1
|
Liu H, Hu K, Ma Y, Fu L, Huang Z, Cheng Z, Sheng Y, Li D, Pan Y. Identification and functional analysis of an LTR retrotransposon insertion in CsPHYB associated with early senescence in cucumber (Cucumis sativus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112519. [PMID: 40268202 DOI: 10.1016/j.plantsci.2025.112519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/31/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Early senescence in plants significantly affects photosynthetic efficiency, crop yield, and overall plant vigor. In this study, we identified a spontaneous cucumber mutant, NW079, exhibiting premature leaf yellowing, reduced chlorophyll content, and impaired photosynthetic performance. To uncover the genetic basis of this phenotype, we generated F₂ mapping populations and employed bulked segregant analysis and fine mapping. These efforts led to the identification of a 5.5-kb long terminal repeat (LTR) retrotransposon insertion within the first exon of CsPHYB, a gene encoding phytochrome B. This insertion disrupted normal splicing and gave rise to two aberrant transcript variants: one containing a 261-bp LTR-derived sequence with premature stop codons, and the other harboring a 1,914-bp deletion due to exon skipping. Both variants are predicted to produce truncated, nonfunctional proteins. Functional analyses revealed that CsPHYB deficiency resulted in heightened sensitivity to varying light qualities and intensities, leading to pronounced leaf yellowing and reduced leaf area. RNA sequencing revealed widespread transcriptional reprogramming in NW079, with 580 differentially expressed genes (DEGs) implicated in heme metabolism, tetrapyrrole binding, and chloroplast development. These transcriptional disruptions were closely linked to the observed structural and functional abnormalities in chloroplasts. This study provides a molecular framework for understanding the early senescence in cucumber, offering valuable insights for breeding strategies aimed at improving crop resilience and productivity. Keymessage An LTR retrotransposon insertion in the first exon of CsPhyB disrupts its expression and splicing, leading to early leaf senescence in cucumber. This finding provides novel insights into the role of CsPHYB in chloroplast development and light signaling, offering valuable molecular markers and a target gene for cucumber breeding programs focused on enhancing yield and stress resilience.
Collapse
Affiliation(s)
- Hanqiang Liu
- Hainan Institute of Northwest A&F University, Sanya, Hainan 572024, China; College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaihong Hu
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang 163319, China
| | - Yuxuan Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liting Fu
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang 163319, China
| | - Zeqiang Huang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuyan Sheng
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang 163319, China
| | - Dandan Li
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang 163319, China.
| | - Yupeng Pan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Zhang M, Ma M, Lang H, Jiang M. Research Advances and Perspectives on Early Flowering Traits in Cucumber. PLANTS (BASEL, SWITZERLAND) 2025; 14:1158. [PMID: 40284046 PMCID: PMC12030555 DOI: 10.3390/plants14081158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/30/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Early flowering refers to the phenomenon in which the first flower appears in fewer days than normal, regardless of the sex of the flower. It is a significant feature impacting the early maturity and economic yield of cucumbers. The early flowering trait of cucumber is influenced by several factors. Considering its heritability, technologies such as whole-genome sequencing, genetic modification, bioinformatics analysis, quantitative trait locus (QTL) mapping, molecular marker-assisted selection, and gene editing are widely used to explore the regulatory genes and molecular mechanisms of the early flowering trait in cucumbers. This review aimed to summarize the factors, QTL mapping, molecular regulation mechanisms, and omics analysis related to early flowering traits in cucumbers. This review contributes theoretical insights to support both cucumber breeding for early flowering and fundamental research on early flowering traits.
Collapse
Affiliation(s)
| | | | - Hong Lang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (M.Z.); (M.M.)
| | - Mingliang Jiang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (M.Z.); (M.M.)
| |
Collapse
|
3
|
Chen L, Qiu Z, Dong J, Bu R, Zhou Y, Wang H, Hu L. CsPHYB- CsPIF3/ 4 Regulates Hypocotyl Elongation by Coordinating the Auxin and Gibberellin Biosynthetic Pathways in Cucumber ( Cucumis sativus L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:371. [PMID: 39942933 PMCID: PMC11821244 DOI: 10.3390/plants14030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025]
Abstract
Hypocotyl length is closely related to quality in seedlings and is an important component of plant height vital for plant-type breeding in cucumber. However, the underlying molecular mechanisms of hypocotyl elongation are poorly understood. In this study, the endogenous hormone content of indole acetic acid (IAA) and gibberellin (GA3) showed an increase in the long hypocotyl Csphyb (phytochrome B) mutant AM274M compared with its wild-type AM274W. An RNA-sequencing analysis identified 1130 differentially expressed genes (DEGs), of which 476 and 654 were up- and downregulated in the mutant AM274M, respectively. A KEGG enrichment analysis exhibited that these DEGs were mainly enriched in the plant hormone signal transduction pathway. The expression levels of the pivotal genes CsGA20ox-2, in the gibberellin biosynthesis pathway, and CsYUCCA8, in the auxin biosynthesis pathway, were notably elevated in the hypocotyl of the mutant AM274M, in contrast to the wild-type AM274W. Additionally, GUS staining and a dual-luciferase reporter assay corroborated that the phytochrome-interacting factors CsPIF3/4 can bind to the E(G)-box motifs present in the promoters of the CsGA20ox-2 and CsYUCCA8 genes, thereby modulating their expression and subsequently influencing hypocotyl elongation. Consequently, this research offers profound insights into the regulation of hypocotyl elongation by auxin and gibberellin in response to light signals and establishes a crucial theoretical groundwork for cultivating robust cucumber seedlings in agricultural practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liangliang Hu
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (L.C.); (Z.Q.); (J.D.); (R.B.); (Y.Z.); (H.W.)
| |
Collapse
|
4
|
Kumar S, Singh A, Bist CMS, Sharma M. Advancements in genetic techniques and functional genomics for enhancing crop traits and agricultural sustainability. Brief Funct Genomics 2024; 23:607-623. [PMID: 38679487 DOI: 10.1093/bfgp/elae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Genetic variability is essential for the development of new crop varieties with economically beneficial traits. The traits can be inherited from wild relatives or induced through mutagenesis. Novel genetic elements can then be identified and new gene functions can be predicted. In this study, forward and reverse genetics approaches were described, in addition to their applications in modern crop improvement programs and functional genomics. By using heritable phenotypes and linked genetic markers, forward genetics searches for genes by using traditional genetic mapping and allele frequency estimation. Despite recent advances in sequencing technology, omics and computation, genetic redundancy remains a major challenge in forward genetics. By analyzing close-related genes, we will be able to dissect their functional redundancy and predict possible traits and gene activity patterns. In addition to these predictions, sophisticated reverse gene editing tools can be used to verify them, including TILLING, targeted insertional mutagenesis, gene silencing, gene targeting and genome editing. By using gene knock-down, knock-up and knock-out strategies, these tools are able to detect genetic changes in cells. In addition, epigenome analysis and editing enable the development of novel traits in existing crop cultivars without affecting their genetic makeup by increasing epiallelic variants. Our understanding of gene functions and molecular dynamics of various biological phenomena has been revised by all of these findings. The study also identifies novel genetic targets in crop species to improve yields and stress tolerances through conventional and non-conventional methods. In this article, genetic techniques and functional genomics are specifically discussed and assessed for their potential in crop improvement.
Collapse
Affiliation(s)
- Surender Kumar
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India
| | - Anupama Singh
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India
| | - Chander Mohan Singh Bist
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla-171001, Himachal Pradesh, India
| | - Munish Sharma
- Department of Plant Sciences, Central University of Himachal Pradesh, Dharamshala-176215, Himachal Pradesh, India
| |
Collapse
|
5
|
Zhu X, Wang H, Li Y, Rao D, Wang F, Gao Y, Zhong W, Zhao Y, Wu S, Chen X, Qiu H, Zhang W, Xia Z. A Novel 10-Base Pair Deletion in the First Exon of GmHY2a Promotes Hypocotyl Elongation, Induces Early Maturation, and Impairs Photosynthetic Performance in Soybean. Int J Mol Sci 2024; 25:6483. [PMID: 38928189 PMCID: PMC11203641 DOI: 10.3390/ijms25126483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Plants photoreceptors perceive changes in light quality and intensity and thereby regulate plant vegetative growth and reproductive development. By screening a γ irradiation-induced mutant library of the soybean (Glycine max) cultivar "Dongsheng 7", we identified Gmeny, a mutant with elongated nodes, yellowed leaves, decreased chlorophyll contents, altered photosynthetic performance, and early maturation. An analysis of bulked DNA and RNA data sampled from a population segregating for Gmeny, using the BVF-IGV pipeline established in our laboratory, identified a 10 bp deletion in the first exon of the candidate gene Glyma.02G304700. The causative mutation was verified by a variation analysis of over 500 genes in the candidate gene region and an association analysis, performed using two populations segregating for Gmeny. Glyma.02G304700 (GmHY2a) is a homolog of AtHY2a in Arabidopsis thaliana, which encodes a PΦB synthase involved in the biosynthesis of phytochrome. A transcriptome analysis of Gmeny using the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed changes in multiple functional pathways, including photosynthesis, gibberellic acid (GA) signaling, and flowering time, which may explain the observed mutant phenotypes. Further studies on the function of GmHY2a and its homologs will help us to understand its profound regulatory effects on photosynthesis, photomorphogenesis, and flowering time.
Collapse
Affiliation(s)
- Xiaobin Zhu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Wang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Yuzhuo Li
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Demin Rao
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 132102, China; (D.R.); (H.Q.); (W.Z.)
| | - Feifei Wang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Yi Gao
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Weiyu Zhong
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Yujing Zhao
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Shihao Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.W.); (X.C.)
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.W.); (X.C.)
| | - Hongmei Qiu
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 132102, China; (D.R.); (H.Q.); (W.Z.)
| | - Wei Zhang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 132102, China; (D.R.); (H.Q.); (W.Z.)
| | - Zhengjun Xia
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| |
Collapse
|
6
|
Zhang H, Liu Z, Wang Y, Mu S, Yue H, Luo Y, Zhang Z, Li Y, Chen P. A mutation in CsDWF7 gene encoding a delta7 sterol C-5(6) desaturase leads to the phenotype of super compact in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:20. [PMID: 38221593 DOI: 10.1007/s00122-023-04518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
KEY MESSAGE A novel super compact mutant, scp-3, was identified using map-based cloning in cucumber. The CsDWF7 gene encoding a delta7 sterol C-5(6) desaturase was the candidate gene of scp-3. Mining dwarf genes is important in understanding stem growth in crops. However, only a small number of dwarf genes have been cloned or characterized. Here, we characterized a cucumber (Cucumis sativus L.) dwarf mutant, super compact 3 (scp-3), which displays shortened internodes and dark green leaves with a wrinkled appearance. The photosynthetic rate of scp-3 is significantly lower than that of the wild type. The dwarf phenotype of scp-3 mutant can be partially rescued by the exogenous brassinolide (BL) application, and the endogenous brassinosteroids (BRs) levels in the scp-3 mutant were significantly lower compared to the wild type. Microscopic examination revealed that the reduced internode length in scp-3 resulted from a decrease in cell size. Genetic analysis showed that the dwarf phenotype of scp-3 was controlled by a single recessive gene. Combined with bulked segregant analysis and map-based cloning strategy, we delimited scp-3 locus into an 82.5 kb region harboring five putative genes, but only one non-synonymous mutation (A to T) was discovered between the mutant and its wild type in this region. This mutation occurred within the second exon of the CsGy4G017510 gene, leading to an amino acid alteration from Leu156 to His156. This gene encodes the CsDWF7 protein, an analog of the Arabidopsis DWF7 protein, which is known to be involved in the biosynthesis of BRs. The CsDWF7 protein was targeted to the cell membrane. In comparison to the wild type, scp-3 exhibited reduced CsDWF7 expression in different tissues. These findings imply that CsDWF7 is essential for both BR biosynthesis as well as growth and development of cucumber plants.
Collapse
Affiliation(s)
- Haiqiang Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zichen Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunxiao Wang
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Siyu Mu
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Yanjie Luo
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhengao Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Li X, Xi D, Gao L, Zhu H, Yang X, Song X, Zhang C, Miao L, Zhang D, Zhang Z, Hou X, Zhu Y, Wei M. Integrated Transcriptome and Proteome Analysis Revealed the Regulatory Mechanism of Hypocotyl Elongation in Pakchoi. Int J Mol Sci 2023; 24:13808. [PMID: 37762111 PMCID: PMC10531338 DOI: 10.3390/ijms241813808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Hypocotyl length is a critical determinant for the efficiency of mechanical harvesting in pakchoi production, but the knowledge on the molecular regulation of hypocotyl growth is very limited. Here, we report a spontaneous mutant of pakchoi, lhy7.1, and identified its characteristics. We found that it has an elongated hypocotyl phenotype compared to the wild type caused by the longitudinal growth of hypocotyl cells. Different light quality treatments, transcriptome, and proteomic analyses were performed to reveal the molecular mechanisms of hypocotyl elongation. The data showed that the hypocotyl length of lhy7.1 was significantly longer than that of WT under red, blue, and white lights but there was no significant difference under dark conditions. Furthermore, we used transcriptome and label-free proteome analyses to investigate differences in gene and protein expression levels between lhy7.1 and WT. At the transcript level, 4568 differentially expressed genes (DEGs) were identified, which were mainly enriched in "plant hormone signal transduction", "photosynthesis", "photosynthesis-antenna proteins", and "carbon fixation in photosynthetic organisms" pathways. At the protein level, 1007 differentially expressed proteins (DEPs) were identified and were mainly enriched in photosynthesis-related pathways. The comprehensive transcriptome and proteome analyses revealed a regulatory network of hypocotyl elongation involving plant hormone signal transduction and photosynthesis-related pathways. The findings of this study help elucidate the regulatory mechanisms of hypocotyl elongation in lhy7.1.
Collapse
Affiliation(s)
- Xiaofeng Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Dandan Xi
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Lu Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Hongfang Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Xiuke Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (X.H.)
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China;
| | - Changwei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (X.H.)
| | - Liming Miao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Dingyu Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Zhaohui Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Xilin Hou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (X.H.)
| | - Yuying Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.X.); (L.G.); (H.Z.); (X.Y.); (L.M.); (D.Z.); (Z.Z.)
| | - Min Wei
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
| |
Collapse
|
8
|
Hu L, Zhang M, Shang J, Liu Z, Weng Y, Yue H, Li Y, Chen P. A 5.5-kb LTR-retrotransposon insertion inside phytochrome B gene (CsPHYB) results in long hypocotyl and early flowering in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:68. [PMID: 36952021 DOI: 10.1007/s00122-023-04271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
The novel spontaneous long hypocotyl and early flowering (lhef) mutation in cucumber is due to a 5551-bp LTR-retrotransposon insertion in CsPHYB gene encoding PHYTOCHROME B, which plays a major role in regulating photomorphogenic hypocotyl growth and flowering. Hypocotyl length and flowering time are important for establishing high-quality seedlings in modern cucumber production, but little is known for the underlying molecular mechanisms of these two traits. In this study, a spontaneous cucumber long hypocotyl and early flowering mutant was identified and characterized. Based on multiple lines of evidence, we show that cucumber phytochrome B (CsPHYB) is the candidate gene for this mutation, and a 5551-bp LTR-retrotransposon insertion in the first exon of CsPHYB was responsible for the mutant phenotypes. Uniqueness of the mutant allele at CsPHYB was verified in 114 natural cucumber lines. Ectopic expression of the CsPHYB in Arabidopsis phyB mutant rescued the long hypocotyl and early flowering phenotype of phyB-9 mutant. The wild-type CsPHYB protein was localized on the membrane and cytoplasm under white light condition, whereas in the nucleus under red light, it is consistent with its roles as a red-light photoreceptor in Arabidopsis. However, the mutant csphyb protein was localized on the membrane and cytoplasm under both white and red-light conditions. Expression dynamics of CsPHYB and several cell elongation-related genes were positively correlated with hypocotyl elongation; the transcription levels of key positive and negative regulators for flowering time were also consistent with the anthesis dates in the mutant and wild-type plants. Yeast two hybrid and bimolecular fluorescence complementation assays identified physical interactions between CsPHYB and phytochrome interacting factor 3/4 (CsPIF3/4). These findings will provide new insights into the roles of the CsPHYB in cucumber hypocotyl growth and flowering time.
Collapse
Affiliation(s)
- Liangliang Hu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Miaomiao Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingjing Shang
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zichen Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqun Weng
- Horticulture Department, USDA-ARS Vegetable Crops Research Unit, University of Wisconsin, Madison, WI, 53706, USA
| | - Hongzhong Yue
- Vegetable Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
9
|
Zhang Z, Yang S, Wang Q, Yu H, Zhao B, Wu T, Tang K, Ma J, Yang X, Feng X. Soybean GmHY2a encodes a phytochromobilin synthase that regulates internode length and flowering time. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6646-6662. [PMID: 35946571 PMCID: PMC9629791 DOI: 10.1093/jxb/erac318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Plant height and flowering time are important agronomic traits that directly affect soybean [Glycine max (L.) Merr.] adaptability and yield. Here, the Glycine max long internode 1 (Gmlin1) mutant was selected from an ethyl methyl sulfonate (EMS)-mutated Williams 82 population due to its long internodes and early flowering. Using bulked segregant analysis (BSA), the Gmlin1 locus was mapped to Glyma.02G304700, a homologue of the Arabidopsis HY2 gene, which encodes a phytochromobilin (PΦB) synthase involved in phytochrome chromophore synthesis. Mutation of GmHY2a results in failure of the de-etiolation response under both red and far-red light. The Gmlin1 mutant exhibits a constitutive shade avoidance response under normal light, and the mutations influence the auxin and gibberellin pathways to promote internode elongation. The Gmlin1 mutant also exhibits decreased photoperiod sensitivity. In addition, the soybean photoperiod repressor gene E1 is down-regulated in the Gmlin1 mutant, resulting in accelerated flowering. The nuclear import of phytochrome A (GmphyA) and GmphyB following light treatment is decreased in Gmlin1 protoplasts, indicating that the weak light response of the Gmlin1 mutant is caused by a decrease in functional phytochrome. Together, these results indicate that GmHY2a plays an important role in soybean phytochrome biosynthesis and provide insights into the adaptability of the soybean plant.
Collapse
Affiliation(s)
- Zhirui Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Qiushi Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Beifang Zhao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Jingjing Ma
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
| | - Xinjing Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|