1
|
Ehret V, Ustsinau U, Friske J, Scherer T, Fürnsinn C, Helbich TH, Philippe C, Krššák M. Evaluation of Hepatic Glucose and Palmitic Acid Metabolism in Rodents on High-Fat Diet Using Deuterium Metabolic Imaging. J Magn Reson Imaging 2025; 61:958-967. [PMID: 38721871 PMCID: PMC11706318 DOI: 10.1002/jmri.29437] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND One of the main features of several metabolic disorders is dysregulation of hepatic glucose and lipid metabolism. Deuterium metabolic imaging (DMI) allows for assessing the uptake and breakdown of 2H-labeled substrates, giving specific insight into nutrient processing in healthy and diseased organs. Thus, DMI could be a useful approach for analyzing the differences in liver metabolism of healthy and diseased subjects to gain a deeper understanding of the alterations related to metabolic disorders. PURPOSE Evaluating the feasibility of DMI as a tool for the assessment of metabolic differences in rodents with healthy and fatty livers (FLs). STUDY TYPE Animal Model. POPULATION 18 male Sprague Dawley rats on standard (SD, n = 9, healthy) and high-fat diet (HFD, n = 9, FL disease). FIELD STRENGTH/SEQUENCE Phase-encoded 1D pulse-acquire sequence and anatomy co-registered phase-encoded 3D pulse-acquire chemical shift imaging for 2H at 9.4T. ASSESSMENT Localized and nonlocalized liver spectroscopy was applied at eight time points over 104 minutes post injection. The obtained spectra were preprocessed and quantified using jMRUI (v7.0) and the resulting amplitudes translated to absolute concentration (mM) according to the 2H natural abundance water peak. STATISTICAL TESTS Two-way repeated measures ANOVA were employed to assess between-group differences, with statistical significance at P < 0.05. RESULTS DMI measurements demonstrated no significant difference (P = 0.98) in the uptake of [6,6'-2H2]glucose between healthy and impaired animals (AUCSD = 1966.0 ± 151.5 mM - minutes vs. AUCHFD = 2027.0 ± 167.6 mM·minutes). In the diseased group, the intrahepatic uptake of palmitic acid d-31 was higher (AUCHFD = 57.4 ± 17.0 mM·minutes, AUCSD = 33.3 ± 10.5 mM·minutes), but without statistical significance owing to substantial in-group variation (P = 0.73). DATA CONCLUSION DMI revealed higher concentrations of palmitic acid in rats with FL disease and no difference in hepatic glucose concentration between healthy and impaired animals. Thus, DMI appears to be a useful tool for evaluating metabolism in rodents with FL disease. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Viktoria Ehret
- Division of Endocrinology and Metabolism, Department of Medicine IIIMedical University of ViennaViennaAustria
| | - Usevalad Ustsinau
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Joachim Friske
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Medicine IIIMedical University of ViennaViennaAustria
| | - Clemens Fürnsinn
- Division of Endocrinology and Metabolism, Department of Medicine IIIMedical University of ViennaViennaAustria
| | - Thomas H. Helbich
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Cécile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
2
|
Geisler CE, Renquist BJ. Hepatic lipid accumulation: cause and consequence of dysregulated glucoregulatory hormones. J Endocrinol 2017; 234:R1-R21. [PMID: 28428362 DOI: 10.1530/joe-16-0513] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022]
Abstract
Fatty liver can be diet, endocrine, drug, virus or genetically induced. Independent of cause, hepatic lipid accumulation promotes systemic metabolic dysfunction. By acting as peroxisome proliferator-activated receptor (PPAR) ligands, hepatic non-esterified fatty acids upregulate expression of gluconeogenic, beta-oxidative, lipogenic and ketogenic genes, promoting hyperglycemia, hyperlipidemia and ketosis. The typical hormonal environment in fatty liver disease consists of hyperinsulinemia, hyperglucagonemia, hypercortisolemia, growth hormone deficiency and elevated sympathetic tone. These endocrine and metabolic changes further encourage hepatic steatosis by regulating adipose tissue lipolysis, liver lipid uptake, de novo lipogenesis (DNL), beta-oxidation, ketogenesis and lipid export. Hepatic lipid accumulation may be induced by 4 separate mechanisms: (1) increased hepatic uptake of circulating fatty acids, (2) increased hepatic de novo fatty acid synthesis, (3) decreased hepatic beta-oxidation and (4) decreased hepatic lipid export. This review will discuss the hormonal regulation of each mechanism comparing multiple physiological models of hepatic lipid accumulation. Nonalcoholic fatty liver disease (NAFLD) is typified by increased hepatic lipid uptake, synthesis, oxidation and export. Chronic hepatic lipid signaling through PPARgamma results in gene expression changes that allow concurrent activity of DNL and beta-oxidation. The importance of hepatic steatosis in driving systemic metabolic dysfunction is highlighted by the common endocrine and metabolic disturbances across many conditions that result in fatty liver. Understanding the mechanisms underlying the metabolic dysfunction that develops as a consequence of hepatic lipid accumulation is critical to identifying points of intervention in this increasingly prevalent disease state.
Collapse
Affiliation(s)
- Caroline E Geisler
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| | - Benjamin J Renquist
- School of Animal and Comparative Biomedical SciencesUniversity of Arizona, Tucson, Arizona, USA
| |
Collapse
|
3
|
Janssens S, Ciapaite J, Wolters JC, van Riel NA, Nicolay K, Prompers JJ. An In Vivo Magnetic Resonance Spectroscopy Study of the Effects of Caloric and Non-Caloric Sweeteners on Liver Lipid Metabolism in Rats. Nutrients 2017; 9:nu9050476. [PMID: 28489050 PMCID: PMC5452206 DOI: 10.3390/nu9050476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/26/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
We aimed to elucidate the effects of caloric and non-caloric sweeteners on liver lipid metabolism in rats using in vivo magnetic resonance spectroscopy (MRS) and to determine their roles in the development of liver steatosis. Wistar rats received normal chow and either normal drinking water, or solutions containing 13% (w/v) glucose, 13% fructose, or 0.4% aspartame. After 7 weeks, in vivo hepatic dietary lipid uptake and de novo lipogenesis were assessed with proton-observed, carbon-13-edited MRS combined with 13C-labeled lipids and 13C-labeled glucose, respectively. The molecular basis of alterations in hepatic liver metabolism was analyzed in detail ex vivo using immunoblotting and targeted quantitative proteomics. Both glucose and fructose feeding increased adiposity, but only fructose induced hepatic lipid accumulation. In vivo MRS showed that this was not caused by increased hepatic uptake of dietary lipids, but could be attributed to an increase in de novo lipogenesis. Stimulation of lipogenesis by fructose was confirmed by a strong upregulation of lipogenic enzymes, which was more potent than with glucose. The non-caloric sweetener aspartame did not significantly affect liver lipid content or metabolism. In conclusion, liquid fructose more severely affected liver lipid metabolism in rats than glucose, while aspartame had no effect.
Collapse
Affiliation(s)
- Sharon Janssens
- Biomedical Nuclear Magnetic Resonance (NMR), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Jolita Ciapaite
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
- Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Justina C Wolters
- Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
- Department of Pharmacy, Analytical Biochemistry, University of Groningen, Antonius Deusinglaan, 9713 AV Groningen, The Netherlands.
| | - Natal A van Riel
- Computational Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Klaas Nicolay
- Biomedical Nuclear Magnetic Resonance (NMR), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Jeanine J Prompers
- Biomedical Nuclear Magnetic Resonance (NMR), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
4
|
Zhao Z, Barcus M, Kim J, Lum KL, Mills C, Lei XG. High Dietary Selenium Intake Alters Lipid Metabolism and Protein Synthesis in Liver and Muscle of Pigs. J Nutr 2016; 146:1625-33. [PMID: 27466604 PMCID: PMC4997278 DOI: 10.3945/jn.116.229955] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/08/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Prolonged high intakes of dietary selenium have been shown to induce gestational diabetes in rats and hyperinsulinemia in pigs. OBJECTIVE Two experiments were conducted to explore metabolic and molecular mechanisms for the diabetogenic potential of high dietary selenium intakes in pigs. METHODS In Expt. 1, 16 Yorkshire-Landrace-Hampshire crossbred pigs (3 wk old, body weight = 7.5 ± 0.81 kg, 50% males and 50% females) were fed a corn-soybean meal basal diet supplemented with 0.3 or 1.0 mg Se/kg (as selenium-enriched yeast for 6 wk). In Expt. 2, 12 pigs of the same crossbreed (6 wk old, body weight = 16.0 ± 1.8 kg) were fed a similar basal diet supplemented with 0.3 or 3.0 mg Se/kg for 11 wk. Biochemical and gene and protein expression profiles of lipid and protein metabolism and selenoproteins in plasma, liver, muscle, and adipose tissues were analyzed. RESULTS In Expt. 1, the 1-mg-Se/kg diet did not affect body weight or plasma concentrations of glucose and nonesterified fatty acids. In Expt. 2, the 3-mg-Se/kg diet, compared with the 0.3-mg-Se/kg diet, increased (P < 0.05) concentrations of plasma insulin (0.2 compared with 0.4 ng/mL), liver and adipose lipids (41% to 2.4-fold), and liver and muscle protein (10-14%). In liver, the 3-mg-Se/kg diet upregulated (P < 0.05) the expression, activity, or both of key factors related to gluconeogenesis [phosphoenolpyruvate carboxykinase (PEPCK); 13%], lipogenesis [sterol regulatory element binding protein 1 (SREBP1), acetyl-coenzyme A carboxylase (ACC), and fatty acid synthase (FASN); 46-90%], protein synthesis [insulin receptor (INSR), P70 ribosomal protein S6 kinase (P70), and phosphorylated ribosomal protein S6 (P-S6); 88-105%], energy metabolism [AMP-activated protein kinase (AMPK); up to 2.8-fold], and selenoprotein glutathione peroxidase 3 (GPX3; 1.4-fold) and suppressed (P < 0.05) mRNA levels of lipolysis gene cytochrome P450, family 7, subfamily A, polypeptide 1 (CYP7A1; 88%) and selenoprotein gene selenoprotein W1 (SEPW1; 46%). In muscle, the 3-mg-Se/kg diet exerted no effect on the lipid profiles but enhanced (P < 0.05) expression of P-S6 and mammalian target of rapamycin (mTOR; 42-176%; protein synthesis); selenoprotein P (SELP; 40-fold); and tumor suppressor protein 53 (P53) and peroxisome proliferator-activated receptor γ (PPARG; 52-58%; lipogenesis) and suppressed (P < 0.05) expression of INSR (59%; insulin signaling); selenoprotein S (SELS); deiodinases, iodothyronine, type I (DIO1); and thioredoxin reductase 1 (TXNRD1; 50%; selenoproteins); and ACC1 and FASN (35-51%; lipogenesis). CONCLUSION Our research showed novel roles, to our best knowledge, and mechanisms of high selenium intakes in regulating the metabolism of protein, along with that of lipid, in a tissue-specific fashion in pigs.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY
| |
Collapse
|
5
|
Janssens S, Heemskerk MM, van den Berg SA, van Riel NA, Nicolay K, Willems van Dijk K, Prompers JJ. Effects of low-stearate palm oil and high-stearate lard high-fat diets on rat liver lipid metabolism and glucose tolerance. Nutr Metab (Lond) 2015; 12:57. [PMID: 26691906 PMCID: PMC4683731 DOI: 10.1186/s12986-015-0053-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/11/2015] [Indexed: 01/01/2023] Open
Abstract
Background Excess consumption of energy-dense, high-fat Western diets contributes to the development of obesity and obesity-related disorders, such as fatty liver disease. However, not only the quantity but also the composition of dietary fat may play a role in the development of liver steatosis. The aim of this study was to determine the effects of low-stearate palm oil and high-stearate lard high-fat diets on in vivo liver lipid metabolism. Methods Wistar rats were fed with either normal chow (CON), a high-fat diet based on palm oil (HFP), or a high-fat diet based on lard (HFL). After 10 weeks of diet, magnetic resonance spectroscopy was applied for the in vivo determination of intrahepatocellular lipid content and the uptake and turnover of dietary fat after oral administration of 13C-labeled lipids. Derangements in liver lipid metabolism were further assessed by measuring hepatic very-low density lipoprotein (VLDL) secretion and ex vivo respiratory capacity of liver mitochondria using fat-derived substrates. In addition, whole-body and hepatic glucose tolerance were determined with an intraperitoneal glucose tolerance test. Results Both high-fat diets induced liver lipid accumulation (p < 0.001), which was accompanied by a delayed uptake and/or slower turnover of dietary fat in the liver (p < 0.01), but without any change in VLDL secretion rates. Surprisingly, liver lipid content was higher in HFP than in HFL (p < 0.05), despite the increased fatty acid oxidative capacity in isolated liver mitochondria of HFP animals (p < 0.05). In contrast, while both high-fat diets induced whole-body glucose intolerance, only HFL impaired hepatic glucose tolerance. Conclusion High-fat diets based on palm oil and lard similarly impair the handling of dietary lipids in the liver, but only the high-fat lard diet induces hepatic glucose intolerance.
Collapse
Affiliation(s)
- Sharon Janssens
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Mattijs M Heemskerk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd A van den Berg
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands ; Present address: Amphia Hospital, Breda, The Netherlands
| | - Natal A van Riel
- Computational Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands ; Department of Medicine, division Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
6
|
Janssens S, Jonkers RAM, Groen AK, Nicolay K, van Loon LJC, Prompers JJ. Effects of acute exercise on lipid content and dietary lipid uptake in liver and skeletal muscle of lean and diabetic rats. Am J Physiol Endocrinol Metab 2015; 309:E874-83. [PMID: 26419590 DOI: 10.1152/ajpendo.00292.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/26/2015] [Indexed: 12/24/2022]
Abstract
Insulin resistance is associated with ectopic lipid accumulation. Physical activity improves insulin sensitivity, but the impact of exercise on lipid handling in insulin-resistant tissues remains to be elucidated. The present study characterizes the effects of acute exercise on lipid content and dietary lipid partitioning in liver and skeletal muscle of lean and diabetic rats by use of magnetic resonance spectroscopy (MRS). After baseline measurements, rats were randomized to exercise or no-exercise groups. A subset of animals was subjected to MRS directly after 1 h of treadmill running for measurement of total intrahepatocellular lipid (IHCL) and intramyocellular lipid (IMCL) content (n=7 lean and diabetic rats). The other animals were administered 13C-labeled lipids orally after treadmill visit (with or without exercise) followed by MRS measurements after 4 and 24 h to determine the 13C enrichment of IHCL and IMCL (n=8 per group). Total IHCL and IMCL content were fivefold higher in diabetic vs. lean rats (P<0.001). Exercise did not significantly affect IHCL content but reduced IMCL by 25±7 and 33±4% in lean and diabetic rats (P<0.05), respectively. Uptake of dietary lipids in liver and muscle was 2.3-fold greater in diabetic vs. lean rats (P<0.05). Prior exercise did not significantly modulate dietary lipid uptake into muscle, but in liver of both lean and diabetic rats, lipid uptake was 44% reduced after acute exercise (P<0.05). In conclusion, IMCL but not IHCL represents a viable substrate source during exercise in both lean and diabetic rats, and exercise differentially affects dietary lipid uptake in muscle and liver.
Collapse
Affiliation(s)
- Sharon Janssens
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; The Netherlands Consortium for Systems Biology, Den Haag, The Netherlands
| | - Richard A M Jonkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Albert K Groen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Luc J C van Loon
- NUTRIM, School for Nutrition, Toxicology and Metabolism, Department of Human Movement Sciences, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands;
| |
Collapse
|
7
|
Coelho M, Nunes P, Mendes VM, Manadas B, Heerschap A, Jones JG. Effect of Global ATGL Knockout on Murine Fasting Glucose Kinetics. J Diabetes Res 2015; 2015:542029. [PMID: 26236747 PMCID: PMC4506825 DOI: 10.1155/2015/542029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/08/2015] [Indexed: 12/25/2022] Open
Abstract
Mice deficient in adipose triglyceride lipase (ATGL(-/-)) present elevated ectopic lipid levels but are paradoxically glucose-tolerant. Measurement of endogenous glucose production (EGP) and Cori cycle activity provide insights into the maintenance of glycemic control in these animals. These parameters were determined in 7 wild-type (ATGL(+/-)) and 6 ATGL(-/-) mice by a primed-infusion of [U-(13)C6]glucose followed by LC-MS/MS targeted mass-isotopomer analysis of blood glucose. EGP was quantified by isotope dilution of [U-(13)C6]glucose while Cori cycling was estimated by analysis of glucose triose (13)C-isotopomers. Fasting plasma free fatty-acids were significantly lower in ATGL(-/-) versus control mice (0.43 ± 0.05 mM versus 0.73 ± 0.11 mM, P < 0.05). Six-hour fasting EGP rates were identical for both ATGL(-/-) and control mice (79 ± 11 versus 71 ± 7 μmol/kg/min, resp.). Peripheral glucose metabolism was dominated by Cori cycling (80 ± 2% and 82 ± 7% of glucose disposal for ATGL(-/-) and control mice, resp.) indicating that peripheral glucose oxidation was not significantly upregulated in ATGL(-/-) mice under these conditions. The glucose (13)C-isotopomer distributions in both ATGL(-/-) and control mice were consistent with extensive hepatic pyruvate recycling. This suggests that gluconeogenic outflow from the Krebs cycle was also well compensated in ATGL(-/-) mice.
Collapse
Affiliation(s)
- Margarida Coelho
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | - Vera M. Mendes
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Arend Heerschap
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - John G. Jones
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Portuguese Diabetes Association (APDP), Lisbon, Portugal
- *John G. Jones:
| |
Collapse
|
8
|
Wessels B, Ciapaite J, van den Broek NMA, Houten SM, Nicolay K, Prompers JJ. Pioglitazone treatment restores in vivo muscle oxidative capacity in a rat model of diabetes. Diabetes Obes Metab 2015; 17:52-60. [PMID: 25200673 DOI: 10.1111/dom.12388] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/27/2014] [Accepted: 09/02/2014] [Indexed: 12/15/2022]
Abstract
AIM To determine the effect of pioglitazone treatment on in vivo and ex vivo muscle mitochondrial function in a rat model of diabetes. METHODS Both the lean, healthy rats and the obese, diabetic rats are Zucker Diabetic Fatty (ZDF) rats. The homozygous fa/fa ZDF rats are obese and diabetic. The heterozygous fa/+ ZDF rats are lean and healthy. Diabetic Zucker Diabetic Fatty rats were treated with either pioglitazone (30 mg/kg/day) or water as a control (n = 6 per group), for 2 weeks. In vivo ¹H and ³¹P magnetic resonance spectroscopy was performed on skeletal muscle to assess intramyocellular lipid (IMCL) content and muscle oxidative capacity, respectively. Ex vivo muscle mitochondrial respiratory capacity was evaluated using high-resolution respirometry. In addition, several markers of mitochondrial content were determined. RESULTS IMCL content was 14-fold higher and in vivo muscle oxidative capacity was 26% lower in diabetic rats compared with lean rats, which was, however, not caused by impairments of ex vivo mitochondrial respiratory capacity or a lower mitochondrial content. Pioglitazone treatment restored in vivo muscle oxidative capacity in diabetic rats to the level of lean controls. This amelioration was not accompanied by an increase in mitochondrial content or ex vivo mitochondrial respiratory capacity, but rather was paralleled by an improvement in lipid homeostasis, that is lowering of plasma triglycerides and muscle lipid and long-chain acylcarnitine content. CONCLUSION Diminished in vivo muscle oxidative capacity in diabetic rats results from mitochondrial lipid overload and can be alleviated by redirecting the lipids from the muscle into adipose tissue using pioglitazone treatment.
Collapse
Affiliation(s)
- B Wessels
- Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | | | | | | | | |
Collapse
|
9
|
D'souza AM, Asadi A, Johnson JD, Covey SD, Kieffer TJ. Leptin deficiency in rats results in hyperinsulinemia and impaired glucose homeostasis. Endocrinology 2014; 155:1268-79. [PMID: 24467741 DOI: 10.1210/en.2013-1523] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leptin, an adipocyte-derived hormone, has well-established anorexigenic effects but is also able to regulate glucose homeostasis independent of body weight. Until recently, the ob/ob mouse was the only animal model of global leptin deficiency. Here we report the effects of leptin deficiency on glucose homeostasis in male and female leptin knockout (KO) rats. Leptin KO rats developed obesity by 6 to 7 weeks of age, and lipid mass was increased by more than 2-fold compared with that of wild-type (WT) littermates at 18 weeks of age. Hyperinsulinemia and insulin resistance were evident in both males and females and were sustained with aging. Male KO rats experienced transient mild fasting hyperglycemia between 14 and 25 weeks of age, but thereafter fasting glucose levels were comparable to those of WT littermates up to 36 weeks of age. Fasting glucose levels of female KO rats were similar to those of WT littermates. Male KO rats exhibited a 3-fold increase in the proportion of β-cell area relative to total pancreas at 36 weeks of age. Islets from 12-week-old KO rats secreted more insulin when stimulated than islets from WT littermates. Leptin replacement via miniosmotic pump (100 μg/d) reduced food intake, attenuated weight gain, normalized glucose tolerance, and improved glucose-stimulated insulin secretion and insulin sensitivity. Together, these data demonstrate that the absence of leptin in rats recapitulates some of the phenotype previously observed in ob/ob mice including development of hyperinsulinemia, obesity, and insulin resistance.
Collapse
Affiliation(s)
- Anna M D'souza
- Department of Cellular and Physiological Sciences (A.M.D., A.A., J.D.J., T.J.K.), Department of Biochemistry and Molecular Biology (S.D.C.), and Department of Surgery (J.D.J., T.J.K.), University of British Columbia, Vancouver British Columbia, Canada V5Z 4E3
| | | | | | | | | |
Collapse
|
10
|
Enos RT, Velázquez KT, Murphy EA. Insight into the impact of dietary saturated fat on tissue-specific cellular processes underlying obesity-related diseases. J Nutr Biochem 2014; 25:600-12. [PMID: 24742471 DOI: 10.1016/j.jnutbio.2014.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/13/2014] [Accepted: 01/28/2014] [Indexed: 02/07/2023]
Abstract
This study investigated the influence of three high-fat diets (HFDs), differing in the percentage of total calories from saturated fat (SF) (6%, 12%, 24%) but identical in total fat (40%), for a 16-week period in mice on a variety of tissue-specific cellular processes believed to be at the root of obesity-related diseases. Specifically, we examined ectopic lipid accumulation, oxidative capacity [peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) mRNA and protein; mtDNA; Cox IV and cytochrome C protein; citrate synthase activity; and gene expression of fission 1, mitofusin (Mfn) 1 and Mfn2], oxidative stress (4-hydroxy-2-nonenal), endoplasmic reticulum (ER) stress (binding immunoglobulin protein, activating transcription factor 6-p50, p-eukaryotic initiation factor 2 alpha and x-box binding protein 1 spliced protein), inflammatory [p-c-Jun N-terminal kinase (JNK), p-nuclear factor kappa-B, p-p38 mitogen-activated protein kinase) and insulin signaling (p-Akt), and inflammation [tumor necrosis factor-alpha, monocyte chemotactic protein-1, interleukin-6, F4/80, toll-like receptor (TLR)2 and TLR4 gene expression] in various tissues, including the adipose tissue, liver, skeletal muscle and heart. In general, adipose and hepatic tissues were the only tissues which displayed evidence of dysfunction. All HFDs down-regulated adipose, cardiac and hepatic PGC-1α mRNA and hepatic citrate synthase activity, and induced adipose tissue oxidative stress, whereas only the 6%-SF and 12%-SF diet produced hepatic steatosis. However, compared to the 6%-SF and 24%-SF diets, consumption of the 12%-SF diet resulted in the greatest degree of dysregulation (hepatic ER and oxidative stress, JNK activation, increased F4/80 gene expression and down-regulation of adipose tissue Akt signaling). These findings suggest that the saturated fatty acid composition of an HFD can greatly influence the processes responsible for obesity-related diseases - nonalcoholic fatty liver disease, in particular - as well as provide further evidence that the mechanisms at the root of these diseases are diet and tissue sensitive.
Collapse
Affiliation(s)
- Reilly T Enos
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA; Division of Applied Physiology, Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Kandy T Velázquez
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - E Angela Murphy
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA.
| |
Collapse
|
11
|
Nunes PM, Wright AJ, Veltien A, van Asten JJA, Tack CJ, Jones JG, Heerschap A. Dietary lipids do not contribute to the higher hepatic triglyceride levels of fructose- compared to glucose-fed mice. FASEB J 2014; 28:1988-97. [PMID: 24500922 DOI: 10.1096/fj.13-241208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fructose consumption has been associated with the surge in obesity and dyslipidemia. This may be mediated by the fructose effects on hepatic lipids and ATP levels. Fructose metabolism provides carbons for de novo lipogenesis (DNL) and stimulates enterocyte secretion of apoB48. Thus, fructose-induced hepatic triglyceride (HTG) accumulation can be attributed to both DNL stimulation and dietary lipid absorption. The aim of this study was to assess the effects of fructose diet on HTG and ATP content and the contributions of dietary lipids and DNL to HTG. Measurements were performed in vivo in mice by magnetic resonance imaging (MRI) and novel magnetic resonance spectroscopy (MRS) approaches. Abdominal adipose tissue volume and intramyocellular lipid levels were comparable between 8-wk fructose- and glucose-fed mice. HTG levels were ∼1.5-fold higher in fructose-fed than in glucose-fed mice (P<0.05). Metabolic flux analysis by (13)C and (2)H MRS showed that this was not due to dietary lipid absorption, but due to DNL stimulation. The contribution of oral lipids to HTG was, after 5 h, 1.60 ± 0.23% for fructose and 2.16 ± 0.35% for glucose diets (P=0.26), whereas that of DNL was higher in fructose than in glucose diets (2.55±0.51 vs.1.13±0.24%, P=0.01). Hepatic energy status, assessed by (31)P MRS, was similar for fructose- and glucose-fed mice. Fructose-induced HTG accumulation is better explained by DNL and not by dietary lipid uptake, while not compromising ATP homeostasis.
Collapse
Affiliation(s)
- Patricia M Nunes
- 1Department of Physiology and Metabolism, National Institute for Medical Research, the Ridgeway, Mill Hill, NW7 1AA, London, UK.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The liver plays a unique, central role in regulating lipid metabolism. In addition to influencing hepatic function and disease, changes in specific pathways of fatty acid (FA) metabolism have wide-ranging effects on the metabolism of other nutrients, extra-hepatic physiology, and the development of metabolic diseases. The high prevalence of nonalcoholic fatty liver disease (NAFLD) has led to increased efforts to characterize the underlying biology of hepatic energy metabolism and FA trafficking that leads to disease development. Recent advances have uncovered novel roles of metabolic pathways and specific enzymes in generating lipids important for cellular processes such as signal transduction and transcriptional activation. These studies have also advanced our understanding of key branch points involving FA partitioning between metabolic pathways and have identified new roles for lipid droplets in these events. This review covers recent advances in our understanding of FA trafficking and its regulation. An emphasis will be placed on branch points in these pathways and how alterations in FA trafficking contribute to NAFLD and related comorbidities.
Collapse
|