1
|
Gracia C, Calle A, Gasic K, Arias E, Wünsch A. Genetic and QTL analyses of sugarand acid content in sweet cherry ( Prunus avium L. ). HORTICULTURE RESEARCH 2025; 12:uhae310. [PMID: 39944996 PMCID: PMC11818002 DOI: 10.1093/hr/uhae310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/30/2024] [Indexed: 02/16/2025]
Abstract
Sweet cherry is very appreciated by consumers because of its attractive appearance and taste, which is determined by the balanced sweet-sour flavor. In this work, the genetics of soluble solid content (SSC), titratable acidity (TA), sugars, and organic acids was investigated in sweet cherry to facilitate breeding improvement for fruit quality. The fruits of five sweet cherry populations (N = 372), three F1 and two F2, were sampled over two years to evaluate SSC, TA, and the content of individual sugars (glucose, fructose, sorbitol, and sucrose) and organic acids (malic, quinic, oxalic, citric, and shikimic) by ultra-performance liquid chromatography. Glucose, followed by fructose, was the most abundant sugar, while malic acid was the predominant acid. Sorbitol and malic acid were the most stable compounds between years, and had the highest heritability, being also the best correlated to SSC and TA, respectively, revealing their relevance for breeding. Significantly positive correlations were observed among sugars and SSC, and acids and TA, but high interannual variability between years was observed for all traits. Quantitative trait loci (QTL) mapping for SSC, sugars, TA, and organic acids was performed using a multi-family approach with FlexQTL™. Twenty QTLs were detected consistently during the two phenotyped years, and several relevant regions with overlapping QTLs for sugars and acids were also identified. The results confirmed major stable SSC and TA QTLs on the linkage groups 4 and 6, respectively. Within the main LG4 SSC QTL region, where maturity and fruit development time QTLs have been previously detected, three stable sugar (glucose, sorbitol, and sucrose) and two acid (quinic, shikimic) QTLs were also identified, suggesting a pleiotropic effect of ripening date on the content of these compounds. The major malic acid QTL overlapped with TA QTL on LG6; thus, TA QTL mapping on LG6 may correspond to malic acid QTLs. Haplotype analyses of major SSC and sugars QTL on LG4, and TA and malic acid on LG6 revealed haplotypes of breeding interest. Several candidate genes previously identified in other Prunus fruit species, like peach, were found to collocate with the QTLs detected herein. This work reports QTLs regions and haplotypes of sugar and acid content in a Prunus nonclimacteric stone fruit for the first time.
Collapse
Affiliation(s)
- Clara Gracia
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, Zaragoza 50059, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), C. Miguel Servet 177, Zaragoza 50013, Spain
| | - Alejandro Calle
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, Zaragoza 50059, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), C. Miguel Servet 177, Zaragoza 50013, Spain
- Fruit Production, IRTA, Fruitcentre, Lleida 25003, Spain
- Department of Plant and Environmental Sciences, Clemson University, 105 Collins St., Clemson SC 29634, USA
| | - Ksenija Gasic
- Department of Plant and Environmental Sciences, Clemson University, 105 Collins St., Clemson SC 29634, USA
| | - Esther Arias
- Departamento de Producción Animal y Ciencia de los Alimentos, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), C. Miguel Servet 177, Zaragoza 50013, Spain
| | - Ana Wünsch
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, Zaragoza 50059, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), C. Miguel Servet 177, Zaragoza 50013, Spain
| |
Collapse
|
2
|
Jung M, Hodel M, Knauf A, Kupper D, Neuditschko M, Bühlmann-Schütz S, Studer B, Patocchi A, Broggini GA. Evaluation of genomic and phenomic prediction for application in apple breeding. BMC PLANT BIOLOGY 2025; 25:103. [PMID: 39856563 PMCID: PMC11759423 DOI: 10.1186/s12870-025-06104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Apple breeding schemes can be improved by using genomic prediction models to forecast the performance of breeding material. The predictive ability of these models depends on factors like trait genetic architecture, training set size, relatedness of the selected material to the training set, and the validation method used. Alternative genotyping methods such as RADseq and complementary data from near-infrared spectroscopy could help improve the cost-effectiveness of genomic prediction. However, the impact of these factors and alternative approaches on predictive ability beyond experimental populations still need to be investigated. In this study, we evaluated 137 prediction scenarios varying the described factors and alternative approaches, offering recommendations for implementing genomic selection in apple breeding. RESULTS Our results show that extending the training set with germplasm related to the predicted breeding material can improve average predictive ability across eleven studied traits by up to 0.08. The study emphasizes the usefulness of leave-one-family-out cross-validation, reflecting the application of genomic prediction to a new family, although it reduced average predictive ability across traits by up to 0.24 compared to 10-fold cross-validation. Similar average predictive abilities across traits indicate that imputed RADseq data could be a suitable genotyping alternative to SNP array datasets. The best-performing scenario using near-infrared spectroscopy data for phenomic prediction showed a 0.35 decrease in average predictive ability across traits compared to conventional genomic prediction, suggesting that the tested phenomic prediction approach is impractical. CONCLUSIONS Extending the training set using germplasm related with the target breeding material is crucial to improve the predictive ability of genomic prediction in apple. RADseq is a viable alternative to SNP array genotyping, while phenomic prediction is impractical. These findings offer valuable guidance for applying genomic selection in apple breeding, ultimately leading to the development of breeding material with improved quality.
Collapse
Affiliation(s)
- Michaela Jung
- Agroscope, Mueller-Thurgau-Strasse 29, Waedenswil, 8820, Switzerland.
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, Zurich, 8092, Switzerland.
| | - Marius Hodel
- Agroscope, Mueller-Thurgau-Strasse 29, Waedenswil, 8820, Switzerland
| | - Andrea Knauf
- Agroscope, Mueller-Thurgau-Strasse 29, Waedenswil, 8820, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, Zurich, 8092, Switzerland
| | - Daniela Kupper
- Agroscope, Mueller-Thurgau-Strasse 29, Waedenswil, 8820, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, Zurich, 8092, Switzerland
| | | | | | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, Zurich, 8092, Switzerland
| | - Andrea Patocchi
- Agroscope, Mueller-Thurgau-Strasse 29, Waedenswil, 8820, Switzerland
| | - Giovanni Al Broggini
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, Zurich, 8092, Switzerland
| |
Collapse
|
3
|
Su Q, Feng Y, Li X, Wang Z, Zhong Y, Zhao Z, Yang H. Allelic variation in an expansin, MdEXP-A1, contributes to flesh firmness at harvest in apples. MOLECULAR HORTICULTURE 2025; 5:3. [PMID: 39828743 PMCID: PMC11744834 DOI: 10.1186/s43897-024-00121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/17/2024] [Indexed: 01/22/2025]
Abstract
Flesh firmness is a core quality trait in apple breeding because of its correlation with ripening and storage. Quantitative trait loci (QTLs) were analyzed through bulked segregant analysis sequence (BSA-seq) and comparative transcriptome analysis (RNA-seq) to explore the genetic basis of firmness formation. In this study, phenotypic data were collected at harvest from 251 F1 hybrids derived from 'Ruiyang' and 'Scilate', the phenotype values of flesh firmness at harvest were extensively segregated for two consecutive years. A total of 11 candidate intervals were identified on chromosomes 03, 05, 06, 07, 13, and 16 via BSA-seq analysis. We characterized a major QTL on chromosome 16 and selected a candidate gene encoding expansin MdEXP-A1 by combining RNA-seq analysis. Furthermore, the genotype of Del-1166 (homozygous deletion) in the MdEXP-A1 promoter was closely associated with the super-hard phenotype of F1 hybrids, which could be used as a functional marker for marker-assisted selection (MAS) in apple. Functional identification revealed that MdEXP-A1 positively expedited fruit softening in both apple fruits and tomatoes that overexpressed MdEXP-A1. Moreover, the promoter sequence of TE-1166 was experimentally validated containing two binding motifs of MdNAC1, and the absence of the MdEXP-A1 promoter fragment reduced its transcription activity. MdNAC1 also promotes the expression of MdEXP-A1, indicating its potential modulatory role in quality breeding. These findings provide novel insight into the genetic control of flesh firmness by MdEXP-A1.
Collapse
Affiliation(s)
- Qiufang Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yifeng Feng
- College of Horticulture and Forestry, Tarim University, Alaer, 843300, Xinjiang, China
| | - Xianglu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zidun Wang
- Liaoning Institute of Pomology, Yingkou, 115009, China
| | - Yuanwen Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huijuan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Bouillon P, Belin E, Fanciullino AL, Balzergue S, Hanteville S, Letekoma Y, Cournol M, Faris F, Bouanich A, Bréard D, Bernard F, Celton JM. Fade into you: genetic control of pigmentation patterns in red-flesh apple ( Malus domestica). FRONTIERS IN PLANT SCIENCE 2025; 15:1462545. [PMID: 39872201 PMCID: PMC11770013 DOI: 10.3389/fpls.2024.1462545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/03/2024] [Indexed: 01/30/2025]
Abstract
The genetic basis of type 1 red-flesh color development in apple (Malus domestica) depends upon a particular allele of the MdMYB10 gene. Interestingly, type 1 red-flesh apples are fully red after fruit set, but anthocyanin pigmentation in apple fruit cortex may decrease during fruit growth and maturation, leading to variable red patterning and intensities in the mature cortical flesh. We developed a histogram-based color analysis method to quantitatively estimate pigmentation patterns. This methodology was applied to investigate the phenotypic diversity in four hybrid F1 families segregating for red-flesh color. Pigmentation patterns were found to be heritable allowing the identification of a new locus by QTL analysis. To further investigate the mechanisms involved in the spatial deposition of anthocyanin, metabolome, transcriptome and methylome comparisons between white and red flesh areas within the red-flesh genotype cv. 'R201' exhibiting flesh pigmentation patterns, was performed. Wide-targeted analysis showed that white-flesh areas accumulate more dihydrochalcones and hydroxycinnamic acids than red-flesh areas while red-flesh areas accumulate more flavonoids. Anthocyanin biosynthesis genes and anthocyanin positive regulators (MBW complex) were up-regulated in red-flesh areas, while a reduction in anthocyanin storage, transport and stability (increase of pH, down-regulation of MdGSTU22) and an increase in phenolic catabolism were concomitant with color fading process in white-flesh areas. Expression of MdGSTU22 was linked to a differentially methylated region (DMR) suggesting a potential environmental effect on the epigenetic control of gene expression involved in color fading. Altogether, these results provide the first characterization and functional identification of color fading in apple fruit flesh.
Collapse
Affiliation(s)
- Pierre Bouillon
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
- IFO, Seiches sur le Loir, France
| | - Etienne Belin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | | | - Sandrine Balzergue
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
- Analyses des Acides Nucléiques (ANAN), SFR QUASAV, Angers, France
| | | | - Yao Letekoma
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Maryline Cournol
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Fatima Faris
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Andréa Bouanich
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Dimitri Bréard
- Univ Angers, Substances d’Origine Naturelle et Analogues Structuraux (SONAS), SFR QUASAV, Angers, France
| | | | - Jean-Marc Celton
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| |
Collapse
|
5
|
Su Q, Yang H, Li X, Zhong Y, Feng Y, Li H, Tahir MM, Zhao Z. Upregulation of PECTATE LYASE5 by a NAC transcription factor promotes fruit softening in apple. PLANT PHYSIOLOGY 2024; 196:1887-1907. [PMID: 39158080 DOI: 10.1093/plphys/kiae428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 08/20/2024]
Abstract
Flesh firmness is a critical breeding trait that determines consumer selection, shelf life, and transportation. The genetic basis controlling firmness in apple (Malus × domestica Borkh.) remains to be fully elucidated. We aimed to decipher genetic variance for firmness at harvest and develop potential molecular markers for marker-assisted breeding. Maturity firmness for 439 F1 hybrids from a cross of "Cripps Pink" and "Fuji" was determined in 2016 and 2017. The phenotype segregated extensively, with a Gaussian distribution. In a combined bulked segregant analysis (BSA) and RNA-sequencing analysis, 84 differentially expressed genes were screened from the 10 quantitative trait loci regions. Interestingly, next-generation re-sequencing analysis revealed a Harbinger-like transposon element insertion upstream of the candidate gene PECTATE LYASE5 (MdPL5); the genotype was associated with flesh firmness at harvest. The presence of this transposon repressed MdPL5 expression and was closely linked to the extra-hard phenotype. MdPL5 was demonstrated to promote softening in apples and tomatoes. Subsequently, using the MdPL5 promoter as bait, MdNAC1-L was identified as a transcription activator that positively regulates ripening and softening in the developing fruit. We also demonstrated that MdNAC1-L could induce the up-regulation of MdPL5, MdPG1, and the ethylene-related genes MdACS1 and MdACO1. Our findings provide insight into TE-related genetic variation and the PL-mediated regulatory network for the firmness of apple fruit.
Collapse
Affiliation(s)
- Qiufang Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huijuan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianglu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanwen Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifeng Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongfei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling, shaanxi 712100, China
| |
Collapse
|
6
|
Rawandoozi ZJ, Barocco A, Rawandoozi MY, Klein PE, Byrne DH, Riera-Lizarazu O. Genetic dissection of stem and leaf rachis prickles in diploid rose using a pedigree-based QTL analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1356750. [PMID: 39359628 PMCID: PMC11445041 DOI: 10.3389/fpls.2024.1356750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/16/2024] [Indexed: 10/04/2024]
Abstract
Introduction Prickles are often deemed undesirable traits in many crops, including roses (Rosa sp.), and there is demand for rose cultivars with no or very few prickles. This study aims to identify new and/or validate reported quantitative trait loci (QTLs) associated with stem and leaf rachis prickle density, characterize the effects of functional haplotypes for major QTLs, and identify the sources of QTL-alleles associated with increased/decreased prickle density in roses. Methods QTL mapping using pedigree-based analysis (PBA), and haplotype analysis were conducted on two multi-parental diploid rose populations (TX2WOB and TX2WSE). Results and discussion Twelve QTLs were identified on linkage groups (LGs) 2, 3, 4, and 6. The major QTLs for the stem prickle density were located between 42.25 and 45.66 Mbp on chromosome 3 of the Rosa chinensis genome assembly, with individual QTLs explaining 18 to 49% of phenotypic variance (PVE). The remaining mapped QTLs were minor. As for the rachis prickle density, several QTLs were detected on LG3, 4, and 6 with PVE 8 to 17%. Also, this study identified that ancestors R. wichurana 'Basye's Thornless', 'Old Blush', and the pollen parent of M4-4 were common sources of favorable alleles (q) associated with decreased prickle density, whereas 'Little Chief' and 'Srche Europy' were the source of unfavorable alleles (Q) in the TX2WOB and TX2WSE populations, respectively. The outcomes of this work complement other studies to locate factors that affect prickle density. These results can also be utilized to develop high-throughput DNA tests and apply parental selection to develop prickle-free rose cultivars.
Collapse
Affiliation(s)
- Zena J. Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Andrew Barocco
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Maad Y. Rawandoozi
- Norman Borlaug Institute for International Agriculture and Development, Texas A&M AgriLife Research, Texas A&M System, College Station, TX, United States
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - David H. Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Oscar Riera-Lizarazu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
7
|
Fan S, Georgi LL, Hebard FV, Zhebentyayeva T, Yu J, Sisco PH, Fitzsimmons SF, Staton ME, Abbott AG, Nelson CD. Mapping QTLs for blight resistance and morpho-phenological traits in inter-species hybrid families of chestnut ( Castanea spp.). FRONTIERS IN PLANT SCIENCE 2024; 15:1365951. [PMID: 38650705 PMCID: PMC11033410 DOI: 10.3389/fpls.2024.1365951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Chestnut blight (caused by Cryphonectria parasitica), together with Phytophthora root rot (caused by Phytophthora cinnamomi), has nearly extirpated American chestnut (Castanea dentata) from its native range. In contrast to the susceptibility of American chestnut, many Chinese chestnut (C. mollissima) genotypes are resistant to blight. In this research, we performed a series of genome-wide association studies for blight resistance originating from three unrelated Chinese chestnut trees (Mahogany, Nanking and M16) and a Quantitative Trait Locus (QTL) study on a Mahogany-derived inter-species F2 family. We evaluated trees for resistance to blight after artificial inoculation with two fungal strains and scored nine morpho-phenological traits that are the hallmarks of species differentiation between American and Chinese chestnuts. Results support a moderately complex genetic architecture for blight resistance, as 31 QTLs were found on 12 chromosomes across all studies. Additionally, although most morpho-phenological trait QTLs overlap or are adjacent to blight resistance QTLs, they tend to aggregate in a few genomic regions. Finally, comparison between QTL intervals for blight resistance and those previously published for Phytophthora root rot resistance, revealed five common disease resistance regions on chromosomes 1, 5, and 11. Our results suggest that it will be difficult, but still possible to eliminate Chinese chestnut alleles for the morpho-phenological traits while achieving relatively high blight resistance in a backcross hybrid tree. We see potential for a breeding scheme that utilizes marker-assisted selection early for relatively large effect QTLs followed by genome selection in later generations for smaller effect genomic regions.
Collapse
Affiliation(s)
- Shenghua Fan
- Forest Health Research and Education Center, Department of Horticulture, University of Kentucky, Lexington, KY, United States
| | - Laura L. Georgi
- Forest Health Research and Education Center, U.S. Department of Agriculture (USDA) Forest Service, Southern Research Station, Lexington, KY, United States
- Virginia Chapter, The American Chestnut Foundation, Meadowview, VA, United States
| | - Frederick V. Hebard
- Virginia Chapter, The American Chestnut Foundation, Meadowview, VA, United States
| | - Tetyana Zhebentyayeva
- Forest Health Research and Education Center, Department of Forestry and Natural Resources, University of Kentucky, Lexington, KY, United States
| | - Jiali Yu
- Synthetic and Systems Biology Innovation Hub, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Paul H. Sisco
- Carolinas Chapter, The American Chestnut Foundation, Asheville, NC, United States
| | - Sara F. Fitzsimmons
- North Central Office, The American Chestnut Foundation, University Park, PA, United States
| | - Margaret E. Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - Albert G. Abbott
- Forest Health Research and Education Center, Department of Forestry and Natural Resources, University of Kentucky, Lexington, KY, United States
| | - C. Dana Nelson
- Forest Health Research and Education Center, U.S. Department of Agriculture (USDA) Forest Service, Southern Research Station, Lexington, KY, United States
- Southern Institute of Forest Genetics, U.S. Department of Agriculture (USDA) Forest Service, Southern Research Station, Saucier, MS, United States
| |
Collapse
|
8
|
da Silva Linge C, Fu W, Calle A, Rawandoozi Z, Cai L, Byrne DH, Worthington M, Gasic K. Ppe.RPT/SSC-1: from QTL mapping to a predictive KASP test for ripening time and soluble solids concentration in peach. Sci Rep 2024; 14:1453. [PMID: 38228692 PMCID: PMC10791670 DOI: 10.1038/s41598-024-51599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/07/2024] [Indexed: 01/18/2024] Open
Abstract
Genomic regions associated with ripening time (RPT) and soluble solids concentration (SSC) were mapped using a pedigreed population including multiple F1 and F2 families from the Clemson University peach breeding program (CUPBP). RPT and SSC QTLs were consistently identified in two seasons (2011 and 2012) and the average datasets (average of two seasons). A target region spanning 10,981,971-11,298,736 bp on chromosome 4 of peach reference genome used for haplotype analysis revealed four haplotypes with significant differences in trait values among different diplotype combinations. Favorable alleles at the target region for both RPT and SSC were determined and a DNA test for predicting RPT and SSC was developed. Two Kompetitive Allele Specific PCR (KASP) assays were validated on 84 peach cultivars and 163 seedlings from the CUPBP, with only one assay (Ppe.RPT/SSC-1) needed to predict between early and late-season ripening cultivars and low and high SSC. These results advance our understanding of the genetic basis of RPT and SSC and facilitate selection of new peach cultivars with the desired RPT and SSC.
Collapse
Affiliation(s)
- Cassia da Silva Linge
- Department of Plant and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, 29634, USA
- Department of Agriculture and Environmental Sciences, University of Milan, Milan, Italy
| | - Wanfang Fu
- Department of Plant and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Alejandro Calle
- Department of Plant and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, 29634, USA
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Fruitcentre, PCiTAL, Gardeny Park, Fruitcentre Building, 25003, Lleida, Spain
| | - Zena Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Lichun Cai
- Department of Plant and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, 29634, USA
| | - David H Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Margaret Worthington
- Department of Horticulture, University of Arkansas System Division of Agriculture, Fayetteville, AR, 72701, USA
| | - Ksenija Gasic
- Department of Plant and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
9
|
Peil A, Howard NP, Bühlmann-Schütz S, Hiller I, Schouten H, Flachowsky H, Patocchi A. Rvi4 and Rvi15 are the same apple scab resistance genes. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:74. [PMID: 37830083 PMCID: PMC10564682 DOI: 10.1007/s11032-023-01421-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
The apple (Malus x domestica) scab (Venturia inaequalis) resistance genes Rvi4 and Rvi15 were mapped to a similar region on the top of linkage group 2 and both resistance genes elicit the same type of resistance reaction, i.e., a hypersensitive response; hence, it is suspected that the two genes may be the same. As the two resistance genes Rvi4 and Rvi15 are currently used in apple breeding, it is important to clarify whether the two resistance genes are the same or not. Several approaches were used to make this determination. First, the pedigree of the genotype GMAL 2473, the source of Rvi15, was reconstructed. GMAL 2473 was found to be an F1 of 'Russian seedling', the genotype, which is known to also be the source of Rvi4. Next, it was further demonstrated that 'Regia', a cultivar known to carry Rvi4 (and Rvi2), carries the same gene (Vr2-C), which was demonstrated to be the gene inducing Rvi15 resistance. Finally, it was shown that transgenic lines carrying Vr2-C are compatible with race 4 apple scab isolates. Taken all together, these results definitively demonstrate that Rvi4 and Rvi15 are the same resistance gene. For future studies, we suggest referring to this resistance with the first name that was assigned to this gene, namely Rvi4. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01421-0.
Collapse
Affiliation(s)
- Andreas Peil
- Julius Kühn Institut (JKI)—Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Pillnitz Germany
| | - Nicholas P Howard
- Fresh Forward Breeding and Marketing B.V., Hogewoerd 1C, 6851 ET Huissen, The Netherlands
| | - Simone Bühlmann-Schütz
- Research Division Plant Breeding, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| | - Ines Hiller
- Julius Kühn Institut (JKI)—Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Pillnitz Germany
| | - Henk Schouten
- Department of Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Henryk Flachowsky
- Julius Kühn Institut (JKI)—Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Pillnitz Germany
| | - Andrea Patocchi
- Research Division Plant Breeding, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| |
Collapse
|
10
|
Rawandoozi Z, Young EL, Liang S, Wu X, Fu Q, Hochhaus T, Yan M, Rawandoozi MY, Klein PE, Byrne DH, Riera-Lizarazu O. Pedigree-based QTL analysis of flower size traits in two multi-parental diploid rose populations. FRONTIERS IN PLANT SCIENCE 2023; 14:1226713. [PMID: 37650001 PMCID: PMC10464838 DOI: 10.3389/fpls.2023.1226713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/11/2023] [Indexed: 09/01/2023]
Abstract
Rose (Rosa spp.) is one of the most economically important ornamental species worldwide. Flower diameter, flower weight, and the number of petals and petaloids are key flower-size parameters and attractive targets for DNA-informed breeding. Pedigree-based analysis (PBA) using FlexQTL software was conducted using two sets of multi-parental diploid rose populations. Phenotypic data for flower diameter (Diam), flower weight (fresh (FWT)/dry (DWT)), number of petals (NP), and number of petaloids (PD) were collected over six environments (seasons) at two locations in Texas. The objectives of this study were to 1) identify new and/or validate previously reported QTL(s); 2) identify SNP haplotypes associated with QTL alleles (Q-/q-) of a trait and their sources; and 3) determine QTL genotypes for important rose breeding parents. Several new and previously reported QTLs for NP and Diam traits were identified. In addition, QTLs associated with flower weight and PD were identified for the first time. Two major QTLs with large effects were mapped for all traits. The first QTL was at the distal end of LG1 (60.44-60.95 Mbp) and was associated with Diam and DWT in the TX2WOB populations. The second QTL was consistently mapped in the middle region on LG3 (30.15-39.34 Mbp) and associated with NP, PD, and flower weight across two multi-parent populations (TX2WOB and TX2WSE). Haplotype results revealed a series of QTL alleles with differing effects at important loci for most traits. This work is distinct from previous studies by conducting co-factor analysis to account for the DOUBLE FLOWER locus while mapping QTL for NP. Sources of high-value (Q) alleles were identified, namely, 'Old Blush' and Rosa wichuraiana from J14-3 for Diam, while 'Violette' and PP-J14-3 were sources for other traits. In addition, the source of the low-value (q) alleles for Diam was 'Little Chief', and Rosa wichuraiana through J14-3 was the source for the remaining traits. Hence, our results can potentially inform parental/seedling selections as means to improve ornamental quality in roses and a step towards implementing DNA-informed techniques for use in rose breeding programs.
Collapse
Affiliation(s)
- Zena Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Ellen L. Young
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Shuyin Liang
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Xuan Wu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Qiuyi Fu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Tessa Hochhaus
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Muqing Yan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Maad Y. Rawandoozi
- Norman Borlaug Institute for International Agriculture and Development, Texas A&M AgriLife Research, Texas A&M System, College Station, TX, United States
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - David H. Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Oscar Riera-Lizarazu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
11
|
Tian Y, Li D, Wang X, Zhang H, Wang J, Yu L, Guo C, Luan X, Liu X, Li H, Reif JC, Li YH, Qiu LJ. Deciphering the genetic basis of resistance to soybean cyst nematode combining IBD and association mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:50. [PMID: 36912956 PMCID: PMC10011322 DOI: 10.1007/s00122-023-04268-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
IBD analysis clarified the dynamics of chromosomal recombination during the ZP pedigree breeding process and identified ten genomic regions resistant to SCN race3 combining association mapping. Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is one of the most devastating pathogens for soybean production worldwide. The cultivar Zhongpin03-5373 (ZP), derived from SCN-resistant progenitor parents, Peking, PI 437654 and Huipizhi Heidou, is an elite line with high resistance to SCN race3. In the current study, a pedigree variation map was generated for ZP and its ten progenitors using 3,025,264 high-quality SNPs identified from an average of 16.2 × re-sequencing for each genome. Through identity by decent (IBD) tracking, we showed the dynamic change of genome and detected important IBD fragments, which revealed the comprehensively artificial selection of important traits during ZP breeding process. A total of 2,353 IBD fragments related to SCN resistance including SCN-resistant genes rhg1, rhg4 and NSFRAN07 were identified based on the resistant-related genetic paths. Moreover, 23 genomic regions underlying resistance to SCN race3 were identified by genome-wide association study (GWAS) in 481 re-sequenced cultivated soybeans. Ten common loci were found by both IBD tracking and GWAS analysis. Haplotype analysis of 16 potential candidate genes suggested a causative SNP (C/T, - 1065) located in the promoter of Glyma.08G096500 and encoding a predicted TIFY5b-related protein on chr8 was highly correlated with SCN race3 resistance. Our results more thoroughly elucidated the dynamics of genomic fragments during ZP pedigree breeding and the genetic basis of SCN resistance, which will provide useful information for gene cloning and the development of resistant soybean cultivars using a marker-assisted selection approach.
Collapse
Affiliation(s)
- Yu Tian
- The National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China
| | - Delin Li
- The National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China
| | - Xueqing Wang
- The National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China
| | - Hao Zhang
- The National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China
| | - Jiajun Wang
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Lijie Yu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Heilongjiang Province, Harbin, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Heilongjiang Province, Harbin, China
| | - Xiaoyan Luan
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xinlei Liu
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Hongjie Li
- The National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China
| | - Jochen C Reif
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ying-Hui Li
- The National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China.
| | - Li-Juan Qiu
- The National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China.
| |
Collapse
|
12
|
Rawandoozi ZJ, Young EL, Kang S, Yan M, Noyan S, Fu Q, Hochhaus T, Rawandoozi MY, Klein PE, Byrne DH, Riera-Lizarazu O. Pedigree-based analysis in multi-parental diploid rose populations reveals QTLs for cercospora leaf spot disease resistance. FRONTIERS IN PLANT SCIENCE 2023; 13:1082461. [PMID: 36684798 PMCID: PMC9859674 DOI: 10.3389/fpls.2022.1082461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Cercospora leaf spot (CLS) (Cercospora rosicola) is a major fungal disease of roses (Rosa sp.) in the southeastern U.S. Developing CLS-resistant cultivars offers a potential solution to reduce pesticide use. Yet, no work has been performed on CLS resistance. This study aimed to identify QTLs and to characterize alleles for resistance to CLS. The study used pedigree-based QTL analysis to dissect the genetic basis of CLS resistance using two multi-parental diploid rose populations (TX2WOB and TX2WSE) evaluated across five years in two Texas locations. A total 38 QTLs were identified across both populations and distributed over all linkage groups. Three QTLs on LG3, LG4, and LG6 were consistently mapped over multiple environments. The LG3 QTL was mapped in a region between 18.9 and 27.8 Mbp on the Rosa chinensis genome assembly. This QTL explained 13 to 25% of phenotypic variance. The LG4 QTL detected in the TX2WOB population spanned a 35.2 to 39.7 Mbp region with phenotypic variance explained (PVE) up to 48%. The LG6 QTL detected in the TX2WSE population was localized to 17.9 to 33.6 Mbp interval with PVE up to 36%. Also, this study found multiple degrees of favorable allele effects (q-allele) associated with decreasing CLS at major loci. Ancestors 'OB', 'Violette', and PP-M4-4 were sources of resistance q-alleles. These results will aid breeders in parental selection to develop CLS-resistant rose cultivars. Ultimately, high throughput DNA tests that target major loci for CLS could be developed for routine use in a DNA-informed breeding program.
Collapse
Affiliation(s)
- Zena J. Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Ellen L. Young
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Stella Kang
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Muqing Yan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Seza Noyan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Qiuyi Fu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Tessa Hochhaus
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Maad Y. Rawandoozi
- Norman Borlaug Institute for International Agriculture and Development, Texas A&M AgriLife Research, Texas A&M System, College Station, TX, United States
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - David H. Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Oscar Riera-Lizarazu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
13
|
Yang X, Wu B, Liu J, Zhang Z, Wang X, Zhang H, Ren X, Zhang X, Wang Y, Wu T, Xu X, Han Z, Zhang X. A single QTL harboring multiple genetic variations leads to complicated phenotypic segregation in apple flesh firmness and crispness. PLANT CELL REPORTS 2022; 41:2379-2391. [PMID: 36208306 DOI: 10.1007/s00299-022-02929-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Within a QTL, the genetic recombination and interactions among five and two functional variations at MdbHLH25 and MdWDR5A caused much complicated phenotype segregation in apple FFR and FCR. The storability of climacteric fruit like apple is a quantitative trait. We previously identified 62 quantitative trait loci (QTLs) associating flesh firmness retainability (FFR) and flesh crispness retainability (FCR), but only a few functional genetic variations were identified and validated. The genetic variation network controlling fruit storability is far to be understood and diagnostic markers are needed for molecular breeding. We previously identified overlapped QTLs F16.1/H16.2 for FFR and FCR using an F1 population derived from 'Zisai Pearl' × 'Red Fuji'. In this study, five and two single-nucleotide polymorphisms (SNPs) were identified on the candidate genes MdbHLH25 and MdWDR5A within the QTL region. The SNP1 A allele at MdbHLH25 promoter reduced the expression and SNP2 T allele and/or SNP4/5 GT alleles at the exons attenuated the function of MdbHLH25 by downregulating the expression of the target genes MdACS1, which in turn led to a reduction in ethylene production and maintenance of higher flesh crispness. The SNPs did not alter the protein-protein interaction between MdbHLH25 and MdWDR5A. The joint effect of SNP genotype combinations by the SNPs on MdbHLH25 (SNP1, SNP2, and SNP4) and MdWDR5A (SNPi and SNPii) led to a much broad spectrum of phenotypic segregation in FFR and FCR. Together, the dissection of these genetic variations contributes to understanding the complicated effects of a QTL and provides good potential for marker development in molecular breeding.
Collapse
Affiliation(s)
- Xianglong Yang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bei Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jing Liu
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, China
| | - Zhongyan Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuan Wang
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, China
| | - Haie Zhang
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, China
| | - Xuejun Ren
- Testing and Analysis Center, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, China
| | - Xi Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
14
|
Shen F, Hu C, Huang X, Wu R, Luo S, Xu C, Zhang H, Wang X, Zhao J. Characterization of the genetic and regulatory networks associated with sugar and acid metabolism in apples via an integrated strategy. FRONTIERS IN PLANT SCIENCE 2022; 13:1066592. [PMID: 36466245 PMCID: PMC9712955 DOI: 10.3389/fpls.2022.1066592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Although sugars and acids have a substantial influence on the taste of apple fruits, the genetic and regulatory networks underlying their metabolism in fruit remain insufficiently determined. To fully decipher the genetic basis of the accumulation of sugars and acids in apple fruits, we adopted an integrated strategy that included time-course RNA-seq, QTL mapping, and whole-genome sequencing to examine two typical cultivars ('HanFu' and 'Huahong') characterized by distinctive flavors. Whole-genome sequencing revealed substantial genetic variation between the two cultivars, thereby providing an indication of the genetic basis of the distinct phenotypes. Constructed co-expression networks yielded information regarding the intra-relationships among the accumulation of different types of metabolites, and also revealed key regulatory nodes associated with the accumulation of sugars and acids, including the genes MdEF2, MdPILS5, and MdGUN8. Additionally, on the basis of QTL mapping using a high-density genetic map, we identified a series of QTLs and functional genes underlying vital traits, including sugar and acid contents. Collectively, our methodology and observations will provide an important reference for further studies focusing on the flavor of apples.
Collapse
Affiliation(s)
- Fei Shen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chenyang Hu
- College of Life Science, Shanxi Key Lab of Chinese Jujube, Yan’an University, Yan’an, Shanxi, China
| | - Xin Huang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Ruigang Wu
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Shuzhen Luo
- College of Life Science, Shanxi Key Lab of Chinese Jujube, Yan’an University, Yan’an, Shanxi, China
| | - Chengnan Xu
- College of Life Science, Shanxi Key Lab of Chinese Jujube, Yan’an University, Yan’an, Shanxi, China
| | - Hong Zhang
- College of Life Science, Shanxi Key Lab of Chinese Jujube, Yan’an University, Yan’an, Shanxi, China
| | - Xuan Wang
- Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China
| | - Jirong Zhao
- College of Life Science, Shanxi Key Lab of Chinese Jujube, Yan’an University, Yan’an, Shanxi, China
| |
Collapse
|
15
|
Hardner CM, Fikere M, Gasic K, da Silva Linge C, Worthington M, Byrne D, Rawandoozi Z, Peace C. Multi-environment genomic prediction for soluble solids content in peach ( Prunus persica). FRONTIERS IN PLANT SCIENCE 2022; 13:960449. [PMID: 36275520 PMCID: PMC9583944 DOI: 10.3389/fpls.2022.960449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
Genotype-by-environment interaction (G × E) is a common phenomenon influencing genetic improvement in plants, and a good understanding of this phenomenon is important for breeding and cultivar deployment strategies. However, there is little information on G × E in horticultural tree crops, mostly due to evaluation costs, leading to a focus on the development and deployment of locally adapted germplasm. Using sweetness (measured as soluble solids content, SSC) in peach/nectarine assessed at four trials from three US peach-breeding programs as a case study, we evaluated the hypotheses that (i) complex data from multiple breeding programs can be connected using GBLUP models to improve the knowledge of G × E for breeding and deployment and (ii) accounting for a known large-effect quantitative trait locus (QTL) improves the prediction accuracy. Following a structured strategy using univariate and multivariate models containing additive and dominance genomic effects on SSC, a model that included a previously detected QTL and background genomic effects was a significantly better fit than a genome-wide model with completely anonymous markers. Estimates of an individual's narrow-sense and broad-sense heritability for SSC were high (0.57-0.73 and 0.66-0.80, respectively), with 19-32% of total genomic variance explained by the QTL. Genome-wide dominance effects and QTL effects were stable across environments. Significant G × E was detected for background genome effects, mostly due to the low correlation of these effects across seasons within a particular trial. The expected prediction accuracy, estimated from the linear model, was higher than the realised prediction accuracy estimated by cross-validation, suggesting that these two parameters measure different qualities of the prediction models. While prediction accuracy was improved in some cases by combining data across trials, particularly when phenotypic data for untested individuals were available from other trials, this improvement was not consistent. This study confirms that complex data can be combined into a single analysis using GBLUP methods to improve understanding of G × E and also incorporate known QTL effects. In addition, the study generated baseline information to account for population structure in genomic prediction models in horticultural crop improvement.
Collapse
Affiliation(s)
- Craig M. Hardner
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Mulusew Fikere
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Ksenija Gasic
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Cassia da Silva Linge
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Margaret Worthington
- Faculty Horticulture, University of Arkansas System Division of Agriculture, Fayetteville, AR, United States
| | - David Byrne
- College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Zena Rawandoozi
- College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|
16
|
Karlström A, Gómez-Cortecero A, Nellist CF, Ordidge M, Dunwell JM, Harrison RJ. Identification of novel genetic regions associated with resistance to European canker in apple. BMC PLANT BIOLOGY 2022; 22:452. [PMID: 36131258 PMCID: PMC9490996 DOI: 10.1186/s12870-022-03833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND European canker, caused by the fungal pathogen Neonectria ditissima, is an economically damaging disease in apple producing regions of the world - especially in areas with moderate temperatures and high rainfall. The pathogen has a wide host range of hardwood perennial species, causing trunk cankers, dieback and branch lesions in its hosts. Although apple scion germplasm carrying partial resistance to the disease has been described, little is still known of the genetic basis for this quantitative resistance. RESULTS Resistance to Neonectria ditissima was studied in a multiparental population of apple scions using several phenotyping methods. The studied population consists of individuals from multiple families connected through a common pedigree. The degree of disease of each individual in the population was assessed in three experiments: artificial inoculations of detached dormant shoots, potted trees in a glasshouse and in a replicated field experiment. The genetic basis of the differences in disease was studied using a pedigree-based analysis (PBA). Three quantitative trait loci (QTL), on linkage groups (LG) 6, 8 and 10 were identified in more than one of the phenotyping strategies. An additional four QTL, on LG 2, 5, 15 and 16 were only identified in the field experiment. The QTL on LG2 and 16 were further validated in a biparental population. QTL effect sizes were small to moderate with 4.3 to 19% of variance explained by a single QTL. A subsequent analysis of QTL haplotypes revealed a dynamic response to this disease, in which the estimated effect of a haplotype varied over the field time-points. CONCLUSIONS This study describes the first identified QTL associated with resistance to N. ditissima in apple scion germplasm. The results from this study show that QTL present in germplasm commonly used in apple breeding have a low to medium effect on resistance to N. ditissima. Hence, multiple QTL will need to be considered to improve resistance through breeding.
Collapse
Affiliation(s)
- Amanda Karlström
- NIAB, Lawrence Weaver Rd, Cambridge, CB3 0LE UK
- University of Reading, School of Agriculture, Policy and Development, Reading, RG6 7EU UK
| | | | | | - Matthew Ordidge
- University of Reading, School of Agriculture, Policy and Development, Reading, RG6 7EU UK
| | - Jim M. Dunwell
- University of Reading, School of Agriculture, Policy and Development, Reading, RG6 7EU UK
| | | |
Collapse
|
17
|
Rawandoozi ZJ, Young EL, Yan M, Noyan S, Fu Q, Hochhaus T, Rawandoozi MY, Klein PE, Byrne DH, Riera-Lizarazu O. QTL mapping and characterization of black spot disease resistance using two multi-parental diploid rose populations. HORTICULTURE RESEARCH 2022; 9:uhac183. [PMID: 37064269 PMCID: PMC10101596 DOI: 10.1093/hr/uhac183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/10/2022] [Indexed: 06/17/2023]
Abstract
Black spot disease (BSD) (Diplocarpon rosae) is the most common and damaging fungal disease in garden roses (Rosa sp.). Although qualitative resistance to BSD has been extensively investigated, the research on quantitative resistance lags behind. The goal of this research was to study the genetic basis of BSD resistance in two multi-parental populations (TX2WOB and TX2WSE) through a pedigree-based analysis approach (PBA). Both populations were genotyped and evaluated for BSD incidence over five years in three locations in Texas. A total of 28 QTLs, distributed over all linkage groups (LGs), were detected across both populations. Consistent minor effect QTLs included two on LG1 and LG3 (TX2WOB and TX2WSE), two on LG4 and LG5 (TX2WSE), and one QTL on LG7 (TX2WOB). In addition, one major QTL detected in both populations was consistently mapped on LG3. This QTL was localized to an interval ranging from 18.9 to 27.8 Mbp on the Rosa chinensis genome and explained 20 and 33% of the phenotypic variation. Furthermore, haplotype analysis showed that this QTL had three distinct functional alleles. The parent PP-J14-3 was the common source of the LG3 BSD resistance in both populations. Taken together, this research presents the characterization of new SNP-tagged genetic determinants of BSD resistance, the discovery of marker-trait associations to enable parental choice based on their BSD resistance QTL haplotypes, and substrates for the development of trait-predictive DNA tests for routine use in marker-assisted breeding for BSD resistance.
Collapse
Affiliation(s)
- Zena J Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Ellen L Young
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Muqing Yan
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Seza Noyan
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Qiuyi Fu
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Tessa Hochhaus
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Maad Y Rawandoozi
- Norman Borlaug Institute for International Agriculture and Development, Texas A&M
AgriLife Research, Texas A&M System, College Station, TX,
77843 USA
| | - Patricia E Klein
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - David H Byrne
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| | - Oscar Riera-Lizarazu
- Department of Horticultural Sciences, Texas A&M University, College
Station, TX 77843, USA
| |
Collapse
|
18
|
Young EL, Lau J, Bentley NB, Rawandoozi Z, Collins S, Windham MT, Klein PE, Byrne DH, Riera-Lizarazu O. Identification of QTLs for Reduced Susceptibility to Rose Rosette Disease in Diploid Roses. Pathogens 2022; 11:pathogens11060660. [PMID: 35745514 PMCID: PMC9227826 DOI: 10.3390/pathogens11060660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Resistance to rose rosette disease (RRD), a fatal disease of roses (Rosa spp.), is a high priority for rose breeding. As RRD resistance is time-consuming to phenotype, the identification of genetic markers for resistance could expedite breeding efforts. However, little is known about the genetics of RRD resistance. Therefore, we performed a quantitative trait locus (QTL) analysis on a set of inter-related diploid rose populations phenotyped for RRD resistance and identified four QTLs. Two QTLs were found in multiple years. The most consistent QTL is qRRV_TX2WSE_ch5, which explains approximately 20% and 40% of the phenotypic variation in virus quantity and severity of RRD symptoms, respectively. The second, a QTL on chromosome 1, qRRD_TX2WSE_ch1, accounts for approximately 16% of the phenotypic variation for severity. Finally, a third QTL on chromosome 3 was identified only in the multiyear analysis, and a fourth on chromosome 6 was identified in data from one year only. In addition, haplotypes associated with significant changes in virus quantity and severity were identified for qRRV_TX2WSE_ch5 and qRRD_TX2WSE_ch1. This research represents the first report of genetic determinants of resistance to RRD. In addition, marker trait associations discovered here will enable better parental selection when breeding for RRD resistance and pave the way for marker-assisted selection for RRD resistance.
Collapse
Affiliation(s)
- Ellen L. Young
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; (E.L.Y.); (J.L.); (Z.R.); (P.E.K.); (D.H.B.)
| | - Jeekin Lau
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; (E.L.Y.); (J.L.); (Z.R.); (P.E.K.); (D.H.B.)
| | - Nolan B. Bentley
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78705, USA;
| | - Zena Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; (E.L.Y.); (J.L.); (Z.R.); (P.E.K.); (D.H.B.)
| | - Sara Collins
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, TN 37996, USA; (S.C.); (M.T.W.)
| | - Mark T. Windham
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, TN 37996, USA; (S.C.); (M.T.W.)
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; (E.L.Y.); (J.L.); (Z.R.); (P.E.K.); (D.H.B.)
| | - David H. Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; (E.L.Y.); (J.L.); (Z.R.); (P.E.K.); (D.H.B.)
| | - Oscar Riera-Lizarazu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA; (E.L.Y.); (J.L.); (Z.R.); (P.E.K.); (D.H.B.)
- Correspondence: ; Tel.: +1-509-332-9075
| |
Collapse
|
19
|
Shen F, Bianco L, Wu B, Tian Z, Wang Y, Wu T, Xu X, Han Z, Velasco R, Fontana P, Zhang X. A bulked segregant analysis tool for out-crossing species (BSATOS) and QTL-based genomics-assisted prediction of complex traits in apple. J Adv Res 2022; 42:149-162. [PMID: 36513410 PMCID: PMC9788957 DOI: 10.1016/j.jare.2022.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/22/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Genomic heterozygosity, self-incompatibility, and rich-in somatic mutations hinder the molecular breeding efficiency of outcrossing plants. OBJECTIVES We attempted to develop an efficient integrated strategy to identify quantitative trait loci (QTLs) and trait-associated genes, to develop gene markers, and to construct genomics-assisted prediction (GAP) modes. METHODS A novel protocol, bulked segregant analysis tool for out-crossing species (BSATOS), is presented here, which is characterized by taking full advantage of all segregation patterns (including AB × AB markers) and haplotype information. To verify the effectiveness of the protocol in dealing with the complex traits of outbreeding species, three apple cross populations with 9,654 individuals were adopted. RESULTS By using BSATOS, 90, 60, and 77 significant QTLs were identified successfully and candidate genes were predicted for apple fruit weight (FW), fruit ripening date (FRD), and fruit soluble solid content (SSC), respectively. The gene-based markers were developed and genotyped for 1,396 individuals in a training population, including 145 Malus accessions and 1,251 F1 plants of the three full-sib families. GAP models were trained using marker genotype effect estimates of the training population. The prediction accuracy was 0.7658, 0.6455, and 0.3758 for FW, FRD, and SSC, respectively. CONCLUSION The BSATOS and GAP models provided a convenient and efficient methodology for candidate gene mining and molecular breeding in out-crossing plant species. The BSATOS pipeline can be freely downloaded from: https://github.com/maypoleflyn/BSATOS.
Collapse
Affiliation(s)
- Fei Shen
- College of Horticulture, China Agricultural University, Beijing 100193, China,Research and Innovation Center, Edmund Mach Foundation, 38010 S. Michele all’Adige, Italy,Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Luca Bianco
- Research and Innovation Center, Edmund Mach Foundation, 38010 S. Michele all’Adige, Italy
| | - Bei Wu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhendong Tian
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, China,Corresponding authors.
| | - Riccardo Velasco
- Research Centre for Viticulture and Enology, CREA, Conegliano, Italy
| | - Paolo Fontana
- Research and Innovation Center, Edmund Mach Foundation, 38010 S. Michele all’Adige, Italy,Corresponding authors.
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China,Corresponding authors.
| |
Collapse
|
20
|
Crump WW, Peace C, Zhang Z, McCord P. Detection of Breeding-Relevant Fruit Cracking and Fruit Firmness Quantitative Trait Loci in Sweet Cherry via Pedigree-Based and Genome-Wide Association Approaches. FRONTIERS IN PLANT SCIENCE 2022; 13:823250. [PMID: 35310633 PMCID: PMC8924583 DOI: 10.3389/fpls.2022.823250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Breeding for decreased fruit cracking incidence and increased fruit firmness in sweet cherry creates an attractive alternative to variable results from cultural management practices. DNA-informed breeding increases its efficiency, yet upstream research is needed to identify the genomic regions associated with the trait variation of a breeding-relevant magnitude, as well as to identify the parental sources of favorable alleles. The objectives of this research were to identify the quantitative trait loci (QTLs) associated with fruit cracking incidence and firmness, estimate the effects of single nucleotide polymorphism (SNP) haplotypes at the detected QTLs, and identify the ancestral source(s) of functional haplotypes. Fruit cracking incidence and firmness were evaluated for multiple years on 259 unselected seedlings representing 22 important breeding parents. Phenotypic data, in conjunction with genome-wide genotypic data from the RosBREED cherry 6K SNP array, were used in the QTL analysis performed via Pedigree-Based Analysis using the FlexQTL™ software, supplemented by a Genome-Wide Association Study using the BLINK software. Haplotype analysis was conducted on the QTLs to identify the functional SNP haplotypes and estimate their phenotypic effects, and the haplotypes were tracked through the pedigree. Four QTLs (two per trait) were consistent across the years and/or both analysis methods and validated the previously reported QTLs. qCrack-LG1.1m (the label given to a consistent QTL for cracking incidence on chromosome 1) explained 2-15.1% of the phenotypic variance, while qCrack-LG5.1m, qFirm-LG1.2m, and qFirm-LG3.2m explained 7.6-13.8, 8.8-21.8, and 1.7-10.1% of the phenotypic variance, respectively. At each QTL, at least two SNP haplotypes had significant effects and were considered putative functional SNP haplotypes. Putative low-cracking SNP haplotypes were tracked to an unnamed parent of 'Emperor Francis' and 'Schmidt' and unnamed parents of 'Napoleon' and 'Hedelfingen,' among others, and putative high-firmness haplotypes were tracked to an unnamed parent of 'Emperor Francis' and 'Schmidt,' an unnamed grandparent of 'Black Republican,' 'Rube,' and an unknown parent of 'Napoleon.' These four stable QTLs can now be targeted for DNA test development, with the goal of translating information discovered here into usable tools to aid in breeding decisions.
Collapse
Affiliation(s)
- William Wesley Crump
- Department of Horticulture, Washington State University, Prosser, WA, United States
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Per McCord
- Department of Horticulture, Washington State University, Prosser, WA, United States
| |
Collapse
|
21
|
Thérèse Navarro A, Tumino G, Voorrips RE, Arens P, Smulders MJM, van de Weg E, Maliepaard C. Multiallelic models for QTL mapping in diverse polyploid populations. BMC Bioinformatics 2022; 23:67. [PMID: 35164669 PMCID: PMC8842866 DOI: 10.1186/s12859-022-04607-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract Quantitative trait locus (QTL) analysis allows to identify regions responsible for a trait and to associate alleles with their effect on phenotypes. When using biallelic markers to find these QTL regions, two alleles per QTL are modelled. This assumption might be close to reality in specific biparental crosses but is unrealistic in situations where broader genetic diversity is studied. Diversity panels used in genome-wide association studies or multi-parental populations can easily harbour multiple QTL alleles at each locus, more so in the case of polyploids that carry more than two alleles per individual. In such situations a multiallelic model would be closer to reality, allowing for different genetic effects for each potential allele in the population. To obtain such multiallelic markers we propose the usage of haplotypes, concatenations of nearby SNPs. We developed “mpQTL” an R package that can perform a QTL analysis at any ploidy level under biallelic and multiallelic models, depending on the marker type given. We tested the effect of genetic diversity on the power and accuracy difference between bi-allelic and multiallelic models using a set of simulated multiparental autotetraploid, outbreeding populations. Multiallelic models had higher detection power and were more precise than biallelic, SNP-based models, particularly when genetic diversity was higher. This confirms that moving to multi-allelic QTL models can lead to improved detection and characterization of QTLs.
Key message QTL detection in populations with more than two functional QTL alleles (which is likely in multiparental and/or polyploid populations) is more powerful when using multiallelic models, rather than biallelic models. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04607-z.
Collapse
Affiliation(s)
- Alejandro Thérèse Navarro
- Plant Sciences Group, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Giorgio Tumino
- Plant Sciences Group, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Roeland E Voorrips
- Plant Sciences Group, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Paul Arens
- Plant Sciences Group, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Marinus J M Smulders
- Plant Sciences Group, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Eric van de Weg
- Plant Sciences Group, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Chris Maliepaard
- Plant Sciences Group, Department of Plant Sciences, Wageningen University and Research, Droevendaalsesteeg 1, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands.
| |
Collapse
|
22
|
Howard NP, van de Weg E, Luby JJ. A new method to reconstruct the direction of parent-offspring duo relationships using SNP array data and its demonstration on ancient and modern cultivars in the outcrossing species malus × domestica. HORTICULTURE RESEARCH 2022; 9:uhab069. [PMID: 35043196 PMCID: PMC8881379 DOI: 10.1093/hr/uhab069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
Unordered parent-offspring (PO) relationships are an outstanding issue in pedigree reconstruction studies. Resolution of the order of these relationships would expand the results, conclusions, and usefulness of such studies; however, no such PO order resolution (POR) tests currently exist. This study describes two such tests, demonstrated using SNP array data in the outcrossing species apple (Malus × domestica) on a PO relationship of known order ("Keepsake" as a parent of "Honeycrisp") and two PO relationships previously ordered only via provenance information. The first test, POR-1, tests whether some of the extended haplotypes deduced from homozygous SNP calls from one individual in an unordered PO duo are composed of recombinant haplotypes from accurately phased SNP genotypes from the second individual. If so, the first individual would be the offspring of the second individual, otherwise the opposite relationship would be present. The second test, POR-2, does not require phased SNP genotypes and uses similar logic as the POR-1 test, albeit in a different approach. The POR-1 and POR-2 tests determined the correct relationship between "Keepsake" and "Honeycrisp". The POR-2 test confirmed "Reinette Franche" as a parent of "Nonpareil" and "Brabant Bellefleur" as a parent of "Court Pendu Plat". The latter finding conflicted with the recorded provenance information, demonstrating the need for these tests. The successful demonstration of these tests suggests they can add insights to future pedigree reconstruction studies, though caveats, like extreme inbreeding or selfing, would need to be considered where relevant.
Collapse
Affiliation(s)
- Nicholas P Howard
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky University, Oldenburg, 26129 Germany
- Department of Horticultural Science, University of Minnesota, St. Paul, 55108 United States of America
| | - Eric van de Weg
- Plant Breeding, Wageningen University and Research, Wageningen, 6708 PB The Netherlands
| | - James J Luby
- Department of Horticultural Science, University of Minnesota, St. Paul, 55108 United States of America
| |
Collapse
|
23
|
Bilbrey EA, Williamson K, Hatzakis E, Miller DD, Fresnedo-Ramírez J, Cooperstone JL. Integrating genomics and multiplatform metabolomics enables metabolite quantitative trait loci detection in breeding-relevant apple germplasm. THE NEW PHYTOLOGIST 2021; 232:1944-1958. [PMID: 34472097 DOI: 10.1111/nph.17693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/10/2021] [Indexed: 05/12/2023]
Abstract
Apple (Malus × domestica) has commercial and nutritional value, but breeding constraints of tree crops limit varietal improvement. Marker-assisted selection minimises these drawbacks, but breeders lack applications for targeting fruit phytochemicals. To understand genotype-phytochemical associations in apples, we have developed a high-throughput integration strategy for genomic and multiplatform metabolomics data. Here, 124 apple genotypes, including members of three pedigree-connected breeding families alongside diverse cultivars and wild selections, were genotyped and phenotyped. Metabolite genome-wide association studies (mGWAS) were conducted with c. 10 000 single nucleotide polymorphisms and phenotypic data acquired via LC-MS and 1 H NMR untargeted metabolomics. Putative metabolite quantitative trait loci (mQTL) were then validated via pedigree-based analyses (PBA). Using our developed method, 519, 726 and 177 putative mQTL were detected in LC-MS positive and negative ionisation modes, and NMR, respectively. mQTL were indicated on each chromosome, with hotspots on linkage groups 16 and 17. A chlorogenic acid mQTL was discovered on chromosome 17 via mGWAS and validated with a two-step PBA, enabling discovery of novel candidate gene-metabolite relationships. Complementary data from three metabolomics approaches and dual genomics analyses increased confidence in validity of compound annotation and mQTL detection. Our platform demonstrates the utility of multiomic integration to advance data-driven, phytochemical-based plant breeding.
Collapse
Affiliation(s)
- Emma A Bilbrey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA
| | - Kathryn Williamson
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA
| | - Emmanuel Hatzakis
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA
| | - Diane Doud Miller
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, 44691, USA
| | | | - Jessica L Cooperstone
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
24
|
Amadeu RR, Muñoz PR, Zheng C, Endelman JB. QTL mapping in outbred tetraploid (and diploid) diallel populations. Genetics 2021; 219:iyab124. [PMID: 34740237 PMCID: PMC8570786 DOI: 10.1093/genetics/iyab124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/24/2021] [Indexed: 11/14/2022] Open
Abstract
Over the last decade, multiparental populations have become a mainstay of genetics research in diploid species. Our goal was to extend this paradigm to autotetraploids by developing software for quantitative trait locus (QTL) mapping in connected F1 populations derived from a set of shared parents. For QTL discovery, phenotypes are regressed on the dosage of parental haplotypes to estimate additive effects. Statistical properties of the model were explored by simulating half-diallel diploid and tetraploid populations with different population sizes and numbers of parents. Across scenarios, the number of progeny per parental haplotype (pph) largely determined the statistical power for QTL detection and accuracy of the estimated haplotype effects. Multiallelic QTL with heritability 0.2 were detected with 90% probability at 25 pph and genome-wide significance level 0.05, and the additive haplotype effects were estimated with over 90% accuracy. Following QTL discovery, the software enables a comparison of models with multiple QTL and nonadditive effects. To illustrate, we analyzed potato tuber shape in a half-diallel population with three tetraploid parents. A well-known QTL on chromosome 10 was detected, for which the inclusion of digenic dominance lowered the Deviance Information Criterion (DIC) by 17 points compared to the additive model. The final model also contained a minor QTL on chromosome 1, but higher-order dominance and epistatic effects were excluded based on the DIC. In terms of practical impacts, the software is already being used to select offspring based on the effect and dosage of particular haplotypes in breeding programs.
Collapse
Affiliation(s)
- Rodrigo R Amadeu
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Patricio R Muñoz
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Chaozhi Zheng
- Biometris, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Jeffrey B Endelman
- Department of Horticulture, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
25
|
Daval A, Pomiès V, le Squin S, Denis M, Riou V, Breton F, Nopariansyah, Bink M, Cochard B, Jacob F, Billotte N, Tisné S. In silico QTL mapping in an oil palm breeding program reveals a quantitative and complex genetic resistance to Ganoderma boninense. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:53. [PMID: 37309398 PMCID: PMC10236112 DOI: 10.1007/s11032-021-01246-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Basal stem rot caused by Ganoderma boninense is the major threat to oil palm cultivation in Southeast Asia, which accounts for 80% of palm oil production worldwide, and this disease is increasing in Africa. The use of resistant planting material as part of an integrated pest management of this disease is one sustainable solution. However, breeding for Ganoderma resistance requires long-term and costly research, which could greatly benefit from marker-assisted selection (MAS). In this study, we evaluated the effectiveness of an in silico genetic mapping approach that took advantage of extensive data recorded in an ongoing breeding program. A pedigree-based QTL mapping approach applied to more than 10 years' worth of data collected during pre-nursery tests revealed the quantitative nature of Ganoderma resistance and identified underlying loci segregating in genetic diversity that is directly relevant for the breeding program supporting the study. To assess the consistency of QTL effects between pre-nursery and field environments, information was collected on the disease status of the genitors planted in genealogical gardens and modeled with pre-nursery-based QTL genotypes. In the field, individuals were less likely to be infected with Ganoderma when they carried more favorable alleles at the pre-nursery QTL. Our results pave the way for a MAS of Ganoderma resistant and high yielding planting material, and the provided proof-of-concept of this efficient and cost-effective approach could motivate similar studies based on diverse breeding programs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01246-9.
Collapse
Affiliation(s)
- Aurélie Daval
- UMR AGAP, CIRAD, 34398 Montpellier, France
- CIRAD, INRAE, AGAP, Univ Montpellier, Institut Agro, Montpellier, France
| | - Virgine Pomiès
- UMR AGAP, CIRAD, 34398 Montpellier, France
- CIRAD, INRAE, AGAP, Univ Montpellier, Institut Agro, Montpellier, France
| | | | - Marie Denis
- UMR AGAP, CIRAD, 34398 Montpellier, France
- CIRAD, INRAE, AGAP, Univ Montpellier, Institut Agro, Montpellier, France
| | - Virginie Riou
- UMR AGAP, CIRAD, 34398 Montpellier, France
- CIRAD, INRAE, AGAP, Univ Montpellier, Institut Agro, Montpellier, France
| | - Frédéric Breton
- UMR AGAP, CIRAD, 34398 Montpellier, France
- CIRAD, INRAE, AGAP, Univ Montpellier, Institut Agro, Montpellier, France
| | - Nopariansyah
- P.T SOCFINDO, Jl. Yos Sudarso, Medan, Sumatera Utara 20115 Indonesia
| | - Marco Bink
- Biometris, Wageningen UR, PO Box 16, 6700 AA Wageningen, The Netherlands
- Present Address: Research & Technology Center, Hendrix Genetics, Boxmeer, The Netherlands
| | | | | | - Norbert Billotte
- UMR AGAP, CIRAD, 34398 Montpellier, France
- CIRAD, INRAE, AGAP, Univ Montpellier, Institut Agro, Montpellier, France
| | - Sébastien Tisné
- UMR AGAP, CIRAD, 34398 Montpellier, France
- CIRAD, INRAE, AGAP, Univ Montpellier, Institut Agro, Montpellier, France
| |
Collapse
|
26
|
Howard NP, Peace C, Silverstein KAT, Poets A, Luby JJ, Vanderzande S, Durel CE, Muranty H, Denancé C, van de Weg E. The use of shared haplotype length information for pedigree reconstruction in asexually propagated outbreeding crops, demonstrated for apple and sweet cherry. HORTICULTURE RESEARCH 2021; 8:202. [PMID: 34465774 PMCID: PMC8408172 DOI: 10.1038/s41438-021-00637-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 05/29/2023]
Abstract
Pedigree information is of fundamental importance in breeding programs and related genetics efforts. However, many individuals have unknown pedigrees. While methods to identify and confirm direct parent-offspring relationships are routine, those for other types of close relationships have yet to be effectively and widely implemented with plants, due to complications such as asexual propagation and extensive inbreeding. The objective of this study was to develop and demonstrate methods that support complex pedigree reconstruction via the total length of identical by state haplotypes (referred to in this study as "summed potential lengths of shared haplotypes", SPLoSH). A custom Python script, HapShared, was developed to generate SPLoSH data in apple and sweet cherry. HapShared was used to establish empirical distributions of SPLoSH data for known relationships in these crops. These distributions were then used to estimate previously unknown relationships. Case studies in each crop demonstrated various pedigree reconstruction scenarios using SPLoSH data. For cherry, a full-sib relationship was deduced for 'Emperor Francis, and 'Schmidt', a half-sib relationship for 'Van' and 'Windsor', and the paternal grandparents of 'Stella' were confirmed. For apple, 29 cultivars were found to share an unknown parent, the pedigree of the unknown parent of 'Cox's Pomona' was reconstructed, and 'Fameuse' was deduced to be a likely grandparent of 'McIntosh'. Key genetic resources that enabled this empirical study were large genome-wide SNP array datasets, integrated genetic maps, and previously identified pedigree relationships. Crops with similar resources are also expected to benefit from using HapShared for empowering pedigree reconstruction.
Collapse
Affiliation(s)
- Nicholas P Howard
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky University, Oldenburg, Germany.
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, USA.
| | - Cameron Peace
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, Washington, WA, USA.
| | | | - Ana Poets
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - James J Luby
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, USA
| | - Stijn Vanderzande
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, Washington, WA, USA
| | - Charles-Eric Durel
- Université d'Angers, Institut Agro, INRAE, IRHS, SFR 4207, QuaSaV, Beaucouzé, France
| | - Hélène Muranty
- Université d'Angers, Institut Agro, INRAE, IRHS, SFR 4207, QuaSaV, Beaucouzé, France
| | - Caroline Denancé
- Université d'Angers, Institut Agro, INRAE, IRHS, SFR 4207, QuaSaV, Beaucouzé, France
| | - Eric van de Weg
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
27
|
Migicovsky Z, Yeats TH, Watts S, Song J, Forney CF, Burgher-MacLellan K, Somers DJ, Gong Y, Zhang Z, Vrebalov J, van Velzen R, Giovannoni JG, Rose JKC, Myles S. Apple Ripening Is Controlled by a NAC Transcription Factor. Front Genet 2021; 12:671300. [PMID: 34239539 PMCID: PMC8258254 DOI: 10.3389/fgene.2021.671300] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Softening is a hallmark of ripening in fleshy fruits, and has both desirable and undesirable implications for texture and postharvest stability. Accordingly, the timing and extent of pre-harvest ripening and associated textural changes following harvest are key targets for improving fruit quality through breeding. Previously, we identified a large effect locus associated with harvest date and firmness in apple (Malus domestica) using genome-wide association studies (GWAS). Here, we present additional evidence that polymorphisms in or around a transcription factor gene, NAC18.1, may cause variation in these traits. First, we confirmed our previous findings with new phenotype and genotype data from ∼800 apple accessions. In this population, we compared a genetic marker within NAC18.1 to markers targeting three other firmness-related genes currently used by breeders (ACS1, ACO1, and PG1), and found that the NAC18.1 marker was the strongest predictor of both firmness at harvest and firmness after 3 months of cold storage. By sequencing NAC18.1 across 18 accessions, we revealed two predominant haplotypes containing the single nucleotide polymorphism (SNP) previously identified using GWAS, as well as dozens of additional SNPs and indels in both the coding and promoter sequences. NAC18.1 encodes a protein that is orthogolous to the NON-RIPENING (NOR) transcription factor, a regulator of ripening in tomato (Solanum lycopersicum). We introduced both NAC18.1 transgene haplotypes into the tomato nor mutant and showed that both haplotypes complement the nor ripening deficiency. Taken together, these results indicate that polymorphisms in NAC18.1 may underlie substantial variation in apple firmness through modulation of a conserved ripening program.
Collapse
Affiliation(s)
- Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - Trevor H Yeats
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States.,Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Sophie Watts
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - Jun Song
- Agriculture and Agri-Food Canada, Kentville, NS, Canada
| | | | | | - Daryl J Somers
- Vineland Research and Innovation Centre, Vineland Station, ON, Canada
| | - Yihui Gong
- College of Horticulture, South China Agriculture University, Guangzhou, China
| | - Zhaoqi Zhang
- College of Horticulture, South China Agriculture University, Guangzhou, China
| | - Julia Vrebalov
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States.,Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Robin van Velzen
- Biosystematics Group, Wageningen University, Wageningen, Netherlands
| | - James G Giovannoni
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States.,United States Department of Agriculture, Robert W. Holley Center, Cornell University, Ithaca, NY, United States
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Sean Myles
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| |
Collapse
|
28
|
Wu B, Shen F, Wang X, Zheng WY, Xiao C, Deng Y, Wang T, Yu Huang Z, Zhou Q, Wang Y, Wu T, Feng Xu X, Hai Han Z, Zhong Zhang X. Role of MdERF3 and MdERF118 natural variations in apple flesh firmness/crispness retainability and development of QTL-based genomics-assisted prediction. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1022-1037. [PMID: 33319456 PMCID: PMC8131039 DOI: 10.1111/pbi.13527] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 10/29/2020] [Accepted: 12/06/2020] [Indexed: 05/24/2023]
Abstract
Retention of flesh texture attributes during cold storage is critical for the long-term maintenance of fruit quality. The genetic variations determining flesh firmness and crispness retainability are not well understood. The objectives of this study are to identify gene markers based on quantitative trait loci (QTLs) and to develop genomics-assisted prediction (GAP) models for apple flesh firmness and crispness retainability. Phenotype data of 2664 hybrids derived from three Malus domestica cultivars and a M. asiatica cultivar were collected in 2016 and 2017. The phenotype segregated considerably with high broad-sense heritability of 83.85% and 83.64% for flesh firmness and crispness retainability, respectively. Fifty-six candidate genes were predicted from the 62 QTLs identified using bulked segregant analysis and RNA-seq. The genotype effects of the markers designed on each candidate gene were estimated. The genomics-predicted values were obtained using pyramiding marker genotype effects and overall mean phenotype values. Fivefold cross-validation revealed that the prediction accuracy was 0.5541 and 0.6018 for retainability of flesh firmness and crispness, respectively. An 8-bp deletion in the MdERF3 promoter disrupted MdDOF5.3 binding, reduced MdERF3 expression, relieved the inhibition on MdPGLR3, MdPME2, and MdACO4 expression, and ultimately decreased flesh firmness and crispness retainability. A 3-bp deletion in the MdERF118 promoter decreased its expression by disrupting the binding of MdRAVL1, which increased MdPGLR3 and MdACO4 expression and reduced flesh firmness and crispness retainability. These results provide insights regarding the genetic variation network regulating flesh firmness and crispness retainability, and the GAP models can assist in apple breeding.
Collapse
Affiliation(s)
- Bei Wu
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Fei Shen
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Xuan Wang
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Wen Yan Zheng
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Chen Xiao
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Yang Deng
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Ting Wang
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Zhen Yu Huang
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Qian Zhou
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Yi Wang
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Ting Wu
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Xue Feng Xu
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Zhen Hai Han
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Xin Zhong Zhang
- College of HorticultureChina Agricultural UniversityBeijingChina
| |
Collapse
|
29
|
Howard NP, Troggio M, Durel CE, Muranty H, Denancé C, Bianco L, Tillman J, van de Weg E. Integration of Infinium and Axiom SNP array data in the outcrossing species Malus × domestica and causes for seemingly incompatible calls. BMC Genomics 2021; 22:246. [PMID: 33827434 PMCID: PMC8028180 DOI: 10.1186/s12864-021-07565-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background Single nucleotide polymorphism (SNP) array technology has been increasingly used to generate large quantities of SNP data for use in genetic studies. As new arrays are developed to take advantage of new technology and of improved probe design using new genome sequence and panel data, a need to integrate data from different arrays and array platforms has arisen. This study was undertaken in view of our need for an integrated high-quality dataset of Illumina Infinium® 20 K and Affymetrix Axiom® 480 K SNP array data in apple (Malus × domestica). In this study, we qualify and quantify the compatibility of SNP calling, defined as SNP calls that are both accurate and concordant, across both arrays by two approaches. First, the concordance of SNP calls was evaluated using a set of 417 duplicate individuals genotyped on both arrays starting from a set of 10,295 robust SNPs on the Infinium array. Next, the accuracy of the SNP calls was evaluated on additional germplasm (n = 3141) from both arrays using Mendelian inconsistent and consistent errors across thousands of pedigree links. While performing this work, we took the opportunity to evaluate reasons for probe failure and observed discordant SNP calls. Results Concordance among the duplicate individuals was on average of 97.1% across 10,295 SNPs. Of these SNPs, 35% had discordant call(s) that were further curated, leading to a final set of 8412 (81.7%) SNPs that were deemed compatible. Compatibility was highly influenced by the presence of alternate probe binding locations and secondary polymorphisms. The impact of the latter was highly influenced by their number and proximity to the 3′ end of the probe. Conclusions The Infinium and Axiom SNP array data were mostly compatible. However, data integration required intense data filtering and curation. This work resulted in a workflow and information that may be of use in other data integration efforts. Such an in-depth analysis of array concordance and accuracy as ours has not been previously described in the literature and will be useful in future work on SNP array data integration and interpretation, and in probe/platform development. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07565-7.
Collapse
Affiliation(s)
- Nicholas P Howard
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Univ., Oldenburg, Germany.,Department of Horticultural Science, Univ. of Minnesota, St Paul, USA
| | | | - Charles-Eric Durel
- Université d'Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Beaucouzé, France
| | - Hélène Muranty
- Université d'Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Beaucouzé, France
| | - Caroline Denancé
- Université d'Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Beaucouzé, France
| | - Luca Bianco
- Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - John Tillman
- Department of Horticultural Science, Univ. of Minnesota, St Paul, USA
| | - Eric van de Weg
- Department of Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
30
|
Rawandoozi ZJ, Hartmann TP, Carpenedo S, Gasic K, da Silva Linge C, Cai L, Van de Weg E, Byrne DH. Mapping and characterization QTLs for phenological traits in seven pedigree-connected peach families. BMC Genomics 2021; 22:187. [PMID: 33726679 PMCID: PMC7962356 DOI: 10.1186/s12864-021-07483-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/25/2021] [Indexed: 12/02/2022] Open
Abstract
Background Environmental adaptation and expanding harvest seasons are primary goals of most peach [Prunus persica (L.) Batsch] breeding programs. Breeding perennial crops is a challenging task due to their long breeding cycles and large tree size. Pedigree-based analysis using pedigreed families followed by haplotype construction creates a platform for QTL and marker identification, validation, and the use of marker-assisted selection in breeding programs. Results Phenotypic data of seven F1 low to medium chill full-sib families were collected over 2 years at two locations and genotyped using the 9 K SNP Illumina array. Three QTLs were discovered for bloom date (BD) and mapped on linkage group 1 (LG1) (172–182 cM), LG4 (48–54 cM), and LG7 (62–70 cM), explaining 17–54%, 11–55%, and 11–18% of the phenotypic variance, respectively. The QTL for ripening date (RD) and fruit development period (FDP) on LG4 was co-localized at the central part of LG4 (40–46 cM) and explained between 40 and 75% of the phenotypic variance. Haplotype analyses revealed SNP haplotypes and predictive SNP marker(s) associated with desired QTL alleles and the presence of multiple functional alleles with different effects for a single locus for RD and FDP. Conclusions A multiple pedigree-linked families approach validated major QTLs for the three key phenological traits which were reported in previous studies across diverse materials, geographical distributions, and QTL mapping methods. Haplotype characterization of these genomic regions differentiates this study from the previous QTL studies. Our results will provide the peach breeder with the haplotypes for three BD QTLs and one RD/FDP QTL to create predictive DNA-based molecular marker tests to select parents and/or seedlings that have desired QTL alleles and cull unwanted genotypes in early seedling stages. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07483-8.
Collapse
Affiliation(s)
- Zena J Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA.
| | - Timothy P Hartmann
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Silvia Carpenedo
- Embrapa Clima Temperado, BR-392, km 78, Cx. Postal 403, Pelotas, Rio Grande do Sul, 96010-971, Brazil
| | - Ksenija Gasic
- Department of Agricultural and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Cassia da Silva Linge
- Department of Agricultural and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Lichun Cai
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Eric Van de Weg
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - David H Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
31
|
Nelson JR, Verma S, Bassil NV, Finn CE, Hancock JF, Cole GS, Knapp SJ, Whitaker VM. Discovery of three loci increasing resistance to charcoal rot caused by Macrophomina phaseolina in octoploid strawberry. G3 (BETHESDA, MD.) 2021; 11:jkab037. [PMID: 33565594 PMCID: PMC8022958 DOI: 10.1093/g3journal/jkab037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/25/2021] [Indexed: 11/12/2022]
Abstract
Charcoal rot caused by Macrophomina phaseolinais an increasing economic problem in annualized strawberry production systems around the world. Currently there are no effective postfumigation chemical controls for managing charcoal rot, and no information is available on the genetic architecture of resistance to M. phaseolina in strawberry (Fragaria ×ananassa). In this study, three multiparental discovery populations and two validation populations were inoculated at planting and evaluated for mortality in three consecutive growing seasons. Genome-wide SNP genotyping and pedigree-based analysis with FlexQTL™ software were performed. Two large-effect quantitative trait loci (QTL) increasing charcoal rot resistance were discovered and validated in cultivated germplasm. FaRMp1 was located on linkage group 2A in the interval 20.4to 24.9 cM, while FaRMp2 was located on linkage group 4B in the interval 41.1to 61.2 cM. Together these QTLs explained 27% and 17% of the phenotypic variance in two discovery populations consisting of elite breeding germplasm. For both QTLs, the resistant allele showed some evidence of partial dominance, but no significant interaction was detected between the two loci. As the dosage of resistant alleles increased from 0 to 4 across the two QTLs, mortality decreased regardless of the combination of alleles.A third locus, FaRMp3 on 4D, was discovered in FVC 11-58, a reconstituted F.×ananassa originating from diverse F. virginiana and F. chiloensis accessions. This locus accounted for 44% of phenotypic variation in four segregating crosses. These findings will form the basis for DNA-informed breeding for resistance to charcoal rot in cultivated strawberry.
Collapse
Affiliation(s)
- Jonathan R Nelson
- Department of Horticultural Science, University of Florida, IFAS Gulf Coast Research and Education Center, 14625 CR 672 Wimauma, FL 33598, USA
| | - Sujeet Verma
- Department of Horticultural Science, University of Florida, IFAS Gulf Coast Research and Education Center, 14625 CR 672 Wimauma, FL 33598, USA
| | - Nahla V Bassil
- USDA-ARS National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Chad E Finn
- USDA-ARS, HCRU, 3420 NW Orchard Avenue, Corvallis, OR 97330, USA (posthumous)
| | - James F Hancock
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Glenn S Cole
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Steven J Knapp
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Vance M Whitaker
- Department of Horticultural Science, University of Florida, IFAS Gulf Coast Research and Education Center, 14625 CR 672 Wimauma, FL 33598, USA
| |
Collapse
|
32
|
Wu B, Shen F, Chen CJ, Liu L, Wang X, Zheng WY, Deng Y, Wang T, Huang ZY, Xiao C, Zhou Q, Wang Y, Wu T, Xu XF, Han ZH, Zhang XZ. Natural variations in a pectin acetylesterase gene, MdPAE10, contribute to prolonged apple fruit shelf life. THE PLANT GENOME 2021; 14:e20084. [PMID: 33605090 DOI: 10.1002/tpg2.20084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/13/2020] [Indexed: 05/18/2023]
Abstract
Room-temperature shelf life is a key factor in fresh market apple (Malus domestica Borkh.) quality and commercial value. To investigate the genetic and molecular mechanism underlying apple shelf life, quantitative trait loci (QTL) were identified using bulked segregant analysis via sequencing (BSA-seq). Ethylene emission, flesh firmness, or crispness of apple fruit from 1,273 F1 plants of M. asiatica Nakai 'Zisai Pearl' × M. domestica 'Golden Delicious' were phenotyped prior to and during 6 wk of room-temperature storage. Segregation of ethylene emission and the flesh firmness or crispness traits was detected in the population. Thirteen QTL, including three major ones, were identified on chromosome 03, 08, and 16. A candidate gene encoding pectin acetylesterase, MdPAE10, from the QTL Z16.1 negatively affected fruit shelf life. A 379-bp deletion in the coding sequence of MdPAE10 disrupted its function. A single nucleotide polymorphism (SNP) in the MdPAE10 promoter region reduced its transcription activity. These findings provided insight into the genetic control of fruit shelf life and can be potentially used in apple marker-assisted selection.
Collapse
Affiliation(s)
- Bei Wu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Fei Shen
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Chi Jie Chen
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Li Liu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xuan Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Wen Yan Zheng
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yang Deng
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Ting Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Zhen Yu Huang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Chen Xiao
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Qian Zhou
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xue Feng Xu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Zhen Hai Han
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xin Zhong Zhang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| |
Collapse
|
33
|
Kostick SA, Teh SL, Norelli JL, Vanderzande S, Peace C, Evans KM. Fire blight QTL analysis in a multi-family apple population identifies a reduced-susceptibility allele in 'Honeycrisp'. HORTICULTURE RESEARCH 2021; 8:28. [PMID: 33518709 PMCID: PMC7847996 DOI: 10.1038/s41438-021-00466-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 05/17/2023]
Abstract
Breeding apple cultivars with resistance offers a potential solution to fire blight, a damaging bacterial disease caused by Erwinia amylovora. Most resistance alleles at quantitative trait loci (QTLs) were previously characterized in diverse Malus germplasm with poor fruit quality, which reduces breeding utility. This study utilized a pedigree-based QTL analysis approach to elucidate the genetic basis of resistance/susceptibility to fire blight from multiple genetic sources in germplasm relevant to U.S. apple breeding programs. Twenty-seven important breeding parents (IBPs) were represented by 314 offspring from 32 full-sib families, with 'Honeycrisp' being the most highly represented IBP. Analyzing resistance/susceptibility data from a two-year replicated field inoculation study and previously curated genome-wide single nucleotide polymorphism data, QTLs were consistently mapped on chromosomes (Chrs.) 6, 7, and 15. These QTLs together explained ~28% of phenotypic variation. The Chr. 6 and Chr. 15 QTLs colocalized with previously reported QTLs, while the Chr. 7 QTL is possibly novel. 'Honeycrisp' inherited a rare reduced-susceptibility allele at the Chr. 6 QTL from its grandparent 'Frostbite'. The highly resistant IBP 'Enterprise' had at least one putative reduced-susceptibility allele at all three QTLs. In general, lower susceptibility was observed for individuals with higher numbers of reduced-susceptibility alleles across QTLs. This study highlighted QTL mapping and allele characterization of resistance/susceptibility to fire blight in complex pedigree-connected apple breeding germplasm. Knowledge gained will enable more informed parental selection and development of trait-predictive DNA tests for pyramiding favorable alleles and selection of superior apple cultivars with resistance to fire blight.
Collapse
Affiliation(s)
- Sarah A Kostick
- Tree Fruit Research and Extension Center, Department of Horticulture, Washington State University, Wenatchee, WA, 98801, USA
| | - Soon Li Teh
- Tree Fruit Research and Extension Center, Department of Horticulture, Washington State University, Wenatchee, WA, 98801, USA
| | - John L Norelli
- United States Department of Agriculture, Agricultural Research Service, Appalachian Fruit Research Laboratory, Kearneysville, WV, 25430, USA
| | - Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Kate M Evans
- Tree Fruit Research and Extension Center, Department of Horticulture, Washington State University, Wenatchee, WA, 98801, USA.
| |
Collapse
|
34
|
Iezzoni AF, McFerson J, Luby J, Gasic K, Whitaker V, Bassil N, Yue C, Gallardo K, McCracken V, Coe M, Hardner C, Zurn JD, Hokanson S, van de Weg E, Jung S, Main D, da Silva Linge C, Vanderzande S, Davis TM, Mahoney LL, Finn C, Peace C. RosBREED: bridging the chasm between discovery and application to enable DNA-informed breeding in rosaceous crops. HORTICULTURE RESEARCH 2020; 7:177. [PMID: 33328430 PMCID: PMC7603521 DOI: 10.1038/s41438-020-00398-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 08/30/2020] [Indexed: 05/05/2023]
Abstract
The Rosaceae crop family (including almond, apple, apricot, blackberry, peach, pear, plum, raspberry, rose, strawberry, sweet cherry, and sour cherry) provides vital contributions to human well-being and is economically significant across the U.S. In 2003, industry stakeholder initiatives prioritized the utilization of genomics, genetics, and breeding to develop new cultivars exhibiting both disease resistance and superior horticultural quality. However, rosaceous crop breeders lacked certain knowledge and tools to fully implement DNA-informed breeding-a "chasm" existed between existing genomics and genetic information and the application of this knowledge in breeding. The RosBREED project ("Ros" signifying a Rosaceae genomics, genetics, and breeding community initiative, and "BREED", indicating the core focus on breeding programs), addressed this challenge through a comprehensive and coordinated 10-year effort funded by the USDA-NIFA Specialty Crop Research Initiative. RosBREED was designed to enable the routine application of modern genomics and genetics technologies in U.S. rosaceous crop breeding programs, thereby enhancing their efficiency and effectiveness in delivering cultivars with producer-required disease resistances and market-essential horticultural quality. This review presents a synopsis of the approach, deliverables, and impacts of RosBREED, highlighting synergistic global collaborations and future needs. Enabling technologies and tools developed are described, including genome-wide scanning platforms and DNA diagnostic tests. Examples of DNA-informed breeding use by project participants are presented for all breeding stages, including pre-breeding for disease resistance, parental and seedling selection, and elite selection advancement. The chasm is now bridged, accelerating rosaceous crop genetic improvement.
Collapse
Affiliation(s)
- Amy F Iezzoni
- Michigan State University, East Lansing, MI, 48824, USA.
| | - Jim McFerson
- Washington State University, Wenatchee, WA, 98801, USA
| | - James Luby
- University of Minnesota, St. Paul, MN, 55108, USA
| | | | | | | | - Chengyan Yue
- University of Minnesota, St. Paul, MN, 55108, USA
| | | | | | - Michael Coe
- Cedar Lake Research Group, Portland, OR, 97215, USA
| | | | | | | | - Eric van de Weg
- Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
| | - Sook Jung
- Washington State University, Pullman, WA, 99164, USA
| | - Dorrie Main
- Washington State University, Pullman, WA, 99164, USA
| | | | | | | | | | | | - Cameron Peace
- Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
35
|
Jung M, Roth M, Aranzana MJ, Auwerkerken A, Bink M, Denancé C, Dujak C, Durel CE, Font I Forcada C, Cantin CM, Guerra W, Howard NP, Keller B, Lewandowski M, Ordidge M, Rymenants M, Sanin N, Studer B, Zurawicz E, Laurens F, Patocchi A, Muranty H. The apple REFPOP-a reference population for genomics-assisted breeding in apple. HORTICULTURE RESEARCH 2020; 7:189. [PMID: 33328447 PMCID: PMC7603508 DOI: 10.1038/s41438-020-00408-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/25/2020] [Accepted: 09/06/2020] [Indexed: 05/16/2023]
Abstract
Breeding of apple is a long-term and costly process due to the time and space requirements for screening selection candidates. Genomics-assisted breeding utilizes genomic and phenotypic information to increase the selection efficiency in breeding programs, and measurements of phenotypes in different environments can facilitate the application of the approach under various climatic conditions. Here we present an apple reference population: the apple REFPOP, a large collection formed of 534 genotypes planted in six European countries, as a unique tool to accelerate apple breeding. The population consisted of 269 accessions and 265 progeny from 27 parental combinations, representing the diversity in cultivated apple and current European breeding material, respectively. A high-density genome-wide dataset of 303,239 SNPs was produced as a combined output of two SNP arrays of different densities using marker imputation with an imputation accuracy of 0.95. Based on the genotypic data, linkage disequilibrium was low and population structure was weak. Two well-studied phenological traits of horticultural importance were measured. We found marker-trait associations in several previously identified genomic regions and maximum predictive abilities of 0.57 and 0.75 for floral emergence and harvest date, respectively. With decreasing SNP density, the detection of significant marker-trait associations varied depending on trait architecture. Regardless of the trait, 10,000 SNPs sufficed to maximize genomic prediction ability. We confirm the suitability of the apple REFPOP design for genomics-assisted breeding, especially for breeding programs using related germplasm, and emphasize the advantages of a coordinated and multinational effort for customizing apple breeding methods in the genomics era.
Collapse
Affiliation(s)
- Michaela Jung
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
- Breeding Research group, Agroscope, 8820, Wädenswil, Switzerland
| | - Morgane Roth
- Breeding Research group, Agroscope, 8820, Wädenswil, Switzerland
- GAFL, INRAE, 84140, Montfavet, France
| | - Maria José Aranzana
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140, Caldes de Montbui, Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | | | - Marco Bink
- Biometris, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Hendrix Genetics Research, Technology and Services B.V., PO Box 114, 5830AC, Boxmeer, The Netherlands
| | - Caroline Denancé
- IRHS, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Christian Dujak
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Charles-Eric Durel
- IRHS, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Carolina Font I Forcada
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140, Caldes de Montbui, Barcelona, Spain
| | - Celia M Cantin
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140, Caldes de Montbui, Barcelona, Spain
- ARAID (Fundación Aragonesa para la Investigación y el Desarrollo), 50018, Zaragoza, Spain
| | | | - Nicholas P Howard
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA
- Institute of Biology and Environmental Sciences, University of Oldenburg, 26129, Oldenburg, Germany
| | - Beat Keller
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
- Breeding Research group, Agroscope, 8820, Wädenswil, Switzerland
| | | | - Matthew Ordidge
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, RG6 6AR, Reading, UK
| | - Marijn Rymenants
- Better3fruit N.V., 3202, Rillaar, Belgium
- Biometris, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Laboratory for Plant Genetics and Crop Improvement, KU Leuven, B-3001, Leuven, Belgium
| | - Nadia Sanin
- Research Centre Laimburg, 39040, Auer, Italy
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Edward Zurawicz
- Research Institute of Horticulture, 96-100, Skierniewice, Poland
| | - François Laurens
- IRHS, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Andrea Patocchi
- Breeding Research group, Agroscope, 8820, Wädenswil, Switzerland
| | - Hélène Muranty
- IRHS, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France.
| |
Collapse
|
36
|
Calle A, Wünsch A. Multiple-population QTL mapping of maturity and fruit-quality traits reveals LG4 region as a breeding target in sweet cherry ( Prunus avium L.). HORTICULTURE RESEARCH 2020; 7:127. [PMID: 32821410 PMCID: PMC7395078 DOI: 10.1038/s41438-020-00349-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 05/29/2023]
Abstract
Sweet cherry maturity date and fruit quality are relevant traits for its marketability, transport, and consumer acceptance. In this work, sweet cherry fruit development time, maturity date, and commercial fruit-quality traits (size, weight, firmness, soluble solid content, and titratable acidity) were investigated to improve the knowledge of their genetic control, and to identify alleles of breeding interest. Six sweet cherry populations segregating for these traits were used for QTL analyses. These populations descend from cross- and self-pollinations of local Spanish sweet cherries 'Ambrunés' and 'Cristobalina', and breed cultivars ('Brooks', 'Lambert', or 'Vic'). The six populations (n = 411), previously genotyped with RosBREED Cherry 6 K SNP array, were phenotyped for 2 years. QTL analyses were conducted using a multifamily approach implemented by FlexQTL™. Fruit development time, soluble solid content, and titratable acidity QTLs are first reported in sweet cherry in this work. Significant QTLs were detected for all the traits. Eighteen were more stable as they were detected for 2 years. Of these, nine are first reported in this work. The major QTLs for fruit development time, maturity date, firmness, and soluble solid content were identified on the same narrow region of linkage group 4. These traits also showed significant positive correlation (long fruit development time associated with late maturity, high firmness, and high SSC). NAC transcription factor genes identified on this LG4 region may be candidate genes for the regulation of these traits in sweet cherry, as previously described in syntenic regions of other Rosaceae species. Haplotypes of breeding interest on this LG4 genomic region were identified and will be useful for sweet cherry breeding from this and related plant material.
Collapse
Affiliation(s)
- Alejandro Calle
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA). Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Ana Wünsch
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA). Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| |
Collapse
|
37
|
Rawandoozi ZJ, Hartmann TP, Carpenedo S, Gasic K, da Silva Linge C, Cai L, Van de Weg E, Byrne DH. Identification and characterization of QTLs for fruit quality traits in peach through a multi-family approach. BMC Genomics 2020; 21:522. [PMID: 32727362 PMCID: PMC7392839 DOI: 10.1186/s12864-020-06927-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/20/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Fruit quality traits have a significant effect on consumer acceptance and subsequently on peach (Prunus persica (L.) Batsch) consumption. Determining the genetic bases of key fruit quality traits is essential for the industry to improve fruit quality and increase consumption. Pedigree-based analysis across multiple peach pedigrees can identify the genomic basis of complex traits for direct implementation in marker-assisted selection. This strategy provides breeders with better-informed decisions and improves selection efficiency and, subsequently, saves resources and time. RESULTS Phenotypic data of seven F1 low to medium chill full-sib families were collected over 2 years at two locations and genotyped using the 9 K SNP Illumina array. One major QTL for fruit blush was found on linkage group 4 (LG4) at 40-46 cM that explained from 20 to 32% of the total phenotypic variance and showed three QTL alleles of different effects. For soluble solids concentration (SSC), one QTL was mapped on LG5 at 60-72 cM and explained from 17 to 39% of the phenotypic variance. A major QTL for titratable acidity (TA) co-localized with the major locus for low-acid fruit (D-locus). It was mapped at the proximal end of LG5 and explained 35 to 80% of the phenotypic variance. The new QTL for TA on the distal end of LG5 explained 14 to 22% of the phenotypic variance. This QTL co-localized with the QTL for SSC and affected TA only when the first QTL is homozygous for high acidity (epistasis). Haplotype analyses revealed SNP haplotypes and predictive SNP marker(s) associated with desired QTL alleles. CONCLUSIONS A multi-family-based QTL discovery approach enhanced the ability to discover a new TA QTL at the distal end of LG5 and validated other QTLs which were reported in previous studies. Haplotype characterization of the mapped QTLs distinguishes this work from the previous QTL studies. Identified predictive SNPs and their original sources will facilitate the selection of parents and/or seedlings that have desired QTL alleles. Our findings will help peach breeders develop new predictive, DNA-based molecular marker tests for routine use in marker-assisted breeding.
Collapse
Affiliation(s)
- Zena J. Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Timothy P. Hartmann
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Silvia Carpenedo
- Embrapa Clima Temperado, BR-392, km 78, Cx. Postal 403, Pelotas, Rio Grande do Sul 96010-971 Brazil
| | - Ksenija Gasic
- Department of Agricultural and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634 USA
| | - Cassia da Silva Linge
- Department of Agricultural and Environmental Sciences, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634 USA
| | - Lichun Cai
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Eric Van de Weg
- Department of Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - David H. Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
38
|
Vanderzande S, Zheng P, Cai L, Barac G, Gasic K, Main D, Iezzoni A, Peace C. The cherry 6+9K SNP array: a cost-effective improvement to the cherry 6K SNP array for genetic studies. Sci Rep 2020; 10:7613. [PMID: 32376836 PMCID: PMC7203174 DOI: 10.1038/s41598-020-64438-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/14/2020] [Indexed: 11/09/2022] Open
Abstract
Cherry breeding and genetic studies can benefit from genome-wide genetic marker assays. Currently, a 6K SNP array enables genome scans in cherry; however, only a third of these SNPs are informative, with low coverage in many genomic regions. Adding previously detected SNPs to this array could provide a cost-efficient upgrade with increased genomic coverage across the 670 cM/352.9 Mb cherry whole genome sequence. For sweet cherry, new SNPs were chosen following a focal point strategy, grouping six to eight SNPs within 10-kb windows with an average of 0.6 cM (627 kb) between focal points. Additional SNPs were chosen to represent important regions. Sweet cherry, the fruticosa subgenome of sour cherry, and cherry organellar genomes were targeted with 6942, 2020, and 38 new SNPs, respectively. The +9K add-on provided 2128, 1091, and 70 new reliable, polymorphic SNPs for sweet cherry and the avium and the fruticosa subgenomes of sour cherry, respectively. For sweet cherry, 1241 reliable polymorphic SNPs formed 237 informative focal points, with another 2504 SNPs in-between. The +9K SNPs increased genetic resolution and genome coverage of the original cherry SNP array and will help increase understanding of the genetic control of key traits and relationships among individuals in cherry.
Collapse
Affiliation(s)
- Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA, USA.
| | - Ping Zheng
- Department of Horticulture, Washington State University, Pullman, WA, USA
| | - Lichun Cai
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Goran Barac
- Department of Fruit Growing, Viticulture, Horticulture and Landscape Architecture, University of Novi Sad, Novi Sad, Serbia
| | - Ksenija Gasic
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, USA
| | - Amy Iezzoni
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA, USA
| |
Collapse
|
39
|
Marrano A, Britton M, Zaini PA, Zimin AV, Workman RE, Puiu D, Bianco L, Pierro EAD, Allen BJ, Chakraborty S, Troggio M, Leslie CA, Timp W, Dandekar A, Salzberg SL, Neale DB. High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome. Gigascience 2020; 9:giaa050. [PMID: 32432329 PMCID: PMC7238675 DOI: 10.1093/gigascience/giaa050] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/13/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The release of the first reference genome of walnut (Juglans regia L.) enabled many achievements in the characterization of walnut genetic and functional variation. However, it is highly fragmented, preventing the integration of genetic, transcriptomic, and proteomic information to fully elucidate walnut biological processes. FINDINGS Here, we report the new chromosome-scale assembly of the walnut reference genome (Chandler v2.0) obtained by combining Oxford Nanopore long-read sequencing with chromosome conformation capture (Hi-C) technology. Relative to the previous reference genome, the new assembly features an 84.4-fold increase in N50 size, with the 16 chromosomal pseudomolecules assembled and representing 95% of its total length. Using full-length transcripts from single-molecule real-time sequencing, we predicted 37,554 gene models, with a mean gene length higher than the previous gene annotations. Most of the new protein-coding genes (90%) present both start and stop codons, which represents a significant improvement compared with Chandler v1.0 (only 48%). We then tested the potential impact of the new chromosome-level genome on different areas of walnut research. By studying the proteome changes occurring during male flower development, we observed that the virtual proteome obtained from Chandler v2.0 presents fewer artifacts than the previous reference genome, enabling the identification of a new potential pollen allergen in walnut. Also, the new chromosome-scale genome facilitates in-depth studies of intraspecies genetic diversity by revealing previously undetected autozygous regions in Chandler, likely resulting from inbreeding, and 195 genomic regions highly differentiated between Western and Eastern walnut cultivars. CONCLUSION Overall, Chandler v2.0 will serve as a valuable resource to better understand and explore walnut biology.
Collapse
Affiliation(s)
- Annarita Marrano
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Monica Britton
- Bioinformatics Core Facility, Genome Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Rachael E Workman
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Daniela Puiu
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Luca Bianco
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Erica Adele Di Pierro
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Brian J Allen
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Sandeep Chakraborty
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michela Troggio
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Charles A Leslie
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Abhaya Dandekar
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Steven L Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
- Departments of Computer Science and Biostatistics, Johns Hopkins University, 3400 North Charles Street Baltimore, MD 21218, USA
| | - David B Neale
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
40
|
Muranty H, Denancé C, Feugey L, Crépin JL, Barbier Y, Tartarini S, Ordidge M, Troggio M, Lateur M, Nybom H, Paprstein F, Laurens F, Durel CE. Using whole-genome SNP data to reconstruct a large multi-generation pedigree in apple germplasm. BMC PLANT BIOLOGY 2020; 20:2. [PMID: 31898487 PMCID: PMC6941274 DOI: 10.1186/s12870-019-2171-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 11/27/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Apple (Malus x domestica Borkh.) is one of the most important fruit tree crops of temperate areas, with great economic and cultural value. Apple cultivars can be maintained for centuries in plant collections through grafting, and some are thought to date as far back as Roman times. Molecular markers provide a means to reconstruct pedigrees and thus shed light on the recent history of migration and trade of biological materials. The objective of the present study was to identify relationships within a set of over 1400 mostly old apple cultivars using whole-genome SNP data (~ 253 K SNPs) in order to reconstruct pedigrees. RESULTS Using simple exclusion tests, based on counting the number of Mendelian errors, more than one thousand parent-offspring relations and 295 complete parent-offspring families were identified. Additionally, a grandparent couple was identified for the missing parental side of 26 parent-offspring pairings. Among the 407 parent-offspring relations without a second identified parent, 327 could be oriented because one of the individuals was an offspring in a complete family or by using historical data on parentage or date of recording. Parents of emblematic cultivars such as 'Ribston Pippin', 'White Transparent' and 'Braeburn' were identified. The overall pedigree combining all the identified relationships encompassed seven generations and revealed a major impact of two Renaissance cultivars of French and English origin, namely 'Reinette Franche' and 'Margil', and one North-Eastern Europe cultivar from the 1700s, 'Alexander'. On the contrary, several older cultivars, from the Middle Ages or the Roman times, had no, or only single, identifiable offspring in the set of studied accessions. Frequent crosses between cultivars originating from different European regions were identified, especially from the nineteenth century onwards. CONCLUSIONS The availability of over 1400 apple genotypes, previously filtered for genetic uniqueness and providing a broad representation of European germplasm, has been instrumental for the success of this large pedigree reconstruction. It enlightens the history of empirical selection and recent breeding of apple cultivars in Europe and provides insights to speed-up future breeding and selection.
Collapse
Affiliation(s)
- Hélène Muranty
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Caroline Denancé
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Laurence Feugey
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Jean-Luc Crépin
- Les Croqueurs de Pommes du Confluent Ain-Isère-Savoie, Les Avenières, France
| | - Yves Barbier
- Les Croqueurs de Pommes du Confluent Ain-Isère-Savoie, Les Avenières, France
| | - Stefano Tartarini
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Matthew Ordidge
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading, UK
| | - Michela Troggio
- Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Marc Lateur
- CRA-W, Centre Wallon de Recherches Agronomiques, Plant Breeding & Biodiversity, Gembloux, Belgium
| | - Hilde Nybom
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Balsgård, Kristianstad, Sweden
| | - Frantisek Paprstein
- RBIPH, Research and Breeding Institute of Pomology Holovousy Ltd., Horice, Czech Republic
| | - François Laurens
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Charles-Eric Durel
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| |
Collapse
|
41
|
Pakbaz F, Hosseini F, Nematollahi AR. Modeling additive genetic effects in animal models by closed skew normal distribution. COMMUN STAT-SIMUL C 2019. [DOI: 10.1080/03610918.2019.1664576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Peace CP, Bianco L, Troggio M, van de Weg E, Howard NP, Cornille A, Durel CE, Myles S, Migicovsky Z, Schaffer RJ, Costes E, Fazio G, Yamane H, van Nocker S, Gottschalk C, Costa F, Chagné D, Zhang X, Patocchi A, Gardiner SE, Hardner C, Kumar S, Laurens F, Bucher E, Main D, Jung S, Vanderzande S. Apple whole genome sequences: recent advances and new prospects. HORTICULTURE RESEARCH 2019; 6:59. [PMID: 30962944 PMCID: PMC6450873 DOI: 10.1038/s41438-019-0141-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 05/19/2023]
Abstract
In 2010, a major scientific milestone was achieved for tree fruit crops: publication of the first draft whole genome sequence (WGS) for apple (Malus domestica). This WGS, v1.0, was valuable as the initial reference for sequence information, fine mapping, gene discovery, variant discovery, and tool development. A new, high quality apple WGS, GDDH13 v1.1, was released in 2017 and now serves as the reference genome for apple. Over the past decade, these apple WGSs have had an enormous impact on our understanding of apple biological functioning, trait physiology and inheritance, leading to practical applications for improving this highly valued crop. Causal gene identities for phenotypes of fundamental and practical interest can today be discovered much more rapidly. Genome-wide polymorphisms at high genetic resolution are screened efficiently over hundreds to thousands of individuals with new insights into genetic relationships and pedigrees. High-density genetic maps are constructed efficiently and quantitative trait loci for valuable traits are readily associated with positional candidate genes and/or converted into diagnostic tests for breeders. We understand the species, geographical, and genomic origins of domesticated apple more precisely, as well as its relationship to wild relatives. The WGS has turbo-charged application of these classical research steps to crop improvement and drives innovative methods to achieve more durable, environmentally sound, productive, and consumer-desirable apple production. This review includes examples of basic and practical breakthroughs and challenges in using the apple WGSs. Recommendations for "what's next" focus on necessary upgrades to the genome sequence data pool, as well as for use of the data, to reach new frontiers in genomics-based scientific understanding of apple.
Collapse
Affiliation(s)
- Cameron P. Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Luca Bianco
- Computational Biology, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - Michela Troggio
- Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - Eric van de Weg
- Plant Breeding, Wageningen University and Research, Wageningen, 6708PB The Netherlands
| | - Nicholas P. Howard
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108 USA
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
| | - Amandine Cornille
- GQE – Le Moulon, Institut National de la Recherche Agronomique, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Charles-Eric Durel
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
| | - Sean Myles
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Robert J. Schaffer
- The New Zealand Institute for Plant and Food Research Ltd, Motueka, 7198 New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1142 New Zealand
| | - Evelyne Costes
- AGAP, INRA, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Gennaro Fazio
- Plant Genetic Resources Unit, USDA ARS, Geneva, NY 14456 USA
| | - Hisayo Yamane
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Chris Gottschalk
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Fabrizio Costa
- Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4474 New Zealand
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | | | - Susan E. Gardiner
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4474 New Zealand
| | - Craig Hardner
- Queensland Alliance of Agriculture and Food Innovation, University of Queensland, St Lucia, 4072 Australia
| | - Satish Kumar
- New Cultivar Innovation, Plant and Food Research, Havelock North, 4130 New Zealand
| | - Francois Laurens
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
| | - Etienne Bucher
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
- Agroscope, 1260 Changins, Switzerland
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
43
|
Aranzana MJ, Decroocq V, Dirlewanger E, Eduardo I, Gao ZS, Gasic K, Iezzoni A, Jung S, Peace C, Prieto H, Tao R, Verde I, Abbott AG, Arús P. Prunus genetics and applications after de novo genome sequencing: achievements and prospects. HORTICULTURE RESEARCH 2019; 6:58. [PMID: 30962943 PMCID: PMC6450939 DOI: 10.1038/s41438-019-0140-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 05/04/2023]
Abstract
Prior to the availability of whole-genome sequences, our understanding of the structural and functional aspects of Prunus tree genomes was limited mostly to molecular genetic mapping of important traits and development of EST resources. With public release of the peach genome and others that followed, significant advances in our knowledge of Prunus genomes and the genetic underpinnings of important traits ensued. In this review, we highlight key achievements in Prunus genetics and breeding driven by the availability of these whole-genome sequences. Within the structural and evolutionary contexts, we summarize: (1) the current status of Prunus whole-genome sequences; (2) preliminary and ongoing work on the sequence structure and diversity of the genomes; (3) the analyses of Prunus genome evolution driven by natural and man-made selection; and (4) provide insight into haploblocking genomes as a means to define genome-scale patterns of evolution that can be leveraged for trait selection in pedigree-based Prunus tree breeding programs worldwide. Functionally, we summarize recent and ongoing work that leverages whole-genome sequences to identify and characterize genes controlling 22 agronomically important Prunus traits. These include phenology, fruit quality, allergens, disease resistance, tree architecture, and self-incompatibility. Translationally, we explore the application of sequence-based marker-assisted breeding technologies and other sequence-guided biotechnological approaches for Prunus crop improvement. Finally, we present the current status of publically available Prunus genomics and genetics data housed mainly in the Genome Database for Rosaceae (GDR) and its updated functionalities for future bioinformatics-based Prunus genetics and genomics inquiry.
Collapse
Affiliation(s)
- Maria José Aranzana
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Véronique Decroocq
- UMR 1332 BFP, INRA, University of Bordeaux, A3C and Virology Teams, 33882 Villenave-d’Ornon Cedex, France
| | - Elisabeth Dirlewanger
- UMR 1332 BFP, INRA, University of Bordeaux, A3C and Virology Teams, 33882 Villenave-d’Ornon Cedex, France
| | - Iban Eduardo
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Zhong Shan Gao
- Allergy Research Center, Zhejiang University, 310058 Hangzhou, China
| | | | - Amy Iezzoni
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824-1325 USA
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414 USA
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414 USA
| | - Humberto Prieto
- Biotechnology Laboratory, La Platina Research Station, Instituto de Investigaciones Agropecuarias, Santa Rosa, 11610 La Pintana, Santiago Chile
| | - Ryutaro Tao
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Ignazio Verde
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA) – Centro di ricerca Olivicoltura, Frutticoltura e Agrumicoltura (CREA-OFA), Rome, Italy
| | - Albert G. Abbott
- University of Kentucky, 106 T. P. Cooper Hall, Lexington, KY 40546-0073 USA
| | - Pere Arús
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| |
Collapse
|
44
|
Salinas N, Verma S, Peres N, Whitaker VM. FaRCa1: a major subgenome-specific locus conferring resistance to Colletotrichum acutatum in strawberry. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1109-1120. [PMID: 30564908 PMCID: PMC6449309 DOI: 10.1007/s00122-018-3263-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/07/2018] [Indexed: 05/18/2023]
Abstract
Optimal strategies for genetic improvement in crops depend on accurate assessments of the genetic architecture of traits. The overall objective of the present study was to determine the genetic architecture of anthracnose fruit rot (AFR) resistance caused by the fungus Colletotrichum acutatum in the University of Florida strawberry (Fragaria × ananassa) breeding germplasm. In 2016-2017, 33 full-sib families resulting from crosses between parents with varying levels of AFR resistance were tested. In 2017-2018, six full-sib families resulting from putative heterozygous resistant parents and homozygous susceptible parents were tested. Additionally, a validation population consisting of 77 advanced selections and ten cultivars was tested in the second season. Inoculation was performed using a mixture of three local isolates of the C. acutatum species complex. Phenotypes were scored weekly, and genotyping was performed using the IStraw35 Affymetrix Axiom® SNP array. A pedigree-based QTL analysis was performed using FlexQTL™ software. A major resistance locus, which we name FaRCa1, was detected in both seasons with a peak located at 55-56 cM on LG 6B and explaining at least 50% of the phenotypic variation across trials and seasons. The resistant allele exhibited partial dominance in all trials. The FaRCa1 locus is distinct from the previously discovered Rca2 locus, which mapped to LG 7B. While Rca2 is effective against European isolates from pathogenicity group 2, FaRCa1 appears to confer resistance to isolates of pathogenicity group 1.
Collapse
Affiliation(s)
- Natalia Salinas
- Department of Horticultural Sciences, University of Florida, IFAS Gulf Coast Research and Education Center, Wimauma, FL, 33598, USA
| | - Sujeet Verma
- Department of Horticultural Sciences, University of Florida, IFAS Gulf Coast Research and Education Center, Wimauma, FL, 33598, USA
| | - Natalia Peres
- Department of Plant Pathology, University of Florida, IFAS Gulf Coast Research and Education Center, Wimauma, FL, 33598, USA
| | - Vance M Whitaker
- Department of Horticultural Sciences, University of Florida, IFAS Gulf Coast Research and Education Center, Wimauma, FL, 33598, USA.
| |
Collapse
|
45
|
A fruit firmness QTL identified on linkage group 4 in sweet cherry (Prunus avium L.) is associated with domesticated and bred germplasm. Sci Rep 2019; 9:5008. [PMID: 30899090 PMCID: PMC6428808 DOI: 10.1038/s41598-019-41484-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/08/2019] [Indexed: 11/23/2022] Open
Abstract
Fruit firmness is an important market driven trait in sweet cherry (Prunus avium L.) where the desirable increase in fruit firmness is associated with landrace and bred cultivars. The aim of this work was to investigate the genetic basis of fruit firmness using plant materials that include wild cherry (syn. mazzard), landrace and bred sweet cherry germplasm. A major QTL for fruit firmness, named qP-FF4.1, that had not previously been reported, was identified in three sweet cherry populations. Thirteen haplotypes (alleles) associated with either soft or firm fruit were identified for qP-FF4.1 in the sweet cherry germplasm, and the “soft” alleles were dominant over the “firm” alleles. The finding that sweet cherry individuals that are homozygous for the “soft” alleles for qP-FF4.1 are exclusively mazzards and that the vast majority of the bred cultivars are homozygous for “firm” alleles suggests that this locus is a signature of selection. Candidate genes related to plant cell wall modification and various plant hormone signaling pathways were identified, with an expansin gene being the most promising candidate. These results advance our understanding of the genetic basis of fruit firmness and will help to enable the use of DNA informed breeding for this trait in sweet cherry breeding programs.
Collapse
|
46
|
Yan M, Byrne D, Klein P, van de Weg W, Yang J, Cai L. Black spot partial resistance in diploid roses:
QTL discovery and linkage map creation. ACTA ACUST UNITED AC 2019. [DOI: 10.17660/actahortic.2019.1232.21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Calle A, Cai L, Iezzoni A, Wünsch A. Genetic Dissection of Bloom Time in Low Chilling Sweet Cherry ( Prunus avium L.) Using a Multi-Family QTL Approach. FRONTIERS IN PLANT SCIENCE 2019; 10:1647. [PMID: 31998337 PMCID: PMC6962179 DOI: 10.3389/fpls.2019.01647] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/22/2019] [Indexed: 05/22/2023]
Abstract
Bloom time in sweet cherry (Prunus avium L.) is a highly heritable trait that varies between genotypes and depends on the environmental conditions. Bud-break occurs after chill and heat requirements of each genotype are fulfilled, and dormancy is released. Bloom time is a critical trait for fruit production as matching cultivar adaptation to the growing area is essential for adequate fruit set. Additionally, low chilling cultivars are of interest to extend sweet cherry production to warmer regions, and for the crop adaptation to increasing winter and spring temperatures. The aim of this work is to investigate the genetic control of this trait by analyzing multiple families derived from the low chilling and extra-early flowering local Spanish cultivar 'Cristobalina' and other cultivars with higher chilling requirements and medium to late bloom times. Bloom time evaluation in six related sweet cherry populations confirmed a high heritability of this trait, and skewed distribution toward late flowering, revealing possible dominance of the late bloom alleles. SNP genotyping of the six populations (n = 406) resulted in a consensus map of 1269 SNPs. Quantitative trait loci (QTL) analysis using the Bayesian approach implemented by FlexQTL™ software revealed two major QTLs on linkage groups 1 and 2 (qP-BT1.1m and qP-BT2.1m) that explained 47.6% of the phenotypic variation. The QTL on linkage group 1 was mapped to a 0.26 Mbp region that overlaps with the DORMANCY ASSOCIATED MADS-BOX (DAM) genes. This finding is consistent with peach results that indicate that these genes are major determinants of chilling requirement in Prunus. Haplotype analysis of the linkage group 1 and 2 QTL regions showed that 'Cristobalina' was the only cultivar tested that contributed early bloom time alleles for these two QTLs. This work contributes to knowledge of the genetic control of chilling requirement and bloom date and will enable marker-assisted selection for low chilling in sweet cherry breeding programs.
Collapse
Affiliation(s)
- Alejandro Calle
- Unidad de Hotofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Lichun Cai
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Amy Iezzoni
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Ana Wünsch
- Unidad de Hotofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, (CITA-Universidad de Zaragoza), Zaragoza, Spain
- *Correspondence: Ana Wünsch,
| |
Collapse
|
48
|
Smulders MJM, Arens P, Bourke PM, Debener T, Linde M, Riek JD, Leus L, Ruttink T, Baudino S, Hibrant Saint-Oyant L, Clotault J, Foucher F. In the name of the rose: a roadmap for rose research in the genome era. HORTICULTURE RESEARCH 2019; 6:65. [PMID: 31069087 PMCID: PMC6499834 DOI: 10.1038/s41438-019-0156-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/18/2019] [Indexed: 05/07/2023]
Abstract
The recent completion of the rose genome sequence is not the end of a process, but rather a starting point that opens up a whole set of new and exciting activities. Next to a high-quality genome sequence other genomic tools have also become available for rose, including transcriptomics data, a high-density single-nucleotide polymorphism array and software to perform linkage and quantitative trait locus mapping in polyploids. Rose cultivars are highly heterogeneous and diverse. This vast diversity in cultivated roses can be explained through the genetic potential of the genus, introgressions from wild species into commercial tetraploid germplasm and the inimitable efforts of historical breeders. We can now investigate how this diversity can best be exploited and refined in future breeding work, given the rich molecular toolbox now available to the rose breeding community. This paper presents possible lines of research now that rose has entered the genomics era, and attempts to partially answer the question that arises after the completion of any draft genome sequence: 'Now that we have "the" genome, what's next?'. Having access to a genome sequence will allow both (fundamental) scientific and (applied) breeding-orientated questions to be addressed. We outline possible approaches for a number of these questions.
Collapse
Affiliation(s)
- Marinus J. M. Smulders
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Paul Arens
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Peter M. Bourke
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Thomas Debener
- Faculty of Natural Sciences, Institute for Plant Genetics, Molecular Plant Breeding, Leibniz University of Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Marcus Linde
- Faculty of Natural Sciences, Institute for Plant Genetics, Molecular Plant Breeding, Leibniz University of Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Jan De Riek
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Leen Leus
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Tom Ruttink
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Sylvie Baudino
- BVpam CNRS, FRE 3727, UJM-Saint-Étienne, Univ. Lyon, Saint-Etienne, France
| | - Laurence Hibrant Saint-Oyant
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| | - Jeremy Clotault
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| | - Fabrice Foucher
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| |
Collapse
|
49
|
Hardner CM, Hayes BJ, Kumar S, Vanderzande S, Cai L, Piaskowski J, Quero-Garcia J, Campoy JA, Barreneche T, Giovannini D, Liverani A, Charlot G, Villamil-Castro M, Oraguzie N, Peace CP. Prediction of genetic value for sweet cherry fruit maturity among environments using a 6K SNP array. HORTICULTURE RESEARCH 2019; 6:6. [PMID: 30603092 PMCID: PMC6312542 DOI: 10.1038/s41438-018-0081-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/08/2018] [Accepted: 07/15/2018] [Indexed: 05/21/2023]
Abstract
The timing of fruit maturity is an important trait in sweet cherry production and breeding. Phenotypic variation for phenology of fruit maturity in sweet cherry appears to be under strong genetic control, but that control might be complicated by phenotypic instability across environments. Although such genotype-by-environment interaction (G × E) is a common phenomenon in crop plants, knowledge about it is lacking for fruit maturity timing and other sweet cherry traits. In this study, 1673 genome-wide SNP markers were used to estimate genomic relationships among 597 weakly pedigree-connected individuals evaluated over two seasons at three locations in Europe and one location in the USA, thus sampling eight 'environments'. The combined dataset enabled a single meta-analysis to investigate the environmental stability of genomic predictions. Linkage disequilibrium among marker loci declined rapidly with physical distance, and ordination of the relationship matrix suggested no strong structure among germplasm. The most parsimonious G × E model allowed heterogeneous genetic variance and pairwise covariances among environments. Narrow-sense genomic heritability was very high (0.60-0.83), as was accuracy of predicted breeding values (>0.62). Average correlation of additive effects among environments was high (0.96) and breeding values were highly correlated across locations. Results indicated that genomic models can be used in cherry to accurately predict date of fruit maturity for untested individuals in new environments. Limited G × E for this trait indicated that phenotypes of individuals will be stable across similar environments. Equivalent analyses for other sweet cherry traits, for which multiple years of data are commonly available among breeders and cultivar testers, would be informative for predicting performance of elite selections and cultivars in new environments.
Collapse
Affiliation(s)
- Craig M. Hardner
- University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072 Australia
| | - Ben J. Hayes
- University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072 Australia
| | - Satish Kumar
- The New Zealand Institute for Plant and Food Research Limited, Hawke’s Bay Research Centre, Hastings, 4130 New Zealand
| | - Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Lichun Cai
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Julia Piaskowski
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - José Quero-Garcia
- UMR 1332 BFP, INRA, University of Bordeaux, 33140 Nouvelle-Aquitaine, France
| | - José Antonio Campoy
- UMR 1332 BFP, INRA, University of Bordeaux, 33140 Nouvelle-Aquitaine, France
| | - Teresa Barreneche
- UMR 1332 BFP, INRA, University of Bordeaux, 33140 Nouvelle-Aquitaine, France
| | - Daniela Giovannini
- Council for Agricultural Research and Economics (CREA), Fruit Unit of Forlì, Via la Canapona, 1 bis, 47121 Emilia-Romagna, Italy
| | - Alessandro Liverani
- Council for Agricultural Research and Economics (CREA), Fruit Unit of Forlì, Via la Canapona, 1 bis, 47121 Emilia-Romagna, Italy
| | - Gérard Charlot
- Centre Technique Interprofessionnel des Fruits et Légumes (CTIFL), 751 Chemin de Balandran, 30127 Bellegarde, France
| | - Miguel Villamil-Castro
- University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072 Australia
| | - Nnadozie Oraguzie
- Department of Horticulture, Washington State University, Irrigated Agriculture Research and Extension Center, 24106N Bunn Road, Prosser, WA 99350 USA
| | - Cameron P. Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
50
|
Mariotti R, Fornasiero A, Mousavi S, Cultrera NG, Brizioli F, Pandolfi S, Passeri V, Rossi M, Magris G, Scalabrin S, Scaglione D, Di Gaspero G, Saumitou-Laprade P, Vernet P, Alagna F, Morgante M, Baldoni L. Genetic Mapping of the Incompatibility Locus in Olive and Development of a Linked Sequence-Tagged Site Marker. FRONTIERS IN PLANT SCIENCE 2019; 10:1760. [PMID: 32117338 PMCID: PMC7025539 DOI: 10.3389/fpls.2019.01760] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/16/2019] [Indexed: 05/20/2023]
Abstract
The genetic control of self-incompatibility (SI) has been recently disclosed in olive. Inter-varietal crossing confirmed the presence of only two incompatibility groups (G1 and G2), suggesting a simple Mendelian inheritance of the trait. A double digest restriction associated DNA (ddRAD) sequencing of a biparental population segregating for incompatibility groups has been performed and high-density linkage maps were constructed in order to map the SI locus and identify gene candidates and linked markers. The progeny consisted of a full-sib family of 229 individuals derived from the cross 'Leccino' (G1) × 'Dolce Agogia' (G2) varieties, segregating 1:1 (G1:G2), in accordance with a diallelic self-incompatibility (DSI) model. A total of 16,743 single nucleotide polymorphisms was identified, 7,006 in the female parent 'Leccino' and 9,737 in the male parent 'Dolce Agogia.' Each parental map consisted of 23 linkage groups and showed an unusual large size (5,680 cM in 'Leccino' and 3,538 cM in 'Dolce Agogia'). Recombination was decreased across all linkage groups in pollen mother cells of 'Dolce Agogia,' the parent with higher heterozygosity, compared to megaspore mother cells of 'Leccino,' in a context of a species that showed exceptionally high recombination rates. A subset of 109 adult plants was assigned to either incompatibility group by a stigma test and the diallelic self-incompatibility (DSI) locus was mapped to an interval of 5.4 cM on linkage group 18. This region spanned a size of approximately 300 Kb in the olive genome assembly. We developed a sequence-tagged site marker in the DSI locus and identified five haplotypes in 57 cultivars with known incompatibility group assignment. A combination of two single-nucleotide polymorphisms (SNPs) was sufficient to predict G1 or G2 phenotypes in olive cultivars, enabling early marker-assisted selection of compatible genotypes and allowing for a rapid screening of inter-compatibility among cultivars in order to guarantee effective fertilization and increase olive production. The construction of high-density linkage maps has led to the development of the first functional marker in olive and provided positional candidate genes in the SI locus.
Collapse
Affiliation(s)
- Roberto Mariotti
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - Alice Fornasiero
- Institute of Applied Genomics, Udine, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Soraya Mousavi
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | | | - Federico Brizioli
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - Saverio Pandolfi
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - Valentina Passeri
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - Martina Rossi
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
| | - Gabriele Magris
- Institute of Applied Genomics, Udine, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | | | | | | | | | - Philippe Vernet
- University of Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France
| | | | - Michele Morgante
- Institute of Applied Genomics, Udine, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Luciana Baldoni
- CNR - Institute of Biosciences and Bioresources (IBBR), Perugia, Italy
- *Correspondence: Luciana Baldoni,
| |
Collapse
|