1
|
Gibril BAA, Xiong X, Chai X, Xu Q, Gong J, Xu J. Unlocking the Nexus of Sirtuins: A Comprehensive Review of Their Role in Skeletal Muscle Metabolism, Development, and Disorders. Int J Biol Sci 2024; 20:3219-3235. [PMID: 38904020 PMCID: PMC11186354 DOI: 10.7150/ijbs.96885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
The sirtuins constitute a group of histone deacetylases reliant on NAD+ for their activity that have gained recognition for their critical roles as regulators of numerous biological processes. These enzymes have various functions in skeletal muscle biology, including development, metabolism, and the body's response to disease. This comprehensive review seeks to clarify sirtuins' complex role in skeletal muscle metabolism, including glucose uptake, fatty acid oxidation, mitochondrial dynamics, autophagy regulation, and exercise adaptations. It also examines their critical roles in developing skeletal muscle, including myogenesis, the determination of muscle fiber type, regeneration, and hypertrophic responses. Moreover, it sheds light on the therapeutic potential of sirtuins by examining their impact on a range of skeletal muscle disorders. By integrating findings from various studies, this review outlines the context of sirtuin-mediated regulation in skeletal muscle, highlighting their importance and possible consequences for health and disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiguo Xu
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China
| |
Collapse
|
2
|
Brunetta HS, Petrick HL, Momken I, Handy RM, Pignanelli C, Nunes EA, Piquereau J, Mericskay M, Holloway GP. Nitrate consumption preserves HFD-induced skeletal muscle mitochondrial ADP sensitivity and lysine acetylation: A potential role for SIRT1. Redox Biol 2022; 52:102307. [PMID: 35398714 PMCID: PMC9006675 DOI: 10.1016/j.redox.2022.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
Dietary nitrate supplementation, and the subsequent serial reduction to nitric oxide, has been shown to improve glucose homeostasis in several pre-clinical models of obesity and insulin resistance. While the mechanisms remain poorly defined, the beneficial effects of nitrate appear to be partially dependent on AMPK-mediated signaling events, a central regulator of metabolism and mitochondrial bioenergetics. Since AMPK can activate SIRT1, we aimed to determine if nitrate supplementation (4 mM sodium nitrate via drinking water) improved skeletal muscle mitochondrial bioenergetics and acetylation status in mice fed a high-fat diet (HFD: 60% fat). Consumption of HFD induced whole-body glucose intolerance, and within muscle attenuated insulin-induced Akt phosphorylation, mitochondrial ADP sensitivity (higher apparent Km), submaximal ADP-supported respiration, mitochondrial hydrogen peroxide (mtH2O2) production in the presence of ADP and increased cellular protein carbonylation alongside mitochondrial-specific acetylation. Consumption of nitrate partially preserved glucose tolerance and, within skeletal muscle, normalized insulin-induced Akt phosphorylation, mitochondrial ADP sensitivity, mtH2O2, protein carbonylation and global mitochondrial acetylation status. Nitrate also prevented the HFD-mediated reduction in SIRT1 protein, and interestingly, the positive effects of nitrate ingestion on glucose homeostasis and mitochondrial acetylation levels were abolished in SIRT1 inducible knock-out mice, suggesting SIRT1 is required for the beneficial effects of dietary nitrate. Altogether, dietary nitrate preserves mitochondrial ADP sensitivity and global lysine acetylation in HFD-fed mice, while in the absence of SIRT1, the effects of nitrate on glucose tolerance and mitochondrial acetylation were abrogated.
Collapse
|
3
|
Campelj D, Philp A. NAD + Therapeutics and Skeletal Muscle Adaptation to Exercise in Humans. Sports Med 2022; 52:91-99. [PMID: 36331703 PMCID: PMC9734213 DOI: 10.1007/s40279-022-01772-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a vital energy intermediate in skeletal muscle. The discovery of dietary-derived NAD+ precursors has led to the rapid development of NAD+ therapeutics designed to manipulate NAD+ content in target tissues. Of those developed, nicotinamide riboside and nicotinamide mononucleotide have been reported to display health benefit in humans under clinical scenarios of NAD+ deficiency. In contrast, relatively little is known regarding the potential benefit of nicotinamide riboside and nicotinamide mononucleotide supplementation in healthy individuals, with questions remaining as to whether NAD+ therapeutics can be used to support training adaptation or improve performance in athletic populations. Examining animal and human nicotinamide riboside supplementation studies, this review discusses current evidence suggesting that NAD+ therapeutics do not alter skeletal muscle metabolism or improve athletic performance in healthy humans. Further, we will highlight potential reasons why nicotinamide riboside supplementation studies do not translate to healthy populations and discuss the futility of testing NAD+ therapeutics outside of the clinical populations where NAD+ deficiency is present.
Collapse
Affiliation(s)
- Dean Campelj
- grid.248902.50000 0004 0444 7512Biology of Ageing Laboratory, Centenary Institute, Missenden Road, Camperdown, Sydney, NSW 2050 Australia ,grid.248902.50000 0004 0444 7512Centre for Healthy Ageing, Centenary Institute, Missenden Road, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW Australia
| | - Andrew Philp
- grid.248902.50000 0004 0444 7512Biology of Ageing Laboratory, Centenary Institute, Missenden Road, Camperdown, Sydney, NSW 2050 Australia ,grid.248902.50000 0004 0444 7512Centre for Healthy Ageing, Centenary Institute, Missenden Road, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW Australia ,grid.117476.20000 0004 1936 7611Faculty of Health, School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Ultimo, NSW Australia
| |
Collapse
|
4
|
Skeletal Muscle Gene Expression Profile in Response to Caloric Restriction and Aging: A Role for SirT1. Genes (Basel) 2021; 12:genes12050691. [PMID: 34063079 PMCID: PMC8147962 DOI: 10.3390/genes12050691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 11/24/2022] Open
Abstract
SirT1 plays a crucial role in the regulation of some of the caloric restriction (CR) responsive biological pathways. Aging suppresses SirT1 gene expression in skeletal muscle, suggesting that aging may affect the role of CR in muscle. To determine the role of SirT1 in the regulation of CR regulated pathways in skeletal muscle, we performed high-throughput RNA sequencing using total RNA isolated from the skeletal muscles of young and aged wild-type (WT), SirT1 knockout (SirT1-KO), and SirT1 overexpression (SirT1-OE) mice fed to 20 wk ad libitum (AL) or 40% CR diet. Our data show that aging repressed the global gene expression profile, which was restored by CR via upregulating transcriptional and translational process-related pathways. CR inhibits pathways linked to the extracellular matrix and cytoskeletal proteins regardless of aging. Mitochondrial function and muscle contraction-related pathways are upregulated in aged SirT1 KO mice following CR. SirT1 OE did not affect whole-body energy expenditure or augment skeletal muscle insulin sensitivity associated pathways, regardless of aging or diet. Overall, our RNA-seq data showed that SirT1 and CR have different functions and activation of SirT1 by its activator or exercise may enhance SirT1 activity that, along with CR, likely have a better functional role in aging muscle.
Collapse
|
5
|
Kang JH, Park JE, Dagoon J, Masson SWC, Merry TL, Bremner SN, Dent JR, Schenk S. Sirtuin 1 is not required for contraction-stimulated glucose uptake in mouse skeletal muscle. J Appl Physiol (1985) 2021; 130:1893-1902. [PMID: 33886385 DOI: 10.1152/japplphysiol.00065.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
While it has long been known that contraction robustly stimulates skeletal muscle glucose uptake, the molecular steps regulating this increase remain incompletely defined. The mammalian ortholog of Sir2, sirtuin 1 (SIRT1), is an NAD+-dependent protein deacetylase that is thought to link perturbations in energy flux associated with exercise to subsequent cellular adaptations. Nevertheless, its role in contraction-stimulated glucose uptake has not been described. The objective of this study was to determine the importance of SIRT1 to contraction-stimulated glucose uptake in mouse skeletal muscle. Using a radioactive 2-deoxyglucose uptake (2DOGU) approach, we measured ex vivo glucose uptake in unstimulated (rested) and electrically stimulated (100 Hz contraction every 15 s for 10 min; contracted) extensor digitorum longus (EDL) and soleus from ∼15-wk-old male and female mice with muscle-specific knockout of SIRT1 deacetylase activity and their wild-type littermates. Skeletal muscle force decreased over the contraction protocol, although there were no differences in the rate of fatigue between genotypes. In EDL and soleus, loss of SIRT1 deacetylase activity did not affect contraction-induced increase in glucose uptake in either sex. Interestingly, the absolute rate of contraction-stimulated 2DOGU was ∼1.4-fold higher in female compared with male mice, regardless of muscle type. Taken together, our findings demonstrate that SIRT1 is not required for contraction-stimulated glucose uptake in mouse skeletal muscle. Moreover, to our knowledge, this is the first demonstration of sex-based differences in contraction-stimulated glucose uptake in mouse skeletal muscle.NEW & NOTEWORTHY Here, we demonstrate that glucose uptake in response to ex vivo contractions is not affected by the loss of sirtuin 1 (SIRT1) deacetylase function in muscle, regardless of sex or muscle type. Interestingly, however, similar to studies on insulin-stimulated glucose uptake, we demonstrate that contraction-stimulated glucose uptake is robustly higher in female compared with the male skeletal muscle. To our knowledge, this is the first demonstration of sex-based differences in contraction-stimulated glucose uptake in skeletal muscle.
Collapse
Affiliation(s)
- Ji H Kang
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Ji E Park
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Jason Dagoon
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Stewart W C Masson
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Shannon N Bremner
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Jessica R Dent
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California.,Department of Surgery, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California
| |
Collapse
|
6
|
Maissan P, Mooij EJ, Barberis M. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. BIOLOGY 2021; 10:194. [PMID: 33806509 PMCID: PMC7999230 DOI: 10.3390/biology10030194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Sirtuins are a family of highly conserved NAD+-dependent proteins and this dependency links Sirtuins directly to metabolism. Sirtuins' activity has been shown to extend the lifespan of several organisms and mainly through the post-translational modification of their many target proteins, with deacetylation being the most common modification. The seven mammalian Sirtuins, SIRT1 through SIRT7, have been implicated in regulating physiological responses to metabolism and stress by acting as nutrient sensors, linking environmental and nutrient signals to mammalian metabolic homeostasis. Furthermore, mammalian Sirtuins have been implicated in playing major roles in mammalian pathophysiological conditions such as inflammation, obesity and cancer. Mammalian Sirtuins are expressed heterogeneously among different organs and tissues, and the same holds true for their substrates. Thus, the function of mammalian Sirtuins together with their substrates is expected to vary among tissues. Any therapy depending on Sirtuins could therefore have different local as well as systemic effects. Here, an introduction to processes relevant for the actions of Sirtuins, such as metabolism and cell cycle, will be followed by reasoning on the system-level function of Sirtuins and their substrates in different mammalian tissues. Their involvement in the healthy metabolism and metabolic disorders will be reviewed and critically discussed.
Collapse
Affiliation(s)
- Parcival Maissan
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Eva J. Mooij
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| |
Collapse
|
7
|
Tian H, Liu S, Ren J, Lee JKW, Wang R, Chen P. Role of Histone Deacetylases in Skeletal Muscle Physiology and Systemic Energy Homeostasis: Implications for Metabolic Diseases and Therapy. Front Physiol 2020; 11:949. [PMID: 32848876 PMCID: PMC7431662 DOI: 10.3389/fphys.2020.00949] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is the largest metabolic organ in the human body and is able to rapidly adapt to drastic changes during exercise. Histone acetyltransferases (HATs) and histone deacetylases (HDACs), which target histone and non-histone proteins, are two major enzyme families that control the biological process of histone acetylation and deacetylation. Balance between these two enzymes serves as an essential element for gene expression and metabolic and physiological function. Genetic KO/TG murine models reveal that HDACs possess pivotal roles in maintaining skeletal muscles' metabolic homeostasis, regulating skeletal muscles motor adaptation and exercise capacity. HDACs may be involved in mitochondrial remodeling, insulin sensitivity regulation, turn on/off of metabolic fuel switching and orchestrating physiological homeostasis of skeletal muscles from the process of myogenesis. Moreover, many myogenic factors and metabolic factors are modulated by HDACs. HDACs are considered as therapeutic targets in clinical research for treatment of cancer, inflammation, and neurological and metabolic-related diseases. This review will focus on physiological function of HDACs in skeletal muscles and provide new ideas for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Haili Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Sujuan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jason Kai Wei Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Global Asia Institute, National University of Singapore, Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
8
|
Svensson K, Tahvilian S, Martins VF, Dent JR, Lemanek A, Barooni N, Greyslak K, McCurdy CE, Schenk S. Combined overexpression of SIRT1 and knockout of GCN5 in adult skeletal muscle does not affect glucose homeostasis or exercise performance in mice. Am J Physiol Endocrinol Metab 2020; 318:E145-E151. [PMID: 31794263 PMCID: PMC7052578 DOI: 10.1152/ajpendo.00370.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sirtuin 1 (SIRT1) and general control of amino acid synthesis 5 (GCN5) regulate mitochondrial biogenesis via opposing modulation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) acetylation status and activity. However, the combined contribution of SIRT1 and GCN5 to skeletal muscle metabolism and endurance performance in vivo is unknown. In this study, we investigated the impact of combined skeletal muscle-specific overexpression of SIRT1 and deletion of GCN5 on glucose homeostasis, skeletal muscle mitochondrial biogenesis and function, and metabolic adaptation to endurance exercise training in mice. We generated mice with combined and tamoxifen-inducible skeletal muscle-specific overexpression of SIRT1 and knockout of GCN5 (dTG) and floxed [wild type (WT)] littermates using a Cre-LoxP approach. All mice were treated with tamoxifen at 5-6 wk of age, and 4-7 wk later glucose homeostasis, skeletal muscle contractile function, mitochondrial function, and the effects of 14 days of voluntary wheel running on expression of metabolic proteins and exercise capacity were assessed. There was no difference in oral glucose tolerance, skeletal muscle contractile function, mitochondrial abundance, or maximal respiratory capacity between dTG and WT mice. Additionally, there were no genotype differences in exercise performance and markers of mitochondrial biogenesis after 14 days of voluntary wheel running. These results demonstrate that combined overexpression of SIRT1 and loss of GCN5 in vivo does not promote metabolic remodeling in skeletal muscle of sedentary or exercise-trained mice.
Collapse
Affiliation(s)
- Kristoffer Svensson
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Shahriar Tahvilian
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Vitor F Martins
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California
| | - Jessica R Dent
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Adrianna Lemanek
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Neeka Barooni
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Keenan Greyslak
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California
| |
Collapse
|
9
|
Abstract
The cause of insulin resistance in obesity and type 2 diabetes mellitus (T2DM) is not limited to impaired insulin signalling but also involves the complex interplay of multiple metabolic pathways. The analysis of large data sets generated by metabolomics and lipidomics has shed new light on the roles of metabolites such as lipids, amino acids and bile acids in modulating insulin sensitivity. Metabolites can regulate insulin sensitivity directly by modulating components of the insulin signalling pathway, such as insulin receptor substrates (IRSs) and AKT, and indirectly by altering the flux of substrates through multiple metabolic pathways, including lipogenesis, lipid oxidation, protein synthesis and degradation and hepatic gluconeogenesis. Moreover, the post-translational modification of proteins by metabolites and lipids, including acetylation and palmitoylation, can alter protein function. Furthermore, the role of the microbiota in regulating substrate metabolism and insulin sensitivity is unfolding. In this Review, we discuss the emerging roles of metabolites in the pathogenesis of insulin resistance and T2DM. A comprehensive understanding of the metabolic adaptations involved in insulin resistance may enable the identification of novel targets for improving insulin sensitivity and preventing, and treating, T2DM.
Collapse
|
10
|
Allosteric, transcriptional and post-translational control of mitochondrial energy metabolism. Biochem J 2019; 476:1695-1712. [PMID: 31217327 DOI: 10.1042/bcj20180617] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/24/2022]
Abstract
The heart is the organ with highest energy turnover rate (per unit weight) in our body. The heart relies on its flexible and powerful catabolic capacity to continuously generate large amounts of ATP utilizing many energy substrates including fatty acids, carbohydrates (glucose and lactate), ketones and amino acids. The normal health mainly utilizes fatty acids (40-60%) and glucose (20-40%) for ATP production while ketones and amino acids have a minor contribution (10-15% and 1-2%, respectively). Mitochondrial oxidative phosphorylation is the major contributor to cardiac energy production (95%) while cytosolic glycolysis has a marginal contribution (5%). The heart can dramatically and swiftly switch between energy-producing pathways and/or alter the share from each of the energy substrates based on cardiac workload, availability of each energy substrate and neuronal and hormonal activity. The heart is equipped with a highly sophisticated and powerful mitochondrial machinery which synchronizes cardiac energy production from different substrates and orchestrates the rate of ATP production to accommodate its contractility demands. This review discusses mitochondrial cardiac energy metabolism and how it is regulated. This includes a discussion on the allosteric control of cardiac energy metabolism by short-chain coenzyme A esters, including malonyl CoA and its effect on cardiac metabolic preference. We also discuss the transcriptional level of energy regulation and its role in the maturation of cardiac metabolism after birth and cardiac adaptability for different metabolic conditions and energy demands. The role post-translational modifications, namely phosphorylation, acetylation, malonylation, succinylation and glutarylation, play in regulating mitochondrial energy metabolism is also discussed.
Collapse
|
11
|
Martins VF, Dent JR, Svensson K, Tahvilian S, Begur M, Lakkaraju S, Buckner EH, LaBarge SA, Hetrick B, McCurdy CE, Schenk S. Germline or inducible knockout of p300 or CBP in skeletal muscle does not alter insulin sensitivity. Am J Physiol Endocrinol Metab 2019; 316:E1024-E1035. [PMID: 30888860 PMCID: PMC6620570 DOI: 10.1152/ajpendo.00497.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Akt is a critical mediator of insulin-stimulated glucose uptake in skeletal muscle. The acetyltransferases, E1A binding protein p300 (p300) and cAMP response element-binding protein binding protein (CBP) are phosphorylated and activated by Akt, and p300/CBP can acetylate and inactivate Akt, thus giving rise to a possible Akt-p300/CBP axis. Our objective was to determine the importance of p300 and CBP to skeletal muscle insulin sensitivity. We used Cre-LoxP methodology to generate mice with germline [muscle creatine kinase promoter (P-MCK and C-MCK)] or inducible [tamoxifen-activated, human skeletal actin promoter (P-iHSA and C-iHSA)] knockout of p300 or CBP. A subset of P-MCK and C-MCK mice were switched to a calorie-restriction diet (60% of ad libitum intake) or high-fat diet at 10 wk of age. For P-iHSA and C-iHSA mice, knockout was induced at 10 wk of age. At 13-15 wk of age, we measured whole-body energy expenditure, oral glucose tolerance, and/or ex vivo skeletal muscle insulin sensitivity. Although p300 and CBP protein abundance and mRNA expression were reduced 55%-90% in p300 and CBP knockout mice, there were no genotype differences in energy expenditure or fasting glucose and insulin concentrations. Moreover, neither loss of p300 or CBP impacted oral glucose tolerance or skeletal muscle insulin sensitivity, nor did their loss impact alterations in these parameters in response to a calorie restriction or high-fat diet. Muscle-specific loss of either p300 or CBP, be it germline or in adulthood, does not impact energy expenditure, glucose tolerance, or skeletal muscle insulin action.
Collapse
Affiliation(s)
- Vitor F Martins
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California
| | - Jessica R Dent
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Kristoffer Svensson
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Shahriar Tahvilian
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Maedha Begur
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Shivani Lakkaraju
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Elisa H Buckner
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Samuel A LaBarge
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon , Eugene, Oregon
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon , Eugene, Oregon
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California
| |
Collapse
|
12
|
Fritzen AM, Lundsgaard A, Jeppesen JF, Sjøberg KA, Høeg LD, Deleuran HH, Wojtaszewski JFP, Richter EA, Kiens B. Fatty acid type–specific regulation of SIRT1 does not affect insulin sensitivity in human skeletal muscle. FASEB J 2019; 33:5510-5519. [DOI: 10.1096/fj.201801950r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Andreas Mæchel Fritzen
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise, and Sports, Faculty of ScienceUniversity of Copenhagen Copenhagen Denmark
| | - Anne‐Marie Lundsgaard
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise, and Sports, Faculty of ScienceUniversity of Copenhagen Copenhagen Denmark
| | - Jacob Fuglsbjerg Jeppesen
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise, and Sports, Faculty of ScienceUniversity of Copenhagen Copenhagen Denmark
| | - Kim Anker Sjøberg
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise, and Sports, Faculty of ScienceUniversity of Copenhagen Copenhagen Denmark
| | - Louise Dalgas Høeg
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise, and Sports, Faculty of ScienceUniversity of Copenhagen Copenhagen Denmark
| | - Henrik Hall Deleuran
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise, and Sports, Faculty of ScienceUniversity of Copenhagen Copenhagen Denmark
| | - Jørgen F. P. Wojtaszewski
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise, and Sports, Faculty of ScienceUniversity of Copenhagen Copenhagen Denmark
| | - Erik A. Richter
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise, and Sports, Faculty of ScienceUniversity of Copenhagen Copenhagen Denmark
| | - Bente Kiens
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise, and Sports, Faculty of ScienceUniversity of Copenhagen Copenhagen Denmark
| |
Collapse
|
13
|
Snyder-Warwick AK, Satoh A, Santosa KB, Imai SI, Jablonka-Shariff A. Hypothalamic Sirt1 protects terminal Schwann cells and neuromuscular junctions from age-related morphological changes. Aging Cell 2018; 17:e12776. [PMID: 29851253 PMCID: PMC6052483 DOI: 10.1111/acel.12776] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2018] [Indexed: 12/29/2022] Open
Abstract
Neuromuscular decline occurs with aging. The neuromuscular junction (NMJ), the interface between motor nerve and muscle, also undergoes age‐related changes. Aging effects on the NMJ components—motor nerve terminal, acetylcholine receptors (AChRs), and nonmyelinating terminal Schwann cells (tSCs)—have not been comprehensively evaluated. Sirtuins delay mammalian aging and increase longevity. Increased hypothalamic Sirt1 expression results in more youthful physiology, but the relationship between NMJ morphology and hypothalamic Sirt1 was previously unknown. In wild‐type mice, all NMJ components showed age‐associated morphological changes with ~80% of NMJs displaying abnormalities by 17 months of age. Aged mice with brain‐specific Sirt1 overexpression (BRASTO) had more youthful NMJ morphologic features compared to controls with increased tSC numbers, increased NMJ innervation, and increased numbers of normal AChRs. Sympathetic NMJ innervation was increased in BRASTO mice. In contrast, hypothalamic‐specific Sirt1 knockdown led to tSC abnormalities, decreased tSC numbers, and more denervated endplates compared to controls. Our data suggest that hypothalamic Sirt1 functions to protect NMJs in skeletal muscle from age‐related changes via sympathetic innervation.
Collapse
Affiliation(s)
- Alison K. Snyder-Warwick
- Division of Plastic Surgery; Department of Surgery; Washington University School of Medicine; St. Louis MO USA
| | - Akiko Satoh
- Department of Developmental Biology; Washington University School of Medicine; St. Louis MO USA
- Sleep and Aging Regulation Research Project Team; National Center for Geriatrics and Gerontology; Obu Aichi Japan
- Project for Elucidating and Controlling Mechanisms of Aging and Longevity; Japan Agency for Medical Research and Development; Tokyo Japan
| | - Katherine B. Santosa
- Division of Plastic Surgery; Department of Surgery; Washington University School of Medicine; St. Louis MO USA
| | - Shin-ichiro Imai
- Department of Developmental Biology; Washington University School of Medicine; St. Louis MO USA
- Project for Elucidating and Controlling Mechanisms of Aging and Longevity; Japan Agency for Medical Research and Development; Tokyo Japan
| | - Albina Jablonka-Shariff
- Division of Plastic Surgery; Department of Surgery; Washington University School of Medicine; St. Louis MO USA
| |
Collapse
|
14
|
Stefanowicz M, Nikołajuk A, Matulewicz N, Karczewska-Kupczewska M. Adipose tissue, but not skeletal muscle, sirtuin 1 expression is decreased in obesity and related to insulin sensitivity. Endocrine 2018; 60:263-271. [PMID: 29417372 PMCID: PMC5893655 DOI: 10.1007/s12020-018-1544-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/19/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE Sirtuin 1 may regulate glucose and lipid metabolism. We aimed to assess adipose tissue and skeletal muscle sirtuin 1 expression in relation to insulin sensitivity, the expression of proinflammatory and metabolic genes, and to study the regulation of sirtuin 1 expression by hyperinsulinemia and circulating free fatty acids elevation. METHODS We examined 60 normal-weight, 42 overweight and 15 obese young subjects. The hyperinsulinemic-euglycemic clamp technique was applied throughout to measure insulin sensitivity. In 20 subjects, two 6 h clamps were performed, one of them with concurrent Intralipid/heparin infusion. Biopsies of subcutaneous adipose tissue and skeletal muscle were collected for the measurement of gene and protein expression. RESULTS Obese subjects had lower adipose sirtuin 1 in comparison with normal-weight and overweight participants. Muscle sirtuin 1 did not differ between the groups. Adipose tissue sirtuin 1 was related to insulin sensitivity, adipose tissue SLC2A4. The relationship between adipose tissue sirtuin 1 and insulin sensitivity was still present after controlling for BMI, however, it disappeared after controlling for adipose tissue SLC2A4. Muscle sirtuin 1 was not related to insulin sensitivity. Hyperisulinemia decreased adipose tissue and increased muscle sirtuin 1 expression. Intralipid/heparin infusion negated these effects. CONCLUSIONS Adipose tissue, but not muscle, sirtuin 1 is associated with insulin sensitivity in humans, possibly because of its correlation with adipose tissue SLC2A4 expression. Insulin differentially regulates adipose tissue and skeletal muscle sirtuin 1 expression in the short-term and circulating free fatty acids elevation negates these effects, which may be associated with lipid-induced insulin resistance.
Collapse
Affiliation(s)
- Magdalena Stefanowicz
- Department of Metabolic Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Nikołajuk
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Natalia Matulewicz
- Department of Metabolic Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Monika Karczewska-Kupczewska
- Department of Metabolic Diseases, Medical University of Bialystok, Bialystok, Poland.
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|
15
|
Abstract
The mammalian Sirtuins (SIRT1-7) are an evolutionarily conserved family of NAD+-dependent deacylase and mono-ADP-ribosyltransferase. Sirtuins display distinct subcellular localizations and functions and are involved in cell survival, senescence, metabolism and genome stability. Among the mammalian Sirtuins, SIRT1 and SIRT6 have been thoroughly investigated and have prominent metabolic regulatory roles. Moreover, SIRT1 and SIRT6 have been implicated in obesity, insulin resistance, type 2 diabetes mellitus (T2DM), fatty liver disease and cardiovascular diseases. However, the roles of other Sirtuins are not fully understood. Recent studies have shown that these Sirtuins also play important roles in inflammation, mitochondrial dysfunction, and energy metabolism. Insulin resistance is the critical pathological trait of obesity and metabolic syndrome as well as the core defect in T2DM. Accumulating clinical and experimental animal evidence suggests the potential roles of the remaining Sirtuins in the regulation of insulin resistance through diverse biological mechanisms. In this review, we summarize recent advances in the understanding of the functions of Sirtuins in various insulin resistance-associated physiological processes, including inflammation, mitochondrial dysfunction, the insulin signaling pathway, glucose, and lipid metabolism. In addition, we highlight the important gaps that must be addressed in this field.
Collapse
Affiliation(s)
- Shuang Zhou
- Internal Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xiaoqiang Tang
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Hou-Zao Chen ;
| |
Collapse
|
16
|
Svensson K, LaBarge SA, Martins VF, Schenk S. Temporal overexpression of SIRT1 in skeletal muscle of adult mice does not improve insulin sensitivity or markers of mitochondrial biogenesis. Acta Physiol (Oxf) 2017; 221:193-203. [PMID: 28544355 DOI: 10.1111/apha.12897] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/23/2017] [Accepted: 05/11/2017] [Indexed: 12/23/2022]
Abstract
AIMS Activation of the NAD+ dependent protein deacetylase SIRT1 has been proposed as a therapeutic strategy to treat mitochondrial dysfunction and insulin resistance in skeletal muscle. However, lifelong overexpression of SIRT1 in skeletal muscle does not improve parameters of mitochondrial function and insulin sensitivity. In this study, we investigated whether temporal overexpression of SIRT1 in muscle of adult mice would affect skeletal muscle mitochondrial function and insulin sensitivity. METHODS To circumvent potential effects of germline SIRT1 overexpression, we utilized an inducible model of SIRT1 overexpression in skeletal muscle of adult mice (i-mOX). Insulin sensitivity was assessed by 2-deoxyglucose uptake, muscle maximal respiratory function by high-resolution respirometry and systemic energy expenditure was assessed by whole body calorimetry. RESULTS Although SIRT1 was highly, and specifically, overexpressed in skeletal muscle of i-mOX compared to WT mice, glucose tolerance and skeletal muscle insulin sensitivity were comparable between genotypes. Additionally, markers of mitochondrial biogenesis, muscle maximal respiratory function and whole-body oxygen consumption were also unaffected by SIRT1 overexpression. CONCLUSION These results support previous work demonstrating that induction of SIRT1 in skeletal muscle, either at birth or in adulthood, does not impact muscle insulin action or mitochondrial function.
Collapse
Affiliation(s)
- K. Svensson
- Department of Orthopaedic Surgery; University of California San Diego; La Jolla CA USA
| | - S. A. LaBarge
- Department of Orthopaedic Surgery; University of California San Diego; La Jolla CA USA
| | - V. F. Martins
- Department of Orthopaedic Surgery; University of California San Diego; La Jolla CA USA
| | - S. Schenk
- Department of Orthopaedic Surgery; University of California San Diego; La Jolla CA USA
- Biomedical Sciences Graduate Program; University of California San Diego; La Jolla CA USA
| |
Collapse
|
17
|
Hui X, Zhang M, Gu P, Li K, Gao Y, Wu D, Wang Y, Xu A. Adipocyte SIRT1 controls systemic insulin sensitivity by modulating macrophages in adipose tissue. EMBO Rep 2017; 18:645-657. [PMID: 28270525 DOI: 10.15252/embr.201643184] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 11/09/2022] Open
Abstract
Adipose tissue inflammation, characterized by augmented infiltration and altered polarization of macrophages, contributes to insulin resistance and its associated metabolic diseases. The NAD+-dependent deacetylase SIRT1 serves as a guardian against metabolic disorders in multiple tissues. To dissect the roles of SIRT1 in adipose tissues, metabolic phenotypes of mice with selective ablation of SIRT1 in adipocytes and myeloid cells were monitored. Compared to myeloid-specific SIRT1 depletion, mice with adipocyte-selective deletion of SIRT1 are more susceptible to diet-induced insulin resistance. The phenotypic changes in adipocyte-selective SIRT1 knockout mice are associated with an increased number of adipose-resident macrophages and their polarization toward the pro-inflammatory M1 subtype. Mechanistically, SIRT1 in adipocytes modulates expression and secretion of several adipokines, including adiponectin, MCP-1, and interleukin 4, which in turn alters recruitment and polarization of the macrophages in adipose tissues. In adipocytes, SIRT1 deacetylates the transcription factor NFATc1 and thereby enhances the binding of NFATc1 to the Il4 gene promoter. These findings suggest that adipocyte SIRT1 controls systemic glucose homeostasis and insulin sensitivity via the cross talk with adipose-resident macrophages.
Collapse
Affiliation(s)
- Xiaoyan Hui
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Mingliang Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ping Gu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Endocrinology, School of Medicine, Nanjing University Nanjing General Hospital of Nanjing Military Command, Nanjing, China
| | - Kuai Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuan Gao
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Donghai Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China .,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China .,Department of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Love JM, Bober BG, Orozco E, White AT, Bremner SN, Lovering RM, Schenk S, Shah SB. mTOR regulates peripheral nerve response to tensile strain. J Neurophysiol 2017; 117:2075-2084. [PMID: 28250148 PMCID: PMC5434482 DOI: 10.1152/jn.00257.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 02/09/2017] [Accepted: 02/25/2017] [Indexed: 01/26/2023] Open
Abstract
While excessive tensile strain can be detrimental to nerve function, strain can be a positive regulator of neuronal outgrowth. We used an in vivo rat model of sciatic nerve strain to investigate signaling mechanisms underlying peripheral nerve response to deformation. Nerves were deformed by 11% and did not demonstrate deficits in compound action potential latency or amplitude during or after 6 h of strain. As revealed by Western blotting, application of strain resulted in significant upregulation of mammalian target of rapamycin (mTOR) and S6 signaling in nerves, increased myelin basic protein (MBP) and β-actin levels, and increased phosphorylation of neurofilament subunit H (NF-H) compared with unstrained (sham) contralateral nerves (P < 0.05 for all comparisons, paired two-tailed t-test). Strain did not alter neuron-specific β3-tubulin or overall nerve tubulin levels compared with unstrained controls. Systemic rapamycin treatment, thought to selectively target mTOR complex 1 (mTORC1), suppressed mTOR/S6 signaling, reduced levels of MBP and overall tubulin, and decreased NF-H phosphorylation in nerves strained for 6 h, revealing a role for mTOR in increasing MBP expression and NF-H phosphorylation, and maintaining tubulin levels. Consistent with stretch-induced increases in MBP, immunolabeling revealed increased S6 signaling in Schwann cells of stretched nerves compared with unstretched nerves. In addition, application of strain to cultured adult dorsal root ganglion neurons showed an increase in axonal protein synthesis based on a puromycin incorporation assay, suggesting that neuronal translational pathways also respond to strain. This work has important implications for understanding mechanisms underlying nerve response to strain during development and regeneration.NEW & NOTEWORTHY Peripheral nerves experience tensile strain (stretch) during development and movement. Excessive strain impairs neuronal function, but moderate strains are accommodated by nerves and can promote neuronal growth; mechanisms underlying these phenomena are not well understood. We demonstrated that levels of several structural proteins increase following physiological levels of nerve strain and that expression of a subset of these proteins is regulated by mTOR. Our work has important implications for understanding nerve development and strain-based regenerative strategies.
Collapse
Affiliation(s)
- James M Love
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Brian G Bober
- Department of Bioengineering, University of California-San Diego, La Jolla, California
| | - Elisabeth Orozco
- Department of Orthopaedic Surgery, University of California-San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Amanda T White
- Department of Orthopaedic Surgery, University of California-San Diego, La Jolla, California
| | - Shannon N Bremner
- Department of Orthopaedic Surgery, University of California-San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California-San Diego, La Jolla, California
| | - Sameer B Shah
- Department of Bioengineering, University of California-San Diego, La Jolla, California; .,Department of Orthopaedic Surgery, University of California-San Diego, La Jolla, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| |
Collapse
|
19
|
AAV-mediated Sirt1 overexpression in skeletal muscle activates oxidative capacity but does not prevent insulin resistance. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 5:16072. [PMID: 27909699 PMCID: PMC5111573 DOI: 10.1038/mtm.2016.72] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/15/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes is characterized by triglyceride accumulation and reduced lipid oxidation capacity in skeletal muscle. SIRT1 is a key protein in the regulation of lipid oxidation and its expression is reduced in the skeletal muscle of insulin resistant mice. In this tissue, Sirt1 up-regulates the expression of genes involved in oxidative metabolism and improves mitochondrial function mainly through PPARGC1 deacetylation. Here we examined whether Sirt1 overexpression mediated by adeno-associated viral vectors of serotype 1 (AAV1) specifically in skeletal muscle can counteract the development of insulin resistance induced by a high fat diet in mice. AAV1-Sirt1-treated mice showed up-regulated expression of key genes related to β-oxidation together with increased levels of phosphorylated AMP protein kinase. Moreover, SIRT1 overexpression in skeletal muscle also increased basal phosphorylated levels of AKT. However, AAV1-Sirt1 treatment was not enough to prevent high fat diet-induced obesity and insulin resistance. Although Sirt1 gene transfer to skeletal muscle induced changes at the muscular level related with lipid and glucose homeostasis, our data indicate that overexpression of SIRT1 in skeletal muscle is not enough to improve whole-body insulin resistance and that suggests that SIRT1 has to be increased in other metabolic tissues to prevent insulin resistance.
Collapse
|
20
|
SIRT1 Gain of Function Does Not Mimic or Enhance the Adaptations to Intermittent Fasting. Cell Rep 2016; 14:2068-2075. [PMID: 26923584 DOI: 10.1016/j.celrep.2016.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/03/2015] [Accepted: 01/26/2016] [Indexed: 02/04/2023] Open
Abstract
Caloric restriction (CR) has been shown to prevent the onset of insulin resistance and to delay age-related physiological decline in mammalian organisms. SIRT1, a NAD(+)-dependent deacetylase enzyme, has been suggested to mediate the adaptive responses to CR, leading to the speculation that SIRT1 activation could be therapeutically used as a CR-mimetic strategy. Here, we used a mouse model of moderate SIRT1 overexpression to test whether SIRT1 gain of function could mimic or boost the metabolic benefits induced by every-other-day feeding (EODF). Our results indicate that SIRT1 transgenesis does not affect the ability of EODF to decrease adiposity and improve insulin sensitivity. Transcriptomic analyses revealed that SIRT1 transgenesis and EODF promote very distinct adaptations in individual tissues, some of which can be even be metabolically opposite, as in brown adipose tissue. Therefore, whereas SIRT1 overexpression and CR both improve glucose metabolism and insulin sensitivity, the etiologies of these benefits are largely different.
Collapse
|
21
|
LaBarge SA, Migdal CW, Buckner EH, Okuno H, Gertsman I, Stocks B, Barshop BA, Nalbandian SR, Philp A, McCurdy CE, Schenk S. p300 is not required for metabolic adaptation to endurance exercise training. FASEB J 2015; 30:1623-33. [PMID: 26712218 DOI: 10.1096/fj.15-281741] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/11/2015] [Indexed: 11/11/2022]
Abstract
The acetyltransferase, E1a-binding protein (p300), is proposed to regulate various aspects of skeletal muscle development, metabolism, and mitochondrial function,viaits interaction with numerous transcriptional regulators and other proteins. Remarkably, however, the contribution of p300 to skeletal muscle function and metabolism,in vivo, is poorly understood. To address this, we used Cre-LoxP methodology to generate mice with skeletal muscle-specific knockout of E1a-binding protein (mKO). mKO mice were indistinguishable from their wild-type/floxed littermates, with no differences in lean mass, skeletal muscle structure, fiber type, respirometry flux, or metabolites of fatty acid and amino acid metabolism.Ex vivomuscle function in extensor digitorum longus and soleus muscles, including peak stress and time to fatigue, as well asin vivorunning capacity were also comparable. Moreover, expected adaptations to a 20 d voluntary wheel running regime were not compromised in mKO mice. Taken together, these findings demonstrate that p300 is not required for the normal development or functioning of adult skeletal muscle, nor is it required for endurance exercise-mediated mitochondrial adaptations.-LaBarge, S. A., Migdal, C. W., Buckner, E. H., Okuno, H., Gertsman, I., Stocks, B., Barshop, B. A., Nalbandian, S. R., Philp, A., McCurdy, C. E., Schenk, S. p300 is not required for metabolic adaptation to endurance exercise training.
Collapse
Affiliation(s)
- Samuel A LaBarge
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Christopher W Migdal
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Elisa H Buckner
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Hiroshi Okuno
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Ilya Gertsman
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Ben Stocks
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Bruce A Barshop
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Sarah R Nalbandian
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Andrew Philp
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Carrie E McCurdy
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Simon Schenk
- *Department of Orthopaedic Surgery and Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California, USA; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom; and Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
22
|
Fang M, Fan Z, Tian W, Zhao Y, Li P, Xu H, Zhou B, Zhang L, Wu X, Xu Y. HDAC4 mediates IFN-γ induced disruption of energy expenditure-related gene expression by repressing SIRT1 transcription in skeletal muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:294-305. [PMID: 26619800 DOI: 10.1016/j.bbagrm.2015.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/13/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023]
Abstract
Metabolic homeostasis is achieved through balanced energy storage and output. Impairment of energy expenditure is a hallmark event in patients with obesity and type 2 diabetes. Previously we have shown that the pro-inflammatory cytokine interferon gamma (IFN-γ) disrupts energy expenditure in skeletal muscle cells via hypermethylated in cancer 1 (HIC1)-class II transactivator (CIITA) dependent repression of SIRT1 transcription. Here we report that repression of SIRT1 transcription by IFN-γ paralleled loss of histone acetylation on the SIRT1 promoter region with simultaneous recruitment of histone deacetylase 4 (HDAC4). IFN-γ activated HDAC4 in vitro and in vivo by up-regulating its expression and stimulating its nuclear accumulation. HIC1 and CIITA recruited HDAC4 to the SIRT1 promoter and cooperated with HDAC4 to repress SIRT1 transcription. HDAC4 depletion by small interfering RNA or pharmaceutical inhibition normalized histone acetylation on the SIRT1 promoter and restored SIRT1 expression in the presence of IFN-γ. Over-expression of HDAC4 suppressed the transcription of genes involved in energy expenditure in a SIRT1-dependent manner. In contrast, HDAC4 knockdown/inhibition neutralized the effect of IFN-γ on cellular metabolism by normalizing SIRT1 expression. Therefore, our data reveal a role for HDAC4 in regulating cellular energy output and as such provide insights into rationalized design of novel anti-diabetic therapeutics.
Collapse
Affiliation(s)
- Mingming Fang
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China
| | - Zhiwen Fan
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenfang Tian
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuhao Zhao
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Ping Li
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Bisheng Zhou
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liping Zhang
- Department of Biochemistry, Xinjiang Medical University, Urumqi, China
| | - Xiaoyan Wu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
23
|
Sin TK, Tam BT, Yu AP, Yip SP, Yung BY, Chan LW, Wong CS, Rudd JA, Siu PM. Acute Treatment of Resveratrol Alleviates Doxorubicin-Induced Myotoxicity in Aged Skeletal Muscle Through SIRT1-Dependent Mechanisms. J Gerontol A Biol Sci Med Sci 2015; 71:730-9. [PMID: 26450947 DOI: 10.1093/gerona/glv175] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022] Open
Abstract
Study of the exacerbating effects of chemotherapeutics, such as doxorubicin, on the impairment of insulin metabolic signaling in aged skeletal muscle is very limited. Here, we tested the hypothesis that activation of sirtuin 1 deacetylase activity by resveratrol would prevent the disruption of insulin signaling and augmentation of catabolic markers induced by doxorubicin in aged skeletal muscle. Two- and 10-month-old senescence-accelerated mice (prone 8) were randomized to receive saline, doxorubicin, doxorubicin and resveratrol, or a combination of doxorubicin, resveratrol, and sirtinol or EX527. Doxorubicin reduced the sirtuin 1 activity without affecting the phosphorylation levels of IRS1(Ser307), mTOR(Ser2481), Akt(Thr308/Ser473), membranous glucose transporter 4, protein abundance of PDK4, and enzymatic activity of pyruvate dehydrogenase in aged muscles. Intriguingly, resveratrol attenuated the doxorubicin-induced elevations of apoptotic and catabolic markers measured as Bax, caspase 3 activity, apoptotic DNA fragmentation, MuRF-1, ubiquitinated proteins, and proteasomal activity in aged muscles, whereas these beneficial effects were abolished on inhibition of sirtuin 1 by sirtinol or EX527. Markers of insulin signaling were not affected by doxorubicin or resveratrol in the senescent skeletal muscle. Nevertheless, the antiapoptotic and anticatabolic effects of resveratrol in aged skeletal muscle treated with doxorubicin were mediated in a sirtuin 1-dependent signaling manner.
Collapse
Affiliation(s)
- Thomas K Sin
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 852, China
| | - Bjorn T Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 852, China
| | - Angus P Yu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 852, China
| | - Shea P Yip
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 852, China
| | - Benjamin Y Yung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 852, China
| | - Lawrence W Chan
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 852, China
| | - Cesar S Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 852, China
| | - John A Rudd
- School of Biomedical Science, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong 852, China
| | - Parco M Siu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 852, China.
| |
Collapse
|
24
|
Abstract
Aging is the major risk factor for a constellation of multifactorial diseases, including insulin resistance, diabetes and cardiovascular complications. Dietary restriction has been shown to delay or prevent the manifestation of age-related health decline, extending lifespan in most species tested to date. Given the scarce willingness of human subjects to adhere to chronic dietary restriction exercises, there has been an interest in deciphering the molecular mechanisms triggering the adaptations to dietary restriction. In this context, Sirtuin 1 (SIRT1), a NAD+-dependent deacetylase enzyme, has been proposed to act as a key mediator of the adaptations to nutrient deprivation in eukaryotes, and SIRT1 activating compounds have been often referred to as 'dietary restriction mimetic' molecules. Here, we will discuss the convergences and divergences between the effects of dietary restriction and SIRT1 activation, based on the recent advances in the field. As of now, most evidences indicate that SIRT1 is required, but not sufficient to trigger dietary-restriction induced adaptations.
Collapse
|
25
|
White AT, LaBarge SA, McCurdy CE, Schenk S. Knockout of STAT3 in skeletal muscle does not prevent high-fat diet-induced insulin resistance. Mol Metab 2015; 4:569-75. [PMID: 26266089 PMCID: PMC4529495 DOI: 10.1016/j.molmet.2015.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022] Open
Abstract
Objective Increased signal transducer and activator of transcription 3 (STAT3) signaling has been implicated in the development of skeletal muscle insulin resistance, though its contribution, in vivo, remains to be fully defined. Therefore, the aim of this study was to determine whether knockout of skeletal muscle STAT3 would prevent high-fat diet (HFD)-induced insulin resistance. Methods We used Cre-LoxP methodology to generate mice with muscle-specific knockout (KO) of STAT3 (mKO). Beginning at 10 weeks of age, mKO mice and their wildtype/floxed (WT) littermates either continued consuming a low fat, control diet (CON; 10% of calories from fat) or were switched to a HFD (60% of calories from fat) for 20 days. We measured body composition, energy expenditure, oral glucose tolerance and in vivo insulin action using hyperinsulinemic-euglycemic clamps. We also measured insulin sensitivity in isolated soleus and extensor digitorum longus muscles using the 2-deoxy-glucose (2DOG) uptake technique. Results STAT3 protein expression was reduced ∼75–100% in muscle from mKO vs. WT mice. Fat mass and body fat percentage did not differ between WT and mKO mice on CON and were increased equally by HFD. There were also no genotype differences in energy expenditure or whole-body fat oxidation. As determined, in vivo (hyperinsulinemic-euglycemic clamps) and ex vivo (2DOG uptake), skeletal muscle insulin sensitivity did not differ between CON-fed mice, and was impaired similarly by HFD. Conclusions These results demonstrate that STAT3 activation does not underlie the development of HFD-induced skeletal muscle insulin resistance. Loss of STAT3 in skeletal muscle does not effect whole body energy expenditure in mice. Mice with knockout of STAT3 in skeletal muscle (mKO) develop glucose intolerance with HFD feeding similar to littermate controls. HFD-induced insulin resistance in skeletal muscle is not prevented by knockout of STAT3.
Collapse
Key Words
- 2DOG, 2-deoxyglucose
- AT, adipose tissue
- Adgre1, adhesion G protein-coupled receptor E1
- CON, normal chow, control diet
- Clamp
- Cre-LoxP
- EDL, extensor digitorum longus
- GA, gastrocnemius
- GIR, glucose infusion rate
- Glucose homeostasis
- HFD, high-fat diet
- HGP, hepatic glucose production
- HYP-EUG, hyperinsulinemic-euglycemic
- IL, interleukin
- IS-GDR, insulin-stimulated glucose disposal rate
- In vivo
- KO, knockout
- MCK, muscle creatine kinase
- Obesity
- STAT3
- STAT3, signal transducer and activator of transcription 3
- T2D, type 2 diabetes
- WT, wild-type
- mKO, muscle-specific knockout of STAT3
Collapse
Affiliation(s)
- Amanda T White
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA ; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Samuel A LaBarge
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA ; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
26
|
González-Rodríguez Á, Santamaría B, Mas-Gutierrez JA, Rada P, Fernández-Millán E, Pardo V, Álvarez C, Cuadrado A, Ros M, Serrano M, Valverde ÁM. Resveratrol treatment restores peripheral insulin sensitivity in diabetic mice in a sirt1-independent manner. Mol Nutr Food Res 2015; 59:1431-42. [DOI: 10.1002/mnfr.201400933] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC/UAM); Madrid Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII; Spain
| | - Beatriz Santamaría
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC/UAM); Madrid Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII; Spain
| | | | - Patricia Rada
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC/UAM); Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Spain
| | - Elisa Fernández-Millán
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII; Spain
- Departamento de Bioquímica y Biología Molecular II; Facultad de Farmacia; Universidad Complutense de Madrid; Madrid Spain
| | - Virginia Pardo
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC/UAM); Madrid Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII; Spain
| | - Carmen Álvarez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII; Spain
- Departamento de Bioquímica y Biología Molecular II; Facultad de Farmacia; Universidad Complutense de Madrid; Madrid Spain
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC/UAM); Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII; Spain
- Instituto de Investigacion Sanitaria La Paz (IdiPaz); Madrid Spain
| | - Manuel Ros
- Facultad de Ciencias; Universidad Rey Juan Carlos; Madrid Spain
| | - Manuel Serrano
- Spanish National Cancer Research Centre (CNIO); Madrid Spain
| | - Ángela M. Valverde
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC/UAM); Madrid Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII; Spain
- Instituto de Investigacion Sanitaria La Paz (IdiPaz); Madrid Spain
| |
Collapse
|
27
|
LaBarge S, Migdal C, Schenk S. Is acetylation a metabolic rheostat that regulates skeletal muscle insulin action? Mol Cells 2015; 38:297-303. [PMID: 25824547 PMCID: PMC4400303 DOI: 10.14348/molcells.2015.0020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle insulin resistance, which increases the risk for developing various metabolic diseases, including type 2 diabetes, is a common metabolic disorder in obesity and aging. If potential treatments are to be developed to treat insulin resistance, then it is important to fully understand insulin signaling and glucose metabolism. While recent large-scale "omics" studies have revealed the acetylome to be comparable in size to the phosphorylome, the acetylation of insulin signaling proteins and its functional relevance to insulin-stimulated glucose transport and glucose metabolism is not fully understood. In this Mini Review we discuss the acetylation status of proteins involved in the insulin signaling pathway and review their potential effect on, and relevance to, insulin action in skeletal muscle.
Collapse
Affiliation(s)
- Samuel LaBarge
- Department of Orthopaedic Surgery, University of California, San Diego, CA, 92093,
USA
| | - Christopher Migdal
- Department of Orthopaedic Surgery, University of California, San Diego, CA, 92093,
USA
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, CA, 92093,
USA
- Biomedical Sciences Graduate Program, University of California, San Diego, CA, 92093,
USA
| |
Collapse
|
28
|
Brandon AE, Tid-Ang J, Wright LE, Stuart E, Suryana E, Bentley N, Turner N, Cooney GJ, Ruderman NB, Kraegen EW. Overexpression of SIRT1 in rat skeletal muscle does not alter glucose induced insulin resistance. PLoS One 2015; 10:e0121959. [PMID: 25798922 PMCID: PMC4370576 DOI: 10.1371/journal.pone.0121959] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 02/10/2015] [Indexed: 12/17/2022] Open
Abstract
SIRT1 is a NAD+-dependent deacetylase thought to regulate cellular metabolic pathways in response to alterations in nutrient flux. In the current study we investigated whether acute changes in SIRT1 expression affect markers of muscle mitochondrial content and also determined whether SIRT1 influenced muscle insulin resistance induced by acute glucose oversupply. In male Wistar rats either SIRT1 or a deacetylase inactive mutant form (H363Y) was electroprated into the tibialis cranialis (TC) muscle. The other leg was electroporated with an empty control vector. One week later, glucose was infused and hyperglycaemia was maintained at ~11mM. After 5 hours, 11mM glucose induced significant insulin resistance in skeletal muscle. Interestingly, overexpression of either SIRT1 or SIRT1 (H363Y) for 1 week did not change markers of mitochondrial content or function. SIRT1 or SIRT1 (H363Y) overexpression had no effect on the reduction in glucose uptake and glycogen synthesis in muscle in response to hyperglycemia. Therefore we conclude that acute increases in SIRT1 protein have little impact on mitochondrial content and that overexpressing SIRT1 does not prevent the development of insulin resistance during hyperglycaemia.
Collapse
Affiliation(s)
- Amanda E Brandon
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW, 2010, Australia
| | - Jennifer Tid-Ang
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW, 2010, Australia
| | - Lauren E Wright
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW, 2010, Australia
| | - Ella Stuart
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW, 2010, Australia
| | - Eurwin Suryana
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW, 2010, Australia
| | | | - Nigel Turner
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW, 2010, Australia; UNSW Medicine, University of New South Wales, Sydney, Australia
| | - Gregory J Cooney
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW, 2010, Australia; UNSW Medicine, University of New South Wales, Sydney, Australia
| | - Neil B Ruderman
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Edward W Kraegen
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW, 2010, Australia; UNSW Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
29
|
Zhang HH, Qin GJ, Li XL, Zhang YH, Du PJ, Zhang PY, Zhao YY, Wu J. SIRT1 overexpression in skeletal muscle in vivo induces increased insulin sensitivity and enhanced complex I but not complex II-V functions in individual subsarcolemmal and intermyofibrillar mitochondria. J Physiol Biochem 2015; 71:177-90. [PMID: 25782776 DOI: 10.1007/s13105-015-0396-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/20/2015] [Indexed: 01/04/2023]
Abstract
SIRT1 is known to improve insulin resistance (IR), but whether this effect is direct or not is still unclear, and this question has not been addressed in vivo in the skeletal muscle. Therefore, we sought to test if acute overexpression of SIRT1 in skeletal muscle of high-fat diet (HFD) rats in vivo would affect subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial complexes I-V activities and antioxidant enzymes thereby improving insulin action. In vivo electrotransfer was used to overexpress SIRT1 in the skeletal muscle of rats fed HFD for 12 weeks. Skeletal muscle insulin sensitivity and downstream effects of SIRT1 on AMPK, SIRT3, and mitochondrial biogenesis were studied. Citrate synthase (CS), complexes I-V, oxidative stress, and antioxidant levels were assessed in SS and IMF mitochondria. HFD rats showed skeletal muscle IR as well as decreased SIRT1 and SIRT3 expressions, mitochondrial DNA (mtDNA), and mitochondrial biogenesis (p < 0.05). SS and IMF mitochondria displayed lower CS, complexes I-V, and antioxidant enzyme activities (p < 0.05). By contrast, moderate (~2.5 folds) SIRT1 overexpression attenuated HFD-induced skeletal muscle IR. This improvement was associated with increased AMPK, PGC-1α, SIRT3, and mtDNA expressions as well as SS and IMF mitochondrial CS and complexes I-V activities. Importantly, SIRT1 overexpression largely restored antioxidant enzyme activities and enhanced complex I but not complexes II-V functions in individual SS and IMF mitochondria. This study suggests that SIRT1 overexpression improved IR at least partly by targeting complex I functions of SS and IMF mitochondria through the activation of SIRT1 and SIRT3.
Collapse
Affiliation(s)
- Hao-Hao Zhang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, 450052, Zhengzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Boutant M, Joffraud M, Kulkarni SS, García-Casarrubios E, García-Roves PM, Ratajczak J, Fernández-Marcos PJ, Valverde AM, Serrano M, Cantó C. SIRT1 enhances glucose tolerance by potentiating brown adipose tissue function. Mol Metab 2014; 4:118-31. [PMID: 25685699 PMCID: PMC4314542 DOI: 10.1016/j.molmet.2014.12.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 10/24/2022] Open
Abstract
OBJECTIVE SIRT1 has been proposed to be a key signaling node linking changes in energy metabolism to transcriptional adaptations. Although SIRT1 overexpression is protective against diverse metabolic complications, especially in response to high-fat diets, studies aiming to understand the etiology of such benefits are scarce. Here, we aimed to identify the key tissues and mechanisms implicated in the beneficial effects of SIRT1 on glucose homeostasis. METHODS We have used a mouse model of moderate SIRT1 overexpression, under the control of its natural promoter, to evaluate glucose homeostasis and thoroughly characterize how different tissues could influence insulin sensitivity. RESULTS Mice with moderate overexpression of SIRT1 exhibit better glucose tolerance and insulin sensitivity even on a low fat diet. Euglycemic-hyperinsulinemic clamps and in-depth tissue analyses revealed that enhanced insulin sensitivity was achieved through a higher brown adipose tissue activity and was fully reversed by housing the mice at thermoneutrality. SIRT1 did not influence brown adipocyte differentiation, but dramatically enhanced the metabolic transcriptional responses to β3-adrenergic stimuli in differentiated adipocytes. CONCLUSIONS Our work demonstrates that SIRT1 improves glucose homeostasis by enhancing BAT function. This is not consequent to an alteration in the brown adipocyte differentiation process, but as a result of potentiating the response to β3-adrenergic stimuli.
Collapse
Affiliation(s)
- Marie Boutant
- Nestlé Institute of Health Sciences (NIHS) SA, EPFL Campus, Quartier de l'Innovation, Bâtiment G, Lausanne CH-1015, Switzerland
| | - Magali Joffraud
- Nestlé Institute of Health Sciences (NIHS) SA, EPFL Campus, Quartier de l'Innovation, Bâtiment G, Lausanne CH-1015, Switzerland
| | - Sameer S Kulkarni
- Nestlé Institute of Health Sciences (NIHS) SA, EPFL Campus, Quartier de l'Innovation, Bâtiment G, Lausanne CH-1015, Switzerland
| | - Ester García-Casarrubios
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain ; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Pablo M García-Roves
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain ; Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Joanna Ratajczak
- Nestlé Institute of Health Sciences (NIHS) SA, EPFL Campus, Quartier de l'Innovation, Bâtiment G, Lausanne CH-1015, Switzerland ; Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | - Angela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain ; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Manuel Serrano
- Spanish National Cancer Research Center (CNIO), Madrid E28029, Spain
| | - Carles Cantó
- Nestlé Institute of Health Sciences (NIHS) SA, EPFL Campus, Quartier de l'Innovation, Bâtiment G, Lausanne CH-1015, Switzerland
| |
Collapse
|
31
|
Frederick DW, Davis JG, Dávila A, Agarwal B, Michan S, Puchowicz MA, Nakamaru-Ogiso E, Baur JA. Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism. J Biol Chem 2014; 290:1546-58. [PMID: 25411251 DOI: 10.1074/jbc.m114.579565] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NAD biosynthetic precursors nicotinamide mononucleotide and nicotinamide riboside are reported to confer resistance to metabolic defects induced by high fat feeding in part by promoting oxidative metabolism in skeletal muscle. Similar effects are obtained by germ line deletion of major NAD-consuming enzymes, suggesting that the bioavailability of NAD is limiting for maximal oxidative capacity. However, because of their systemic nature, the degree to which these interventions exert cell- or tissue-autonomous effects is unclear. Here, we report a tissue-specific approach to increase NAD biosynthesis only in muscle by overexpressing nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in the salvage pathway that converts nicotinamide to NAD (mNAMPT mice). These mice display a ∼50% increase in skeletal muscle NAD levels, comparable with the effects of dietary NAD precursors, exercise regimens, or loss of poly(ADP-ribose) polymerases yet surprisingly do not exhibit changes in muscle mitochondrial biogenesis or mitochondrial function and are equally susceptible to the metabolic consequences of high fat feeding. We further report that chronic elevation of muscle NAD in vivo does not perturb the NAD/NADH redox ratio. These studies reveal for the first time the metabolic effects of tissue-specific increases in NAD synthesis and suggest that critical sites of action for supplemental NAD precursors reside outside of the heart and skeletal muscle.
Collapse
Affiliation(s)
- David W Frederick
- From the Department of Physiology, Institute for Diabetes, Obesity, and Metabolism and
| | - James G Davis
- From the Department of Physiology, Institute for Diabetes, Obesity, and Metabolism and
| | - Antonio Dávila
- From the Department of Physiology, Institute for Diabetes, Obesity, and Metabolism and
| | - Beamon Agarwal
- From the Department of Physiology, Institute for Diabetes, Obesity, and Metabolism and
| | - Shaday Michan
- Instituto Nacional de Geriatría, México, Distrito Federal 10200, México, and
| | - Michelle A Puchowicz
- Department of Nutrition, Mouse Metabolic Phenotyping Center, Case Western Reserve University, Cleveland, Ohio 44106
| | - Eiko Nakamaru-Ogiso
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joseph A Baur
- From the Department of Physiology, Institute for Diabetes, Obesity, and Metabolism and
| |
Collapse
|
32
|
White AT, Philp A, Fridolfsson HN, Schilling JM, Murphy AN, Hamilton DL, McCurdy CE, Patel HH, Schenk S. High-fat diet-induced impairment of skeletal muscle insulin sensitivity is not prevented by SIRT1 overexpression. Am J Physiol Endocrinol Metab 2014; 307:E764-72. [PMID: 25159328 PMCID: PMC4216952 DOI: 10.1152/ajpendo.00001.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle sirtuin 1 (SIRT1) expression is reduced under insulin-resistant conditions, such as those resulting from high-fat diet (HFD) feeding and obesity. Herein, we investigated whether constitutive activation of SIRT1 in skeletal muscle prevents HFD-induced muscle insulin resistance. To address this, mice with muscle-specific overexpression of SIRT1 (mOX) and wild-type (WT) littermates were fed a control diet (10% calories from fat) or HFD (60% of calories from fat) for 12 wk. Magnetic resonance imaging and indirect calorimetry were used to measure body composition and energy expenditure, respectively. Whole body glucose metabolism was assessed by oral glucose tolerance test, and insulin-stimulated glucose uptake was measured at a physiological insulin concentration in isolated soleus and extensor digitorum longus muscles. Although SIRT1 was significantly overexpressed in muscle of mOX vs. WT mice, body weight and percent body fat were similarly increased by HFD for both genotypes, and energy expenditure was unaffected by diet or genotype. Importantly, impairments in glucose tolerance and insulin-mediated activation of glucose uptake in skeletal muscle that occurred with HFD feeding were not prevented in mOX mice. In contrast, mOX mice showed enhanced postischemic cardiac functional recovery compared with WT mice, confirming the physiological functionality of the SIRT1 transgene in this mouse model. Together, these results demonstrate that activation of SIRT1 in skeletal muscle alone does not prevent HFD-induced glucose intolerance, weight gain, or insulin resistance.
Collapse
Affiliation(s)
- Amanda T White
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
| | - Andrew Philp
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Heidi N Fridolfsson
- Department of Anesthesiology, University of California San Diego, La Jolla, California; Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Jan M Schilling
- Department of Anesthesiology, University of California San Diego, La Jolla, California; Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Anne N Murphy
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - D Lee Hamilton
- Health and Exercise Sciences Research Group, School of Sport, University of Stirling, Stirling, United Kingdom; and
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Hemal H Patel
- Department of Anesthesiology, University of California San Diego, La Jolla, California; Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California;
| |
Collapse
|
33
|
Quiñones M, Al-Massadi O, Fernø J, Nogueiras R. Cross-talk between SIRT1 and endocrine factors: effects on energy homeostasis. Mol Cell Endocrinol 2014; 397:42-50. [PMID: 25109279 DOI: 10.1016/j.mce.2014.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/01/2014] [Accepted: 08/01/2014] [Indexed: 12/14/2022]
Abstract
The mammalian sirtuins (SIRT1-7) are a family of highly conserved nicotine adenine dinucleotide (NAD(+))-dependent deacetylases that act as cellular sensors to detect energy availability. SIRT1 is a multifaceted protein that is involved in a wide variety of cellular processes. SIRT1 is activated in response to caloric restriction, acting on multiple targets in a wide range of tissues. SIRT1 regulates the role of multiple hormones implicated in energy balance, including glucose and lipid metabolism. Here, we review the relevant role of SIRT1 as a mediator of endocrine function of several hormones to modulate energy balance. In addition, we analyze the potential of targeting SIRT1 for the treatment of obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mar Quiñones
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), University of Santiago de Compostela, San Francisco s/n, Santiago de Compostela (A Coruña), 15782, and Avda. Barcelona 3, 15782, Santiago de Compostela, Spain.
| | - Omar Al-Massadi
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), University of Santiago de Compostela, San Francisco s/n, Santiago de Compostela (A Coruña), 15782, and Avda. Barcelona 3, 15782, Santiago de Compostela, Spain
| | - Johan Fernø
- Department of Clinical Science, K. G. Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Ruben Nogueiras
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), University of Santiago de Compostela, San Francisco s/n, Santiago de Compostela (A Coruña), 15782, and Avda. Barcelona 3, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
34
|
Kulkarni SS, Cantó C. The molecular targets of resveratrol. Biochim Biophys Acta Mol Basis Dis 2014; 1852:1114-23. [PMID: 25315298 DOI: 10.1016/j.bbadis.2014.10.005] [Citation(s) in RCA: 345] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/02/2014] [Accepted: 10/04/2014] [Indexed: 12/31/2022]
Abstract
Resveratrol has emerged in recent years as a compound conferring strong protection against metabolic, cardiovascular and other age-related complications, including neurodegeneration and cancer. This has generated the notion that resveratrol treatment acts as a calorie-restriction mimetic, based on the many overlapping health benefits observed upon both interventions in diverse organisms, including yeast, worms, flies and rodents. Though studied for over a decade, the molecular mechanisms governing the therapeutic properties of resveratrol still remain elusive. Elucidating how resveratrol exerts its effects would provide not only new insights in its fundamental biological actions but also new avenues for the design and development of more potent drugs to efficiently manage metabolic disorders. In this review we will cover the most recent advances in the field, with special focus on the metabolic actions of resveratrol and the potential role of SIRT1 and AMPK. This article is part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes.
Collapse
Affiliation(s)
| | - Carles Cantó
- Nestlé Institute of Health Sciences, Lausanne 1015, Switzerland.
| |
Collapse
|
35
|
AAV8-mediated Sirt1 gene transfer to the liver prevents high carbohydrate diet-induced nonalcoholic fatty liver disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14039. [PMID: 26015978 PMCID: PMC4362360 DOI: 10.1038/mtm.2014.39] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/26/2014] [Accepted: 07/18/2014] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common hepatic disease worldwide, and evidence suggests that it promotes insulin resistance and type 2 diabetes. Caloric restriction (CR) is the only available strategy for NAFLD treatment. The protein deacetylase Sirtuin1 (SIRT1), which is activated by CR, increases catabolic metabolism and decreases lipogenesis and inflammation, both involved in the development of NAFLD. Here we show that adeno-associated viral vectors of serotype 8 (AAV8)-mediated liver-specific Sirt1 gene transfer prevents the development of NAFLD induced by a high carbohydrate (HC) diet. Long-term hepatic SIRT1 overexpression led to upregulation of key hepatic genes involved in β-oxidation, prevented HC diet-induced lipid accumulation and reduced liver inflammation. AAV8-Sirt1-treated mice showed improved insulin sensitivity, increased oxidative capacity in skeletal muscle and reduced white adipose tissue inflammation. Moreover, HC feeding induced leptin resistance, which was also attenuated in AAV8-Sirt1-treated mice. Therefore, AAV-mediated gene transfer to overexpress SIRT1 specifically in the liver may represent a new gene therapy strategy to counteract NAFLD and related diseases such as type 2 diabetes.
Collapse
|
36
|
Gao S, McMillan RP, Jacas J, Zhu Q, Li X, Kumar GK, Casals N, Hegardt FG, Robbins PD, Lopaschuk GD, Hulver MW, Butler AA. Regulation of substrate oxidation preferences in muscle by the peptide hormone adropin. Diabetes 2014; 63:3242-52. [PMID: 24848071 PMCID: PMC4171656 DOI: 10.2337/db14-0388] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rigorous control of substrate oxidation by humoral factors is essential for maintaining metabolic homeostasis. During feeding and fasting cycles, carbohydrates and fatty acids are the two primary substrates in oxidative metabolism. Here, we report a novel role for the peptide hormone adropin in regulating substrate oxidation preferences. Plasma levels of adropin increase with feeding and decrease upon fasting. A comparison of whole-body substrate preference and skeletal muscle substrate oxidation in adropin knockout and transgenic mice suggests adropin promotes carbohydrate oxidation over fat oxidation. In muscle, adropin activates pyruvate dehydrogenase (PDH), which is rate limiting for glucose oxidation and suppresses carnitine palmitoyltransferase-1B (CPT-1B), a key enzyme in fatty acid oxidation. Adropin downregulates PDH kinase-4 (PDK4) that inhibits PDH, thereby increasing PDH activity. The molecular mechanisms of adropin's effects involve acetylation (suggesting inhibition) of the transcriptional coactivator PGC-1α, downregulating expression of Cpt1b and Pdk4. Increased PGC-1α acetylation by adropin may be mediated by inhibiting Sirtuin-1 (SIRT1), a PGC-1α deacetylase. Altered SIRT1 and PGC-1α activity appear to mediate aspects of adropin's metabolic actions in muscle. Similar outcomes were observed in fasted mice treated with synthetic adropin. Together, these results suggest a role for adropin in regulating muscle substrate preference under various nutritional states.
Collapse
Affiliation(s)
- Su Gao
- Department of Metabolism and Aging, Scripps Research Institute, Jupiter, FL
| | - Ryan P McMillan
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Jordi Jacas
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Qingzhang Zhu
- Department of Metabolism and Aging, Scripps Research Institute, Jupiter, FL
| | - Xuesen Li
- Department of Metabolism and Aging, Scripps Research Institute, Jupiter, FL
| | - Ganesh K Kumar
- Department of Metabolism and Aging, Scripps Research Institute, Jupiter, FL
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain Department of Biochemistry and Molecular Biology and Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Fausto G Hegardt
- Department of Biochemistry and Molecular Biology and Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Paul D Robbins
- Department of Metabolism and Aging, Scripps Research Institute, Jupiter, FL
| | - Gary D Lopaschuk
- Department of Pediatrics, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew W Hulver
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Andrew A Butler
- Department of Metabolism and Aging, Scripps Research Institute, Jupiter, FL Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
37
|
Ljubicic V, Burt M, Lunde JA, Jasmin BJ. Resveratrol induces expression of the slow, oxidative phenotype in mdx mouse muscle together with enhanced activity of the SIRT1-PGC-1α axis. Am J Physiol Cell Physiol 2014; 307:C66-82. [PMID: 24760981 DOI: 10.1152/ajpcell.00357.2013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Slower, more oxidative muscle fibers are more resistant to the dystrophic pathology in Duchenne muscular dystrophy (DMD) patients as well as in the preclinical mdx mouse model of DMD. Therefore, one therapeutic strategy for DMD focuses on promoting expression of the slow, oxidative myogenic program. In the current study, we explored the therapeutic potential of stimulating the slow, oxidative phenotype in mdx mice by feeding 6-wk-old animals with the natural phenol resveratrol (RSV; ~100 mg·kg(-1)·day(-1)) for 6 wk. Sirtuin 1 (SIRT1) activity and protein levels increased significantly, as well as peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) activity, in the absence of alterations in AMPK signaling. These adaptations occurred concomitant with evidence of a fast, glycolytic, to slower, more oxidative fiber type conversion, including mitochondrial biogenesis and increased expression of slower myosin heavy chain isoforms. These positive findings raised the question of whether increased exposure to RSV would result in greater therapeutic benefits. We discovered that an elevated RSV dose of ~500 mg·kg(-1)·day(-1) across a duration of 12 wk was clearly less effective at muscle remodeling in mdx mice. This treatment protocol failed to influence SIRT1 or AMPK signaling and did not result in a shift towards a slower, more oxidative phenotype. Taken together, this study demonstrates that RSV can stimulate SIRT1 and PGC-1α activation, which in turn may promote expression of the slow, oxidative myogenic program in mdx mouse muscle. The data also highlight the importance of selecting an appropriate dosage regimen of RSV to maximize its potential therapeutic effectiveness for future application in DMD patients.
Collapse
Affiliation(s)
- Vladimir Ljubicic
- Department of Cellular and Molecular Medicine, Faculty of Medicine, and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Matthew Burt
- Department of Cellular and Molecular Medicine, Faculty of Medicine, and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - John A Lunde
- Department of Cellular and Molecular Medicine, Faculty of Medicine, and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
38
|
Ljubicic V, Burt M, Jasmin BJ. The therapeutic potential of skeletal muscle plasticity in Duchenne muscular dystrophy: phenotypic modifiers as pharmacologic targets. FASEB J 2013; 28:548-68. [PMID: 24249639 DOI: 10.1096/fj.13-238071] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a life-limiting, neuromuscular disorder that causes progressive, severe muscle wasting in boys and young men. Although there is no cure, scientists and clinicians can leverage the fact that slower, more oxidative skeletal muscle fibers possess an enhanced degree of resistance to the dystrophic pathology relative to their faster, more glycolytic counterparts, and can thus use this knowledge when investigating novel therapeutic avenues. Several factors have been identified as powerful regulators of muscle plasticity. Some proteins, such as calcineurin, peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α), PPARβ/δ, and AMP-activated protein kinase (AMPK), when chronically stimulated in animal models, remodel skeletal muscle toward the slow, oxidative myogenic program, whereas others, such as receptor-interacting protein 140 (RIP140) and E2F transcription factor 1 (E2F1), repress this phenotype. Recent studies demonstrating that pharmacologic and physiological activation of targets that shift dystrophic muscle toward the slow, oxidative myogenic program provide appreciable molecular and functional benefits. This review surveys the rationale behind, and evidence for, the study of skeletal muscle plasticity in preclinical models of DMD and highlights the potential therapeutic opportunities in advancing a strategy focused on remodeling skeletal muscle in patients with DMD toward the slow, oxidative phenotype.
Collapse
Affiliation(s)
- Vladimir Ljubicic
- 1Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | | | | |
Collapse
|
39
|
Boutant M, Cantó C. SIRT1 metabolic actions: Integrating recent advances from mouse models. Mol Metab 2013; 3:5-18. [PMID: 24567900 PMCID: PMC3929913 DOI: 10.1016/j.molmet.2013.10.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 01/07/2023] Open
Abstract
SIRT1 has attracted a lot of interest since it was discovered as a mammalian homolog of Sir2, a protein that influences longevity in yeast. Intensive early research suggested a key role of SIRT1 in mammalian development, metabolic flexibility and oxidative metabolism. However, it is the growing body of transgenic models that are allowing us to clearly define the true range of SIRT1 actions. In this review we aim to summarize the most recent lessons that transgenic animal models have taught us about the role of SIRT1 in mammalian metabolic homeostasis and lifespan.
Collapse
Affiliation(s)
- Marie Boutant
- Nestlé Institute of Health Sciences S.A., EPFL campus, Quartier de l'Innovation, Bâtiment G, CH-1015 Lausanne, Switzerland
| | - Carles Cantó
- Nestlé Institute of Health Sciences S.A., EPFL campus, Quartier de l'Innovation, Bâtiment G, CH-1015 Lausanne, Switzerland
| |
Collapse
|