspring plants were examined for their pathogen recognition specificities using agroinfiltration with known Avr genes, detached leaf assays (DLA) with selected isolates, and gene-specific markers. An important observation was the discrepancy between DLA and field trial results for Pi isolate IPO-C in all F1 and BC1 populations, so therefore also field trial results were included in our characterization. It was shown that in MaR8 and MaR9, respectively, at least four (R3a, R3b, R4, and R8) and seven (R1, Rpi-abpt1, R3a, R3b, R4, R8, R9) R genes were present. Analysis of MaR8 and MaR9 offspring plants, that contained different combinations of multiple resistance genes, showed that R gene stacking contributed to the Pi recognition spectrum. Also, using a Pi virulence monitoring system in the field, it was shown that stacking of multiple R genes strongly delayed the onset of late blight symptoms. The contribution of R8 to this delay was remarkable since a plant that contained only the R8 resistance gene still conferred a delay similar to plants with multiple resistance genes, like, e.g., cv Sarpo Mira. Using this "de-stacking" approach, many R gene combinations can be made and tested in order to select broad spectrum R gene stacks that potentially provide enhanced durability for future application in new late blight resistant varieties.
Collapse
Affiliation(s)
- Hyoun-Joung Kim
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen, The Netherlands
- Present Address: Biotechnology Institute, Nongwoo Bio. Co., Ltd, Yeoju, Gyeonggi Republic of Korea
| | - Heung-Ryul Lee
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen, The Netherlands
- Present Address: Biotechnology Institute, Nongwoo Bio. Co., Ltd, Yeoju, Gyeonggi Republic of Korea
| | - Kwang-Ryong Jo
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen, The Netherlands
- Research Institute of Agrobiology, Academy of Agricultural Sciences, Pyongyang, Democratic People’s Republic of Korea
| | - S. M. Mahdi Mortazavian
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen, The Netherlands
- Present Address: Department of Agronomy and Plant Breeding Sciences, College of Aburaihan, University of Tehran, Pakdasht, Iran
| | - Dirk Jan Huigen
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Bert Evenhuis
- Plant Research International, Biointeractions and Plant Health, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Geert Kessel
- Plant Research International, Biointeractions and Plant Health, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Richard G. F. Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Evert Jacobsen
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Jack H. Vossen
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen, The Netherlands
| |
Collapse
|