1
|
Barua P, Phukon M, Munda S, Ranga V, Sruthi R, Borah JL, Das J, Dutta P, Bhattacharyya A, Modi MK, Chetia SK. Identification of significant SNPs and candidate loci for blast disease resistance via GWAS and population structure analysis in ARC panel of Oryza sativa. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1673-1689. [PMID: 39506992 PMCID: PMC11535146 DOI: 10.1007/s12298-024-01518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
Pyricularia (syn. Magnaporthe) oryzae is responsible for the blast disease in rice resulting in a greater extent of yield loss. However, some of the cultivars of rice have the ability to survive this devastating infection due to the presence of R (resistance) genes. Therefore, genome wide association study (GWAS) was undertaken using a panel of 400 rice landraces (ARC panel) and a set of filtered 38,723 single nucleotide polymorphisms (SNPs). The highest SNPs were mapped to chromosome 1 with a number of 4332 SNPs and lowest (2252) in chromosome 12. The ARC panel was evaluated phenotypically which revealed that 6% of the selected cultivars has resistance to rice blast disease with SES score of 1. The majority of the resistant cultivars belong to the group Asra of the panel. The population structure analysis was executed wherein three genetic subpopulations were identified namely RC1, RC2, RC3 and an admixture population constituting 48 accessions. Further, GWAS detected 15 significant association signal with P value in the range of 1.03E-05 to 1.03E-04, effect ranged from - 1.18 to 1.06, phenotypic variance explained was from 0 to 7.14%, R2 of 0.047 to 0.058, and minor allele frequency of 0.107 to 0.444. Eleven (Os01g39980, Os01g56130, Os01g67100, Os01g67110, Os03g41030, Os04g33310, Os07g42104, Os09g06464, Os09g08920, Os09g38800, Os12g37680) out of these 15 significant associations were identified as the candidate loci for the blast resistance in rice that will serve as an important genetic resistance source to be introgressed into an elite rice line in future breeding programs for deciphering blast resistance in rice. The GWAS study presented in this article helped to uncover significant gene regions which encode proteins to resist blast infection in rice plant. This is the first report on the GWAS analysis for blast resistance in unique landraces of rice from Northeast India employing single nucleotide polymorphism. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01518-6.
Collapse
Affiliation(s)
- Parinda Barua
- Assam Agricultural University-Assam Rice Research Institute (AAU-ARRI), Titabar, Jorhat, Assam 785630 India
| | - Munmi Phukon
- Assam Agricultural University-Assam Rice Research Institute (AAU-ARRI), Titabar, Jorhat, Assam 785630 India
| | - Sunita Munda
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013 India
| | - Vipin Ranga
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013 India
| | - R. Sruthi
- Assam Agricultural University-Assam Rice Research Institute (AAU-ARRI), Titabar, Jorhat, Assam 785630 India
| | - Jyoti Lekha Borah
- Assam Agricultural University-Assam Rice Research Institute (AAU-ARRI), Titabar, Jorhat, Assam 785630 India
| | - Janardan Das
- Assam Agricultural University-Assam Rice Research Institute (AAU-ARRI), Titabar, Jorhat, Assam 785630 India
| | - Pompi Dutta
- Assam Agricultural University-Assam Rice Research Institute (AAU-ARRI), Titabar, Jorhat, Assam 785630 India
| | | | - Mahendra Kumar Modi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013 India
| | | |
Collapse
|
2
|
Chen J, Zhong Y, Zou P, Ni J, Liu Y, Dai S, Zhou R. Identification of Genomic Regions Associated with Differences in Flowering Time and Inflorescence Architecture between Melastoma candidum and M. normale. Int J Mol Sci 2024; 25:10250. [PMID: 39408579 PMCID: PMC11477356 DOI: 10.3390/ijms251910250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Understanding the genetic basis of species differences in flowering time and inflorescence architecture can shed light on speciation and molecular breeding. Melastoma shows rapid speciation, with about 100 species formed in the past few million years, and, meanwhile, possesses high ornamental values. Two largely sympatric and closely related species of this genus, M. candidum and M. normale, differ markedly in flowering time and flower number per inflorescence. Here, we constructed an F2 population between M. candidum and M. normale, and used extreme bulks for flowering time and flower number per inflorescence in this population to identify genomic regions underlying the two traits. We found high differentiation on nearly the whole chromosome 7 plus a few regions on other chromosomes between the two extreme bulks for flowering time. Large chromosomal inversions on chromosome 7 between the two species, which contain flowering-related genes, can explain recombinational suppression on the chromosome. We identified 1872 genes with one or more highly differentiated SNPs between the two bulks for flowering time, including CSTF77, FY, SPA3, CDF3, AGL8, AGL15, FHY1, COL9, CIB1, FKF1 and FAR1, known to be related to flowering. We also identified 680 genes with one or more highly differentiated SNPs between the two bulks for flower number per inflorescence, including PNF, FIL and LAS, knows to play important roles in inflorescence development. These large inversions on chromosome 7 prevent us from narrowing down the genomic region(s) associated with flowering time differences between the two species. Flower number per inflorescence in Melastoma appears to be controlled by multiple genes, without any gene of major effect. Our study indicates that large chromosomal inversions can hamper the identification of the genetic basis of important traits, and the inflorescence architecture of Melastoma species may have a complex genetic basis.
Collapse
Affiliation(s)
- Jingfang Chen
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-sen University, Guangzhou 510275, China; (J.C.); (Y.Z.); (Y.L.)
| | - Yan Zhong
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-sen University, Guangzhou 510275, China; (J.C.); (Y.Z.); (Y.L.)
- School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Peishan Zou
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou 510405, China; (P.Z.); (J.N.)
| | - Jianzhong Ni
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou 510405, China; (P.Z.); (J.N.)
| | - Ying Liu
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-sen University, Guangzhou 510275, China; (J.C.); (Y.Z.); (Y.L.)
- School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Seping Dai
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou 510405, China; (P.Z.); (J.N.)
| | - Renchao Zhou
- School of Life Sciences, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-sen University, Guangzhou 510275, China; (J.C.); (Y.Z.); (Y.L.)
| |
Collapse
|
3
|
Younas MU, Qasim M, Ahmad I, Feng Z, Iqbal R, Abdelbacki AMM, Rajput N, Jiang X, Rao B, Zuo S. Allelic variation in rice blast resistance: a pathway to sustainable disease management. Mol Biol Rep 2024; 51:935. [PMID: 39180629 DOI: 10.1007/s11033-024-09854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Rice blast is a major problem in agriculture, affecting rice production and threatening food security worldwide. This disease, caused by the fungus Magnaporthe oryzae, has led to a lot of research since the discovery of the first resistance gene, pib, in 1999. Researchers have now identified more than 50 resistance genes on eight of the twelve chromosomes in rice, each targeting different strains of the pathogen.These genes are spread out across seventeen different loci. These genes, which primarily code for nucleotide-binding and leucine-rich repeat proteins, play an important part in the defense of rice against the pathogen, either alone or in combination with other genes. An important characteristic of these genes is the allelic or paralogous interactions that exist within these loci. These relationships contribute to the gene's increased capacity for evolutionary adaptation. The ability of resistance proteins to recognize and react to novel effectors is improved by the frequent occurrence of variations within the domains that are responsible for recognizing pathogen effectors. The purpose of this review is to summarize the progress that has been made in identifying these essential genes and to investigate the possibility of utilizing the allelic variants obtained from these genes in future rice breeding efforts to increase resistance to rice blast.
Collapse
Affiliation(s)
- Muhammad Usama Younas
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Irshad Ahmad
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhiming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Ashraf M M Abdelbacki
- Deanship of Skills Development, King Saud University, P.O Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nimra Rajput
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiaohong Jiang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Bisma Rao
- Department of Public Health, Medical College, Yangzhou University, Yangzhou, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Zhao DD, Chung H, Jang YH, Farooq M, Choi SY, Du XX, Kim KM. Analysis of Rice Blast Fungus Genetic Diversity and Identification of a Novel Blast Resistance OsDRq12 Gene. PHYTOPATHOLOGY 2024; 114:1917-1925. [PMID: 39135297 DOI: 10.1094/phyto-02-24-0050-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The rice blast fungus Magnaporthe oryzae poses a significant challenge to maintaining rice production. Developing rice varieties with resistance to this disease is crucial for its effective control. To understand the genetic variability of blast isolates collected between 2015 and 2017, the 27 monogenic rice lines that carry specific resistance genes were used to evaluate blast disease reactions. Based on criteria such as viability, virulence, and reactions to resistance genes, 20 blast isolates were selected as representative strains. To identify novel resistance genes, a quantitative trait locus analysis was carried out utilizing a mixture of the 20 representative rice blast isolates and a rice population derived from crossing the blast-resistant cultivar 'Cheongcheong' with the blast-susceptible cultivar 'Nagdong'. This analysis revealed a significant locus, RM1227-RM1261 on chromosome 12, that is associated with rice blast resistance. Within this locus, 12 disease resistance-associated protein genes were identified. Among them, OsDRq12, a member of the nucleotide-binding, leucine-rich repeat disease resistance family, was chosen as the target gene for additional computational investigation. The findings of this study have significant implications for enhancing rice production and ensuring food security by controlling rice blast and developing resistant rice cultivars.
Collapse
Affiliation(s)
- Dan-Dan Zhao
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hyunjung Chung
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Yoon-Hee Jang
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Muhammad Farooq
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soo Yeon Choi
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Xiao-Xuan Du
- Yancheng Institute of Technology, College of Marine and Bioengineering, 211 Jianjun East Road, Yancheng City, Jiangsu Province, 224051, China
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
5
|
Mohanavel V, Muthu V, Kambale R, Palaniswamy R, Seeli P, Ayyenar B, Rajagopalan V, Manickam S, Rajasekaran R, Rahman H, Nallathambi J, Swaminathan M, Chellappan G, Vellingiri G, Muthurajan R. Marker-assisted breeding accelerates the development of multiple-stress-tolerant rice genotypes adapted to wider environments. FRONTIERS IN PLANT SCIENCE 2024; 15:1402368. [PMID: 39070911 PMCID: PMC11272538 DOI: 10.3389/fpls.2024.1402368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
Introduction Rice, one of the major staple food crops is frequently affected by various biotic/abiotic stresses including drought, salinity, submergence, heat, Bacterial leaf blight, Brown plant hopper, Gall midge, Stem borer, Leaf folder etc. Sustained increase of yield growth is highly necessary to meet the projected demand in rice production during the year 2050. Hence, development of high yielding and multiple stress tolerant rice varieties adapted to wider environments will serve the need. Methods A systematic MAB approach was followed to pyramid eight major QTLs/genes controlling tolerance to major abiotic/biotic stresses viz., drought (qDTY1.1 and qDTY2.1), salinity (Saltol), submergence (Sub1), bacterial leaf blight (xa13 and Xa21), blast (Pi9) and gall midge (Gm4) in the genetic background of an elite rice culture CBMAS 14065 possessing high yield and desirable grain quality traits. Two advanced backcross derivatives of CBMAS 14065 possessing different combinations of target QTLs namely #27-1-39 (qDTY1.1+qDTY2.1+Sub1+xa13+Xa21+Gm4+Pi9) and #29-2-2 (qDTY1.1+qDTY2.1+Saltol+Xa21+Gm4+Pi9) were inter-mated. Results Inter-mated F1 progenies harboring all the eight target QTLs/genes were identified through foreground selection. Genotyping of the inter-mated F4 population identified 14 progenies possessing all eight target QTLs/genes under homozygous conditions. All the fourteen progenies were forwarded up to F8 generation and evaluated for their yield and tolerance to dehydration, salinity, submergence, blast and bacterial leaf blight. All the 14 progenies exhibited enhanced tolerance to dehydration and salinity stresses by registering lesser reduction in their chlorophyll content, relative water content, root length, root biomass etc., against their recurrent parent Improved White Ponni/CBMAS 14065. All the 14 progenies harboring Sub1 loci from FR13A exhibited enhanced survival (90 - 95%) under 2 weeks of submergence /flooding when compared to their recurrent parent CBMAS 14065 which showed 100% susceptibility The inter-mated population showed a enhanced level of resistance to bacterial leaf blight (Score = 0 to 2) against blast (Score - 0) whereas the susceptible check CO 39 and the recurrent parent CBMAS 14065 recorded high level of susceptibility (Score = 7 to 9). Conclusion or discussion Our study demonstrated the accelerated development of multiple stress tolerant rice genotypes through marker assisted pyramiding of target QTLs/genes using tightly linked markers. These multiple stress tolerant rice lines will serve as excellent genetic stocks for field testing/variety release and also as parental lines in future breeding programs for developing climate resilient super rice varieties.
Collapse
Affiliation(s)
- Vignesh Mohanavel
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Valarmathi Muthu
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Rohit Kambale
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Rakshana Palaniswamy
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Prisca Seeli
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Bharathi Ayyenar
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Veeraranjani Rajagopalan
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sudha Manickam
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Raghu Rajasekaran
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Hifzur Rahman
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
- International Centre for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Jagadeeshselvam Nallathambi
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Manonmani Swaminathan
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Gopalakrishnan Chellappan
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Raveendran Muthurajan
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
6
|
Mutiga SK, Orwa P, Nganga EM, Kyallo MM, Rotich F, Gichuhi E, Kimani JM, Mwongera DT, Were VM, Yanoria MJ, Murori R, Mgonja E, Ziyomo C, Wasilwa L, Bachabi F, Ndjiondjop MN, Ouedraogo I, Correll JC, Talbot NJ. Characterization of Blast Resistance in a Diverse Rice Panel from Sub-Saharan Africa. PHYTOPATHOLOGY 2023; 113:1278-1288. [PMID: 36802875 DOI: 10.1094/phyto-10-22-0379-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
There is a recent unparalleled increase in demand for rice in sub-Saharan Africa, yet its production is affected by blast disease. Characterization of blast resistance in adapted African rice cultivars can provide important information to guide growers and rice breeders. We used molecular markers for known blast resistance genes (Pi genes; n = 21) to group African rice genotypes (n = 240) into similarity clusters. We then used greenhouse-based assays to challenge representative rice genotypes (n = 56) with African isolates (n = 8) of Magnaporthe oryzae which varied in virulence and genetic lineage. The markers grouped rice cultivars into five blast resistance clusters (BRC) which differed in foliar disease severity. Using stepwise regression, we found that the Pi genes associated with reduced blast severity were Pi50 and Pi65, whereas Pik-p, Piz-t, and Pik were associated with increased susceptibility. All rice genotypes in the most resistant cluster, BRC 4, possessed Pi50 and Pi65, the only genes that were significantly associated with reduced foliar blast severity. Cultivar IRAT109, which contains Piz-t, was resistant against seven African M. oryzae isolates, whereas ARICA 17 was susceptible to eight isolates. The popular Basmati 217 and Basmati 370 were among the most susceptible genotypes. These findings indicate that most tested genes were not effective against African blast pathogen collections. Pyramiding genes in the Pi2/9 multifamily blast resistance cluster on chromosome 6 and Pi65 on chromosome 11 could confer broad-spectrum resistance capabilities. To gain further insights into genomic regions associated with blast resistance, gene mapping could be conducted with resident blast pathogen collections. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Samuel K Mutiga
- Biosciences for Eastern and Central Africa-International Livestock Research Institute, Nairobi, Kenya
- The University of Arkansas System-Division of Agriculture, Fayetteville, AR, U.S.A
| | | | | | - Martina M Kyallo
- Biosciences for Eastern and Central Africa-International Livestock Research Institute, Nairobi, Kenya
| | | | - Emily Gichuhi
- Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | - John M Kimani
- Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | - David T Mwongera
- Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | | | - Mary Jeanie Yanoria
- International Rice Research Institute (IRRI), Los Baños, Laguna, Philippines
| | | | | | - Cathrine Ziyomo
- Biosciences for Eastern and Central Africa-International Livestock Research Institute, Nairobi, Kenya
| | - Lusike Wasilwa
- Kenya Agricultural and Livestock Research Organization, Nairobi, Kenya
| | - Famata Bachabi
- Africa Rice Center (AfricaRice), Station de M'bé, Bouaké, Côte d'Ivoire
| | | | - Ibrahima Ouedraogo
- Institute of Environment and Agricultural Research, Ouagadougou, Burkina Faso
| | - James C Correll
- The University of Arkansas System-Division of Agriculture, Fayetteville, AR, U.S.A
| | | |
Collapse
|
7
|
B J, Hosahatti R, Koti PS, Devappa VH, Ngangkham U, Devanna P, Yadav MK, Mishra KK, Aditya JP, Boraiah PK, Gaber A, Hossain A. Phenotypic and Genotypic screening of fifty-two rice (Oryza sativa L.) genotypes for desirable cultivars against blast disease. PLoS One 2023; 18:e0280762. [PMID: 36897889 PMCID: PMC10004593 DOI: 10.1371/journal.pone.0280762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/08/2023] [Indexed: 03/11/2023] Open
Abstract
Magnaporthe oryzae, the rice blast fungus, is one of the most dangerous rice pathogens, causing considerable crop losses around the world. In order to explore the rice blast-resistant sources, initially performed a large-scale screening of 277 rice accessions. In parallel with field evaluations, fifty-two rice accessions were genotyped for 25 major blast resistance genes utilizing functional/gene-based markers based on their reactivity against rice blast disease. According to the phenotypic examination, 29 (58%) and 22 (42%) entries were found to be highly resistant, 18 (36%) and 29 (57%) showed moderate resistance, and 05 (6%) and 01 (1%), respectively, were highly susceptible to leaf and neck blast. The genetic frequency of 25 major blast resistance genes ranged from 32 to 60%, with two genotypes having a maximum of 16 R-genes each. The 52 rice accessions were divided into two groups based on cluster and population structure analysis. The highly resistant and moderately resistant accessions are divided into different groups using the principal coordinate analysis. According to the analysis of molecular variance, the maximum diversity was found within the population, while the minimum diversity was found between the populations. Two markers (RM5647 and K39512), which correspond to the blast-resistant genes Pi36 and Pik, respectively, showed a significant association to the neck blast disease, whereas three markers (Pi2-i, Pita3, and k2167), which correspond to the blast-resistant genes Pi2, Pita/Pita2, and Pikm, respectively, showed a significant association to the leaf blast disease. The associated R-genes might be utilized in rice breeding programmes through marker-assisted breeding, and the identified resistant rice accessions could be used as prospective donors for the production of new resistant varieties in India and around the world.
Collapse
Affiliation(s)
- Jeevan B
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | | | - Prasanna S Koti
- The University of Trans-Disciplinary Health Sciences and Technology, Jarakabande Kaval, Bengaluru, Karnataka, India
| | | | - Umakanta Ngangkham
- ICAR- Research Complex for North- Eastern Hill Region, Manipur centre, Imphal, Manipur, India
| | - Pramesh Devanna
- Rice Pathology Laboratory, AICRIP, Gangavathi, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Manoj Kumar Yadav
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, Haryana, India
| | - Krishna Kant Mishra
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Jay Prakash Aditya
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Palanna Kaki Boraiah
- Project Coordinating Unit, ICAR-AICRP on Small Millets, UAS, GKVK, Bengaluru, Karnataka, India
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
8
|
Kumar R, Bahuguna RN, Tiwari M, Pal M, Chinnusamy V, Sreeman S, Muthurajan R, Krishna Jagadish SV. Walking through crossroads-rice responses to heat and biotic stress interactions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4065-4081. [PMID: 35713657 DOI: 10.1007/s00122-022-04131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Rice, the most important source of calories for humans is prone to severe yield loss due to changing climate including heat stress. Additionally, rice encounters biotic stresses in conjunction with heat stress, which exacerbates the adverse effects, and exponentially increase such losses. Several investigations have identified biotic and heat stress-related quantitative trait loci (QTLs) that may contribute to improved tolerance to these stresses. However, a significant knowledge gap exists in identifying the genomic regions imparting tolerance against combined biotic and heat stress. Hereby, we are presenting a conceptual meta-analysis identifying genomic regions that may be promising candidates for enhancing combined biotic and heat stress tolerance in rice. Fourteen common genomic regions were identified along chromosomes 1, 2, 3, 4, 6, 10 and 12, which harbored 1265 genes related to heat stress and defense responses in rice. Further, the meta expression analysis revealed 24 differentially expressed genes (DEGs) involved in calcium-mediated stress signaling including transcription factors Myb, bHLH, ROS signaling, molecular chaperones HSP110 and pathogenesis related proteins. Additionally, we also proposed a hypothetical model based on GO and MapMan analysis representing the pathways intersecting heat and biotic stresses. These DEGs can be potential candidate genes for improving tolerance to combined biotic and heat stress in rice. We present a framework highlighting plausible connecting links (QTLs/genes) between rice response to heat stress and different biotic factors associated with yield, that can be extended to other crops.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Rajeev N Bahuguna
- Center for Advanced Studies on Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, India
| | - Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Madan Pal
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sheshshayee Sreeman
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | - S V Krishna Jagadish
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India.
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
9
|
Sahu PK, Sao R, Choudhary DK, Thada A, Kumar V, Mondal S, Das BK, Jankuloski L, Sharma D. Advancement in the Breeding, Biotechnological and Genomic Tools towards Development of Durable Genetic Resistance against the Rice Blast Disease. PLANTS 2022; 11:plants11182386. [PMID: 36145787 PMCID: PMC9504543 DOI: 10.3390/plants11182386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 01/02/2023]
Abstract
Rice production needs to be sustained in the coming decades, as the changeable climatic conditions are becoming more conducive to disease outbreaks. The majority of rice diseases cause enormous economic damage and yield instability. Among them, rice blast caused by Magnaportheoryzae is a serious fungal disease and is considered one of the major threats to world rice production. This pathogen can infect the above-ground tissues of rice plants at any growth stage and causes complete crop failure under favorable conditions. Therefore, management of blast disease is essentially required to sustain global food production. When looking at the drawback of chemical management strategy, the development of durable, resistant varieties is one of the most sustainable, economic, and environment-friendly approaches to counter the outbreaks of rice blasts. Interestingly, several blast-resistant rice cultivars have been developed with the help of breeding and biotechnological methods. In addition, 146 R genes have been identified, and 37 among them have been molecularly characterized to date. Further, more than 500 loci have been identified for blast resistance which enhances the resources for developing blast resistance through marker-assisted selection (MAS), marker-assisted backcross breeding (MABB), and genome editing tools. Apart from these, a better understanding of rice blast pathogens, the infection process of the pathogen, and the genetics of the immune response of the host plant are very important for the effective management of the blast disease. Further, high throughput phenotyping and disease screening protocols have played significant roles in easy comprehension of the mechanism of disease spread. The present review critically emphasizes the pathogenesis, pathogenomics, screening techniques, traditional and molecular breeding approaches, and transgenic and genome editing tools to develop a broad spectrum and durable resistance against blast disease in rice. The updated and comprehensive information presented in this review would be definitely helpful for the researchers, breeders, and students in the planning and execution of a resistance breeding program in rice against this pathogen.
Collapse
Affiliation(s)
- Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | | | - Antra Thada
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur 493225, Chhattisgarh, India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Bikram K. Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Ljupcho Jankuloski
- Plant Breeding and Genetics Section, Joint FAO/IAEA Centre, International Atomic Energy Agency, 1400 Vienna, Austria
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| |
Collapse
|
10
|
Wang L, Ma Z, Kang H, Gu S, Mukhina Z, Wang C, Wang H, Bai Y, Sui G, Zheng W, Ma D. Cloning and functional analysis of the novel rice blast resistance gene Pi65 in japonica rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:173-183. [PMID: 34608507 DOI: 10.1007/s00122-021-03957-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Pi65, a leucine-rich repeat receptor-like kinase (LRR-RLK) domain cloned from Oryza sativa japonica, is a novel rice blast disease resistance gene. Rice blast seriously threatens rice production worldwide. Utilizing the rice blast resistance gene to breed rice blast-resistant varieties is one of the best ways to control rice blast disease. Using a map-based cloning strategy, we cloned a novel rice blast resistance gene, Pi65, from the resistant variety GangYu129 (abbreviated GY129, Oryza sativa japonica). Overexpression of Pi65 in the susceptible variety LiaoXing1 (abbreviated LX1, Oryza sativa japonica) enhanced rice blast resistance, while knockout of Pi65 in GY129 resulted in susceptibility to rice blast disease. Pi65 encodes two transmembrane domains, with 15 LRR domains and one serine/threonine protein kinase catalytic domain, conferring resistance to isolates of Magnaporthe oryzae (abbreviated M. oryzae) collected from Northeast China. There were sixteen amino acid differences between the Pi65 resistance and susceptible alleles. Compared with the Pi65-resistant allele, the susceptible allele exhibited one LRR domain deletion. Pi65 was constitutively expressed in whole plants, and it could be induced in the early stage of M. oryzae infection. Transcriptome analysis revealed that numerous genes associated with disease resistance were specifically upregulated in GY129 24 h post inoculation (HPI); in contrast, photosynthesis and carbohydrate metabolism-related genes were particularly downregulated at 24 HPI, demonstrating that disease resistance-associated genes were activated in GY129 (carrying Pi65) after rice blast fungal infection and that cellular basal metabolism and energy metabolism were inhibited simultaneously. Our study provides genetic resources for improving rice blast resistance and enriches the study of rice blast resistance mechanisms.
Collapse
Affiliation(s)
- Lili Wang
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Zuobin Ma
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, 110101, China
| | - Houxiang Kang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 110193, China
| | - Shuang Gu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhanna Mukhina
- Innovation and R&D Coordination of FSBSI ARRRI, Krasnodar, Russia, 350921
| | - Changhua Wang
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, 110101, China
| | - Hui Wang
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Yuanjun Bai
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, 110101, China
| | - Guomin Sui
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Wenjing Zheng
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, 110101, China.
| | - Dianrong Ma
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
11
|
Tetreault HM, Gries T, Liu S, Toy J, Xin Z, Vermerris W, Ralph J, Funnell-Harris DL, Sattler SE. The Sorghum ( Sorghum bicolor) Brown Midrib 30 Gene Encodes a Chalcone Isomerase Required for Cell Wall Lignification. FRONTIERS IN PLANT SCIENCE 2021; 12:732307. [PMID: 34925394 PMCID: PMC8674566 DOI: 10.3389/fpls.2021.732307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
In sorghum (Sorghum bicolor) and other C4 grasses, brown midrib (bmr) mutants have long been associated with plants impaired in their ability to synthesize lignin. The brown midrib 30 (Bmr30) gene, identified using a bulk segregant analysis and next-generation sequencing, was determined to encode a chalcone isomerase (CHI). Two independent mutations within this gene confirmed that loss of its function was responsible for the brown leaf midrib phenotype and reduced lignin concentration. Loss of the Bmr30 gene function, as shown by histochemical staining of leaf midrib and stalk sections, resulted in altered cell wall composition. In the bmr30 mutants, CHI activity was drastically reduced, and the accumulation of total flavonoids and total anthocyanins was impaired, which is consistent with its function in flavonoid biosynthesis. The level of the flavone lignin monomer tricin was reduced 20-fold in the stem relative to wild type, and to undetectable levels in the leaf tissue of the mutants. The bmr30 mutant, therefore, harbors a mutation in a phenylpropanoid biosynthetic gene that is key to the interconnection between flavonoids and monolignols, both of which are utilized for lignin synthesis in the grasses.
Collapse
Affiliation(s)
- Hannah M. Tetreault
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Tammy Gries
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Sarah Liu
- Department of Biochemistry, The DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, United States
| | - John Toy
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Agricultural Research Service, United States Department of Agriculture, Lubbock, TX, United States
| | - Wilfred Vermerris
- Department of Microbiology and Cell Science, UF Genetics Institute, University of Florida, Gainesville, FL, United States
| | - John Ralph
- Department of Biochemistry, The DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, United States
| | - Deanna L. Funnell-Harris
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, United States
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Scott E. Sattler
- Wheat, Sorghum and Forage Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| |
Collapse
|
12
|
Liu Z, Zhu Y, Shi H, Qiu J, Ding X, Kou Y. Recent Progress in Rice Broad-Spectrum Disease Resistance. Int J Mol Sci 2021; 22:11658. [PMID: 34769087 PMCID: PMC8584176 DOI: 10.3390/ijms222111658] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
Rice is one of the most important food crops in the world. However, stable rice production is constrained by various diseases, in particular rice blast, sheath blight, bacterial blight, and virus diseases. Breeding and cultivation of resistant rice varieties is the most effective method to control the infection of pathogens. Exploitation and utilization of the genetic determinants of broad-spectrum resistance represent a desired way to improve the resistance of susceptible rice varieties. Recently, researchers have focused on the identification of rice broad-spectrum disease resistance genes, which include R genes, defense-regulator genes, and quantitative trait loci (QTL) against two or more pathogen species or many isolates of the same pathogen species. The cloning of broad-spectrum disease resistance genes and understanding their underlying mechanisms not only provide new genetic resources for breeding broad-spectrum rice varieties, but also promote the development of new disease resistance breeding strategies, such as editing susceptibility and executor R genes. In this review, the most recent advances in the identification of broad-spectrum disease resistance genes in rice and their application in crop improvement through biotechnology approaches during the past 10 years are summarized.
Collapse
Affiliation(s)
- Zhiquan Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Yujun Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Huanbin Shi
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Jiehua Qiu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Yanjun Kou
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (Z.L.); (Y.Z.); (H.S.); (J.Q.)
| |
Collapse
|
13
|
Understanding Rice- Magnaporthe Oryzae Interaction in Resistant and Susceptible Cultivars of Rice under Panicle Blast Infection Using a Time-Course Transcriptome Analysis. Genes (Basel) 2021; 12:genes12020301. [PMID: 33672641 PMCID: PMC7924189 DOI: 10.3390/genes12020301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/21/2023] Open
Abstract
Rice blast is a global threat to food security with up to 50% yield losses. Panicle blast is a more severe form of rice blast and the response of rice plant to leaf and panicle blast is distinct in different genotypes. To understand the specific response of rice in panicle blast, transcriptome analysis of blast resistant cultivar Tetep, and susceptible cultivar HP2216 was carried out using RNA-Seq approach after 48, 72 and 96 h of infection with Magnaporthe oryzae along with mock inoculation. Transcriptome data analysis of infected panicle tissues revealed that 3553 genes differentially expressed in HP2216 and 2491 genes in Tetep, which must be the responsible factor behind the differential disease response. The defense responsive genes are involved mainly in defense pathways namely, hormonal regulation, synthesis of reactive oxygen species, secondary metabolites and cell wall modification. The common differentially expressed genes in both the cultivars were defense responsive transcription factors, NBS-LRR genes, kinases, pathogenesis related genes and peroxidases. In Tetep, cell wall strengthening pathway represented by PMR5, dirigent, tubulin, cell wall proteins, chitinases, and proteases was found to be specifically enriched. Additionally, many novel genes having DOMON, VWF, and PCaP1 domains which are specific to cell membrane were highly expressed only in Tetep post infection, suggesting their role in panicle blast resistance. Thus, our study shows that panicle blast resistance is a complex phenomenon contributed by early defense response through ROS production and detoxification, MAPK and LRR signaling, accumulation of antimicrobial compounds and secondary metabolites, and cell wall strengthening to prevent the entry and spread of the fungi. The present investigation provided valuable candidate genes that can unravel the mechanisms of panicle blast resistance and help in the rice blast breeding program.
Collapse
|
14
|
Cao Y, Diao Q, Chen Y, Jin H, Zhang Y, Zhang H. Development of KASP Markers and Identification of a QTL Underlying Powdery Mildew Resistance in Melon ( Cucumis melo L.) by Bulked Segregant Analysis and RNA-Seq. FRONTIERS IN PLANT SCIENCE 2021; 11:593207. [PMID: 33613580 PMCID: PMC7893098 DOI: 10.3389/fpls.2020.593207] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/28/2020] [Indexed: 05/27/2023]
Abstract
Powdery mildew (PM), caused by Podosphaera xanthii (Px), is one of the most devastating fungal diseases of melon worldwide. The use of resistant cultivars is considered to be the best and most effective approach to control this disease. In this study, an F2 segregating population derived from a cross between a resistant (wm-6) and a susceptible cultivar (12D-1) of melon was used to map major powdery mildew resistance genes using bulked segregant analysis (BSA), in combination with next-generation sequencing (NGS). A novel quantitative trait locus (QTL) named qCmPMR-12 for resistance to PM on chromosome 12 was identified, which ranged from 22.0 Mb to 22.9 Mb. RNA-Seq analysis indicated that the MELO3C002434 gene encoding an ankyrin repeat-containing protein was considered to be the most likely candidate gene that was associated with resistance to PM. Moreover, 15 polymorphic SNPs around the target area were successfully converted to Kompetitive Allele-Specific PCR (KASP) markers (P < 0.0001). The novel QTL and candidate gene identified from this study provide insights into the genetic mechanism of PM resistance in melon, and the tightly linked KASP markers developed in this research can be used for marker-assisted selection (MAS) to improve powdery mildew resistance in melon breeding programs.
Collapse
|
15
|
Sharma S, Chandra D, Sharma AK. Rhizosphere Plant–Microbe Interactions Under Abiotic Stress. RHIZOSPHERE BIOLOGY: INTERACTIONS BETWEEN MICROBES AND PLANTS 2021. [DOI: 10.1007/978-981-15-6125-2_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Advances in Genetics and Genomics for Management of Blast Disease in Cereal Crops. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Sharma SK, Sharma D, Meena RP, Yadav MK, Hosahatti R, Dubey AK, Sharma P, Kumar S, Pramesh D, Nabi SU, Bhuvaneshwari S, Anand YR, Dubey SK, Singh TS. Recent Insights in Rice Blast Disease Resistance. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Volante A, Tondelli A, Desiderio F, Abbruscato P, Menin B, Biselli C, Casella L, Singh N, McCouch SR, Tharreau D, Zampieri E, Cattivelli L, Valè G. Genome wide association studies for japonica rice resistance to blast in field and controlled conditions. RICE (NEW YORK, N.Y.) 2020; 13:71. [PMID: 33030605 PMCID: PMC7544789 DOI: 10.1186/s12284-020-00431-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/24/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Rice blast, caused by the fungus Pyricularia oryzae, represents the most damaging fungal disease of rice worldwide. Utilization of rice resistant cultivars represents a practical way to control the disease. Most of the rice varieties cultivated in Europe and several other temperate regions are severely depleted of blast resistance genes, making the identification of resistant sources in genetic background adapted to temperate environments a priority. Given these assumptions, a Genome Wide Association Study (GWAS) for rice blast resistance was undertaken using a panel of 311 temperate/tropical japonica and indica accessions adapted to temperate conditions and genotyped with 37,423 SNP markers. The panel was evaluated for blast resistance in field, under the pressure of the natural blast population, and in growth chamber, using a mixture of three different fungal strains. RESULTS The parallel screening identified 11 accessions showing high levels of resistance in the two conditions, representing potential donors of resistance sources harbored in rice genotypes adapted to temperate conditions. A general higher resistance level was observed in tropical japonica and indica with respect to temperate japonica varieties. The GWAS identified 14 Marker-Traits Associations (MTAs), 8 of which discovered under field conditions and 6 under growth chamber screening. Three MTAs were identified in both conditions; five MTAs were specifically detected under field conditions while three for the growth chamber inoculation. Comparative analysis of physical/genetic positions of the MTAs showed that most of them were positionally-related with cloned or mapped blast resistance genes or with candidate genes whose functions were compatible for conferring pathogen resistance. However, for three MTAs, indicated as BRF10, BRF11-2 and BRGC11-3, no obvious candidate genes or positional relationships with blast resistance QTLs were identified, raising the possibility that they represent new sources of blast resistance. CONCLUSIONS We identified 14 MTAs for blast resistance using both field and growth chamber screenings. A total of 11 accessions showing high levels of resistance in both conditions were discovered. Combinations of loci conferring blast resistance were identified in rice accessions adapted to temperate conditions, thus allowing the genetic dissection of affordable resistances present in the panel. The obtained information will provide useful bases for both resistance breeding and further characterization of the highlighted resistance loci.
Collapse
Affiliation(s)
- Andrea Volante
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100, Vercelli, Italy.
- Present Address: CREA Research Centre for Vegetable and Ornamental Crops, Corso Inglesi 508, 18038, Sanremo, IM, Italy.
| | - Alessandro Tondelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Francesca Desiderio
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Pamela Abbruscato
- PTP Science Park, Rice Genomics Unit, via Einstein, 26900, Lodi, Italy
| | - Barbara Menin
- PTP Science Park, Rice Genomics Unit, via Einstein, 26900, Lodi, Italy
- Centre for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Via Livorno 60, 10144, Torino, Italy
| | - Chiara Biselli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Laura Casella
- SA.PI.SE. Coop. Agricola, via G. Mameli 7, 13100, Vercelli, Italy
| | - Namrata Singh
- School of Integrative Plant Sciences, Plant Breeding and Genetics section, Cornell University, Ithaca, New York, 14850, USA
| | - Susan R McCouch
- School of Integrative Plant Sciences, Plant Breeding and Genetics section, Cornell University, Ithaca, New York, 14850, USA
| | - Didier Tharreau
- UMR BGPI, CIRAD, TA A54/K, F 34398, Montpellier, France
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Elisa Zampieri
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100, Vercelli, Italy
- Present Address: Institute for Sustainable Plant Protection, National Research Council, Turin, Italy
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - Giampiero Valè
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100, Vercelli, Italy.
- Dipartimento di Scienze e Innovazione Tecnologica, Complesso Universitario S. Giuseppe, University of Piemonte Orientale, Piazza S. Eusebio 5, 13100, Vercelli, Italy.
| |
Collapse
|
19
|
Wang S, Zhang R, Shi Z, Zhao Y, Su A, Wang Y, Xing J, Ge J, Li C, Wang X, Wang J, Sun X, Liu Q, Chen Y, Zhang Y, Wang S, Song W, Zhao J. Identification and Fine Mapping of RppM, a Southern Corn Rust Resistance Gene in Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:1057. [PMID: 32733529 PMCID: PMC7363983 DOI: 10.3389/fpls.2020.01057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/26/2020] [Indexed: 05/26/2023]
Abstract
Southern corn rust (SCR) caused by Puccinia polysora Underw. is a major disease causing severe yield losses during maize production. Here, we identified and mapped the SCR resistance gene RppM from the near-isogenic line Kangxiujing2416 (Jing2416K), which harbors RppM in the genetic background of the susceptible inbred line Jing2416. In this study, the inheritance of SCR resistance was investigated in F2 and F3 populations derived from a cross between Jing2416K and Jing2416. The observed 3:1 segregation ratio of resistant to susceptible plants indicated that the SCR resistance is controlled by a single dominant gene. Using an F2 population, we performed bulked segregant analysis (BSA) sequencing and mapped RppM to a 3.69-Mb region on chromosome arm 10S. To further narrow down the region harboring RppM, we developed 13 insertion/deletion (InDel) markers based on the sequencing data. Finally, RppM was mapped to a region spanning 110-kb using susceptible individuals from a large F2 population. Two genes (Zm00001d023265 and Zm00001d023267) encoding putative CC-NBS-LRR (coiled-coiled, nucleotide-binding site, and leucine-rich repeat) proteins, a common characteristic of R genes, were located in this region (B73 RefGen_v4 reference genome). Sequencing and comparison of the two genes cloned from Jing2416K and Jing2416 revealed sequence variations in their coding regions. The relative expression levels of these two genes in Jing2416K were found to be significantly higher than those in Jing2416. Zm00001d023265 and Zm00001d023267 are thus potential RppM candidates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wei Song
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, China
| | - Jiuran Zhao
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, China
| |
Collapse
|
20
|
Jiang H, Feng Y, Qiu L, Gao G, Zhang Q, He Y. Identification of Blast Resistance QTLs Based on Two Advanced Backcross Populations in Rice. RICE (NEW YORK, N.Y.) 2020; 13:31. [PMID: 32488495 PMCID: PMC7266886 DOI: 10.1186/s12284-020-00392-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/13/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Rice blast is an economically important and mutable disease of rice. Using host resistance gene to breed resistant varieties has been proven to be the most effective and economical method to control rice blast and new resistance genes or quantitative trait loci (QTLs) are then needed. RESULTS In this study, we constructed two advanced backcross population to mapping blast resistance QTLs. CR071 and QingGuAi3 were as the donor parent to establish two BC3F1 and derived BC3F2 backcross population in the Jin23B background. By challenging the two populations with natural infection in 2011 and 2012, 16 and 13 blast resistance QTLs were identified in Jin23B/CR071 and Jin23B/QingGuAi3 population, respectively. Among Jin23B/CR071 population, 3 major and 13 minor QTLs have explained the phenotypic variation from 3.50% to 34.08% in 2 years. And, among Jin23B/QingGuAi3 population, 2 major and 11 minor QTLs have explained the phenotypic variation from 2.42% to 28.95% in 2 years. CONCLUSIONS Sixteen and thirteen blast resistance QTLs were identified in Jin23B/CR071 and Jin23B/QingGuAi3 population, respectively. QTL effect analyses suggested that major and minor QTLs interaction is the genetic basis for durable blast resistance in rice variety CR071 and QingGuAi3.
Collapse
Affiliation(s)
- Haichao Jiang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yutao Feng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Qiu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
21
|
Dixit S, Singh UM, Singh AK, Alam S, Venkateshwarlu C, Nachimuthu VV, Yadav S, Abbai R, Selvaraj R, Devi MN, Ramayya PJ, Badri J, Ram T, Lakshmi J, Lakshmidevi G, Lrk JV, Padmakumari AP, Laha GS, Prasad MS, Seetalam M, Singh VK, Kumar A. Marker Assisted Forward Breeding to Combine Multiple Biotic-Abiotic Stress Resistance/Tolerance in Rice. RICE (NEW YORK, N.Y.) 2020; 13:29. [PMID: 32472217 PMCID: PMC7260318 DOI: 10.1186/s12284-020-00391-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/12/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Unfavorable climatic changes have led to an increased threat of several biotic and abiotic stresses over the past few years. Looking at the massive damage caused by these stresses, we undertook a study to develop high yielding climate-resilient rice, using genes conferring resistance against blast (Pi9), bacterial leaf blight (BLB) (Xa4, xa5, xa13, Xa21), brown planthopper (BPH) (Bph3, Bph17), gall midge (GM) (Gm4, Gm8) and QTLs for drought tolerance (qDTY1.1 and qDTY3.1) through marker-assisted forward breeding (MAFB) approach. RESULT Seven introgression lines (ILs) possessing a combination of seven to ten genes/QTLs for different biotic and abiotic stresses have been developed using marker-assisted selection (MAS) breeding method in the background of Swarna with drought QTLs. These ILs were superior to the respective recurrent parent in agronomic performance and also possess preferred grain quality with intermediate to high amylose content (AC) (23-26%). Out of these, three ILs viz., IL1 (Pi9+ Xa4+ xa5+ Xa21+ Bph17+ Gm8+ qDTY1.1+ qDTY3.1), IL6 (Pi9+ Xa4+ xa5+ Xa21+ Bph3+ Bph17+ Gm4+ Gm8+ qDTY1.1+ qDTY3.1) and IL7 (Pi9+ Xa4+ xa5+ Bph3+ Gm4+ qDTY1.1+ qDTY3.1) had shown resistance\tolerance for multiple biotic and abiotic stresses both in the field and glasshouse conditions. Overall, the ILs were high yielding under various stresses and importantly they also performed well in non-stress conditions without any yield penalty. CONCLUSION The current study clearly illustrated the success of MAS in combining tolerance to multiple biotic and abiotic stresses while maintaining higher yield potential and preferred grain quality. Developed ILs with seven to ten genes in the current study showed superiority to recurrent parent Swarna+drought for multiple-biotic stresses (blast, BLB, BPH and GM) together with yield advantages of 1.0 t ha- 1 under drought condition, without adverse effect on grain quality traits under non-stress.
Collapse
Affiliation(s)
- Shilpi Dixit
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Uma Maheshwar Singh
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, 221006, India
| | - Arun Kumar Singh
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Shamshad Alam
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Challa Venkateshwarlu
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | | | - Shailesh Yadav
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Ragavendran Abbai
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ramchander Selvaraj
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - M Nagamallika Devi
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | | | - Jyothi Badri
- ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, India
| | - T Ram
- ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, India
| | - Jhansi Lakshmi
- ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, India
| | - G Lakshmidevi
- ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, India
| | - Jai Vidhya Lrk
- ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, India
| | | | - G S Laha
- ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, India
| | - M S Prasad
- ICAR-Indian Institute of Rice Research (IIRR), Rajendranagar, Hyderabad, India
| | - Malathi Seetalam
- Professor Jayashankar Telangana State Agricultural University (PJTSAU), RARS, Warangal, India
| | - Vikas Kumar Singh
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Arvind Kumar
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India.
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, 221006, India.
| |
Collapse
|
22
|
Liang T, Chi W, Huang L, Qu M, Zhang S, Chen ZQ, Chen ZJ, Tian D, Gui Y, Chen X, Wang Z, Tang W, Chen S. Bulked Segregant Analysis Coupled with Whole-Genome Sequencing (BSA-Seq) Mapping Identifies a Novel pi21 Haplotype Conferring Basal Resistance to Rice Blast Disease. Int J Mol Sci 2020; 21:ijms21062162. [PMID: 32245192 PMCID: PMC7139700 DOI: 10.3390/ijms21062162] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/30/2023] Open
Abstract
Basal or partial resistance has been considered race-non-specific and broad-spectrum. Therefore, the identification of genes or quantitative trait loci (QTLs) conferring basal resistance and germplasm containing them is of significance in breeding crops with durable resistance. In this study, we performed a bulked segregant analysis coupled with whole-genome sequencing (BSA-seq) to identify QTLs controlling basal resistance to blast disease in an F2 population derived from two rice varieties, 02428 and LiXinGeng (LXG), which differ significantly in basal resistance to rice blast. Four candidate QTLs, qBBR-4, qBBR-7, qBBR-8, and qBBR-11, were mapped on chromosomes 4, 7, 8, and 11, respectively. Allelic and genotypic association analyses identified a novel haplotype of the durable blast resistance gene pi21 carrying double deletions of 30 bp and 33 bp in 02428 (pi21-2428) as a candidate gene of qBBR-4. We further assessed haplotypes of Pi21 in 325 rice accessions, and identified 11 haplotypes among the accessions, of which eight were novel types. While the resistant pi21 gene was found only in japonica before, three Chinese indica varieties, ShuHui881, Yong4, and ZhengDa4Hao, were detected carrying the resistant pi21-2428 allele. The pi21-2428 allele and pi21-2428-containing rice germplasm, thus, provide valuable resources for breeding rice varieties, especially indica rice varieties, with durable resistance to blast disease. Our results also lay the foundation for further identification and functional characterization of the other three QTLs to better understand the molecular mechanisms underlying rice basal resistance to blast disease.
Collapse
Affiliation(s)
- Tingmin Liang
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.-Q.C.); (Z.-J.C.); (D.T.); (Y.G.)
| | - Wenchao Chi
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
| | - Likun Huang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.H.); (S.Z.)
| | - Mengyu Qu
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
| | - Shubiao Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.H.); (S.Z.)
| | - Zi-Qiang Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.-Q.C.); (Z.-J.C.); (D.T.); (Y.G.)
| | - Zai-Jie Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.-Q.C.); (Z.-J.C.); (D.T.); (Y.G.)
| | - Dagang Tian
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.-Q.C.); (Z.-J.C.); (D.T.); (Y.G.)
| | - Yijie Gui
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Z.-Q.C.); (Z.-J.C.); (D.T.); (Y.G.)
| | - Xiaofeng Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
| | - Zonghua Wang
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiqi Tang
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
- Correspondence: (W.T.); (S.C.)
| | - Songbiao Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou 350108, China; (T.L.); (W.C.); (X.C.); (Z.W.)
- Correspondence: (W.T.); (S.C.)
| |
Collapse
|
23
|
Wen Y, Fang Y, Hu P, Tan Y, Wang Y, Hou L, Deng X, Wu H, Zhu L, Zhu L, Chen G, Zeng D, Guo L, Zhang G, Gao Z, Dong G, Ren D, Shen L, Zhang Q, Xue D, Qian Q, Hu J. Construction of a High-Density Genetic Map Based on SLAF Markers and QTL Analysis of Leaf Size in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:1143. [PMID: 32849702 PMCID: PMC7411225 DOI: 10.3389/fpls.2020.01143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/14/2020] [Indexed: 05/02/2023]
Abstract
Leaf shape is an important agronomic trait for constructing an ideal plant type in rice, and high-density genetic map is facilitative in improving accuracy and efficiency for quantitative trait loci (QTL) analysis of leaf trait. In this study, a high-density genetic map contained 10,760 specific length amplified fragment sequencing (SLAF) markers was established based on 149 recombinant inbred lines (RILs) derived from the cross between Rekuangeng (RKG) and Taizhong1 (TN1), which exhibited 1,613.59 cM map distance with an average interval of 0.17 cM. A total of 24 QTLs were detected and explained the phenotypic variance ranged from 9% to 33.8% related to the leaf morphology across two areas. Among them, one uncloned major QTL qTLLW1 (qTLL1 and qTLLW1) involved in regulating leaf length and leaf width with max 33.8% and 22.5% phenotypic variance respectively was located on chromosome 1, and another major locus qTLW4 affecting leaf width accounted for max 25.3% phenotypic variance was mapped on chromosome 4. Fine mapping and qRT-PCR expression analysis indicated that qTLW4 may be allelic to NAL1 (Narrow leaf 1) gene.
Collapse
Affiliation(s)
- Yi Wen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Shenyang, China
| | - Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Peng Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yiqing Tan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yueying Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Linlin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xuemei Deng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Hao Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lixin Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guang Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lan Shen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Rice Research Institute of Shenyang Agricultural University/Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Shenyang, China
- *Correspondence: Qian Qian, ; Jiang Hu,
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- *Correspondence: Qian Qian, ; Jiang Hu,
| |
Collapse
|
24
|
|
25
|
Two QTLs controlling Clubroot resistance identified from Bulked Segregant Sequencing in Pakchoi (Brassica campestris ssp. chinensis Makino). Sci Rep 2019; 9:9228. [PMID: 31239512 PMCID: PMC6592919 DOI: 10.1038/s41598-019-44724-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/23/2019] [Indexed: 11/16/2022] Open
Abstract
Clubroot, caused by Plasmodiophora Brassicae, is a serious soil-borne disease in worldwide. In recent years, progression of clubroot is rapid and serious in Shanghai, China. In this study, The inheritance of clubroot resistance (CR) were determined in pakchoi using F2 segregation population that were developed by crossing highly resistant line ‘CR38’ and susceptible line ‘CS22’. Two novel QTLs, qBrCR38-1 and qBrCR38-2, was identified by BSA-seq (Bulked Segregant Sequencing) resistant to P. brassicae physiological race 7. Two significant peak qBrCR38-1 and qBrCR38-2 were observed by three statistical methods between interval of 19.7–20.6 Mb in chromosome A07 and 20.0–20.6 Mb in chromosome A08, respectively. In addition, Polymorphic SNPs identified within target regions were converted to kompetitive allele-specific PCR (KASP) assays. In target regions of qBrCR38-1 and qBrCR38-2, there were twenty SNP sites identified, eleven KASP markers of which are significantly associated to CR (P < 0.05). Seven candidate genes were identified and found to be involved in disease resistance (TIR-NBS-LRR proteins), defense responses of bacterium and fungi and biotic/abiotic stress response in the target regions harboring the two QTLs. Two novel QTLs and candidate genes identified from the present study provide insights into the genetic mechanism of CR in B.rapa, and the associated SNPs can be effectively used for marker-assisted breeding.
Collapse
|
26
|
Kalia S, Rathour R. Current status on mapping of genes for resistance to leaf- and neck-blast disease in rice. 3 Biotech 2019; 9:209. [PMID: 31093479 PMCID: PMC6509304 DOI: 10.1007/s13205-019-1738-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/29/2019] [Indexed: 12/15/2022] Open
Abstract
Blast disease caused by fungal pathogen Pyricularia oryzae is a major threat to rice productivity worldwide. The rice-blast pathogen can infect both leaves and panicle neck nodes. Nearly, 118 genes for resistance to leaf blast have been identified and 25 of these have been molecularly characterized. A great majority of these genes encode nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins and are organized into clusters as allelic or tightly linked genes. Compared to ever expanding list of leaf-blast-resistance genes, a few major genes mediating protection to neck blast have been identified. A great majority of the genetic studies conducted with the genotypes differing in the degree of susceptibility/resistance to neck blast have suggested quantitative inheritance for the trait. Several reports on co-localization of gene/QTLs for leaf- and neck-blast resistance in rice genome have suggested the existence of common genes for resistance to both phases of the disease albeit inconsistencies in the genomic positions leaf- and neck-blast-resistance genes in some instances have presented the contrasting scenario. There is a strong evidence to suggest that developmentally regulated expression of many blast-resistance genes is a key determinant deciding their effectiveness against leaf or neck blast. Testing of currently characterized leaf-blast-resistance genes for their reaction to neck blast is required to expand the existing repertoire resistance genes against neck blast. Current developments in the understanding of molecular basis of host-pathogen interactions in rice-blast pathosystem offer novel possibilities for achieving durable resistance to blast through exploitation of natural or genetically engineered loss-of-function alleles of host susceptibility genes.
Collapse
Affiliation(s)
- S. Kalia
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh 176062 India
| | - R. Rathour
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh 176062 India
| |
Collapse
|
27
|
Jiang H, Li Z, Liu J, Shen Z, Gao G, Zhang Q, He Y. Development and evaluation of improved lines with broad-spectrum resistance to rice blast using nine resistance genes. RICE (NEW YORK, N.Y.) 2019; 12:29. [PMID: 31062101 PMCID: PMC6502921 DOI: 10.1186/s12284-019-0292-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/18/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Rice blast disease is a major restriction in rice production. That is usually managed using chemical pesticides, which are expensive in terms of cost and environment hazards. Use of blast-resistance genes to develop resistant varieties may therefore be a more economical and environmentally friendly method for effective control. RESULTS In this study, we improved the blast resistance of four sterile lines, Y58S, GuangZhan63S (GZ63), C815S and HD9802S, by introgression of 9 cloned broad-spectrum blast resistance genes Pi37, Pit, Pid3, Pigm, Pi36, Pi5, Pi54, Pikm and Pb1. Through molecular marker-assisted selection and backcross breeding, 31 single-gene derived lines and 20 double-gene combination lines were obtained. When infected naturally, single-gene lines with Pigm or Pid3 showed significantly enhanced resistance during whole growth period relative to their recurrent parent. Single-gene lines with Pi37, Pi5, Pit, Pi36, Pi54 or Pikm showed significantly enhanced resistance in some of the four backgrounds. No obviously enhanced resistance was observed in single-gene line with Pb1 for the whole growth period. Compared with recurrent parents, most of the double-gene lines showed improved resistance. Among these double-gene lines, lines with Pi37/Pid3, Pi5/Pi54, Pi54/Pid3 or Pigm/Pi37, exhibited significantly enhanced resistance and observable additive effects. CONCLUSIONS Two blast resistance genes, Pigm and Pid3, showed significantly enhanced resistance for the whole rice growth period, and six blast resistance genes Pi37, Pi5, Pit, Pi36, Pi54 or Pikm showed significantly enhanced resistance for some of the four backgrounds. Double-gene lines with Pi37/Pid3, Pi5/Pi54, Pi54/Pid3 and Pigm/Pi37 exhibited significantly enhanced resistance and observable additive effects. These lines could be used in rice hybrid and production.
Collapse
Affiliation(s)
- Haichao Jiang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan) and National Center of Crop Molecular Breeding, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan) and National Center of Crop Molecular Breeding, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan) and National Center of Crop Molecular Breeding, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhikang Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan) and National Center of Crop Molecular Breeding, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan) and National Center of Crop Molecular Breeding, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan) and National Center of Crop Molecular Breeding, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan) and National Center of Crop Molecular Breeding, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
28
|
Identification of genomic regions associated with multi-silique trait in Brassica napus. BMC Genomics 2019; 20:304. [PMID: 31014236 PMCID: PMC6480887 DOI: 10.1186/s12864-019-5675-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 04/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although rapeseed (Brassica napus L.) mutant forming multiple siliques was morphologically described and considered to increase the silique number per plant, an important agronomic trait in this crop, the molecular mechanism underlying this beneficial trait remains unclear. Here, we combined bulked-segregant analysis (BSA) and whole genome re-sequencing (WGR) to map the genomic regions responsible for the multi-silique trait using two pools of DNA from the near-isogenic lines (NILs) zws-ms (multi-silique) and zws-217 (single-silique). We used the Euclidean Distance (ED) to identify genomic regions associated with this trait based on both SNPs and InDels. We also conducted transcriptome sequencing to identify differentially expressed genes (DEGs) between zws-ms and zws-217. RESULTS Genetic analysis using the ED algorithm identified three SNP- and two InDel-associated regions for the multi-silique trait. Two highly overlapped parts of the SNP- and InDel-associated regions were identified as important intersecting regions, which are located on chromosomes A09 and C08, respectively, including 2044 genes in 10.20-MB length totally. Transcriptome sequencing revealed 129 DEGs between zws-ms and zws-217 in buds, including 39 DEGs located in the two abovementioned associated regions. We identified candidate genes involved in multi-silique formation in rapeseed based on the results of functional annotation. CONCLUSIONS This study identified the genomic regions and candidate genes related to the multi-silique trait in rapeseed.
Collapse
|
29
|
Yadav MK, Aravindan S, Ngangkham U, Raghu S, Prabhukarthikeyan SR, Keerthana U, Marndi BC, Adak T, Munda S, Deshmukh R, Pramesh D, Samantaray S, Rath PC. Blast resistance in Indian rice landraces: Genetic dissection by gene specific markers. PLoS One 2019; 14:e0211061. [PMID: 30673751 PMCID: PMC6343911 DOI: 10.1371/journal.pone.0211061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/07/2019] [Indexed: 11/18/2022] Open
Abstract
Understanding of genetic diversity is important to explore existing gene in any crop breeding program. Most of the diversity preserved in the landraces which are well–known reservoirs of important traits for biotic and abiotic stresses. In the present study, the genetic diversity at twenty-four most significant blast resistance gene loci using twenty-eight gene specific markers were investigated in landraces originated from nine diverse rice ecologies of India. Based on phenotypic evaluation, landraces were classified into three distinct groups: highly resistant (21), moderately resistant (70) and susceptible (70). The landraces harbour a range of five to nineteen genes representing blast resistance allele with the frequency varied from 4.96% to 100%. The cluster analysis grouped entire 161 landraces into two major groups. Population structure along with other parameters was also analyzed to understand the evolution of blast resistance gene in rice. The population structure analysis and principal coordinate analysis classified the landraces into two sub–populations. Analysis of molecular variance showed maximum (93%) diversity within the population and least (7%) between populations. Five markers viz; K3957, Pikh, Pi2–i, RM212and RM302 were strongly associated with blast disease with the phenotypic variance of 1.4% to 7.6%. These resistant landraces will serve as a valuable genetic resource for future genomic studies, host–pathogen interaction, identification of novel R genes and rice improvement strategies.
Collapse
Affiliation(s)
| | - S. Aravindan
- ICAR-National Rice Research Institute, Odisha, India
| | | | - S. Raghu
- ICAR-National Rice Research Institute, Odisha, India
| | | | - U. Keerthana
- ICAR-National Rice Research Institute, Odisha, India
| | - B. C. Marndi
- ICAR-National Rice Research Institute, Odisha, India
| | - Totan Adak
- ICAR-National Rice Research Institute, Odisha, India
| | - Susmita Munda
- ICAR-National Rice Research Institute, Odisha, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab, India
| | - D. Pramesh
- Rice Pathology Laboratory, AICRIP, Gangavathi, University of Agricultural Sciences, Raichur, India
| | | | - P. C. Rath
- ICAR-National Rice Research Institute, Odisha, India
| |
Collapse
|
30
|
Liu G, Zhao T, You X, Jiang J, Li J, Xu X. Molecular mapping of the Cf-10 gene by combining SNP/InDel-index and linkage analysis in tomato (Solanum lycopersicum). BMC PLANT BIOLOGY 2019; 19:15. [PMID: 30621598 PMCID: PMC6325758 DOI: 10.1186/s12870-018-1616-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/21/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Leaf mold, one of the major diseases of tomato caused by Cladosporium fulvum (C. fulvum), can dramatically reduce the yield and cause multimillion dollar losses annually worldwide. Mapping the resistance genes (R genes) of C. fulvum and devising MAS based strategies for breeding new cultivars is an effective approach to improve the resistance in tomato. Up to now, many C. fulvum genes or QTLs have been mapped using different genetic materials, but few studies focused on Cf-10 gene positioning. RESULTS In this study, we investigated the genetic rules for Cf-10 and used a novel combinatorial strategy to rapidly map the Cf-10 gene. Initially, the performance of F1, F2 and BC1F1 individuals after infection, demonstrated that the resistance against C. fulvum was controlled by a single dominant gene. Two pools of resistant and susceptible individuals from F2 population were investigated, using mapping by sequencing approach and Cf-10 was found to be localized to 3.35 Mb and 3.74 Mb on chromosome 1, employing SNP/InDel index methods, respectively. After accounting for overlapping regions, these two algorithms yielded a total length of 3.29 Mb, narrowing down the target region. We further developed five serviceable KASP markers for this region based on sequencing data and conducted local QTL mapping using individuals from the F2 population, except for mapping by sequencing as mentioned above. Finally Cf-10 gene was mapped spanning a region of 790 kb, where only one gene (Solyc01g007130.3) was annotated as probable receptor protein kinase TMK1 with a LRR motif, a common R gene characteristic. The RT-qPCR analysis further confirmed the localization and the relative expression of Solyc01g007130.3 in Ontario 792 and was found to be significantly higher than that in Moneymaker at 9 dpi and 12 dpi, respectively. CONCLUSION This study proposed a novel combinatorial strategy by combining SNP-index, InDel-index analyses and local QTL mapping using KASP genotyping approach to rapidly map genes responsible for specific traits and provided a robust base for cloning the Cf-10 gene. Furthermore, these analyses suggest that Solyc01g007130.3 is a potential candidate to be regarded as Cf-10 gene.
Collapse
Affiliation(s)
- Guan Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Xiangfang District, Harbin, 150030 China
| | - Tingting Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Xiangfang District, Harbin, 150030 China
| | - Xiaoqing You
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Xiangfang District, Harbin, 150030 China
| | - Jingbin Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Xiangfang District, Harbin, 150030 China
| | - Jingfu Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Xiangfang District, Harbin, 150030 China
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Mucai Street 59, Xiangfang District, Harbin, 150030 China
| |
Collapse
|
31
|
Meng Q, Gupta R, Min CW, Kwon SW, Wang Y, Je BI, Kim YJ, Jeon JS, Agrawal GK, Rakwal R, Kim ST. Proteomics of Rice- Magnaporthe oryzae Interaction: What Have We Learned So Far? FRONTIERS IN PLANT SCIENCE 2019; 10:1383. [PMID: 31737011 PMCID: PMC6828948 DOI: 10.3389/fpls.2019.01383] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/07/2019] [Indexed: 05/21/2023]
Abstract
Rice blast disease, caused by Magnaporthe oryzae, is one of the major constraints to rice production, which feeds half of the world's population. Proteomic technologies have been used as effective tools in plant-pathogen interactions to study the biological pathways involved in pathogen infection, plant response, and disease progression. Advancements in mass spectrometry (MS) and apoplastic and plasma membrane protein isolation methods facilitated the identification and quantification of subcellular proteomes during plant-pathogen interaction. Proteomic studies conducted during rice-M. oryzae interaction have led to the identification of several proteins eminently involved in pathogen perception, signal transduction, and the adjustment of metabolism to prevent plant disease. Some of these proteins include receptor-like kinases (RLKs), mitogen-activated protein kinases (MAPKs), and proteins related to reactive oxygen species (ROS) signaling and scavenging, hormone signaling, photosynthesis, secondary metabolism, protein degradation, and other defense responses. Moreover, post-translational modifications (PTMs), such as phosphoproteomics and ubiquitin proteomics, during rice-M. oryzae interaction are also summarized in this review. In essence, proteomic studies carried out to date delineated the molecular mechanisms underlying rice-M. oryzae interactions and provided candidate proteins for the breeding of rice blast resistant cultivars.
Collapse
Affiliation(s)
- Qingfeng Meng
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
- Department of Botany, School of Chemical and Life Science, Jamia Hamdard, New Delhi, India
| | - Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
| | - Soon Wook Kwon
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
| | - Yiming Wang
- Department of Plant Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Byoung Il Je
- Department of Horticultural Bioscience, Pusan National University, Miryang, South Korea
| | - Yu-Jin Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), Kathmandu, Nepal
- GRADE (Global Research Arch for Developing Education) Academy Private Limited, Birgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), Kathmandu, Nepal
- GRADE (Global Research Arch for Developing Education) Academy Private Limited, Birgunj, Nepal
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
- *Correspondence: Sun Tae Kim,
| |
Collapse
|
32
|
Whole Genome Resequencing from Bulked Populations as a Rapid QTL and Gene Identification Method in Rice. Int J Mol Sci 2018; 19:ijms19124000. [PMID: 30545055 PMCID: PMC6321147 DOI: 10.3390/ijms19124000] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 11/16/2022] Open
Abstract
Most Quantitative Trait Loci (QTL) and gene isolation approaches, such as positional- or map-based cloning, are time-consuming and low-throughput methods. Understanding and detecting the genetic material that controls a phenotype is a key means to functionally analyzing genes as well as to enhance crop agronomic traits. In this regard, high-throughput technologies have great prospects for changing the paradigms of DNA marker revealing, genotyping, and for discovering crop genetics and genomic study. Bulk segregant analysis, based on whole genome resequencing approaches, permits the rapid isolation of the genes or QTL responsible for the causative mutation of the phenotypes. MutMap, MutMap Gap, MutMap+, modified MutMap, and QTL-seq methods are among those approaches that have been confirmed to be fruitful gene mapping approaches for crop plants, such as rice, irrespective of whether the characters are determined by polygenes. As a result, in the present study we reviewed the progress made by all these methods to identify QTL or genes in rice.
Collapse
|
33
|
Chen Z, Zhao W, Zhu X, Zou C, Yin J, Chern M, Zhou X, Ying H, Jiang X, Li Y, Liao H, Cheng M, Li W, He M, Wang J, Wang J, Ma B, Wang J, Li S, Zhu L, Chen X. Identification and characterization of rice blast resistance gene Pid4 by a combination of transcriptomic profiling and genome analysis. J Genet Genomics 2018; 45:663-672. [DOI: 10.1016/j.jgg.2018.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/11/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
|
34
|
She H, Qian W, Zhang H, Liu Z, Wang X, Wu J, Feng C, Correll JC, Xu Z. Fine mapping and candidate gene screening of the downy mildew resistance gene RPF1 in Spinach. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2529-2541. [PMID: 30244393 DOI: 10.1007/s00122-018-3169-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/17/2018] [Indexed: 05/25/2023]
Abstract
A SLAF-BSA approach was used to locate the RPF1 locus. The three most likely candidate genes were identified which provide a basic for cloning the resistance gene at the RPF1 locus. Spinach downy mildew is a globally devastating oomycete disease. The use of downy mildew resistance genes constitutes the most effective approach for disease management. Hence, the objective of the present study was to fine map the first-reported resistance locus RPF1. The resistance allele at this resistance locus was effective against races 1-7, 9, 11, 13, and 15 of Peronospora farinosa f. sp. spinaciae (P. effusa). The approach fine mapped RPF1 using specific-locus amplified fragment sequencing (SLAF-Seq) technology combined with bulked segregant analysis. A 1.72 Mb region localized on chromosome 3 was found to contain RPF1 based on association analysis. After screening recombinants with the SLAF markers within the region, the region was narrowed down to 0.89 Mb. Within this region, 14 R genes were identified based on the annotation information. To identify the genes involved in resistance, resequencing of two resistant inbred lines (12S2 and 12S3) and three susceptible inbred lines (12S1, 12S4, and 10S2) was performed. The three most likely candidate genes were identified via amino acid sequence analysis and conserved domain analysis between resistant and susceptible inbred lines. These included Spo12729, encoding a receptor-like protein, and Spo12784 and Spo12903, encoding a nucleotide-binding site and leucine-rich repeat domains. Additionally, based on the sequence variation in the three genes between the resistant and susceptible lines, molecular markers were developed for marker-assisted selection. The results could be valuable in cloning the RPF1 alleles and improving our understanding of the interaction between the host and pathogen.
Collapse
Affiliation(s)
- Hongbing She
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Qian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Helong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunda Feng
- University of Arkansas, Fayetteville, AR, USA
| | | | - Zhaosheng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
35
|
Chen Q, Song J, Du WP, Xu LY, Jiang Y, Zhang J, Xiang XL, Yu GR. Identification and genetic mapping for rht-DM, a dominant dwarfing gene in mutant semi-dwarf maize using QTL-seq approach. Genes Genomics 2018; 40:1091-1099. [PMID: 29951965 DOI: 10.1007/s13258-018-0716-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Semi-dwarfism is an agronomically important trait in breeding for stable high yields and for resistance to damage by wind and rain (lodging resistance). Many QTLs and genes causing dwarf phenotype have been found in maize. However, because of the yield loss associated with these QTLs and genes, they have been difficult to use in breeding for dwarf stature in maize. Therefore, it is important to find the new dwarfing genes or materials without undesirable characters. The objectives of this study were: (1) to figure out the inheritance of semi-dwarfism in mutants; (2) mapping dwarfing gene or QTL. Maize inbred lines '18599' and 'DM173', which is the dwarf mutant derived from the maize inbred line '173' through 60Co-γ ray irradiation. F2 and BC1F1 population were used for genetic analysis. Whole genome resequencing-based technology (QTL-seq) were performed to map dwarfing gene and figured out the SNP markers in predicted region using dwarf bulk and tall bulk from F2 population. Based on the polymorphic SNP markers from QTL-seq, we were fine-mapping the dwarfing gene using F2 population. In F2 population, 398 were dwarf plants and 135 were tall plants. Results of χ2 tests indicated that the ratio of dwarf plants to tall plants was fitted to 3:1 ratio. Furthermore, the χ2 tests of BC1F1 population showed that the ratio was fitted to 1:1 ratio. Based on QTL-seq, the dwarfing gene was located at the region from 111.07 to 124.56 Mb of chromosome 9, and we named it rht-DM. Using traditional QTL mapping with SNP markers, the rht-DM was narrowed down to 400 kb region between SNP-21 and SNP-24. The two SNPs were located at 0.43 and 0.11 cM. Segregation analysis of F2 and BC1F1 indicated that the dwarfing gene was likely a dominant gene. This dwarfing gene was located in the region between 115.02 and 115.42 Mb on chromosome 9.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Jun Song
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Wen-Ping Du
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Li-Yuan Xu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Yun Jiang
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Jie Zhang
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Xiao-Li Xiang
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China
| | - Gui-Rong Yu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, China.
| |
Collapse
|
36
|
Menz I, Straube J, Linde M, Debener T. The TNL gene Rdr1 confers broad-spectrum resistance to Diplocarpon rosae. MOLECULAR PLANT PATHOLOGY 2018; 19:1104-1113. [PMID: 28779550 PMCID: PMC6638031 DOI: 10.1111/mpp.12589] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 05/09/2023]
Abstract
Black spot disease, which is caused by the ascomycete Diplocarpon rosae, is the most severe disease in field-grown roses in temperate regions and has been distributed worldwide, probably together with commercial cultivars. Here, we present data indicating that muRdr1A is the active Rdr1 gene, a single-dominant TIR-NBS-LRR (Toll/interleukin-1 receptor-nucleotide binding site-leucine rich repeat) (TNL)-type resistance gene against black spot disease, which acts against a broad range of pathogenic isolates independent of the genetic background of the host genotype. Molecular analyses revealed that, compared with the original donor genotype, the multiple integrations that are found in the primary transgenic clone segregate into different integration patterns in its sexual progeny and do not show any sign of overexpression. Rdr1 provides resistance to 13 different single-spore isolates belonging to six different races and broad field mixtures of conidia; thus far, Rdr1 is only overcome by two races. The expression of muRdr1A, the active Rdr1 gene, leads to interaction patterns that are identical in the transgenic clones and the non-transgenic original donor genotype. This finding indicates that the interacting avirulence (Avr) factor on the pathogen side must be widespread among the pathogen populations and may have a central function in the rose-black spot interaction. Therefore, the Rdr1 gene, pyramided with only a few other R genes by sexual crosses, might be useful for breeding roses that are resistant to black spot because the spread of new pathogenic races of the fungus appears to be slow.
Collapse
Affiliation(s)
- Ina Menz
- Department of Molecular Plant BreedingInstitute for Plant Genetics, Leibniz Universität HannoverHannover 30419Germany
| | - Jannis Straube
- Department of Molecular Plant BreedingInstitute for Plant Genetics, Leibniz Universität HannoverHannover 30419Germany
| | - Marcus Linde
- Department of Molecular Plant BreedingInstitute for Plant Genetics, Leibniz Universität HannoverHannover 30419Germany
| | - Thomas Debener
- Department of Molecular Plant BreedingInstitute for Plant Genetics, Leibniz Universität HannoverHannover 30419Germany
| |
Collapse
|
37
|
Sun J, Yang L, Wang J, Liu H, Zheng H, Xie D, Zhang M, Feng M, Jia Y, Zhao H, Zou D. Identification of a cold-tolerant locus in rice (Oryza sativa L.) using bulked segregant analysis with a next-generation sequencing strategy. RICE (NEW YORK, N.Y.) 2018; 11:24. [PMID: 29671148 PMCID: PMC5906412 DOI: 10.1186/s12284-018-0218-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 04/04/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Cold stress can cause serious abiotic damage that limits the growth, development and yield of rice. Cold tolerance during the booting stage of rice is a key factor that can guarantee a high and stable yield under cold stress. The cold tolerance of rice is controlled by quantitative trait loci (QTLs). Based on the complex genetic basis of cold tolerance in rice, additional efforts are needed to detect reliable QTLs and identify candidate genes. In this study, recombinant inbred lines (RILs) derived from a cross between a cold sensitive variety, Dongnong422, and strongly cold-tolerant variety, Kongyu131, were used to screen for cold-tolerant loci at the booting stage of rice. RESULTS A novel major QTL, qPSST6, controlling the percent seed set under cold water treatment (PSST) under the field conditions of 17 °C cold water irrigation was located on the 28.4 cM interval on chromosome 6. Using the combination of bulked-segregant analysis (BSA) and next-generation sequencing (NGS) technology (Seq-BSA), a 1.81 Mb region that contains 269 predicted genes on chromosome 6 was identified as the candidate region of qPSST6. Two genes, LOC_Os06g39740 and LOC_Os06g39750, were annotated as "response to cold" by gene ontology (GO) analysis. qRT-PCR analysis revealed that LOC_Os06g39750 was strongly induced by cold stress. Haplotype analysis also demonstrate a key role of LOC_Os06g39750 in regulating the PSST of rice, suggesting that it was the candidate gene of qPSST6. CONCLUSIONS The information obtained in this study is useful for gene cloning of qPSST6 and for breeding cold-tolerant varieties of rice using marker assisted selection (MAS).
Collapse
Affiliation(s)
- Jian Sun
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| | - Luomiao Yang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| | - Jingguo Wang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| | - Hualong Liu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| | - Hongliang Zheng
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| | - Dongwei Xie
- The Institute of Industrial Crops of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 China
| | - Minghui Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030 China
| | - Mingfang Feng
- College of Life Science, Northeast Agricultural University, Harbin, 150030 China
| | - Yan Jia
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| | - Hongwei Zhao
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| | - Detang Zou
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| |
Collapse
|
38
|
Khan GH, Shikari AB, Vaishnavi R, Najeeb S, Padder BA, Bhat ZA, Parray GA, Bhat MA, Kumar R, Singh NK. Marker-assisted introgression of three dominant blast resistance genes into an aromatic rice cultivar Mushk Budji. Sci Rep 2018; 8:4091. [PMID: 29511225 PMCID: PMC5840290 DOI: 10.1038/s41598-018-22246-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/19/2018] [Indexed: 11/09/2022] Open
Abstract
Modern high yielding rice varieties have replaced most of the traditional cultivars in recent past. Mushk Budji, is one such short grained landrace known for its aroma and exquisite quality, however, is highly susceptible to blast disease that has led to considerable decline in its area. Mushk Budji was crossed to a triple-gene donor line, DHMAS 70Q 164-1b and followed through marker-assisted foreground and background selection in first and second backcross generations that helped to incorporate blast resistance genes Pi54, Pi1 and Pita. Marker-assisted background selection was carried out using 78 SSR and STS markers that helped to reduce linkage drag around the genes Pi54, Pi1 and Pita to 2.74, 4.60 and 2.03 Mb, respectively. The three-gene lines in BC2F2:3 were genotyped using 50 K SNP chip and revealed more than 92% genome similarity to the RP. 2-D gel assay detected differentially expressing 171 protein spots among a set of backcross derived lines, of which 38 spots showing match score of 4 helped us to calculate the proteome recovery. MALDI-TOF analysis helped to detect four significant proteins that were linked to quality and disease resistance. The improved lines expressed resistance to blast under artificial and natural field conditions.
Collapse
Affiliation(s)
- Gazala Hassan Khan
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Campus, Srinagar, J & K, India
| | - Asif Bashir Shikari
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Campus, Srinagar, J & K, India.
| | - Rakesh Vaishnavi
- DARS, Old Airport Road, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Budgam, J & K, India
| | - Sofi Najeeb
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, J & K, India
| | - Bilal A Padder
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Campus, Srinagar, J & K, India
| | - Zahoor A Bhat
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Campus, Srinagar, J & K, India
| | - Ghulam A Parray
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, J & K, India
| | - Mohammad Ashraf Bhat
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, FOA, Wadura, Sopore, Baramullah, J & K, India
| | - Ram Kumar
- ICAR- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, India
| | - Nagendra K Singh
- ICAR- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, India
| |
Collapse
|
39
|
Use of molecular markers in identification and characterization of resistance to rice blast in India. PLoS One 2017; 12:e0176236. [PMID: 28445532 PMCID: PMC5405977 DOI: 10.1371/journal.pone.0176236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/08/2017] [Indexed: 11/25/2022] Open
Abstract
Rice blast disease caused by Magnaporthe oryzae is one of the most destructive disease causing huge losses to rice yield in different parts of the world. Therefore, an attempt has been made to find out the resistance by screening and studying the genetic diversity of eighty released rice varieties by National Rice Research Institute, Cuttack (NRVs) using molecular markers linked to twelve major blast resistance (R) genes viz Pib, Piz, Piz-t, Pik, Pik-p, Pikm Pik-h, Pita/Pita-2, Pi2, Pi9, Pi1 and Pi5. Out of which, nineteen varieties (23.75%) showed resistance, twenty one were moderately resistant (26.25%) while remaining forty varieties (50%) showed susceptible in uniform blast nursery. Rice varieties possessing blast resistance genes varied from four to twelve and the frequencies of the resistance genes ranged from 0 to 100%. The cluster analysis grouped the eighty NRVs into two major clusters at 63% level of genetic similarity coefficient. The PIC value for seventeen markers varied from 0 to 0.37 at an average of 0.20. Out of seventeen markers, only five markers, 195R-1, Pi9-i, Pita3, YL155/YL87 and 40N23r corresponded to three broad spectrum R genes viz. Pi9, Pita/Pita2 and Pi5 were found to be significantly associated with the blast disease with explaining phenotypic variance from 3.5% to 7.7%. The population structure analysis and PCoA divided the entire 80 NRVs into two sub-groups. The outcome of this study would help to formulate strategies for improving rice blast resistance through genetic studies, plant-pathogen interaction, identification of novel R genes, development of new resistant varieties through marker-assisted breeding for improving rice blast resistance in India and worldwide.
Collapse
|
40
|
Chen Q, Song J, Du WP, Xu LY, Jiang Y, Zhang J, Xiang XL, Yu GR. Identification, Mapping, and Molecular Marker Development for Rgsr8.1: A New Quantitative Trait Locus Conferring Resistance to Gibberella Stalk Rot in Maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1355. [PMID: 28824686 PMCID: PMC5540892 DOI: 10.3389/fpls.2017.01355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/20/2017] [Indexed: 05/20/2023]
Abstract
Maize stalk rot is a major fungal disease worldwide, and is difficult to control by chemical methods. Therefore, in maize breeding, quantitative trait loci (QTLs) conferring resistance are important for controlling the disease. Next-generation sequencing technologies are considered a rapid and efficient method to establish the association of agronomic traits with molecular markers or candidate genes. In the present study, we employed QTL-seq, which is a whole-genome resequencing-based approach, to identify candidate genomic regions conferring resistance to maize stalk rot. A novel resistance QTL Rgsr8.1 was finely mapped, conferring broad-spectrum resistance to Gibberella stalk rot (GSR). Segregation analysis in F2 and BC1F1 populations, which were derived from a cross between 18327 (Susceptible) and S72356 (Resistant), indicated that the resistance to GSR was likely to be a quantitatively inherited trait in maize. The result of QTL-seq showed that the resistance to GSR was mapped on chromosome 8 from 161.001 to 170.6 Mb. Based on the simple sequence repeat (SSR) markers, single-nucleotide polymorphism (SNP) markers, and the recombinant test, the location of Rgsr8.1 was narrowed down to 2.04 Mb, flanked by SSR-65 and SNP-25 markers at the physical location from 164.69 to 166.72 Mb based on the maize reference genome. In this region, two candidate resistant genes were found with, one auxin-responsive elements and the other encoding a disease resistance protein. In summary, these results will be useful in maize breeding programs to improve the resistance to GSR in maize.
Collapse
|
41
|
Sheng Y, Wang Y, Jiao S, Jin Y, Ji P, Luan F. Mapping and Preliminary Analysis of ABORTED MICROSPORES ( AMS) as the Candidate Gene Underlying the Male Sterility ( MS-5) Mutant in Melon ( Cucumis melo L.). FRONTIERS IN PLANT SCIENCE 2017; 8:902. [PMID: 28611814 PMCID: PMC5447745 DOI: 10.3389/fpls.2017.00902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/15/2017] [Indexed: 05/06/2023]
Abstract
Melon is an important agricultural and economic vegetable crop worldwide. The genetic male sterility mutant (ms-5) has a recessive nuclear gene that controls the male sterility germplasm. Male sterility could reduce the cost of F1 seed production in melon, but heterozygous fertile plants should be removed before pollination. In this study, bulked segregant analysis combined with specific length amplified fragment sequencing was applied to map the single nuclear male sterility recessive gene. A 30-kb candidate region on chromosome 9 located on scaffold 000048 and spanning 2,522,791 to 2,555,104 bp was identified and further confirmed by cleavage amplified polymorphic sequence markers based on parental line resequencing data and classical mapping of 252 F2 individuals. Gene prediction indicated that six annotated genes are present in the 30-kb candidate region. Quantitative RT-PCR revealed significant differences in the expression level of the LOC103498166 ABORTED MICROSPORES (AMS) gene in male-sterile lines (ms-5) and male-fertile (HM1-1) lines during the 2-mm (tetrad) and 5-mm (the first pollen mitosis) periods, and negative regulation of the AMS candidate gene transcription factor was also detected. Sequencing and cluster analysis of the AMS transcription factor revealed five single-nucleotide polymorphisms between the parental lines. The data presented herein suggest that the AMS transcription factor is a possible candidate gene for single nuclear male sterility in melon. The results of this study will help breeders to identify male-sterile and -fertile plants at seeding as marker-assisted selection methods, which would reduce the cost of seed production and improve the use of male-sterile lines in melon.
Collapse
Affiliation(s)
- Yunyan Sheng
- Department of Agriculture, Heilongjiang Bayi Agricultural UniversityDaqing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture/Northeast Agricultural UniversityHarbin, China
- *Correspondence: Yunyan Sheng,
| | - Yudan Wang
- Department of Agriculture, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Shiqi Jiao
- Department of Horticulture, Northeast Agricultural UniversityHarbin, China
| | - Yazhong Jin
- Department of Agriculture, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Peng Ji
- Department of Agriculture, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Feishi Luan
- Department of Horticulture, Northeast Agricultural UniversityHarbin, China
| |
Collapse
|
42
|
Song J, Li Z, Liu Z, Guo Y, Qiu LJ. Next-Generation Sequencing from Bulked-Segregant Analysis Accelerates the Simultaneous Identification of Two Qualitative Genes in Soybean. FRONTIERS IN PLANT SCIENCE 2017; 8:919. [PMID: 28620406 PMCID: PMC5449466 DOI: 10.3389/fpls.2017.00919] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/16/2017] [Indexed: 05/03/2023]
Abstract
Next-generation sequencing (NGS)-based bulked-segregant analysis (BSA) approaches have been proven successful for rapidly mapping genes in plant species. However, most such methods are based on mutants and usually only one gene controlling the mutant phenotype is identified. In this study, NGS-based BSA was employed to map simultaneously two qualitative genes controlling cotyledon color of seed in soybean. Yellow-cotyledon (YC) and green-cotyledon (GC) bulks from progenies of a biparental population (Zhonghuang 30 × Jiyu 102) were sequenced. The SNP-index of each SNP locus in YC and GC bulks was calculated and two genomic regions on chromosomes 1 and 11 harboring, respectively, loci qCC1 and qCC2 were identified by Δ(SNP-index) analysis. These two BSA-seq-derived loci were further validated with SSR markers and fine-mapped. qCC1 was mapped to a 30.7-kb region containing four annotated genes and qCC2 was mapped to a 67.7-kb region with nine genes. These two regions contained, respectively, genes D1 and D2, which had previously been identified by homology-based cloning as being associated with cotyledon color. Sequence analysis of the NGS data also identified a frameshift deletion in the coding region of D1. These results suggested that BSA-seq could accelerate the mapping of loci controlling qualitative traits, even if a trait is controlled by more than one locus.
Collapse
Affiliation(s)
| | | | | | - Yong Guo
- *Correspondence: Li-Juan Qiu, Yong Guo,
| | | |
Collapse
|
43
|
Zhu D, Kang H, Li Z, Liu M, Zhu X, Wang Y, Wang D, Wang Z, Liu W, Wang GL. A Genome-Wide Association Study of Field Resistance to Magnaporthe Oryzae in Rice. RICE (NEW YORK, N.Y.) 2016; 9:44. [PMID: 27576685 PMCID: PMC5005242 DOI: 10.1186/s12284-016-0116-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/22/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Breeding of rice cultivars with long-lasting resistance to the rice blast fungus Magnaporthe oryzae is difficult, and identification of new resistance genes is essential. Most of the loci associated with blast resistance against M. oryzae in rice have been identified in controlled environments and with single isolates, and such loci may confer resistance to only a small faction of the M. oryzae strains. In the field, however, rice is commonly attacked by multiple strains. Research is therefore needed to identify loci that confer resistance in the field, i.e., "field blast resistance". To identify loci associated with field blast resistance (LAFBRs), we conducted a genome-wide association study (GWAS) using the rice diversity panel 1 (RDP1) cultivars. These cultivars were evaluated in the field in three major rice production areas of China. RESULTS GWAS identified 16 LAFBRs. Among them, 13 are novel and the other three are co-localized with known blast resistance regions. Seventy-four candidate genes are identified in the 16 LAFBR regions, which encode receptor-like protein kinases, transcription factors, and other defense-related proteins. Using the rice transcriptome data, compared with the rice-rice blast compatible interaction, we identified seven candidate genes that are significantly up-regulated and five genes that are significantly down-regulated in the incompatible interaction among the candidate genes. CONCLUSIONS We identified 16 LAFBRs involved in field resistance to M. oryzae and 20 cultivars that exhibit high levels of resistance in both the field and growth chamber. The resistant cultivars and the SNP markers identified in this study should be useful for marker-assisted selection of new rice cultivars that confer high levels of resistance against M. oryzae field populations.
Collapse
Affiliation(s)
- Dan Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Minghao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Xiaoli Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yue Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Dan Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Zhilong Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, People's Republic of China.
- Department of Plant Pathology, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
44
|
Liu C, Zhou Q, Dong L, Wang H, Liu F, Weng J, Li X, Xie C. Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing. BMC Genomics 2016; 17:915. [PMID: 27842488 PMCID: PMC5109822 DOI: 10.1186/s12864-016-3240-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The maize kernel row number (KRN) is a key component that contributes to grain yield and has high broad-sense heritability (H 2 ). Quantitative trait locus/loci (QTL) mapping using a high-density genetic map is a powerful approach to detecting loci that are responsible for traits of interest. Bulked segregant ribonucleic acid (RNA) sequencing (BSR-seq) is another rapid and cost-effective strategy to identify QTL. Combining QTL mapping using a high-density genetic map and BSR-seq may dissect comprehensively the genetic architecture underlying the maize KRN. RESULTS A panel of 300 F2 individuals derived from inbred lines abe2 and B73 were genotyped using the specific-locus amplified fragment sequencing (SLAF-seq) method. A total of 4,579 high-quality polymorphic SLAF markers were obtained and used to construct a high-density genetic map with a total length of 2,123 centimorgan (cM) and an average distance between adjacent markers of 0.46 cM. Combining the genetic map and KRN of F2 individuals, four QTL (qKRN1, qKRN2, qKRN5, and qKRN8-1) were identified on chromosomes 1, 2, 5, and 8, respectively. The physical intervals of these four QTL ranged from 4.36 Mb for qKRN8-1 to 7.11 Mb for qKRN1 with an average value of 6.08 Mb. Based on high-throughput sequencing of two RNA pools bulked from leaves of plants with extremely high and low KRNs, two QTL were detected on chromosome 8 in the 10-25 Mb (BSR_QTL1) and 60-150 Mb (BSR_QTL2) intervals. According to the physical positions of these QTL, qKRN8-1 was included by BSR_QTL2. In addition, qKRN8-1 was validated using QTL mapping with a recombinant inbred lines population that was derived from inbred lines abe2 and B73. CONCLUSIONS In this study, we proved that combining QTL mapping using a high-density genetic map and BSR-seq is a powerful and cost-effective approach to comprehensively revealing genetic architecture underlying traits of interest. The QTL for the KRN detected in this study, especially qKRN8-1, can be used for performing fine mapping experiments and marker-assisted selection in maize breeding.
Collapse
Affiliation(s)
- Changlin Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Qiang Zhou
- Anhui Agricultural University, Hefei, Anhui Province, 230036, China
| | - Le Dong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Hui Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Fang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Chuanxiao Xie
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
45
|
Xiao N, Wu Y, Pan C, Yu L, Chen Y, Liu G, Li Y, Zhang X, Wang Z, Dai Z, Liang C, Li A. Improving of Rice Blast Resistances in Japonica by Pyramiding Major R Genes. FRONTIERS IN PLANT SCIENCE 2016; 7:1918. [PMID: 28096805 PMCID: PMC5206849 DOI: 10.3389/fpls.2016.01918] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/02/2016] [Indexed: 05/04/2023]
Abstract
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is a major constraint to rice production worldwide. In this study, we developed monogenic near-isogenic lines (NILs) NIL Pi9, NIL Pizt , and NIL Pi54 carrying genes Pi9, Pizt, and Pi54, respectively, by marker assisted backcross breeding using 07GY31 as the japonica genetic background with good agronomic traits. Polygene pyramid lines (PPLs) PPL Pi9+Pi54 combining Pi9 with Pi54, and PPL Pizt+Pi54 combining Pizt with Pi54 were then developed using corresponding NILs with genetic background recovery rates of more than 97%. Compared to 07GY31, the above NILs and PPLs exhibited significantly enhanced resistance frequencies (RFs) for both leaf and panicle blasts. RFs of both PPLs for leaf blast were somewhat higher than those of their own parental NILs, respectively, and PPL Pizt+Pi54 exhibited higher RF for panicle blast than NIL Pizt and NIL Pi54 (P < 0.001), hinting an additive effect on the resistance. However, PPL Pi9+Pi54 exhibited lower RF for panicle blast than NIL Pi9 (P < 0.001), failing to realize an additive effect. PPL Pizt+Pi54 showed higher resistant level for panicle blast and better additive effects on the resistance than PPL Pi9+Pi54. It was suggested that major R genes interacted with each other in a way more complex than additive effect in determining panicle blast resistance levels. Genotyping by sequencing analysis and extreme-phenotype genome-wide association study further confirmed the above results. Moreover, data showed that pyramiding multiple resistance genes did not affect the performance of basic agronomic traits. So the way to enhance levels of leaf and panicle blast resistances for rice breeding in this study is effective and may serve as a reference for breeders. Key Message: Resistant levels of rice blast is resulted from different combinations of major R genes, PPL Pizt+Pi54 showed higher resistant level and better additive effects on the panicle blast resistance than PPL Pi9+Pi54.
Collapse
Affiliation(s)
- Ning Xiao
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
| | - Yunyu Wu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
| | - Cunhong Pan
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
| | - Ling Yu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
| | - Yu Chen
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
| | - Guangqing Liu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
| | - Yuhong Li
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
| | - Xiaoxiang Zhang
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
| | - Zhiping Wang
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
| | - Zhengyuan Dai
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
| | - Chengzhi Liang
- Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- *Correspondence: Aihong Li, Chengzhi Liang,
| | - Aihong Li
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou – Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing – Institute of Jiangsu Province National Rice Industry Technology System of Yangzhou Comprehensive Experimental StationYangzhou, China
- *Correspondence: Aihong Li, Chengzhi Liang,
| |
Collapse
|