1
|
Salazar S, Delgadillo-Silva LF, Carapeto P, Dakessian K, Melhem R, Provencher-Girard A, Ostinelli G, Turgeon J, Kaci I, Migneault F, Huising MO, Hébert MJ, Rutter GA. Sex-dependent additive effects of dorzagliatin and incretin on insulin secretion in a novel mouse model of GCK-MODY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.09.622781. [PMID: 39605321 PMCID: PMC11601264 DOI: 10.1101/2024.11.09.622781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Glucokinase (GK) catalyses the key regulatory step in glucose-stimulated insulin secretion. Correspondingly, hetero- and homozygous mutations in human GCK cause maturity-onset diabetes of the young (GCK-MODY) and permanent neonatal diabetes (PNDM), respectively. To explore the possible utility of glucokinase activators (GKA) and of glucagon-like receptor-1 (GLP-1) agonists in these diseases, we have developed a novel hypomorphic Gck allele in mice encoding an aberrantly spliced mRNA deleted for exons 2 and 3. In islets from homozygous knock-in (GckKI/KI) mice, GK immunoreactivity was reduced by >85%, and glucose-stimulated insulin secretion eliminated. Homozygous GckKI/KI mice were smaller than wildtype littermates and displayed frank diabetes (fasting blood glucose >18 mmol/L; HbA1c ~12%), ketosis and nephropathy. Heterozygous GckKI/+ mice were glucose intolerant (HbA1c ~5.5%). Abnormal glucose-stimulated Ca2+ dynamics and beta cell-beta cell connectivity in GckKI/+ islets were completely reversed by the recently-developed GKA, dorzagliatin, which was largely inactive in homozygous GckKI/KI mouse islets. The GLP-1 receptor agonist exendin-4 improved glucose tolerance in male GckKI/+ mice, an action potentiated by dorzagliatin, in male but not female mice. Sex-dependent additive effects of these agents were also observed on insulin secretion in vitro. Combined treatment with GKA and incretin may thus be useful in GCK-MODY or GCK-PNDM.
Collapse
Affiliation(s)
| | | | | | | | - Rana Melhem
- CR-CHUM and University of Montreal, QC, Canada
| | | | | | | | - Imane Kaci
- CR-CHUM and University of Montreal, QC, Canada
| | | | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA
| | - Marie-Josée Hébert
- CR-CHUM and University of Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Guy A Rutter
- CR-CHUM and University of Montreal, QC, Canada
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, W12 ONN London U.K
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Lee Kong Chian School of Medicine, Nanyang Technological College, Singapore
| |
Collapse
|
2
|
Abu Aqel Y, Alnesf A, Aigha II, Islam Z, Kolatkar PR, Teo A, Abdelalim EM. Glucokinase (GCK) in diabetes: from molecular mechanisms to disease pathogenesis. Cell Mol Biol Lett 2024; 29:120. [PMID: 39245718 PMCID: PMC11382428 DOI: 10.1186/s11658-024-00640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
Glucokinase (GCK), a key enzyme in glucose metabolism, plays a central role in glucose sensing and insulin secretion in pancreatic β-cells, as well as glycogen synthesis in the liver. Mutations in the GCK gene have been associated with various monogenic diabetes (MD) disorders, including permanent neonatal diabetes mellitus (PNDM) and maturity-onset diabetes of the young (MODY), highlighting its importance in maintaining glucose homeostasis. Additionally, GCK gain-of-function mutations lead to a rare congenital form of hyperinsulinism known as hyperinsulinemic hypoglycemia (HH), characterized by increased enzymatic activity and increased glucose sensitivity in pancreatic β-cells. This review offers a comprehensive exploration of the critical role played by the GCK gene in diabetes development, shedding light on its expression patterns, regulatory mechanisms, and diverse forms of associated monogenic disorders. Structural and mechanistic insights into GCK's involvement in glucose metabolism are discussed, emphasizing its significance in insulin secretion and glycogen synthesis. Animal models have provided valuable insights into the physiological consequences of GCK mutations, although challenges remain in accurately recapitulating human disease phenotypes. In addition, the potential of human pluripotent stem cell (hPSC) technology in overcoming current model limitations is discussed, offering a promising avenue for studying GCK-related diseases at the molecular level. Ultimately, a deeper understanding of GCK's multifaceted role in glucose metabolism and its dysregulation in disease states holds implications for developing targeted therapeutic interventions for diabetes and related disorders.
Collapse
Affiliation(s)
- Yasmin Abu Aqel
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Aldana Alnesf
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
| | - Idil I Aigha
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Prasanna R Kolatkar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Adrian Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Singapore
- Department of Biochemistry and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme (PM TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Essam M Abdelalim
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
| |
Collapse
|
3
|
Cho J, Horikawa Y, Oiwa Y, Hosomichi K, Yabe D, Imai T. Glucokinase Variant Proteins Are Resistant to Fasting-Induced Uridine Diphosphate Glucose-Dependent Degradation in Maturity-Onset Diabetes of the Young Type 2 Patients. Int J Mol Sci 2023; 24:15842. [PMID: 37958824 PMCID: PMC10649437 DOI: 10.3390/ijms242115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
We previously reported that glucokinase undergoes ubiquitination and subsequent degradation, a process mediated by cereblon, particularly in the presence of uridine diphosphate glucose (UDP-glucose). In this context, we hereby present evidence showcasing the resilience of variant glucokinase proteins of maturity-onset diabetes of the young type 2 (MODY2) against degradation and, concomitantly, their influence on insulin secretion, both in cell lines and in the afflicted MODY2 patient. Hence, glucose-1-phodphate promotes UDP-glucose production by UDP-glucose pyrophosphorylase 2; consequently, UDP-glucose-dependent glucokinase degradation may occur during fasting. Next, we analyzed glucokinase variant proteins from MODY2 or persistent hyperinsulinemic hypoglycemia in infancy (PHHI). Among the eleven MODY2 glucokinase-mutated proteins tested, those with a lower glucose-binding affinity exhibited resistance to UDP-glucose-dependent degradation. Conversely, the glucokinaseA456V-mutated protein from PHHI had a higher glucose affinity and was sensitive to UDP-glucose-dependent degradation. Furthermore, in vitro studies involving UDP-glucose-dependent glucokinase variant proteins and insulin secretion during fasting in Japanese MODY2 patients revealed a strong correlation and a higher coefficient of determination. This suggests that UDP-glucose-dependent glucokinase degradation plays a significant role in the pathogenesis of glucose-homeostasis-related hereditary diseases, such as MODY2 and PHHI.
Collapse
Affiliation(s)
- Jaeyong Cho
- Department of Chemical Biology, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (J.C.); (Y.O.)
| | - Yukio Horikawa
- Departments of Diabetes, Endocrinology and Metabolism, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (Y.H.); (D.Y.)
| | - Yuki Oiwa
- Department of Chemical Biology, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (J.C.); (Y.O.)
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan;
| | - Daisuke Yabe
- Departments of Diabetes, Endocrinology and Metabolism, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (Y.H.); (D.Y.)
- Department of Rheumatology and Clinical Immunology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Takeshi Imai
- Department of Chemical Biology, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (J.C.); (Y.O.)
| |
Collapse
|
4
|
Gersing S, Cagiada M, Gebbia M, Gjesing AP, Coté AG, Seesankar G, Li R, Tabet D, Weile J, Stein A, Gloyn AL, Hansen T, Roth FP, Lindorff-Larsen K, Hartmann-Petersen R. A comprehensive map of human glucokinase variant activity. Genome Biol 2023; 24:97. [PMID: 37101203 PMCID: PMC10131484 DOI: 10.1186/s13059-023-02935-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Glucokinase (GCK) regulates insulin secretion to maintain appropriate blood glucose levels. Sequence variants can alter GCK activity to cause hyperinsulinemic hypoglycemia or hyperglycemia associated with GCK-maturity-onset diabetes of the young (GCK-MODY), collectively affecting up to 10 million people worldwide. Patients with GCK-MODY are frequently misdiagnosed and treated unnecessarily. Genetic testing can prevent this but is hampered by the challenge of interpreting novel missense variants. RESULT Here, we exploit a multiplexed yeast complementation assay to measure both hyper- and hypoactive GCK variation, capturing 97% of all possible missense and nonsense variants. Activity scores correlate with in vitro catalytic efficiency, fasting glucose levels in carriers of GCK variants and with evolutionary conservation. Hypoactive variants are concentrated at buried positions, near the active site, and at a region of known importance for GCK conformational dynamics. Some hyperactive variants shift the conformational equilibrium towards the active state through a relative destabilization of the inactive conformation. CONCLUSION Our comprehensive assessment of GCK variant activity promises to facilitate variant interpretation and diagnosis, expand our mechanistic understanding of hyperactive variants, and inform development of therapeutics targeting GCK.
Collapse
Affiliation(s)
- Sarah Gersing
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Matteo Cagiada
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Marinella Gebbia
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
| | - Anette P Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Atina G Coté
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
| | - Gireesh Seesankar
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
| | - Roujia Li
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada
| | - Daniel Tabet
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada
| | - Jochen Weile
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Anna L Gloyn
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederick P Roth
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada.
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark.
| |
Collapse
|
5
|
Dai T, Yang Y, Zhang J, Ma X, Chen L, Zhang C, Lv S, Li L, Tang R, Zhen N, Lu W, Li C, Hu R, Xiao Y, Dong Z. GCK exonic mutations induce abnormal biochemical activities and result in GCK-MODY. Front Genet 2023; 14:1120153. [PMID: 37082200 PMCID: PMC10110986 DOI: 10.3389/fgene.2023.1120153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Objective: Glucokinase-maturity-onset diabetes of the young (GCK-MODY; MODY2) is a rare genetic disorder caused by mutations in the glucokinase (GCK) gene. It is often under- or misdiagnosed in clinical practice, but correct diagnosis can be facilitated by genetic testing. In this study, we examined the genes of three patients diagnosed with GCK-MODY and tested their biochemical properties, such as protein stability and half-life, to explore the function of the mutant proteins and identify the pathogenic mechanism of GCK-MODY.Methods: Three patients with increased blood glucose levels were diagnosed with MODY2 according to the diagnostic guidelines of GCK-MODY proposed by the International Society for Pediatric and Adolescent Diabetes (ISPAD) in 2018. Next-generation sequencing (whole exome detection) was performed to detect gene mutations. The GCK gene and its mutations were introduced into the pCDNA3.0 and pGEX-4T-1 vectors. Following protein purification, enzyme activity assay, and protein immunoblotting, the enzyme activity of GCK was determined, along with the ubiquitination level of the mutant GCK protein.Results: Genetic testing revealed three mutations in the GCK gene of the three patients, including c.574C>T (p.R192W), c.758G>A (p.C253Y), and c.794G>A (p.G265D). The biochemical characteristics of the protein encoded by wild-type GCK and mutant GCK were different, compared to wild-type GCK, the enzyme activity encoded by the mutant GCK was reduced, suggesting thermal instability of the mutant GST-GCK. The protein stability and expression levels of the mutant GCK were reduced, and the enzyme activity of GCK was negatively correlated with the levels of fasting blood glucose and HbA1c. In addition, ubiquitination of the mutant GCK protein was higher than that of the wild-type, suggesting a higher degradation rate of mutant GCK than WT-GCK.Conclusion:GCK mutations lead to changes in the biochemical characteristics of its encoded proteins. The enzyme activities, protein expression, and protein stability of GCK may be reduced in patients with GCK gene mutations, which further causes glucose metabolism disorders and induces MODY2.
Collapse
Affiliation(s)
- Tongtong Dai
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Yang
- School of Medicine, Guizhou University, Guiyang, China
| | - Juanjuan Zhang
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Ma
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lifen Chen
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Caiping Zhang
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Lv
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Li
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Renqiao Tang
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ni Zhen
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenli Lu
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanyin Li
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yuan Xiao
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiya Dong
- Department of Pediatrics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Jääskeläinen T, Klemetti MM. Genetic Risk Factors and Gene-Lifestyle Interactions in Gestational Diabetes. Nutrients 2022; 14:nu14224799. [PMID: 36432486 PMCID: PMC9694797 DOI: 10.3390/nu14224799] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Paralleling the increasing trends of maternal obesity, gestational diabetes (GDM) has become a global health challenge with significant public health repercussions. In addition to short-term adverse outcomes, such as hypertensive pregnancy disorders and fetal macrosomia, in the long term, GDM results in excess cardiometabolic morbidity in both the mother and child. Recent data suggest that women with GDM are characterized by notable phenotypic and genotypic heterogeneity and that frequencies of adverse obstetric and perinatal outcomes are different between physiologic GDM subtypes. However, as of yet, GDM treatment protocols do not differentiate between these subtypes. Mapping the genetic architecture of GDM, as well as accurate phenotypic and genotypic definitions of GDM, could potentially help in the individualization of GDM treatment and assessment of long-term prognoses. In this narrative review, we outline recent studies exploring genetic risk factors of GDM and later type 2 diabetes (T2D) in women with prior GDM. Further, we discuss the current evidence on gene-lifestyle interactions in the development of these diseases. In addition, we point out specific research gaps that still need to be addressed to better understand the complex genetic and metabolic crosstalk within the mother-placenta-fetus triad that contributes to hyperglycemia in pregnancy.
Collapse
Affiliation(s)
- Tiina Jääskeläinen
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
- Correspondence:
| | - Miira M. Klemetti
- Department of Medical and Clinical Genetics, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, P.O. Box 140, 00029 Helsinki, Finland
| |
Collapse
|
7
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Demirci DK, Darendeliler F, Poyrazoglu S, Al ADK, Gul N, Tutuncu Y, Gulfidan G, Arga KY, Cacina C, Ozturk O, Aydogan HY, Satman I. Monogenic Childhood Diabetes: Dissecting Clinical Heterogeneity by Next-Generation Sequencing in Maturity-Onset Diabetes of the Young. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:431-449. [PMID: 34171966 DOI: 10.1089/omi.2021.0081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diabetes is a common disorder with a heterogeneous clinical presentation and an enormous burden on health care worldwide. About 1-6% of patients with diabetes suffer from maturity-onset diabetes of the young (MODY), the most common form of monogenic diabetes with autosomal dominant inheritance. MODY is genetically and clinically heterogeneous and caused by genetic variations in pancreatic β-cell development and insulin secretion. We report here new findings from targeted next-generation sequencing (NGS) of 13 MODY-related genes. A sample of 22 unrelated pediatric patients with MODY and 13 unrelated healthy controls were recruited from a Turkish population. Targeted NGS was performed with Miseq 4000 (Illumina) to identify genetic variations in 13 MODY-related genes: HNF4A, GCK, HNF1A, PDX1, HNF1B, NEUROD1, KLF11, CEL, PAX4, INS, BLK, ABCC8, and KCNJ11. The NGS data were analyzed adhering to the Genome Analysis ToolKit (GATK) best practices pipeline, and variant filtering and annotation were performed. In the patient sample, we identified 43 MODY-specific genetic variations that were not present in the control group, including 11 missense mutations and 4 synonymous mutations. Importantly, and to the best of our knowledge, the missense mutations NEUROD1 p.D202E, KFL11 p.R461Q, BLK p.G248R, and KCNJ11 p.S385F were first associated with MODY in the present study. These findings contribute to the worldwide knowledge base on MODY and molecular correlates of clinical heterogeneity in monogenic childhood diabetes. Further comparative population genetics and functional genomics studies are called for, with an eye to discovery of novel diagnostics and personalized medicine in MODY. Because MODY is often misdiagnosed as type 1 or type 2 diabetes mellitus, advances in MODY diagnostics with NGS stand to benefit diabetes overall clinical care as well.
Collapse
Affiliation(s)
- Deniz Kanca Demirci
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Halic University, Istanbul, Turkey.,Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Feyza Darendeliler
- Pediatric Endocrinology Unit, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sukran Poyrazoglu
- Pediatric Endocrinology Unit, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Asli Derya Kardelen Al
- Pediatric Endocrinology Unit, Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nurdan Gul
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yildiz Tutuncu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.,Department of Immunology, School of Medicine, KUTTAM, Koc University, Istanbul, Turkey
| | - Gizem Gulfidan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.,Institute of Public Health and Chronic Diseases, The Health Institutes of Turkey, Istanbul, Turkey
| | - Canan Cacina
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Oguz Ozturk
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hulya Yilmaz Aydogan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ilhan Satman
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.,Institute of Public Health and Chronic Diseases, The Health Institutes of Turkey, Istanbul, Turkey
| |
Collapse
|
9
|
Thewjitcharoen Y, Wanothayaroj E, Krittiyawong S, Nakasatien S, Tsoi TF, Lim CKP, Chan JCN, Himathongkam T. Phenotypic and Genetic Heterogeneity in a Thai Glucokinase MODY Family Reveals the Complexity of Young-Onset Diabetes. Front Endocrinol (Lausanne) 2021; 12:690343. [PMID: 34630320 PMCID: PMC8498575 DOI: 10.3389/fendo.2021.690343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
Glucokinase-Maturity-Onset Diabetes of the Young (GCK-MODY) is characterized by asymptomatic, non-progressive and fasting hyperglycemia, albeit not without phenotypic variability. We used next generation sequencing (NGS) to screen for 34 MODY genes in a non-obese person with familial young-onset diabetes followed by screening in 24 family members within three generations with varying presentations of young-onset diabetes and sensorineural hearing loss. The index patient was found to carry a paternally-inherited heterozygous missense variant (c.716 A>G) of GCK in exon 7 with amino acid change (Q239R). This variant was associated with phenotypic heterogeneity ranging from normal glucose tolerance to diabetes with complications amongst the siblings which might be modified by obesity and chronic hepatitis B infection. Two paternally-inherited variants of SLC29A3 encoding a nucleoside transporter protein and Apo-A1 genes also co-segregated with glucose and lipid traits. Co-occurrence of diabetes and deafness in maternal aunts led to discovery of WFS1 (Wolfram syndrome type 1) as a cause of non-syndromic deafness in multiple members of the maternal pedigree. Our findings highlight the complex causes of familial young-onset diabetes and the need of a multidisciplinary approach to interpret the clinical relevance of discoveries made by NGS in this era of genomic medicine.
Collapse
Affiliation(s)
- Yotsapon Thewjitcharoen
- Diabetes and Thyroid Center, Theptarin Hospital, Bangkok, Thailand
- *Correspondence: Yotsapon Thewjitcharoen,
| | | | | | | | - Tsz Fung Tsoi
- Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR China
| | - Cadmon K. P. Lim
- Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR China
| | - Juliana C. N. Chan
- Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR China
- Asia Diabetes Foundation, Shatin, Hong Kong, SAR China
| | | |
Collapse
|
10
|
Jiang F, Yan J, Zhang R, Ma X, Bao Y, Gu Y, Hu C. Functional Characterization of a Novel Heterozygous Mutation in the Glucokinase Gene That Causes MODY2 in Chinese Pedigrees. Front Endocrinol (Lausanne) 2021; 12:803992. [PMID: 34956103 PMCID: PMC8695754 DOI: 10.3389/fendo.2021.803992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Glucokinase (GCK) plays a central role in glucose regulation. The heterozygous mutations of GCK can cause a monogenic form of diabetes, maturity-onset diabetes of the young (MODY) directly. In our study, we aimed to explore the mechanism of the novel mutation GCK p.Ala259Thr leading to glucokinase deficiency and hyperglycemia. METHODS Thirty early-onset diabetes pedigrees were referred to whole exome sequencing for novel mutations identification. Purified wild-type and mutant GCK proteins were obtained from E.coli systems and then subjected to the kinetic and thermal stability analysis to test the effects on GCK activity. RESULTS One novel missense mutation GCK p.Ala259Thr was identified and co-segregated with diabetes in a Chinese MODY2 pedigree. The kinetic analysis showed that this mutation result in a decreased affinity and catalytic capability for glucose. The thermal stability analysis also indicated that the mutant protein presented dramatically decreased activity at the same temperature. CONCLUSION Our study firstly identified a novel MODY2 mutation p.Ala259Thr in Chinese diabetes pedigrees. The kinetic and thermal stability analysis confirmed that this mutation caused hyperglycemia through severely damaging the enzyme activities and protein stability.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Endocrinology, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jing Yan
- Department of Endocrinology, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Rong Zhang
- Department of Endocrinology, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaojing Ma
- Department of Endocrinology, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yuqian Bao
- Department of Endocrinology, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yujuan Gu
- Department of Endocrinology, Affiliated Hospital of Nantong University, Jiangsu, China
- *Correspondence: Cheng Hu, ; Yujuan Gu,
| | - Cheng Hu
- Department of Endocrinology, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Department of Endocrinology, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China
- *Correspondence: Cheng Hu, ; Yujuan Gu,
| |
Collapse
|
11
|
Dwulet JM, Ludin NWF, Piscopio RA, Schleicher WE, Moua O, Westacott MJ, Benninger RKP. How Heterogeneity in Glucokinase and Gap-Junction Coupling Determines the Islet [Ca 2+] Response. Biophys J 2019; 117:2188-2203. [PMID: 31753287 PMCID: PMC6895742 DOI: 10.1016/j.bpj.2019.10.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/20/2019] [Accepted: 10/25/2019] [Indexed: 11/24/2022] Open
Abstract
Understanding how cell subpopulations in a tissue impact overall system function is challenging. There is extensive heterogeneity among insulin-secreting β-cells within islets of Langerhans, including their insulin secretory response and gene expression profile, and this heterogeneity can be altered in diabetes. Several studies have identified variations in nutrient sensing between β-cells, including glucokinase (GK) levels, mitochondrial function, or expression of genes important for glucose metabolism. Subpopulations of β-cells with defined electrical properties can disproportionately influence islet-wide free-calcium activity ([Ca2+]) and insulin secretion via gap-junction electrical coupling. However, it is poorly understood how subpopulations of β-cells with altered glucose metabolism may impact islet function. To address this, we utilized a multicellular computational model of the islet in which a population of cells deficient in GK activity and glucose metabolism was imposed on the islet or in which β-cells were heterogeneous in glucose metabolism and GK kinetics were altered. This included simulating GK gene (GCK) mutations that cause monogenic diabetes. We combined these approaches with experimental models in which gck was genetically deleted in a population of cells or GK was pharmacologically inhibited. In each case, we modulated gap-junction electrical coupling. Both the simulated islet and the experimental system required 30-50% of the cells to have near-normal glucose metabolism, fewer than cells with normal KATP conductance. Below this number, the islet lacked any glucose-stimulated [Ca2+] elevations. In the absence of electrical coupling, the change in [Ca2+] was more gradual. As such, electrical coupling allows a large minority of cells with normal glucose metabolism to promote glucose-stimulated [Ca2+]. If insufficient numbers of cells are present, which we predict can be caused by a subset of GCK mutations that cause monogenic diabetes, electrical coupling exacerbates [Ca2+] suppression. This demonstrates precisely how metabolically heterogeneous β-cell populations interact to impact islet function.
Collapse
Affiliation(s)
- JaeAnn M Dwulet
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | - Nurin W F Ludin
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | - Robert A Piscopio
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | | | - Ong Moua
- Department of Bioengineering, University of Colorado, Aurora, Colorado
| | | | - Richard K P Benninger
- Department of Bioengineering, University of Colorado, Aurora, Colorado; Barbara Davis Center for Childhood Diabetes, Anschutz Medical Campus, University of Colorado, Aurora, Colorado.
| |
Collapse
|
12
|
de Santana LS, Caetano LA, Costa‐Riquetto AD, Franco PC, Dotto RP, Reis AF, Weinert LS, Silveiro SP, Vendramini MF, do Prado FA, Abrahão GCP, de Almeida AGFP, Tavares MDGR, Gonçalves WRB, Santomauro Junior AC, Halpern B, Jorge AAL, Nery M, Teles MG. Targeted sequencing identifies novel variants in common and rare MODY genes. Mol Genet Genomic Med 2019; 7:e962. [PMID: 31595705 PMCID: PMC6900361 DOI: 10.1002/mgg3.962] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is a form of monogenic diabetes with autosomal dominant inheritance. To date, mutations in 11 genes have been frequently associated with this phenotype. In Brazil, few cohorts have been screened for MODY, all using a candidate gene approach, with a high prevalence of undiagnosed cases (MODY-X). METHODS We conducted a next-generation sequencing target panel (tNGS) study to investigate, for the first time, a Brazilian cohort of MODY patients with a negative prior genetic analysis. One hundred and two patients were selected, of which 26 had an initial clinical suspicion of MODY-GCK and 76 were non-GCK MODY. RESULTS After excluding all benign and likely benign variants and variants of uncertain significance, we were able to assign a genetic cause for 12.7% (13/102) of the probands. Three rare MODY subtypes were identified (PDX1/NEUROD1/ABCC8), and eight variants had not been previously described/mapped in genomic databases. Important clinical findings were evidenced in some cases after genetic diagnosis, such as MODY-PDX1/HNF1B. CONCLUSION A multiloci genetic approach allowed the identification of rare MODY subtypes, reducing the large percentage of MODY-X in Brazilian cases and contributing to a better clinical, therapeutic, and prognostic characterization of these rare phenotypes.
Collapse
Affiliation(s)
- Lucas S. de Santana
- Monogenic Diabetes GroupGenetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25School of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
| | - Lilian A. Caetano
- Monogenic Diabetes GroupGenetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25School of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
- Diabetes UnitClinics HospitalSchool of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
| | - Aline D. Costa‐Riquetto
- Monogenic Diabetes GroupGenetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25School of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
- Diabetes UnitClinics HospitalSchool of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
| | - Pedro C. Franco
- Monogenic Diabetes GroupGenetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25School of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
- Diabetes UnitClinics HospitalSchool of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
| | - Renata P. Dotto
- Departamento de MedicinaDisciplina de EndocrinologiaUniversidade Federal de São Paulo (UNIFESP)Sao PauloSPBrazil
| | - André F. Reis
- Departamento de MedicinaDisciplina de EndocrinologiaUniversidade Federal de São Paulo (UNIFESP)Sao PauloSPBrazil
| | | | | | - Marcio F. Vendramini
- Serviço de EndocrinologiaHospital do Servidor Público Estadual de São Paulo (HSPE‐SP)Sao PauloSPBrazil
| | - Flaviene A. do Prado
- Hospital Regional de Taguatinga da Secretaria de Saúde do Distrito FederalTaguatingaDFBrazil
| | | | | | | | | | - Augusto C. Santomauro Junior
- Serviço de Endocrinologia Prof. Dr. Fadlo Fraige FilhoHospital Beneficência Portuguesa de São Paulo (BP‐SP)Sao PauloSPBrazil
| | - Bruno Halpern
- Departamento de Endocrinologia e MetabologiaHospital das ClínicasFaculdade de MedicinaUniversidade de São Paulo (USP)Sao PauloSPBrazil
| | - Alexander A. L. Jorge
- Monogenic Diabetes GroupGenetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25School of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
| | - Marcia Nery
- Diabetes UnitClinics HospitalSchool of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
| | - Milena G. Teles
- Monogenic Diabetes GroupGenetic Endocrinology Unit and Laboratory of Molecular & Cellular Endocrinology/LIM25School of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
- Diabetes UnitClinics HospitalSchool of MedicineUniversity of Sao Paulo (USP)Sao PauloSPBrazil
| |
Collapse
|
13
|
Identification of alkaline pH optimum of human glucokinase because of ATP-mediated bias correction in outcomes of enzyme assays. Sci Rep 2019; 9:11422. [PMID: 31388064 PMCID: PMC6684659 DOI: 10.1038/s41598-019-47883-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/08/2019] [Indexed: 12/16/2022] Open
Abstract
Adenosine triphosphate (ATP) is a crucial substrate and energy source commonly used in enzyme reactions. However, we demonstrated that the addition of this acidic compound to enzyme assay buffers can serve as a source of unnoticed pH changes. Even relatively low concentrations of ATP (up to 5 mM) shifted pH of reaction mixtures to acidic values. For example, Tris buffer lost buffering capacity at pH 7.46 by adding ATP at a concentration higher than 2 mM. In addition to the buffering capacity, the pH shifts differed with respect to the buffer concentration. High ATP concentrations are commonly used in hexokinase assays. We demonstrated how the presence of ATP affects pH of widely used enzyme assay buffers and inversely affected KM of human hexokinase 2 and S0.5 of human glucokinase. The pH optimum of human glucokinase was never reported before. We found that previously reported optimum of mammalian glucokinase was incorrect, affected by the ATP-induced pH shifts. The pH optimum of human glucokinase is at pH 8.5-8.7. Suggested is the full disclosure of reaction conditions, including the measurement of pH of the whole reaction mixtures instead of measuring pH prior to the addition of all the components.
Collapse
|
14
|
Wang Z, Diao C, Liu Y, Li M, Zheng J, Zhang Q, Yu M, Zhang H, Ping F, Li M, Xiao X. Identification and functional analysis of GCK gene mutations in 12 Chinese families with hyperglycemia. J Diabetes Investig 2019; 10:963-971. [PMID: 30592380 PMCID: PMC6626954 DOI: 10.1111/jdi.13001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 01/07/2023] Open
Abstract
AIMS/INTRODUCTION To investigate the clinical and genetic characteristics of Chinese patients with a phenotype consistent with maturity-onset diabetes of the young type 2 and explore the pathogenic mechanism of their hyperglycemia. MATERIALS AND METHODS We studied 12 probands and their extended families referred to our center for screening mutations in the glucokinase gene (GCK). Clinical data were collected and genetic analysis was carried out. The recombinant wild-type and mutant glucokinase were generated in Escherichia coli. The kinetic parameters and thermal stability of the enzymes were determined in vitro. RESULTS In the 12 families, 11 GCK mutations (R43C, T168A, K169N, R191W, Y215X, E221K, M235T, R250H, W257X, G261R and A379E) and one variant of uncertain significance (R275H) were identified. R191W was detected in two unrelated families. Of the 11 GCK mutations, three mutations (c.507G>C, K169N; c.645C>A, Y215X; c.771G>A, W257X; NM_000162.3, NP_000153.1) are novel. Basic kinetics analysis explained the pathogenicity of the five mutants (R43C, K169N, R191W, E221K and A379E), which showed reduced enzyme activity with relative activity indexes between ~0.001 and 0.5 compared with the wild-type (1.0). In addition, the thermal stabilities of these five mutants were also decreased to varying degrees. However, for R250H and R275H, there was no significant difference in the enzyme activity and thermal stability between the mutants and the wild type. CONCLUSIONS We have identified 11 GCK mutations and one variant of uncertain significance in 12 Chinese families with hyperglycemia. For five GCK mutations (R43C, K169N, R191W, E221K and A379E), the changes in enzyme kinetics and thermostability might be the pathogenic mechanisms by which mutations cause hyperglycemia.
Collapse
Affiliation(s)
- Zhixin Wang
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- Present address:
Department of EndocrinologyBeijing Jishuitan HospitalBeijingChina
| | - Chengming Diao
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yijing Liu
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Mingmin Li
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Jia Zheng
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Qian Zhang
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Miao Yu
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Huabing Zhang
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Fan Ping
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Ming Li
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xinhua Xiao
- Key Laboratory of EndocrinologyTranslational Medicine CenterMinistry of HealthDepartment of EndocrinologyPeking Union Medical College HospitalDiabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
15
|
First evidence of changes in enzyme kinetics and stability of glucokinase affected by somatic cancer-associated variations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:213-218. [PMID: 30590153 DOI: 10.1016/j.bbapap.2018.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/07/2018] [Accepted: 12/20/2018] [Indexed: 12/27/2022]
Abstract
Recent investigation of somatic variations of allosterically regulated proteins in cancer genomes suggested that variations in glucokinase (GCK) might play a role in tumorigenesis. We hypothesized that somatic cancer-associated GCK variations include in part those with activating and/or stabilizing effects. We analyzed the enzyme kinetics and thermostability of recombinant proteins possessing the likely activating variations and the variations present in the connecting loop I and provided the first experimental evidence of the effects of somatic cancer-associated GCK variations. Activating and/or stabilizing variations were common among the analyzed cancer-associated variations, which was in strong contrast to their low frequency among germinal variations. The activating and stabilizing variations displayed focal distribution with respect to the tertiary structure, and were present in the surroundings of the heterotropic allosteric activator site, including but not limited to the connecting loop I and in the active site region subject to extensive rearrangements upon glucose binding. Activating somatic cancer-associated variations induced a reduction of GCK's cooperativity and an increase in the affinity to glucose (a decline in the S0.5 values). The hotspot-associated variations, which decreased cooperativity, also increased the half-maximal inhibitory concentrations of the competitive GCK inhibitor, N-acetylglucosamine. Concluded, we have provided the first convincing biochemical evidence establishing GCK as a previously unrecognized enzyme that contributes to the reprogramming of energy metabolism in cancer cells. Activating GCK variations substantially increase affinity of GCK to glucose, disrupt the otherwise characteristic sigmoidal response to glucose and/or prolong the enzyme half-life. This, combined, facilitates glucose phosphorylation, thus supporting glycolysis and associated pathways.
Collapse
|
16
|
Yellapu NK, Kandlapalli K, Kandimalla R, Adi PJ. Conformational transition pathway of R308K mutant glucokinase in the presence of the glucokinase activator YNKGKA4. FEBS Open Bio 2018; 8:1202-1208. [PMID: 30087826 PMCID: PMC6070654 DOI: 10.1002/2211-5463.12255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 11/18/2022] Open
Abstract
Glucokinase (GK) plays a vital role in the control of blood glucose levels and its altered activity can lead to the development of forms of diabetes. We have previously identified a mutant GK (R308K) in patients with type 2 diabetes with reduced enzyme activity. In the present study, the activation mechanism of GK from super‐open to the closed state under wild‐type and mutant conditions in the presence of the novel aminophosphonate derivative YNKGKA4 (an allosteric activator of GK) was characterized via a series of molecular dynamics simulations. A reliable conformational transition pathway of GK was observed from super‐open to closed state during trajectory analysis. Glucose was also observed to modulate its binding orientation in the active site but with stable moments in the cavity. These observations provide insights into the complicated conformational transitions in the presence of YNKGKA4 and the molecular mechanism of GK activators for the allosteric regulation of mutant forms of GK.
Collapse
Affiliation(s)
- Nanda Kumar Yellapu
- Biomedical Informatics Centre Vector Control Research Centre Indian Council of Medical Research Puducherry India
| | - Kalpana Kandlapalli
- Department of Biochemistry Sri Krishnadevaraya University Anantapuramu Andhrapradesh India
| | - Ramesh Kandimalla
- Garrison Institute on Aging Texas Tech University of Health Science Centre Lubbock TX USA
| | | |
Collapse
|
17
|
Gutierrez-Nogués A, García-Herrero CM, Oriola J, Vincent O, Navas MA. Functional characterization of MODY2 mutations in the nuclear export signal of glucokinase. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2385-2394. [PMID: 29704611 DOI: 10.1016/j.bbadis.2018.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/23/2018] [Accepted: 04/23/2018] [Indexed: 11/17/2022]
Abstract
Glucokinase (GCK) plays a key role in glucose homeostasis. Heterozygous inactivating mutations in the GCK gene cause the familial, mild fasting hyperglycaemia named MODY2. Besides its particular kinetic characteristics, glucokinase is regulated by subcellular compartmentation in hepatocytes. Glucokinase regulatory protein (GKRP) binds to GCK, leading to enzyme inhibition and import into the nucleus at fasting. When glucose concentration increases, GCK-GKRP dissociates and GCK is exported to the cytosol due to a nuclear export signal (NES). With the aim to characterize the GCK-NES, we have functionally analysed nine MODY2 mutations located within the NES sequence. Recombinant GCK mutants showed reduced catalytic activity and, in most cases, protein instability. Most of the mutants interact normally with GKRP, although mutations L306R and L309P impair GCK nuclear import in cotransfected cells. We demonstrated that GCK-NES function depends on exportin 1. We further showed that none of the mutations fully inactivate the NES, with the exception of mutation L304P, which likely destabilizes its α-helicoidal structure. Finally, we found that residue Glu300 negatively modulates the NES activity, whereas other residues have the opposite effect, thus suggesting that some of the NES spacer residues contribute to the low affinity of the NES for exportin 1, which is required for its proper functioning. In conclusion, our results have provided functional and structural insights regarding the GCK-NES and contributed to a better knowledge of the molecular mechanisms involved in the nucleo-cytoplasmic shuttling of glucokinase. Impairment of this regulatory mechanism by some MODY2 mutations might contribute to the hyperglycaemia in the patients.
Collapse
Affiliation(s)
- Angel Gutierrez-Nogués
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen-María García-Herrero
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Josep Oriola
- Servicio de Bioquímica y Genética Molecular, Hospital Clínic, Departamento de Ciencias Fisiológicas I, Facultad de Medicina, Universidad de Barcelona, Barcelona, Spain
| | - Olivier Vincent
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - María-Angeles Navas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), www.ciberdem.net, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
18
|
Šimčíková D, Kocková L, Vackářová K, Těšínský M, Heneberg P. Evidence-based tailoring of bioinformatics approaches to optimize methods that predict the effects of nonsynonymous amino acid substitutions in glucokinase. Sci Rep 2017; 7:9499. [PMID: 28842611 PMCID: PMC5573313 DOI: 10.1038/s41598-017-09810-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/28/2017] [Indexed: 11/29/2022] Open
Abstract
Computational methods that allow predicting the effects of nonsynonymous substitutions are an integral part of exome studies. Here, we validated and improved their specificity by performing a comprehensive bioinformatics analysis combined with experimental and clinical data on a model of glucokinase (GCK): 8835 putative variations, including 515 disease-associated variations from 1596 families with diagnoses of monogenic diabetes (GCK-MODY) or persistent hyperinsulinemic hypoglycemia of infancy (PHHI), and 126 variations with available or newly reported (19 variations) data on enzyme kinetics. We also proved that high frequency of disease-associated variations found in patients is closely related to their evolutionary conservation. The default set prediction methods predicted correctly the effects of only a part of the GCK-MODY-associated variations and completely failed to predict the normoglycemic or PHHI-associated variations. Therefore, we calculated evidence-based thresholds that improved significantly the specificity of predictions (≤75%). The combined prediction analysis even allowed to distinguish activating from inactivating variations and identified a group of putatively highly pathogenic variations (EVmutation score <−7.5 and SNAP2 score >70), which were surprisingly underrepresented among MODY patients and thus under negative selection during molecular evolution. We suggested and validated the first robust evidence-based thresholds, which allow improved, highly specific predictions of disease-associated GCK variations.
Collapse
Affiliation(s)
- Daniela Šimčíková
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Lucie Kocková
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | | | - Miroslav Těšínský
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Petr Heneberg
- Charles University, Third Faculty of Medicine, Prague, Czech Republic.
| |
Collapse
|
19
|
A three-step programmed method for the identification of causative gene mutations of maturity onset diabetes of the young (MODY). Gene 2016; 588:141-8. [DOI: 10.1016/j.gene.2016.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 01/10/2023]
|
20
|
Fleet T, Zhang B, Lin F, Zhu B, Dasgupta S, Stashi E, Tackett B, Thevananther S, Rajapakshe KI, Gonzales N, Dean A, Mao J, Timchenko N, Malovannaya A, Qin J, Coarfa C, DeMayo F, Dacso CC, Foulds CE, O'Malley BW, York B. SRC-2 orchestrates polygenic inputs for fine-tuning glucose homeostasis. Proc Natl Acad Sci U S A 2015; 112:E6068-77. [PMID: 26487680 PMCID: PMC4640775 DOI: 10.1073/pnas.1519073112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite extensive efforts to understand the monogenic contributions to perturbed glucose homeostasis, the complexity of genetic events that fractionally contribute to the spectrum of this pathology remain poorly understood. Proper maintenance of glucose homeostasis is the central feature of a constellation of comorbidities that define the metabolic syndrome. The ability of the liver to balance carbohydrate uptake and release during the feeding-to-fasting transition is essential to the regulation of peripheral glucose availability. The liver coordinates the expression of gene programs that control glucose absorption, storage, and secretion. Herein, we demonstrate that Steroid Receptor Coactivator 2 (SRC-2) orchestrates a hierarchy of nutritionally responsive transcriptional complexes to precisely modulate plasma glucose availability. Using DNA pull-down technology coupled with mass spectrometry, we have identified SRC-2 as an indispensable integrator of transcriptional complexes that control the rate-limiting steps of hepatic glucose release and accretion. Collectively, these findings position SRC-2 as a major regulator of polygenic inputs to metabolic gene regulation and perhaps identify a previously unappreciated model that helps to explain the clinical spectrum of glucose dysregulation.
Collapse
Affiliation(s)
- Tiffany Fleet
- Interdepartmental Department in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030-3411; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411
| | - Bin Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411
| | - Fumin Lin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411
| | - Bokai Zhu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411
| | - Subhamoy Dasgupta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411
| | - Erin Stashi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411
| | - Bryan Tackett
- Department of Pediatrics, Gastroenterology, Hepatology & Nutrition, Baylor College of Medicine, Houston, TX 77030-3411
| | - Sundararajah Thevananther
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411; Department of Pediatrics, Gastroenterology, Hepatology & Nutrition, Baylor College of Medicine, Houston, TX 77030-3411
| | - Kimal I Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411
| | - Naomi Gonzales
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411
| | - Adam Dean
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411
| | - Jianqiang Mao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411
| | - Nikolai Timchenko
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3026
| | - Anna Malovannaya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030-3411
| | - Jun Qin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030-3411
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411
| | - Francesco DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030-3411
| | - Clifford C Dacso
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411; Department of Medicine, Baylor College of Medicine, Houston, TX 77030-3411
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411
| | - Bert W O'Malley
- Interdepartmental Department in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030-3411; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030-3411;
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030-3411; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030-3411;
| |
Collapse
|
21
|
Grolmusz VI. Identifying diabetes-related important protein targets with few interacting partners with the PageRank algorithm. ROYAL SOCIETY OPEN SCIENCE 2015; 2:140252. [PMID: 26064627 PMCID: PMC4448867 DOI: 10.1098/rsos.140252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 04/02/2015] [Indexed: 05/25/2023]
Abstract
Diabetes is a growing concern for the developed nations worldwide. New genomic, metagenomic and gene-technologic approaches may yield considerable results in the next several years in its early diagnosis, or in advances in therapy and management. In this work, we highlight some human proteins that may serve as new targets in the early diagnosis and therapy. With the help of a very successful mathematical tool for network analysis that formed the basis of the early successes of Google(TM), Inc., we analyse the human protein-protein interaction network gained from the IntAct database with a mathematical algorithm. The novelty of our approach is that the new protein targets suggested do not have many interacting partners (so, they are not hubs or super-hubs), so their inhibition or promotion probably will not have serious side effects. We have identified numerous possible protein targets for diabetes therapy and/or management; some of these have been well known for a long time (these validate our method), some of them appeared in the literature in the last 12 months (these show the cutting edge of the algorithm), and the remainder are still unknown to be connected with diabetes, witnessing completely new hits of the method.
Collapse
|
22
|
Raimondo A, Chakera AJ, Thomsen SK, Colclough K, Barrett A, De Franco E, Chatelas A, Demirbilek H, Akcay T, Alawneh H, Flanagan SE, Van De Bunt M, Hattersley AT, Gloyn AL, Ellard S. Phenotypic severity of homozygous GCK mutations causing neonatal or childhood-onset diabetes is primarily mediated through effects on protein stability. Hum Mol Genet 2014; 23:6432-40. [PMID: 25015100 PMCID: PMC4240195 DOI: 10.1093/hmg/ddu360] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mutations in glucokinase (GCK) cause a spectrum of glycemic disorders. Heterozygous loss-of-function mutations cause mild fasting hyperglycemia irrespective of mutation severity due to compensation from the unaffected allele. Conversely, homozygous loss-of-function mutations cause permanent neonatal diabetes requiring lifelong insulin treatment. This study aimed to determine the relationship between in vitro mutation severity and clinical phenotype in a large international case series of patients with homozygous GCK mutations. Clinical characteristics for 30 patients with diabetes due to homozygous GCK mutations (19 unique mutations, including 16 missense) were compiled and assigned a clinical severity grade (CSG) based on birth weight and age at diagnosis. The majority (28 of 30) of subjects were diagnosed before 9 months, with the remaining two at 9 and 15 years. These are the first two cases of a homozygous GCK mutation diagnosed outside infancy. Recombinant mutant GCK proteins were analyzed for kinetic and thermostability characteristics and assigned a relative activity index (RAI) or relative stability index (RSI) value. Six of 16 missense mutations exhibited severe kinetic defects (RAI ≤ 0.01). There was no correlation between CSG and RAI (r(2) = 0.05, P = 0.39), indicating that kinetics alone did not explain the phenotype. Eighty percent of the remaining mutations showed reduced thermostability, the exceptions being the two later-onset mutations which exhibited increased thermostability. Comparison of CSG with RSI detected a highly significant correlation (r(2) = 0.74, P = 0.002). We report the largest case series of homozygous GCK mutations to date and demonstrate that they can cause childhood-onset diabetes, with protein instability being the major determinant of mutation severity.
Collapse
Affiliation(s)
- Anne Raimondo
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Ali J Chakera
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK, Macleod Diabetes and Endocrine Centre and
| | - Soren K Thomsen
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Kevin Colclough
- Molecular Genetics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Amy Barrett
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Alisson Chatelas
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Huseyin Demirbilek
- Department of Paediatric Endocrinology, Diyarbakir Children State Hospital, Diyarbakir 21100, Turkey
| | - Teoman Akcay
- Division of Pediatric Endocrinology, Dr Sadi Konuk Education and Research Hospital, Bakirkoy, Istanbul 34147, Turkey
| | - Hussein Alawneh
- Pediatric Endocrine Division, Queen Rania Al Abdullah Hospital for Children, King Hussein Medical Center, Royal Medical Services, Amman 11814, Jordan and
| | | | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Martijn Van De Bunt
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK, Macleod Diabetes and Endocrine Centre and
| | - Anna L Gloyn
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, Oxford OX3 7LE, UK, Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LE, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK, Molecular Genetics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | | |
Collapse
|
23
|
Stanik J, Dusatkova P, Cinek O, Valentinova L, Huckova M, Skopkova M, Dusatkova L, Stanikova D, Pura M, Klimes I, Lebl J, Gasperikova D, Pruhova S. De novo mutations of GCK, HNF1A and HNF4A may be more frequent in MODY than previously assumed. Diabetologia 2014; 57:480-4. [PMID: 24323243 DOI: 10.1007/s00125-013-3119-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/12/2013] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS MODY is mainly characterised by an early onset of diabetes and a positive family history of diabetes with an autosomal dominant mode of inheritance. However, de novo mutations have been reported anecdotally. The aim of this study was to systematically revisit a large collection of MODY patients to determine the minimum prevalence of de novo mutations in the most prevalent MODY genes (i.e. GCK, HNF1A, HNF4A). METHODS Analysis of 922 patients from two national MODY centres (Slovakia and the Czech Republic) identified 150 probands (16%) who came from pedigrees that did not fulfil the criterion of two generations with diabetes but did fulfil the remaining criteria. The GCK, HNF1A and HNF4A genes were analysed by direct sequencing. RESULTS Mutations in GCK, HNF1A or HNF4A genes were detected in 58 of 150 individuals. Parents of 28 probands were unavailable for further analysis, and in 19 probands the mutation was inherited from an asymptomatic parent. In 11 probands the mutations arose de novo. CONCLUSIONS/INTERPRETATION In our cohort of MODY patients from two national centres the de novo mutations in GCK, HNF1A and HNF4A were present in 7.3% of the 150 families without a history of diabetes and 1.2% of all of the referrals for MODY testing. This is the largest collection of de novo MODY mutations to date, and our findings indicate a much higher frequency of de novo mutations than previously assumed. Therefore, genetic testing of MODY could be considered for carefully selected individuals without a family history of diabetes.
Collapse
Affiliation(s)
- Juraj Stanik
- DIABGENE Laboratory, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, SK-833 06, Bratislava, Slovakia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
The ubiquitin-proteasome system regulates the stability and activity of the glucose sensor glucokinase in pancreatic β-cells. Biochem J 2014; 456:173-84. [PMID: 24028089 DOI: 10.1042/bj20130262] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ubiquitin-proteasome system is important to maintain pancreatic β-cell function. Inhibition of the proteasome significantly reduced glucose-induced insulin secretion. Key regulators of the stimulus/secretion cascade seem to be affected by protein misfolding if the proteasome is down-regulated as recently reported in humans with Type 2 diabetes. It remains unknown, however, whether the glucose sensor enzyme glucokinase is involved in this process. A direct interaction between glucokinase and ubiquitin could be shown in vivo by FRET, suggesting regulation of glucokinase by the proteasome. After proteasome inhibition glucokinase activity was significantly reduced in MIN6 cells, whereas the protein content was increased, indicating protein misfolding. Enhancing the availability of chaperones by cyclohexamide could induce refolding and restored glucokinase activity. Glucokinase aggregation due to proteasome blocking with MG132, bortezomib, epoxomicin or lactacystin could be detected in MIN6 cells, primary β-cells and hepatocytes using fluorescence-based assays. Glucokinase aggresome formation proceeded microtubule-assisted and was avoided by cyclohexamide. Thus the results of the present study provide support for glucokinase misfolding and aggregation in case of a diminished capacity of the ubiquitin-proteasome system in pancreatic β-cells. In the Type 2 diabetic situation this could contribute to reduced glucose-induced insulin secretion.
Collapse
|
25
|
Zhu C, Kushwaha A, Berman K, Jegga AG. A vertex similarity-based framework to discover and rank orphan disease-related genes. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 3:S8. [PMID: 23281592 PMCID: PMC3524320 DOI: 10.1186/1752-0509-6-s3-s8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background A rare or orphan disease (OD) is any disease that affects a small percentage of the population. While opportunities now exist to accelerate progress toward understanding the basis for many more ODs, the prioritization of candidate genes is still a critical step for disease-gene identification. Several network-based frameworks have been developed to address this problem with varied results. Result We have developed a novel vertex similarity (VS) based parameter-free prioritizing framework to identify and rank orphan disease candidate genes. We validate our approach by using 1598 known orphan disease-causing genes (ODGs) representing 172 orphan diseases (ODs). We compare our approach with a state-of-art parameter-based approach (PageRank with Priors or PRP) and with another parameter-free method (Interconnectedness or ICN). Our results show that VS-based approach outperforms ICN and is comparable to PRP. We further apply VS-based ranking to identify and rank potential novel candidate genes for several ODs. Conclusion We demonstrate that VS-based parameter-free ranking approach can be successfully used for disease candidate gene prioritization and can complement other network-based methods for candidate disease gene ranking. Importantly, our VS-ranked top candidate genes for the ODs match the known literature, suggesting several novel causal relationships for further investigation.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Computer Science, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
26
|
Borowiec M, Fendler W, Dusatkova P, Antosik K, Pruhova S, Cinek O, Mysliwiec M, Jarosz-Chobot P, Malecki MT, Mlynarski W. HbA1c-based diabetes diagnosis among patients with glucokinase mutation (GCK-MODY) is affected by a genetic variant of glucose-6-phosphatase (G6PC2). Diabet Med 2012; 29:1465-9. [PMID: 22486180 DOI: 10.1111/j.1464-5491.2012.03671.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS Genetic variation at the rs560887 locus of the glucose-6-phosphatase, catalytic 2 gene (G6PC2) is known to affect regulation of fasting glycaemia. We determined the rs560887 genotype of patients with monogenic diabetes and glucokinase gene mutations (GCK-MODY) and correlated the genotypes with HbA(1c) levels. METHODS Patients from families with GCK-MODY were recruited from two large cohorts from Poland (n = 128) and the Czech Republic (n = 154). Genotypes at the rs560887 polymorphic site in G6PC2 were examined using real-time quantitative polymerase chain reaction. The effect of rs560887 genotype on age at diagnosis of GCK-MODY and initial HbA(1c) levels were evaluated separately within both cohorts. Following that, a meta-analysis of rs560887 genotype-HbA(1c) associations of both Polish and Czech cohorts was performed to confirm homogeneity of findings and validate cohort-specific results. RESULTS GG homozygosity at rs560887 was associated with marginally elevated HbA(1c) levels (P = 0.07 in both cohorts). The effects observed in both groups were very homogeneous (Q = 0.18; P = 0.68). Meta-analysis showed that GG homozygosity at rs560887 was associated with mean HbA(1c) levels higher by 2.4 mmol/mol (0.24%), 95% CI 0.5-4.4 mmol/mol (0.05-0.44%) than in individuals with other genotypes. Additionally, meta-analysis of both cohorts showed that GG homozygous individuals had higher odds of reaching the 48 mmol/mol (6.5%) diagnostic threshold of diabetes; (odds ratio 1.90; 95% CI 1.07-3.36; P = 0.03). No such effects were observed for age at diagnosis of diabetes. CONCLUSIONS Variation at the rs560887 locus of G6PC2 is associated with worse glycated haemoglobin levels in individuals with GCK mutations; GG homozygotes are more likely to meet diagnostic criteria for diabetes based on HbA(1c) level.
Collapse
Affiliation(s)
- M Borowiec
- Department of Paediatrics, Oncology, Haematology and Diabetology, Medical University of Lodz, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Capuano M, Garcia-Herrero CM, Tinto N, Carluccio C, Capobianco V, Coto I, Cola A, Iafusco D, Franzese A, Zagari A, Navas MA, Sacchetti L. Glucokinase (GCK) mutations and their characterization in MODY2 children of southern Italy. PLoS One 2012; 7:e38906. [PMID: 22761713 PMCID: PMC3385652 DOI: 10.1371/journal.pone.0038906] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/14/2012] [Indexed: 01/24/2023] Open
Abstract
Type 2 Maturity Onset Diabetes of the Young (MODY2) is a monogenic autosomal disease characterized by a primary defect in insulin secretion and hyperglycemia. It results from GCK gene mutations that impair enzyme activity. Between 2006 and 2010, we investigated GCK mutations in 66 diabetic children from southern Italy with suspected MODY2. Denaturing High Performance Liquid Chromatography (DHPLC) and sequence analysis revealed 19 GCK mutations in 28 children, six of which were novel: p.Glu40Asp, p.Val154Leu, p.Arg447Glyfs, p.Lys458_Cys461del, p.Glu395_Arg397del and c.580-2A>T. We evaluated the effect of these 19 mutations using bioinformatic tools such as Polymorphism Phenotyping (Polyphen), Sorting Intolerant From Tolerant (SIFT) and in silico modelling. We also conducted a functional study to evaluate the pathogenic significance of seven mutations that are among the most severe mutations found in our population, and have never been characterized: p.Glu70Asp, p.His137Asp, p.Phe150Tyr, p.Val154Leu, p.Gly162Asp, p.Arg303Trp and p.Arg392Ser. These seven mutations, by altering one or more kinetic parameters, reduced enzyme catalytic activity by >40%. All mutations except p.Glu70Asp displayed thermal-instability, indeed >50% of enzyme activity was lost at 50°C/30 min. Thus, these seven mutations play a pathogenic role in MODY2 insurgence. In conclusion, this report revealed six novel GCK mutations and sheds some light on the structure-function relationship of human GCK mutations and MODY2.
Collapse
Affiliation(s)
- Marina Capuano
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
| | - Carmen Maria Garcia-Herrero
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Nadia Tinto
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
| | - Carla Carluccio
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
- Department of Biological Science, University of Naples “Federico II”, Naples, Italy
| | - Valentina Capobianco
- Fondazione SDN-IRCSS (Istituto di Diagnostica Nucleare-Istituto di Ricerca e Cura a Carattere Scientifico), Naples, Italy
| | - Iolanda Coto
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
| | - Arturo Cola
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
| | - Dario Iafusco
- Department of Pediatrics, Second University of Naples, Naples, Italy
| | - Adriana Franzese
- Department of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Adriana Zagari
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
- Department of Biological Science, University of Naples “Federico II”, Naples, Italy
| | - Maria Angeles Navas
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Lucia Sacchetti
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
| |
Collapse
|
28
|
Phosphofructo-2-kinase/fructose-2,6-bisphosphatase modulates oscillations of pancreatic islet metabolism. PLoS One 2012; 7:e34036. [PMID: 22532827 PMCID: PMC3332096 DOI: 10.1371/journal.pone.0034036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/21/2012] [Indexed: 12/29/2022] Open
Abstract
Pulses of insulin from pancreatic beta-cells help maintain blood glucose in a narrow range, although the source of these pulses is unclear. It has been proposed that a positive feedback circuit exists within the glycolytic pathway, the autocatalytic activation of phosphofructokinase-1 (PFK1), which endows pancreatic beta-cells with the ability to generate oscillations in metabolism. Flux through PFK1 is controlled by the bifunctional enzyme PFK2/FBPase2 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) in two ways: via (1) production/degradation of fructose-2,6-bisphosphate (Fru2,6-BP), a potent allosteric activator of PFK1, as well as (2) direct activation of glucokinase due to a protein-protein interaction. In this study, we used a combination of live-cell imaging and mathematical modeling to examine the effects of inducibly-expressed PFK2/FBPase2 mutants on glucose-induced Ca2+ pulsatility in mouse islets. Irrespective of the ability to bind glucokinase, mutants of PFK2/FBPase2 that increased the kinase:phosphatase ratio reduced the period and amplitude of Ca2+ oscillations. Mutants which reduced the kinase:phosphatase ratio had the opposite effect. These results indicate that the main effect of the bifunctional enzyme on islet pulsatility is due to Fru2,6-BP alteration of the threshold for autocatalytic activation of PFK1 by Fru1,6-BP. Using computational models based on PFK1-generated islet oscillations, we then illustrated how moderate elevation of Fru-2,6-BP can increase the frequency of glycolytic oscillations while reducing their amplitude, with sufficiently high activation resulting in termination of slow oscillations. The concordance we observed between PFK2/FBPase2-induced modulation of islet oscillations and the models of PFK1-driven oscillations furthermore suggests that metabolic oscillations, like those found in yeast and skeletal muscle, are shaped early in glycolysis.
Collapse
|
29
|
Ollberding NJ, Cheng I, Wilkens LR, Henderson BE, Pollak MN, Kolonel LN, Le Marchand L. Genetic variants, prediagnostic circulating levels of insulin-like growth factors, insulin, and glucose and the risk of colorectal cancer: the Multiethnic Cohort study. Cancer Epidemiol Biomarkers Prev 2012; 21:810-20. [PMID: 22354904 DOI: 10.1158/1055-9965.epi-11-1105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Increased exposure of colonic and rectal epithelial cells to the promitotic and antiapoptotic effects of insulin and insulin-like growth factors (IGF) is hypothesized to increase colorectal cancer risk. METHODS In a case-control study nested within the Multiethnic Cohort, we attempted to replicate associations for five genetic variants associated with IGF system biomarkers, insulin, or glucose and to examine their association with the risk of colorectal cancer. In a subset of participants, the association between circulating biomarkers and colorectal cancer risk was examined. Unconditional logistic regression was used to calculate ORs and 95% confidence intervals (CI) for genetic variants (1,954 cases/2,587 controls) and serum biomarkers (258 cases/1,701 controls). RESULTS Associations with circulating biomarkers were replicated in the Multiethnic Cohort for IGF1 rs35767 and for IGFBP3 rs2854744, rs2854746, and rs3110697 (P < 0.05). Homozygous carriers of the glucokinase regulator (GCKR) rs780094 variant T-allele were at a decreased risk of colorectal cancer (OR, 0.77; 95% CI, 0.64-0.92). In risk factor-adjusted models, participants with the highest prediagnostic IGF-II levels were at an increased risk [OR (T1 vs. T3), 1.58; 95% CI, 1.09-2.28; P(trend) = 0.011] and participants with the highest prediagnostic IGF-binding protein (IGFBP)-3 levels were at a decreased risk of colorectal cancer (OR, 0.53; 95% CI, 0.34-0.83; P(trend) = 0.003). CONCLUSION These data provide further support for a role of prediagnostic IGF and insulin levels in the etiology of colorectal cancer. IMPACT Future studies attempting to replicate the association between the GCKR rs780094 variant and the risk of colorectal cancer are warranted.
Collapse
Affiliation(s)
- Nicholas J Ollberding
- University of Hawaii Cancer Center, Epidemiology Program, Honolulu, Hawaii 96813, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
García-Herrero CM, Rubio-Cabezas O, Azriel S, Gutierrez-Nogués A, Aragonés A, Vincent O, Campos-Barros A, Argente J, Navas MA. Functional characterization of MODY2 mutations highlights the importance of the fine-tuning of glucokinase and its role in glucose sensing. PLoS One 2012; 7:e30518. [PMID: 22291974 PMCID: PMC3265476 DOI: 10.1371/journal.pone.0030518] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/17/2011] [Indexed: 11/19/2022] Open
Abstract
Glucokinase (GK) acts as a glucose sensor in the pancreatic beta-cell and regulates insulin secretion. Heterozygous mutations in the human GK-encoding GCK gene that reduce the activity index increase the glucose-stimulated insulin secretion threshold and cause familial, mild fasting hyperglycaemia, also known as Maturity Onset Diabetes of the Young type 2 (MODY2). Here we describe the biochemical characterization of five missense GK mutations: p.Ile130Thr, p.Asp205His, p.Gly223Ser, p.His416Arg and p.Ala449Thr. The enzymatic analysis of the corresponding bacterially expressed GST-GK mutant proteins show that all of them impair the kinetic characteristics of the enzyme. In keeping with their position within the protein, mutations p.Ile130Thr, p.Asp205His, p.Gly223Ser, and p.His416Arg strongly decrease the activity index of GK, affecting to one or more kinetic parameters. In contrast, the p.Ala449Thr mutation, which is located in the allosteric activator site, does not affect significantly the activity index of GK, but dramatically modifies the main kinetic parameters responsible for the function of this enzyme as a glucose sensor. The reduced Kcat of the mutant (3.21±0.28 s(-1) vs 47.86±2.78 s(-1)) is balanced by an increased glucose affinity (S(0.5) = 1.33±0.08 mM vs 7.86±0.09 mM) and loss of cooperativity for this substrate. We further studied the mechanism by which this mutation impaired GK kinetics by measuring the differential effects of several competitive inhibitors and one allosteric activator on the mutant protein. Our results suggest that this mutation alters the equilibrium between the conformational states of glucokinase and highlights the importance of the fine-tuning of GK and its role in glucose sensing.
Collapse
Affiliation(s)
- Carmen-María García-Herrero
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), www.ciberdem.net, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Rubio-Cabezas
- Servicio de Endocrinología, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa and Departamento de Pediatría, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), www.ciberobn.es, Instituto de Salud Carlos III, Madrid, Spain
| | - Sharona Azriel
- Servicio de Endocrinología, Hospital Universitario Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain
| | - Angel Gutierrez-Nogués
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Angel Aragonés
- Servicio de Pediatría, Hospital Virgen de la Salud, Toledo, Spain
| | - Olivier Vincent
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Angel Campos-Barros
- Servicio de Endocrinología, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa and Departamento de Pediatría, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Argente
- Servicio de Endocrinología, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa and Departamento de Pediatría, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), www.ciberobn.es, Instituto de Salud Carlos III, Madrid, Spain
| | - María-Angeles Navas
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), www.ciberdem.net, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
31
|
Huypens PR, Huang M, Joseph JW. Overcoming the spatial barriers of the stimulus secretion cascade in pancreatic β-cells. Islets 2012; 4:1-116. [PMID: 22143007 DOI: 10.4161/isl.18338] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ability of the pancreatic β-cells to adapt the rate of insulin release in accordance to changes in circulating glucose levels is essential for glucose homeostasis. Two spatial barriers imposed by the plasma membrane and inner mitochondrial membrane need to be overcome in order to achieve stringent coupling between the different steps in the stimulus-secretion cascade. The first spatial barrier is overcome by the presence of a glucose transporter (GLUT) in the plasma membrane, whereas a low affinity hexokinase IV (glucokinase, GK) in the cytosol conveys glucose availability into a metabolic flux that triggers and accelerates insulin release. The mitochondrial inner membrane comprises a second spatial barrier that compartmentalizes glucose metabolism into glycolysis (cytosol) and tricarboxylate (TCA) cycle (mitochondrial matrix). The exchange of metabolites between cytosol and mitochondrial matrix is mediated via a set of mitochondrial carriers, including the aspartate-glutamate carrier (aralar1), α- ketoglutarate carrier (OGC), ATP/ADP carrier (AAC), glutamate carrier (GC1), dicarboxylate carrier (DIC) and citrate/isocitrate carrier (CIC). The scope of this review is to provide an overview of the role these carriers play in stimulus-secretion coupling and discuss the importance of these findings in the context of the exquisite glucose responsive state of the pancreatic β-cell.
Collapse
Affiliation(s)
- Peter R Huypens
- School of Pharmacy; Health Science Campus; University of Waterloo; Kitchener, CN Canada
| | - Mei Huang
- School of Pharmacy; Health Science Campus; University of Waterloo; Kitchener, CN Canada
| | - Jamie W Joseph
- School of Pharmacy; Health Science Campus; University of Waterloo; Kitchener, CN Canada
| |
Collapse
|
32
|
Horvatovich K, Bokor S, Polgar N, Kisfali P, Hadarits F, Jaromi L, Csongei V, Repasy J, Molnar D, Melegh B. Functional glucokinase regulator gene variants have inverse effects on triglyceride and glucose levels, and decrease the risk of obesity in children. DIABETES & METABOLISM 2011; 37:432-9. [DOI: 10.1016/j.diabet.2011.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 02/07/2011] [Accepted: 02/09/2011] [Indexed: 01/19/2023]
|
33
|
Borowiec M, Mysliwiec M, Fendler W, Antosik K, Brandt A, Malecki M, Mlynarski W. Phenotype variability and neonatal diabetes in a large family with heterozygous mutation of the glucokinase gene. Acta Diabetol 2011; 48:203-8. [PMID: 21437567 PMCID: PMC3162147 DOI: 10.1007/s00592-011-0279-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/10/2011] [Indexed: 12/17/2022]
Abstract
Monogenic diabetes caused by mutations in the glucokinase gene (GCK-MODY) is usually characterized by a mild clinical phenotype. The clinical course of diabetes may be, however, highly variable. The authors present a child with diabetes manifesting with ketoacidosis during the neonatal period, born in a large family with ten members bearing a heterozygous p.Gly223Ser mutation in GCK. DNA sequencing and multiplex ligation-dependent probe amplification were used to confirm GCK mutation and exclude other de novo mutations in other known genes associated with monogenic diabetes. Continuous glucose monitoring (CGM) was used to assess daily glycemic profiles. At the onset of diabetes the child had hyperglycemia 765 mg/dl with pH 7.09. Her glycated hemoglobin level was 8.6% (70.5 mmol/mol). The C-peptide level was below normal range (<0.5 pmol/ml) at onset, and the three- and 6-month follow-up examinations. Current evaluation at age 3 still showed unsatisfactory metabolic control with HbA1c level equal to 8.1% (65.0 mmol/mol). CGM data showed glucose concentrations profile similar to poorly controlled type 1 diabetes. The patient was confirmed to be heterozygous for the p.Gly223Ser mutation and did not show any point mutations or deletions within other monogenic diabetes genes. Other family members with p.Gly223Ser mutation had retained C-peptide levels and mild diabetes manageable with diet (five individuals), oral hypoglycemizing agents (five patients), or insulin (one patient). This mutation was absent within all healthy family members. Heterozygous mutations of the GCK gene may result in neonatal diabetes similar to type 1 diabetes, the cause of such phenotype variety is still unknown. The possibility of other additional, unknown mutations seems to be the most likely explanation for the unusual presentation of GCK-MODY.
Collapse
Affiliation(s)
- Maciej Borowiec
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, 36/50 Sporna St., 91-738 Lodz, Poland
| | - Malgorzata Mysliwiec
- Department of Pediatrics, Oncology, Hematology and Endocrinology, Medical University of Gdansk, 7 Debinki St., 80-952 Gdansk, Poland
| | - Wojciech Fendler
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, 36/50 Sporna St., 91-738 Lodz, Poland
| | - Karolina Antosik
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, 36/50 Sporna St., 91-738 Lodz, Poland
| | - Agnieszka Brandt
- Department of Pediatrics, Oncology, Hematology and Endocrinology, Medical University of Gdansk, 7 Debinki St., 80-952 Gdansk, Poland
| | - Maciej Malecki
- Department of Metabolic Diseases, Collegium Medicum Jagiellonian University of Cracow, 15 Kopernika St., 31-501 Cracow, Poland
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, 36/50 Sporna St., 91-738 Lodz, Poland
| |
Collapse
|
34
|
Dubois CL, Shih HP, Seymour PA, Patel NA, Behrmann JM, Ngo V, Sander M. Sox9-haploinsufficiency causes glucose intolerance in mice. PLoS One 2011; 6:e23131. [PMID: 21829703 PMCID: PMC3149078 DOI: 10.1371/journal.pone.0023131] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/07/2011] [Indexed: 01/08/2023] Open
Abstract
The HMG box transcription factor Sox9 plays a critical role in progenitor cell expansion during pancreas organogenesis and is required for proper endocrine cell development in the embryo. Based on in vitro studies it has been suggested that Sox9 controls expression of a network of important developmental regulators, including Tcf2/MODY5, Hnf6, and Foxa2, in pancreatic progenitor cells. Here, we sought to: 1) determine whether Sox9 regulates this transcriptional network in vivo and 2) investigate whether reduced Sox9 gene dosage leads to impaired glucose homeostasis in adult mice. Employing two genetic models of temporally-controlled Sox9 inactivation in pancreatic progenitor cells, we demonstrate that contrary to in vitro findings, Sox9 is not required for Tcf2, Hnf6, or Foxa2 expression in vivo. Moreover, our analysis revealed a novel role for Sox9 in maintaining the expression of Pdx1/MODY4, which is an important transcriptional regulator of beta-cell development. We further show that reduced beta-cell mass in Sox9-haploinsufficient mice leads to glucose intolerance during adulthood. Sox9-haploinsufficient mice displayed 50% reduced beta-cell mass at birth, which recovered partially via a compensatory increase in beta-cell proliferation early postnatally. Endocrine islets from mice with reduced Sox9 gene dosage exhibited normal glucose stimulated insulin secretion. Our findings show Sox9 plays an important role in endocrine development by maintaining Ngn3 and Pdx1 expression. Glucose intolerance in Sox9-haploinsufficient mice suggests that mutations in Sox9 could play a role in diabetes in humans.
Collapse
Affiliation(s)
- Claire L. Dubois
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Hung Ping Shih
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Philip A. Seymour
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Nisha A. Patel
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - James M. Behrmann
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Victoria Ngo
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Maike Sander
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Bonfig W, Hermanns S, Warncke K, Eder G, Engelsberger I, Burdach S, Ziegler AG, Lohse P. GCK-MODY (MODY 2) Caused by a Novel p.Phe330Ser Mutation. ISRN PEDIATRICS 2011; 2011:676549. [PMID: 22389783 PMCID: PMC3263572 DOI: 10.5402/2011/676549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/13/2011] [Indexed: 11/23/2022]
Abstract
Maturity onset diabetes of the young (MODY) is a monogenic form of diabetes inherited as an autosomal dominant trait. The second most common cause is GCK-MODY due to heterozygous mutations in the GCK gene which impair the glucokinase function through different mechanisms such as enzymatic activity, protein stability, and increased interaction with its receptor. The enzyme normally acts as a glucose sensor in the pancreatic beta cell and regulates insulin secretion. We report here a three-generation nonobese family diagnosed with diabetes. All affected family members presented with mild hyperglycemia and mostly slightly elevated hemoglobin A1c values. Genetic testing revealed a novel heterozygous T → C exchange in exon 8 of the GCK gene which resulted in a phenylalanine330 TTC → serine (TCC)/p.Phe330Ser/F330S substitution.
Collapse
Affiliation(s)
- Walter Bonfig
- Division of Pediatric Endocrinology, Department of Pediatrics, Technische Universität München Kölner Platz 1, 80804 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Insight into the biochemical characteristics of a novel glucokinase gene mutation. Hum Genet 2010; 129:231-8. [DOI: 10.1007/s00439-010-0914-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
|
37
|
Osbak KK, Colclough K, Saint-Martin C, Beer NL, Bellanné-Chantelot C, Ellard S, Gloyn AL. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat 2010; 30:1512-26. [PMID: 19790256 DOI: 10.1002/humu.21110] [Citation(s) in RCA: 359] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glucokinase is a key regulatory enzyme in the pancreatic beta-cell. It plays a crucial role in the regulation of insulin secretion and has been termed the glucose sensor in pancreatic beta-cells. Given its central role in the regulation of insulin release it is understandable that mutations in the gene encoding glucokinase (GCK) can cause both hyper- and hypoglycemia. Heterozygous inactivating mutations in GCK cause maturity-onset diabetes of the young (MODY) subtype glucokinase (GCK), characterized by mild fasting hyperglycemia, which is present at birth but often only detected later in life during screening for other purposes. Homozygous inactivating GCK mutations result in a more severe phenotype presenting at birth as permanent neonatal diabetes mellitus (PNDM). A growing number of heterozygous activating GCK mutations that cause hypoglycemia have also been reported. A total of 620 mutations in the GCK gene have been described in a total of 1,441 families. There are no common mutations, and the mutations are distributed throughout the gene. The majority of activating mutations cluster in a discrete region of the protein termed the allosteric activator site. The identification of a GCK mutation in patients with both hyper- and hypoglycemia has implications for the clinical course and clinical management of their disorder.
Collapse
Affiliation(s)
- Kara K Osbak
- Diabetes Research Laboratories, Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
38
|
Odem J, Munzinger E, Violand S, Van Morlan A, Rife D, Bachrach B. An infant with combination gene mutations for Monogenic Diabetes of Youth (MODY) 2 and 4, presenting with Diabetes Mellitus Requiring Insulin (DMRI) at 8 months of age. Pediatr Diabetes 2009; 10:550-3. [PMID: 19515026 DOI: 10.1111/j.1399-5448.2009.00515.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Monogenic Diabetes of Youth (MODY) is an autosomal dominant form of diabetes. [Fajans SS, et al. NEJM 2001: 345: 971-980.] There are at least six different types of MODY, all of which involve a loss of function gene mutation that results in diminished insulin production. MODY2 results from a mutation in the glucokinase gene (GCK), which decreases enzyme activity. MODY4 results from a mutation in the insulin promoter factor-1 (IPF-1) gene, a transcription factor which regulates the transcription of insulin. [Sperling M, et al. NEJM 2006: 355: 507-510.] TJ presented at 8 months of age with diabetes mellitus requiring insulin (DMRI) with negative islet autoantibodies. She had a prolonged honeymoon period, as evidenced by her insulin requirement of 0.5 units/kg/day at three years of age. Genetic testing showed combination MODY2 (c.1019+18G >A) and MODY4 (c.226G>A) gene mutations. The father was homozygous for MODY2 and the mother was heterozygous for MODY4. [Athena Diagnostics Evaluations "2007 # 839 - Monogenic Diabetes (MODY) Evaluation for the patient, the patient's father, and the patient's mother] Neither parent had diabetes mellitus. The clinical course and negative islet autoantibodies support that the combination of benign MODY2 and MODY4 gene mutations in the parents resulted in DMRI in TJ.
Collapse
Affiliation(s)
- Jamie Odem
- University of Missouri Children's Hospital, Division of Pediatric Endocrinology, Columbia, Missouri, USA
| | | | | | | | | | | |
Collapse
|
39
|
Al-Sheyab F, Khamaiseh E, Halaweh MA, Khalil RW. Characterization of glucokinase polymorphisms associated with Maturity-Onset Diabetes of the Young (MODY2) in Jordanian population. CYTOL GENET+ 2009. [DOI: 10.3103/s0095452709050089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Zhang X, Sun N, Wang L, Guo H, Guan Q, Cui B, Tian L, Gao L, Zhao J. AMP-activated protein kinase and pancreatic/duodenal homeobox-1 involved in insulin secretion under high leucine exposure in rat insulinoma beta-cells. J Cell Mol Med 2009; 13:758-70. [PMID: 19438972 PMCID: PMC3822882 DOI: 10.1111/j.1582-4934.2009.00656.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The effect of leucine on glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells is quite controversial, and mechanism involved in the effect has not been elucidated yet. Consequently, we aimed to investigate effect of leucine on GSIS and its mechanism focusing on contribution of AMP-activated protein kinase (AMPK) and pancreatic/duodenal homeobox-1 (PDX-1). Rat insulinoma beta-cells (INS-1, RIN m5F, DN-PDX-1#28 and PDX-1#6) were cultured with or without leucine, AICAR (AMPK agonist) or compound C (AMPK antagonist) for 48 hrs. In contrast to control, AICAR treatment decreased GSIS at high glucose and insulin content, also impaired protein and mRNA expression of PDX-1 and its downstream targets, glucokinase (GCK) and glucose transporter 2 (GLUT2). Compound C treatment had the opposite effects. We observed that neither AICAR nor compound C could affect expression of GCK and GLUT2 when PDX-1 expression was absent. Chronic leucine exposure inhibited GSIS at high glucose and insulin content in a dose-dependent manner, concomitant with an increase in AMPK and a decrease in PDX-1, GCK and GLUT2. The inhibitory effects of leucine was potentiated by AICAR treatment and rescued by compound C treatment. Finally, the inhibition of PDX-1 could potentiate the impaired effects induced by leucine whereas overexpression of PDX-1 could protect the cell from impairment induced by leucine. The study indicated that chronic leucine might result in an increase in AMPK and then a decrease in PDX-l, in turn to depress GCK and GLUT2 resulting in decreased GSIS at high glucose and insulin content.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Department of Endocrinology, Provincial Hospital affiliated to Shandong University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Turkkahraman D, Bircan I, Tribble ND, Akçurin S, Ellard S, Gloyn AL. Permanent neonatal diabetes mellitus caused by a novel homozygous (T168A) glucokinase (GCK) mutation: initial response to oral sulphonylurea therapy. J Pediatr 2008; 153:122-6. [PMID: 18571549 DOI: 10.1016/j.jpeds.2007.12.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/24/2007] [Accepted: 12/12/2007] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To evaluate the clinical response to sulphonylurea treatment in a child with a homozygous T168A GCK (glucokinase) mutation, causing permanent neonatal diabetes mellitus (PNDM). STUDY DESIGN Oral glibenclamide was given for 3 months. Pancreatic beta cell function was assessed by a glucagon stimulation test. Mutant and wild-type (WT) GCK were characterized. RESULTS Sulphonylurea treatment resulted in a 12-fold increase in basal and stimulated C-peptide levels. HbA1c levels were reduced from 9.4% to 8.1% on a reduced insulin dose (0.85 to 0.60 U/kg/day). Mutant T168A-GST-GCK showed reduced kinetic activity (0.02 fold) compared to WT. CONCLUSIONS Sulphonylureas can close the adenosine triphosphate (ATP)-sensitive potassium channel and elicit insulin secretion, but the ATP generated from metabolism is insufficient to fully restore insulin secretory capacity. Nonetheless, sulphonylurea treatment should be tried in patients with GCK-PNDM, particularly those with mutations resulting in less severe kinetic defects, in whom improved glycemic control may be obtained with lower doses of insulin.
Collapse
Affiliation(s)
- Doga Turkkahraman
- From the Department of Pediatric Endocrinology, Akdeniz University Hospital, Antalya, Turkey
| | | | | | | | | | | |
Collapse
|
42
|
Glucokinase (GCK) and other susceptibility genes for β-cell dysfunction: the candidate approach. Biochem Soc Trans 2008; 36:306-11. [DOI: 10.1042/bst0360306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
There are well-documented examples in the literature of where determining the genetic aetiology of a disorder has provided insights into important regulatory pathways and protein interactions, and, more recently, has led to improved treatment options for patients. The studies of monogenic forms of β-cell dysfunction are no exception. Naturally occurring mutations in the gene for the β-cell enzyme glucokinase (GCK) result in both hyper- and hypo-glycaemia. Over 200 mutations have been described, and careful study of the mutational mechanisms for a number of these has provided important insights into glucokinase regulation. Increased understanding of post-translational regulatory mechanisms holds the promise of novel pharmacotherapeutic options for the treatment of T2DM (Type 2 diabetes mellitus). It is well established that common genetic variation in genes involved in monogenic forms of β-cell dysfunction contributes to susceptibility to T2DM. Recent genome-wide scans for association have identified a number of novel T2DM susceptibility genes which probably influence β-cell mass and/or function. Their identification allows the investigation of the role of rare mutations in monogenic β-cell dysfunction. Current results indicate the importance of these genes in pancreatic development and suggest that mutations which result in a severe functional defect could be lethal.
Collapse
|
43
|
Loci related to metabolic-syndrome pathways including LEPR,HNF1A, IL6R, and GCKR associate with plasma C-reactive protein: the Women's Genome Health Study. Am J Hum Genet 2008; 82:1185-92. [PMID: 18439548 DOI: 10.1016/j.ajhg.2008.03.015] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/12/2008] [Accepted: 03/17/2008] [Indexed: 11/20/2022] Open
Abstract
Although elevated levels of C-reactive protein (CRP) independently predict increased risk of development of metabolic syndrome, diabetes, myocardial infarction, and stroke, comprehensive analysis of the influence of genetic variation on CRP is not available. To address this issue, we performed a genome-wide association study among 6345 apparently healthy women in which we evaluated 336,108 SNPs as potential determinants of plasma CRP concentration. Overall, seven loci that associate with plasma CRP at levels achieving genome-wide statistical significance were found (range of p values for lead SNPs within the seven loci: 1.9 x 10(-)(8) to 6.2 x 10(-)(28)). Two of these loci (GCKR and HNF1A) are suspected or known to be associated with maturity-onset diabetes of the young, one is a gene-desert region on 12q23.2, and the remaining four loci are in or near the leptin receptor protein gene, the apolipoprotein E gene, the interleukin-6 receptor protein gene, or the CRP gene itself. The protein products of six of these seven loci are directly involved in metabolic syndrome, insulin resistance, beta cell function, weight homeostasis, and/or premature atherothrombosis. Thus, common variation in several genes involved in metabolic and inflammatory regulation have significant effects on CRP levels, consistent with CRP's identification as a useful biomarker of risk for incident vascular disease and diabetes.
Collapse
|
44
|
Tinto N, Zagari A, Capuano M, De Simone A, Capobianco V, Daniele G, Giugliano M, Spadaro R, Franzese A, Sacchetti L. Glucokinase gene mutations: structural and genotype-phenotype analyses in MODY children from South Italy. PLoS One 2008; 3:e1870. [PMID: 18382660 PMCID: PMC2270336 DOI: 10.1371/journal.pone.0001870] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 02/19/2008] [Indexed: 01/29/2023] Open
Abstract
Background Maturity onset diabetes of the young type 2 (or GCK MODY) is a genetic form of diabetes mellitus provoked by mutations in the glucokinase gene (GCK). Methodology/Principal Findings We screened the GCK gene by direct sequencing in 30 patients from South Italy with suspected MODY. The mutation-induced structural alterations in the protein were analyzed by molecular modeling. The patients' biochemical, clinical and anamnestic data were obtained. Mutations were detected in 16/30 patients (53%); 9 of the 12 mutations identified were novel (p.Glu70Asp, p.Phe123Leu, p.Asp132Asn, p.His137Asp, p.Gly162Asp, p.Thr168Ala, p.Arg392Ser, p.Glu290X, p.Gln106_Met107delinsLeu) and are in regions involved in structural rearrangements required for catalysis. The prevalence of mutation sites was higher in the small domain (7/12: ∼59%) than in the large (4/12: 33%) domain or in the connection (1/12: 8%) region of the protein. Mild diabetic phenotypes were detected in almost all patients [mean (SD) OGTT = 7.8 mMol/L (1.8)] and mean triglyceride levels were lower in mutated than in unmutated GCK patients (p = 0.04). Conclusions The prevalence of GCK MODY is high in southern Italy, and the GCK small domain is a hot spot for MODY mutations. Both the severity of the GCK mutation and the genetic background seem to play a relevant role in the GCK MODY phenotype. Indeed, a partial genotype-phenotype correlation was identified in related patients (3 pairs of siblings) but not in two unrelated children bearing the same mutation. Thus, the molecular approach allows the physician to confirm the diagnosis and to predict severity of the mutation.
Collapse
Affiliation(s)
- Nadia Tinto
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli “Federico II” and CEINGE Biotecnologie Avanzate, Napoli, Italia
| | - Adriana Zagari
- Dipartimento delle Scienze Biologiche, Università di Napoli “Federico II” and CEINGE Biotecnologie Avanzate, Napoli, Italia
| | - Marina Capuano
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli “Federico II” and CEINGE Biotecnologie Avanzate, Napoli, Italia
| | - Alfonso De Simone
- Dipartimento delle Scienze Biologiche, Università di Napoli “Federico II” and CEINGE Biotecnologie Avanzate, Napoli, Italia
| | - Valentina Capobianco
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli “Federico II” and CEINGE Biotecnologie Avanzate, Napoli, Italia
| | - Gerardo Daniele
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli “Federico II” and CEINGE Biotecnologie Avanzate, Napoli, Italia
| | - Michela Giugliano
- Dipartimento di Pediatria, Università di Napoli “Federico II”, Napoli, Italia
| | - Raffaella Spadaro
- Dipartimento di Pediatria, Università di Napoli “Federico II”, Napoli, Italia
| | - Adriana Franzese
- Dipartimento di Pediatria, Università di Napoli “Federico II”, Napoli, Italia
| | - Lucia Sacchetti
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli “Federico II” and CEINGE Biotecnologie Avanzate, Napoli, Italia
- * E-mail:
| |
Collapse
|
45
|
Estalella I, Rica I, Perez de Nanclares G, Bilbao JR, Vazquez JA, San Pedro JI, Busturia MA, Castaño L. Mutations in GCK and HNF-1alpha explain the majority of cases with clinical diagnosis of MODY in Spain. Clin Endocrinol (Oxf) 2007; 67:538-46. [PMID: 17573900 DOI: 10.1111/j.1365-2265.2007.02921.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to group patients with MODY (maturity-onset diabetes of the young) according to the genetic alterations underlying the disease and to investigate their clinical characteristics. PATIENTS AND METHODS Molecular analysis of GCK (MODY2), HNF-1alpha (MODY3), HNF-4alpha (MODY1) and HNF-1beta (MODY5) genes was performed by DNA sequencing in 95 unrelated index probands (47M/48F; mean age 9.9 +/- 5.2 years) with clinical diagnosis of MODY. After classification into MODY subtypes according to the genetic alterations, clinical characteristics were compared between the groups. RESULTS Seventy-six families were shown to carry mutations in GCK (34 of them previously unreported), eight families presented HNF-1alpha mutations, and a large genomic rearrangement in HNF-1beta was found in a family. No alteration was found in HNF-4alpha. Thus, relative frequencies in the group studied were 80% MODY2, 8.5% MODY3 and 1% MODY5. Comparison of clinical parameters according to genetic status showed significant differences between MODY2 and MODY3 patients in age at diagnosis (9.4 +/- 5.4 years vs. 12.7 +/- 4.6 years), diagnosis (impaired glucose tolerance vs. diabetes), diagnostic test used (OGTT vs. fasting glucose), treatment (diet and exercise vs. insulin/oral antidiabetic agents) and birth weight (2.96 +/- 0.44 kg vs. 3.40 +/- 0.67 kg). CONCLUSION Almost 90% of the MODY cases in the group studied are explained by mutations in the major genes GCK (MODY2) and HNF-1alpha(MODY3), although differences in the relative prevalence of each form could be partly due to patient referral bias (paediatric vs. adult). In general, patients with MODY2 were diagnosed at an earlier age in life than MODY3 patients and had a milder form of diabetes. Moreover, the majority of patients with MODY2 mutations were treated with diet whereas half of MODY3 patients received pharmacological treatment.
Collapse
Affiliation(s)
- Itziar Estalella
- Endocrinology and Diabetes Research Group, Hospital de Cruces, Barakaldo, Basque Country, Spain
| | | | | | | | | | | | | | | |
Collapse
|
46
|
van de Bunt M, Gloyn AL. Monogenic disorders of the pancreatic β-cell: personalizing treatment for rare forms of diabetes and hypoglycemia. Per Med 2007; 4:247-259. [DOI: 10.2217/17410541.4.3.247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past 10–20 years, our understanding of the genetic etiology of monogenic disorders of the pancreatic β-cell has greatly improved. This has enabled clinicians to provide patients with more accurate information regarding prognosis and inheritance and has influenced treatment. Maturity-onset diabetes of the young and neonatal diabetes are two such examples. Patients with maturity-onset diabetes of the young due to glucokinase mutations can usually be managed by diet alone, while those affected by HNF-1α and HNF-4α mutations respond well to low doses of sulfonylureas. The identification of mutations in the ATP-dependent potassium channel genes KCNJ11 and ABCC8 as the most common cause of permanent neonatal diabetes has improved treatment regimes for affected children. In addition to enabling patients to stop insulin injections, their glycemic control has also improved. These advances show the importance of unravelling the genetics of a disease to achieve the best individualized treatment for the patients affected.
Collapse
Affiliation(s)
- Martijn van de Bunt
- Oxford University, Diabetes Research Laboratories, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Headington, Oxford, OX3 7LJ, UK
| | - Anna L Gloyn
- Oxford University, Diabetes Research Laboratories, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Headington, Oxford, OX3 7LJ, UK
| |
Collapse
|
47
|
Smith WE, Langer S, Wu C, Baltrusch S, Okar DA. Molecular Coordination of Hepatic Glucose Metabolism by the 6-Phosphofructo-2-Kinase/Fructose-2,6- Bisphosphatase:Glucokinase Complex. Mol Endocrinol 2007; 21:1478-87. [PMID: 17374851 DOI: 10.1210/me.2006-0356] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucokinase (GK) and 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase (FBP-2) are each powerful regulators of hepatic carbohydrate metabolism that have been reported to influence each other's expression, activities, and cellular location. Here we present the first physical evidence for saturable and reversible binding of GK to the FBP-2 domain of PFK-2/FBP-2 in a 1:1 stoichiometric complex. We confirmed complex formation and stoichiometry by independent methods including affinity resin pull-down assays and fluorescent resonance energy transfer. All suggest that the binding of GK to PFK-2/FBP-2 is weak. Enzymatic assays of the GK:PFK-2/FBP-2 complex suggest a concomitant increase of the kinase-to-bisphosphatase ratio of bifunctional enzyme and activation of GK upon binding. The kinase-to-bisphosphatase ratio is increased by activation of the PFK-2 activity whereas FBP-2 activity is unchanged. This means that the GK-bound PFK-2/FBP-2 produces more of the biofactor fructose-2,6-bisphosphate, a potent activator of 6-phosphofructo-1-kinase, the committing step to glycolysis. Therefore, we conclude that the binding of GK to PFK-2/FBP-2 promotes a coordinated up-regulation of glucose phosphorylation and glycolysis in the liver, i.e. hepatic glucose disposal. The GK:PFK-2/FBP-2 interaction may also serve as a metabolic signal transduction pathway for the glucose sensor, GK, in the liver. Demonstration of molecular coordination of hepatic carbohydrate metabolism has fundamental relevance to understanding the function of the liver in maintaining fuel homeostasis, particularly in managing excursions in glycemia produced by meal consumption.
Collapse
Affiliation(s)
- W Ed Smith
- Veterans Affairs Medical Center, 1 Veterans Drive, Minneapolis, Minnesota 55417, USA
| | | | | | | | | |
Collapse
|