1
|
Phadnis A, Chawla D, Alex J, Jha P. Decoding MODY: exploring genetic roots and clinical pathways. Diabetol Int 2025; 16:257-271. [PMID: 40166432 PMCID: PMC11954780 DOI: 10.1007/s13340-025-00809-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025]
Abstract
Purpose Maturity-onset diabetes of the young (MODY) is a transformative factor in today's pattern of diabetes care. The definition of its genetic basis brings insight into the diabetes processes, opening up possibilities for its early detection through public health strategies and improvement in precision medicine. Current knowledge on MODY has been brought together in this review. Methods Extensive literature review on PubMed and Google Scholar databases was conducted. Studies encompassing (1) genetic underpinnings and their types, (2) the significance of its biomarkers, and (3) diagnostic techniques and treatment modalities were focused upon. Results The disease accounts for 1-2% of all cases of diabetes and is usually misdiagnosed as either Type 1 or Type 2 diabetes. Several genes are involved in the appropriate functioning of pancreatic β-cells and mutations in these genes lead to an impairment in glucose metabolism and insulin secretion. A mild degree of hyperglycaemia, but without ketosis, is typical of MODY, seen mostly in adolescents and young adults. Treatment varies, including sulfonylureas for HNF1A and HNF4A mutations, lifestyle management for GCK mutations, and emerging therapies like GLP1 receptor agonists. Conclusion Proper genetic diagnosis is cardinal to the best management of MODY. Genetic and clinical advances have been impressive in monogenic diabetes, but further research in novel therapies is needed to optimise outcomes with precision medicine.
Collapse
Affiliation(s)
- Anshuman Phadnis
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to Be University, Mumbai, Maharashtra India
| | - Diya Chawla
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to Be University, Mumbai, Maharashtra India
| | - Joanne Alex
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to Be University, Mumbai, Maharashtra India
| | - Pamela Jha
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to Be University, Mumbai, Maharashtra India
| |
Collapse
|
2
|
Sharma M, Maurya K, Nautiyal A, Chitme HR. Monogenic Diabetes: A Comprehensive Overview and Therapeutic Management of Subtypes of Mody. Endocr Res 2025; 50:1-11. [PMID: 39106207 DOI: 10.1080/07435800.2024.2388606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND Monogenic diabetes often occurs as a result of single-gene mutations. The illness is minimally affected by environmental and behavioral factors, and it constitutes around one to five percent of all cases of diabetes. METHODS Newborn diabetes mellitus (NDM) and maturity-onset diabetes of the young (MODY) are the predominant causes of monogenic diabetes, accounting for a larger proportion of cases, while syndromic diabetes represents a smaller percentage. MODY, a group of inherited non-autoimmune diabetes mellitus disorders, is quite common. However, it remains frequently misdiagnosed despite increasing public awareness. The condition is characterized by insulin resistance, the development of diabetes at a young age (before 25 years), mild high blood sugar levels, inheritance in an autosomal dominant pattern, and the preservation of natural insulin production. RESULTS Currently, there are 14 distinct subtypes of MODY that have been identified. Each subtype possesses distinct characteristics in terms of their frequency, clinical symptoms, severity of diabetes, related complications, and response to medicinal interventions. Due to the clinical similarities, lack of awareness, and high expense of genetic testing, distinguishing between type I (T1D) and type II diabetes mellitus (T2D) can be challenging, resulting in misdiagnosis of this type of diabetes. As a consequence, a significant number of individuals are being deprived of adequate medical attention. Accurate diagnosis enables the utilization of novel therapeutic strategies and enhances the management of therapy in comparison to type II and type I diabetes. CONCLUSION This article offers a concise overview of the clinical subtypes and characteristics of monogenic diabetes. Furthermore, this article discusses the various subtypes of MODY, as well as the process of diagnosing, managing, and treating the condition. It also addresses the difficulties encountered in detecting and treating MODY.
Collapse
Affiliation(s)
- Manisha Sharma
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Kajal Maurya
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Anuj Nautiyal
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | | |
Collapse
|
3
|
Ka M, Hawkins E, Pouponnot C, Duvillié B. Modelling human diabetes ex vivo: a glance at maturity onset diabetes of the young. Front Endocrinol (Lausanne) 2024; 15:1427413. [PMID: 39387055 PMCID: PMC11461259 DOI: 10.3389/fendo.2024.1427413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Diabetes is a complex metabolic disease which most commonly has a polygenic origin; however, in rare cases, diabetes may be monogenic. This is indeed the case in both Maturity Onset Diabetes of the Young (MODY) and neonatal diabetes. These disease subtypes are believed to be simpler than Type 1 (T1D) and Type 2 Diabetes (T2D), which allows for more precise modelling. During the three last decades, many studies have focused on rodent models. These investigations provided a wealth of knowledge on both pancreas development and beta cell function. In particular, they allowed the establishment of a hierarchy of the transcription factors and highlighted the role of microenvironmental factors in the control of progenitor cell proliferation and differentiation. Transgenic mice also offered the possibility to decipher the mechanisms that define the functional identity of the pancreatic beta cells. Despite such interest in transgenic mice, recent data have also indicated that important differences exist between mice and human. To overcome these limitations, new human models are necessary. In the present review, we describe these ex vivo models, which are created using stem cells and organoids, and represent an important step toward islet cell therapy and drug discovery.
Collapse
Affiliation(s)
- Moustapha Ka
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| | - Eleanor Hawkins
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| | - Celio Pouponnot
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| | - Bertrand Duvillié
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| |
Collapse
|
4
|
Zhang J, Zhang R, Liu C, Ge X, Wang Y, Jiang F, Zhuang L, Li T, Zhu Q, Jiang Y, Chen Y, Lu M, Wang Y, Jiang M, Liu Y, Liu L. Missense mutation of ISL1 (E283D) is associated with the development of type 2 diabetes. Diabetologia 2024; 67:1698-1713. [PMID: 38819467 DOI: 10.1007/s00125-024-06186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/25/2024] [Indexed: 06/01/2024]
Abstract
AIMS/HYPOTHESIS Mutations in Isl1, encoding the insulin enhancer-binding protein islet-1 (ISL1), may contribute to attenuated insulin secretion in type 2 diabetes mellitus. We made an Isl1E283D mouse model to investigate the disease-causing mechanism of diabetes mellitus. METHODS The ISL1E283D mutation (c. 849A>T) was identified by whole exome sequencing on an early-onset type 2 diabetes family and then the Isl1E283D knockin (KI) mouse model was created and an IPGTT and IPITT were conducted. Glucose-stimulated insulin secretion (GSIS), expression of Ins2 and other ISL1 target genes and interacting proteins were evaluated in isolated pancreas islets. Transcriptional activity of Isl1E283D was evaluated by cell-based luciferase reporter assay and electrophoretic mobility shift assay, and the expression levels of Ins2 driven by Isl1 wild-type (Isl1WT) and Isl1E283D mutation in rat INS-1 cells were determined by RT-PCR and western blotting. RESULTS Impaired GSIS and elevated glucose level were observed in Isl1E283D KI mice while expression of Ins2 and other ISL1 target genes Mafa, Pdx1, Slc2a2 and the interacting protein NeuroD1 were downregulated in isolated islets. Transcriptional activity of the Isl1E283D mutation for Ins2 was reduced by 59.3%, and resulted in a marked downregulation of Ins2 expression when it was overexpressed in INS-1 cells, while overexpression of Isl1WT led to an upregulation of Ins2 expression. CONCLUSIONS/INTERPRETATION Isl1E283D mutation reduces insulin expression and secretion by regulating insulin and other target genes, as well as its interacting proteins such as NeuroD1, leading to the development of glucose intolerance in the KI mice, which recapitulated the human diabetic phenotype. This study identified and highlighted the Isl1E283D mutation as a novel causative factor for type 2 diabetes, and suggested that targeting transcription factor ISL1 could offer an innovative avenue for the precise treatment of human type 2 diabetes.
Collapse
Affiliation(s)
- Juan Zhang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Medicine, Huanghuai University, Henan, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chanwei Liu
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxu Ge
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Pediatrics, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Fusong Jiang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Langen Zhuang
- Department of Endocrinology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tiantian Li
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qihan Zhu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanyan Jiang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yating Chen
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Lu
- Department of Endocrinology & Metabolism, Putuo Hospital Attached to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanzhong Wang
- School of Population Health and Environmental Science, King's College London, London, UK
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yanjun Liu
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Limei Liu
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Vedovato N, Salguero MV, Greeley SAW, Yu CH, Philipson LH, Ashcroft FM. A loss-of-function mutation in KCNJ11 causing sulfonylurea-sensitive diabetes in early adult life. Diabetologia 2024; 67:940-951. [PMID: 38366195 PMCID: PMC10954967 DOI: 10.1007/s00125-024-06103-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 02/18/2024]
Abstract
AIMS/HYPOTHESIS The ATP-sensitive potassium (KATP) channel couples beta cell electrical activity to glucose-stimulated insulin secretion. Loss-of-function mutations in either the pore-forming (inwardly rectifying potassium channel 6.2 [Kir6.2], encoded by KCNJ11) or regulatory (sulfonylurea receptor 1, encoded by ABCC8) subunits result in congenital hyperinsulinism, whereas gain-of-function mutations cause neonatal diabetes. Here, we report a novel loss-of-function mutation (Ser118Leu) in the pore helix of Kir6.2 paradoxically associated with sulfonylurea-sensitive diabetes that presents in early adult life. METHODS A 31-year-old woman was diagnosed with mild hyperglycaemia during an employee screen. After three pregnancies, during which she was diagnosed with gestational diabetes, the patient continued to show elevated blood glucose and was treated with glibenclamide (known as glyburide in the USA and Canada) and metformin. Genetic testing identified a heterozygous mutation (S118L) in the KCNJ11 gene. Neither parent was known to have diabetes. We investigated the functional properties and membrane trafficking of mutant and wild-type KATP channels in Xenopus oocytes and in HEK-293T cells, using patch-clamp, two-electrode voltage-clamp and surface expression assays. RESULTS Functional analysis showed no changes in the ATP sensitivity or metabolic regulation of the mutant channel. However, the Kir6.2-S118L mutation impaired surface expression of the KATP channel by 40%, categorising this as a loss-of-function mutation. CONCLUSIONS/INTERPRETATION Our data support the increasing evidence that individuals with mild loss-of-function KATP channel mutations may develop insulin deficiency in early adulthood and even frank diabetes in middle age. In this case, the patient may have had hyperinsulinism that escaped detection in early life. Our results support the importance of functional analysis of KATP channel mutations in cases of atypical diabetes.
Collapse
Affiliation(s)
- Natascia Vedovato
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK
| | - Maria V Salguero
- Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Siri Atma W Greeley
- Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Christine H Yu
- Division of Endocrinology, Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Louis H Philipson
- Departments of Medicine and Pediatrics, Section of Endocrinology Diabetes and Metabolism, University of Chicago, Chicago, IL, USA
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK.
| |
Collapse
|
6
|
Xiao B, Yi H, Zhang M, Wang R, Hu Y, Xu Y, Shao Z, Zhang S, Peng N. MODY in China: two families carrying the KCNJ11 E229K variant. Acta Diabetol 2023; 60:1287-1289. [PMID: 37296241 DOI: 10.1007/s00592-023-02114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/05/2023] [Indexed: 06/12/2023]
Affiliation(s)
- Banghui Xiao
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Hongmei Yi
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Miao Zhang
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Rui Wang
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Ying Hu
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yi Xu
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Zhijuan Shao
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Song Zhang
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Nianchun Peng
- Department of Endocrinology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
7
|
Samadli S, Zhou Q, Zheng B, Gu W, Zhang A. From glucose sensing to exocytosis: takes from maturity onset diabetes of the young. Front Endocrinol (Lausanne) 2023; 14:1188301. [PMID: 37255971 PMCID: PMC10226665 DOI: 10.3389/fendo.2023.1188301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Monogenic diabetes gave us simplified models of complex molecular processes occurring within β-cells, which allowed to explore the roles of numerous proteins from single protein perspective. Constellation of characteristic phenotypic features and wide application of genetic sequencing techniques to clinical practice, made the major form of monogenic diabetes - the Maturity Onset Diabetes of the Young to be distinguishable from type 1, type 2 as well as neonatal diabetes mellitus and understanding underlying molecular events for each type of MODY contributed to the advancements of antidiabetic therapy and stem cell research tremendously. The functional analysis of MODY-causing proteins in diabetes development, not only provided better care for patients suffering from diabetes, but also enriched our comprehension regarding the universal cellular processes including transcriptional and translational regulation, behavior of ion channels and transporters, cargo trafficking, exocytosis. In this review, we will overview structure and function of MODY-causing proteins, alterations in a particular protein arising from the deleterious mutations to the corresponding gene and their consequences, and translation of this knowledge into new treatment strategies.
Collapse
Affiliation(s)
- Sama Samadli
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Pediatric Diseases II, Azerbaijan Medical University, Baku, Azerbaijan
| | - Qiaoli Zhou
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Rasooly D, Yang Q, Moonesinghe R, Khoury MJ, Patel CJ. The Joint Public Health Impact of Family History of Diabetes and Cardiovascular Disease among Adults in the United States: A Population-Based Study. Public Health Genomics 2022; 25:1-12. [PMID: 36202082 PMCID: PMC10076442 DOI: 10.1159/000526242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Family history is an established risk factor for both cardiovascular disease (CVD) and diabetes; however, no study has presented population-based prevalence estimates of family histories of CVD and diabetes and examined their joint impact on prevalence of diabetes, CVD, cardiometabolic risk factors, and mortality risk. METHODS We analyzed data from a representative sample of the US adult population including 29,440 participants from the National Health and Nutrition Examination Survey (2007-2018) and assessed self-reported first-degree family history of diabetes and CVD (premature heart disease before age of 50 years) as well as meeting criteria and/or having risk factors for CVD and diabetes. RESULTS Participants with joint family history exhibit 6.5 greater odds for having both diseases and are diagnosed with diabetes 6.6 years earlier than participants without family history. Healthy participants without prevalent CVD or diabetes but with joint family history exhibit a greater prevalence of diabetes risk factors compared to no family history counterparts. Joint family history is associated with an increase in all-cause mortality, but with no interactive effect. CONCLUSION Over 44% of the US adult population has a family history of CVD and/or diabetes that is comparable in risk to common cardiometabolic risk factors. This wide presence of high-risk family history and its simplicity of ascertainment suggests that clinical and public health efforts should collect and act on joint family history of CVD and diabetes to improve population efforts in the prevention and early detection of these common chronic diseases.
Collapse
Affiliation(s)
- Danielle Rasooly
- Office of Genomics and Precision Public Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Quanhe Yang
- Division for Heart Disease and Stroke Prevention, NCCDPHP, Centers for Disease Control and Prevention Atlanta, GA 30329, USA
| | - Ramal Moonesinghe
- Office of Genomics and Precision Public Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Muin J. Khoury
- Office of Genomics and Precision Public Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Chirag J Patel
- Department of Biomedical Informatics, Harvard Medical School, 10 Shattuck St., Boston, MA 02115, USA
| |
Collapse
|
9
|
Fang X, Miao R, Wei J, Wu H, Tian J. Advances in multi-omics study of biomarkers of glycolipid metabolism disorder. Comput Struct Biotechnol J 2022; 20:5935-5951. [PMID: 36382190 PMCID: PMC9646750 DOI: 10.1016/j.csbj.2022.10.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
Glycolipid metabolism disorder are major threats to human health and life. Genetic, environmental, psychological, cellular, and molecular factors contribute to their pathogenesis. Several studies demonstrated that neuroendocrine axis dysfunction, insulin resistance, oxidative stress, chronic inflammatory response, and gut microbiota dysbiosis are core pathological links associated with it. However, the underlying molecular mechanisms and therapeutic targets of glycolipid metabolism disorder remain to be elucidated. Progress in high-throughput technologies has helped clarify the pathophysiology of glycolipid metabolism disorder. In the present review, we explored the ways and means by which genomics, transcriptomics, proteomics, metabolomics, and gut microbiomics could help identify novel candidate biomarkers for the clinical management of glycolipid metabolism disorder. We also discuss the limitations and recommended future research directions of multi-omics studies on these diseases.
Collapse
|
10
|
Role of Actionable Genes in Pursuing a True Approach of Precision Medicine in Monogenic Diabetes. Genes (Basel) 2022; 13:genes13010117. [PMID: 35052457 PMCID: PMC8774614 DOI: 10.3390/genes13010117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
Monogenic diabetes is a genetic disorder caused by one or more variations in a single gene. It encompasses a broad spectrum of heterogeneous conditions, including neonatal diabetes, maturity onset diabetes of the young (MODY) and syndromic diabetes, affecting 1-5% of patients with diabetes. Some of these variants are harbored by genes whose altered function can be tackled by specific actions ("actionable genes"). In suspected patients, molecular diagnosis allows the implementation of effective approaches of precision medicine so as to allow individual interventions aimed to prevent, mitigate or delay clinical outcomes. This review will almost exclusively concentrate on the clinical strategy that can be specifically pursued in carriers of mutations in "actionable genes", including ABCC8, KCNJ11, GCK, HNF1A, HNF4A, HNF1B, PPARG, GATA4 and GATA6. For each of them we will provide a short background on what is known about gene function and dysfunction. Then, we will discuss how the identification of their mutations in individuals with this form of diabetes, can be used in daily clinical practice to implement specific monitoring and treatments. We hope this article will help clinical diabetologists carefully consider who of their patients deserves timely genetic testing for monogenic diabetes.
Collapse
|
11
|
Chen Y, Hu X, Cui J, Zhao M, Yao H. A novel mutation KCNJ11 R136C caused KCNJ11-MODY. Diabetol Metab Syndr 2021; 13:91. [PMID: 34465386 PMCID: PMC8406974 DOI: 10.1186/s13098-021-00708-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
A young female patient, diagnosed with diabetes mellitus at the age of 28 years old in 2009, carries KCNJ11 R136C by whole exome sequencing and her daughter doesn't carry this mutation. Bioinformatics software predicted that the 136th amino acid is highly conservative and the mutation is deleterious. KCNJ11 R136C can result in the change of channel port structure of KATP channel. So she was diagnosed as KCNJ11-MODY.
Collapse
Affiliation(s)
- Yaning Chen
- Department of Endocrinology, Sixth Medical Center of PLA General Hospital, 6# Fucheng Road, Haidian District, Beijing, 100048, China
| | - Xiaodong Hu
- Department of Endocrinology, Sixth Medical Center of PLA General Hospital, 6# Fucheng Road, Haidian District, Beijing, 100048, China
| | - Jia Cui
- Department of Endocrinology, Sixth Medical Center of PLA General Hospital, 6# Fucheng Road, Haidian District, Beijing, 100048, China
| | - Mingwei Zhao
- Department of Endocrinology, Sixth Medical Center of PLA General Hospital, 6# Fucheng Road, Haidian District, Beijing, 100048, China
| | - Hebin Yao
- Department of Endocrinology, Sixth Medical Center of PLA General Hospital, 6# Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
12
|
Sachse G, Haythorne E, Hill T, Proks P, Joynson R, Terrón-Expósito R, Bentley L, Tucker SJ, Cox RD, Ashcroft FM. The KCNJ11-E23K Gene Variant Hastens Diabetes Progression by Impairing Glucose-Induced Insulin Secretion. Diabetes 2021; 70:1145-1156. [PMID: 33568422 DOI: 10.2337/db20-0691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022]
Abstract
The ATP-sensitive K+ (KATP) channel controls blood glucose levels by coupling glucose metabolism to insulin secretion in pancreatic β-cells. E23K, a common polymorphism in the pore-forming KATP channel subunit (KCNJ11) gene, has been linked to increased risk of type 2 diabetes. Understanding the risk-allele-specific pathogenesis has the potential to improve personalized diabetes treatment, but the underlying mechanism has remained elusive. Using a genetically engineered mouse model, we now show that the K23 variant impairs glucose-induced insulin secretion and increases diabetes risk when combined with a high-fat diet (HFD) and obesity. KATP-channels in β-cells with two K23 risk alleles (KK) showed decreased ATP inhibition, and the threshold for glucose-stimulated insulin secretion from KK islets was increased. Consequently, the insulin response to glucose and glycemic control was impaired in KK mice fed a standard diet. On an HFD, the effects of the KK genotype were exacerbated, accelerating diet-induced diabetes progression and causing β-cell failure. We conclude that the K23 variant increases diabetes risk by impairing insulin secretion at threshold glucose levels, thus accelerating loss of β-cell function in the early stages of diabetes progression.
Collapse
Affiliation(s)
- Gregor Sachse
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K.
| | - Elizabeth Haythorne
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Thomas Hill
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Peter Proks
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
- Department of Physics, University of Oxford, Oxford, U.K
| | - Russell Joynson
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, U.K
| | - Raul Terrón-Expósito
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Liz Bentley
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, U.K
| | | | - Roger D Cox
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, U.K
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| |
Collapse
|
13
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
14
|
Broome DT, Pantalone KM, Kashyap SR, Philipson LH. Approach to the Patient with MODY-Monogenic Diabetes. J Clin Endocrinol Metab 2021; 106:237-250. [PMID: 33034350 PMCID: PMC7765647 DOI: 10.1210/clinem/dgaa710] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022]
Abstract
UNLABELLED Maturity-onset diabetes of the young, or MODY-monogenic diabetes, is a not-so-rare collection of inherited disorders of non-autoimmune diabetes mellitus that remains insufficiently diagnosed despite increasing awareness. These cases are important to efficiently and accurately diagnose, given the clinical implications of syndromic features, cost-effective treatment regimen, and the potential impact on multiple family members. Proper recognition of the clinical manifestations, family history, and cost-effective lab and genetic testing provide the diagnosis. All patients must undergo a thorough history, physical examination, multigenerational family history, lab evaluation (glycated hemoglobin A1c [HbA1c], glutamic acid decarboxylase antibodies [GADA], islet antigen 2 antibodies [IA-2A], and zinc transporter 8 [ZnT8] antibodies). The presence of clinical features with 3 (or more) negative antibodies may be indicative of MODY-monogenic diabetes, and is followed by genetic testing. Molecular genetic testing should be performed before attempting specific treatments in most cases. Additional testing that is helpful in determining the risk of MODY-monogenic diabetes is the MODY clinical risk calculator (>25% post-test probability in patients not treated with insulin within 6 months of diagnosis should trigger genetic testing) and 2-hour postprandial (after largest meal of day) urinary C-peptide to creatinine ratio (with a ≥0.2 nmol/mmol to distinguish HNF1A- or 4A-MODY from type 1 diabetes). Treatment, as well as monitoring for microvascular and macrovascular complications, is determined by the specific variant that is identified. In addition to the diagnostic approach, this article will highlight recent therapeutic advancements when patients no longer respond to first-line therapy (historically sulfonylurea treatment in many variants). LEARNING OBJECTIVES Upon completion of this educational activity, participants should be able to. TARGET AUDIENCE This continuing medical education activity should be of substantial interest to endocrinologists and all health care professionals who care for people with diabetes mellitus.
Collapse
Affiliation(s)
- David T Broome
- Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, Cleveland, Ohio
- Correspondence and Reprint Requests: David T. Broome, MD, Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, 9500 Euclid Avenue, Mail code: F-20, Cleveland, OH 44195, USA. E-mail:
| | - Kevin M Pantalone
- Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Sangeeta R Kashyap
- Department of Endocrinology, Diabetes & Metabolism, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Louis H Philipson
- Kovler Diabetes Center, Departments of Medicine and Pediatrics, University of Chicago, Chicago, Illinois
| |
Collapse
|
15
|
He B, Li X, Zhou Z. Continuous spectrum of glucose dysmetabolism due to the KCNJ11 gene mutation-Case reports and review of the literature. J Diabetes 2021; 13:19-32. [PMID: 32935446 DOI: 10.1111/1753-0407.13114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/20/2020] [Accepted: 09/03/2020] [Indexed: 12/01/2022] Open
Abstract
The KCNJ11 gene encodes the Kir6.2 subunit of the adenosine triphosphate-sensitive potassium (KATP ) channel, which plays a key role in insulin secretion. Monogenic diseases caused by KCNJ11 gene mutation are rare and easily misdiagnosed. It has been shown that mutations in the KCNJ11 gene are associated with neonatal diabetes mellitus (NDM), maturity-onset diabetes of the young 13 (MODY13), type 2 diabetes mellitus (T2DM), and hyperinsulinemic hypoglycemia. We report four patients with KCNJ11 gene mutations and provide a systematic review of the literature. A boy with diabetes onset at the age of 1 month was misdiagnosed as type 1 diabetes mellitus (T1DM) for 12 years and received insulin therapy continuously, resulting in poor glycemic control. He was diagnosed as NDM with KCNJ11 E322K gene mutation, and glibenclamide was given to replace exogenous insulin. The successful transfer time was 4 months, much longer than the previous unsuccessful standard of 4 weeks. The other three patients were two sisters and their mother; the younger sister was misdiagnosed with T1DM at 13 years old, while the elder sister was diagnosed with diabetes (type undefined) at 16 years old. They were treated with insulin for 3 years, with poor glycemic control. Their mother was diagnosed with T2DM and achieved good glycemia control with glimepiride. They were diagnosed as MODY13 because of the autosomal dominant inheritance of two generations, early onset of diabetes before 25 years of age in the two sisters, and the presence of the KCNJ11 N48D gene mutation. All patients successfully transferred to sulfonylureas with excellent glycemic control. Therefore, the wide spectrum of clinical phenotypes of glucose dysmetabolism caused by KCNJ11 should be recognized to reduce misdiagnosis and implement appropriate treatment.
Collapse
Affiliation(s)
- Binbin He
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| |
Collapse
|
16
|
Piko P, Werissa NA, Fiatal S, Sandor J, Adany R. Impact of Genetic Factors on the Age of Onset for Type 2 Diabetes Mellitus in Addition to the Conventional Risk Factors. J Pers Med 2020; 11:jpm11010006. [PMID: 33375163 PMCID: PMC7822179 DOI: 10.3390/jpm11010006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that the early detection of type 2 diabetes mellitus (T2DM) is important to prevent the development of complications and comorbidities, as well as premature death. The onset of type 2 diabetes mellitus results from a complex interplay between genetic, environmental, and lifestyle risk factors. Our study aims to evaluate the joint effect of T2DM associated single nucleotide polymorphisms (SNPs) on the age of onset for T2DM in combination with conventional risk factors (such as sex, body mass index (BMI), and TG/HDL-C ratio) in the Hungarian population. This study includes 881 T2DM patients (Case population) and 1415 samples from the Hungarian general population (HG). Twenty-three SNPs were tested on how they are associated with the age of onset for T2DM in the Case population and 12 of them with a certified effect on the age of T2DM onset were chosen for an optimized genetic risk score (GRS) analysis. Testing the validity of the GRS model developed was carried out on the HG population. The GRS showed a significant association with the age of onset for T2DM (β = -0.454, p = 0.001) in the Case population, as well as among T2DM patients in the HG one (β = -0.999, p = 0.003) in the replication study. The higher the GRS, the earlier was the T2DM onset. Individuals with more than eight risk alleles will presumably be diabetic six and a half years earlier than those with less than four risk alleles. Our results suggest that there is a considerable genetic predisposition for the early onset of T2DM; therefore, in addition to conventional risk factors, GRS can be used as a tool for estimating the risk of the earlier onset of T2DM and stratifying populations at risk in order to define preventive interventions.
Collapse
Affiliation(s)
- Peter Piko
- MTA-DE Public Health Research Group, University of Debrecen, 4028 Debrecen, Hungary; (P.P.); (N.A.W.)
| | - Nardos Abebe Werissa
- MTA-DE Public Health Research Group, University of Debrecen, 4028 Debrecen, Hungary; (P.P.); (N.A.W.)
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Szilvia Fiatal
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (S.F.); (J.S.)
| | - Janos Sandor
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (S.F.); (J.S.)
| | - Roza Adany
- MTA-DE Public Health Research Group, University of Debrecen, 4028 Debrecen, Hungary; (P.P.); (N.A.W.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (S.F.); (J.S.)
- Correspondence: ; Tel.: +36-5251-2764
| |
Collapse
|
17
|
Yalçın Çapan Ö, Aydın N, Yılmaz T, Berber E. Whole exome sequencing reveals novel candidate gene variants for MODY. Clin Chim Acta 2020; 510:97-104. [DOI: 10.1016/j.cca.2020.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/20/2020] [Accepted: 07/02/2020] [Indexed: 11/30/2022]
|
18
|
The first E59Q mutation identified in the NEUROD1 gene in a Chinese family with maturity-onset diabetes of the young: an observational study. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
19
|
Pipatpolkai T, Usher S, Stansfeld PJ, Ashcroft FM. New insights into K ATP channel gene mutations and neonatal diabetes mellitus. Nat Rev Endocrinol 2020; 16:378-393. [PMID: 32376986 DOI: 10.1038/s41574-020-0351-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
The ATP-sensitive potassium channel (KATP channel) couples blood levels of glucose to insulin secretion from pancreatic β-cells. KATP channel closure triggers a cascade of events that results in insulin release. Metabolically generated changes in the intracellular concentrations of adenosine nucleotides are integral to this regulation, with ATP and ADP closing the channel and MgATP and MgADP increasing channel activity. Activating mutations in the genes encoding either of the two types of KATP channel subunit (Kir6.2 and SUR1) result in neonatal diabetes mellitus, whereas loss-of-function mutations cause hyperinsulinaemic hypoglycaemia of infancy. Sulfonylurea and glinide drugs, which bind to SUR1, close the channel through a pathway independent of ATP and are now the primary therapy for neonatal diabetes mellitus caused by mutations in the genes encoding KATP channel subunits. Insight into the molecular details of drug and nucleotide regulation of channel activity has been illuminated by cryo-electron microscopy structures that reveal the atomic-level organization of the KATP channel complex. Here we review how these structures aid our understanding of how the various mutations in the genes encoding Kir6.2 (KCNJ11) and SUR1 (ABCC8) lead to a reduction in ATP inhibition and thereby neonatal diabetes mellitus. We also provide an update on known mutations and sulfonylurea therapy in neonatal diabetes mellitus.
Collapse
Affiliation(s)
- Tanadet Pipatpolkai
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Samuel Usher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Identification of Ala2Thr mutation in insulin gene from a Chinese MODY10 family. Mol Cell Biochem 2020; 470:77-86. [PMID: 32405973 DOI: 10.1007/s11010-020-03748-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/06/2020] [Indexed: 12/26/2022]
Abstract
More than 80% of maturity-onset diabetes of the young (MODY) in Chinese is genetically unexplained. To investigate whether the insulin gene (INS) mutation is responsible for some Chinese MODY, we screened INS mutations causing MODY10 in MODY pedigrees and explored the potential pathogenic mechanisms. INS mutations were screened in 56 MODY familial probands. Structure-function characterization and clinical profiling of identified INS mutations were conducted. An INS mutation, at the position 2 alanine-to-threonine substitution (A2T), was identified and co-segregated with hyperglycemia in a MODY pedigree. The A2T mutation converted an α-helix into a β-sheet at the N-terminal of the signal peptide (SP) of preproinsulin. The A2T mutation did not affect preproinsulin translocation across endoplasmic reticulum (ER) membrane, but impaired its SP cleavage within the ER. In INS-1 cells transfected with an A2T mutant, glucose-stimulated insulin secretion (GSIS) was significantly decreased, while BiP luciferase activities were significantly increased compared to that of wild type (WT). We identified an INS-A2T mutation cosegregating with diabetes in a Chinese MODY pedigree. This mutation severely impaired SP cleavage and thus blocked the formation of proinsulin, resulting in enhanced ER stress, which may be responsible for decreased insulin secretion and subsequently, the onset of MODY10.
Collapse
|
21
|
Jang KM. Maturity-onset diabetes of the young: update and perspectives on diagnosis and treatment. Yeungnam Univ J Med 2020; 37:13-21. [PMID: 31914718 PMCID: PMC6986955 DOI: 10.12701/yujm.2019.00409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a clinically heterogeneous group of monogenic disorders characterized by ß-cell dysfunction. MODY accounts for between 2% and 5% of all diabetes cases, and distinguishing it from type 1 or type 2 diabetes is a diagnostic challenge. Recently, MODY-causing mutations have been identified in 14 different genes. Sanger DNA sequencing is the gold standard for identifying the mutations in MODY-related genes, and may facilitate the diagnosis. Despite the lower frequency among diabetes mellitus cases, a correct genetic diagnosis of MODY is important for optimizing treatment strategies. There is a discrepancy in the disease-causing locus between the Asian and Caucasian patients with MODY. Furthermore, the prevalence of the disease in Asian populations remains to be studied. In this review, the current understanding of MODY is summarized and the Asian studies of MODY are discussed in detail.
Collapse
Affiliation(s)
- Kyung Mi Jang
- Department of Pediatrics, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
22
|
Urbanova J, Brunerova L, Broz J. How can maturity-onset diabetes of the young be identified among more common diabetes subtypes? Wien Klin Wochenschr 2019; 131:435-441. [PMID: 31493099 DOI: 10.1007/s00508-019-01543-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/13/2019] [Indexed: 12/27/2022]
Abstract
Maturity onset diabetes of the young (MODY) represents a diabetes type which has an enormous clinical impact. It significantly alters treatment, refines a patient's prognosis and enables early detection of diabetes in relatives. Nevertheless, when diabetes is manifested the vast majority of MODY patients are not correctly diagnosed, but mostly falsely included among patients with type 1 or type 2 diabetes, in many cases permanently. The aim of this article is to offer a simple and comprehensible guide for recognizing individuals with MODY hidden among adult patients with another type of long-term diabetes and in women with gestational diabetes.
Collapse
Affiliation(s)
- Jana Urbanova
- Diabetologic centre II. , Department of Medicine, Third Faculty of Medicine and Faculty Hospital Kralovske Vinohrady, Charles University, Šrobarova 50, 10034, Prague, Czech Republic
| | - Ludmila Brunerova
- Diabetologic centre II. , Department of Medicine, Third Faculty of Medicine and Faculty Hospital Kralovske Vinohrady, Charles University, Šrobarova 50, 10034, Prague, Czech Republic.
| | - Jan Broz
- Department of Medicine, Second Faculty of Medicine and Faculty Hospital Motol, Charles Univeristy, V Úvalu 84, 15006, Prague, Czech Republic
| |
Collapse
|
23
|
Yue Z, Zhang L, Li C, Chen Y, Tai Y, Shen Y, Sun Z. Advances and potential of gene therapy for type 2 diabetes mellitus. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1643783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Zonghao Yue
- Department of Bioengineering, College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, PR China
- Department of Food Science, Institute of Food and Drug Inspection, Zhoukou Normal University, Zhoukou, PR China
| | - Lijuan Zhang
- Department of Bioengineering, College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, PR China
| | - Chunyan Li
- Department of Bioengineering, College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, PR China
| | - Yanjuan Chen
- Department of Bioengineering, College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, PR China
| | - Yaping Tai
- Department of Bioengineering, College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, PR China
| | - Yihao Shen
- Department of Bioengineering, College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, PR China
| | - Zhongke Sun
- Department of Bioengineering, College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, PR China
- Department of Food Science, Institute of Food and Drug Inspection, Zhoukou Normal University, Zhoukou, PR China
- Department of Molecular Engineering, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
24
|
Liu L, Liu Y, Ge X, Liu X, Chen C, Wang Y, Li M, Yin J, Zhang J, Chen Y, Zhang R, Jiang Y, Zhao W, Yang D, Zheng T, Lu M, Zhuang L, Jiang M. Insights into pathogenesis of five novel GCK mutations identified in Chinese MODY patients. Metabolism 2018; 89:8-17. [PMID: 30257192 DOI: 10.1016/j.metabol.2018.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/29/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Heterozygous inactivating mutations in GCK are associated with defects in pancreatic insulin secretion and/or hepatic glycogen synthesis leading to mild chronic hyperglycaemia of maturity onset diabetes of young type 2 (MODY2). However, the effect of naturally occurring GCK mutations on the pathogenesis for MODY2 hyperglycaemia remains largely unclear, especially in the Asian population. The aim of this study is to explore the potential pathogenicity of novel GCK mutations related to MODY2. METHODS Genetic screening for GCK mutations from 96 classical MODY families was performed, and structure-function characterization and clinical profile of identified GCK mutations were conducted. RESULTS Five novel (F195S, I211T, V222D, E236G and K458R) and five known (T49N, I159V, R186X, A188T and M381T) mutations were identified and co-segregated with hyperglycaemia in their pedigrees. R186X generates non-functional truncated form and V222D and E236G fully inactivate glucokinase due to severe structure disruptions. The other seven GCK mutations exhibited marked reductions in catalytic efficiency and thermo-stability; notably, the interaction with GKRP was significantly enhanced in I211T, I159V, T49N and K458R, reduced in F195S and M381T, and completely lost with A188T. 31% (17/55) of MODY2 patients showed signs of insulin resistance. Conventional hypoglycaemia treatment did not improve the HbA1C in MODY2 patients when insulin resistance is not present. CONCLUSIONS Five novel GCK mutations have been identified in Chinese MODY. The defects in enzymatic activity and protein stability, together with alteration of GKRP binding on GCK mutants may synergistically contribute to the development of MODY2 hyperglycaemia. No treatment should be prescribed to MODY2 patients when insulin resistance is not present.
Collapse
Affiliation(s)
- Limei Liu
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Yanjun Liu
- Department of Internal Medicine, Charles R. Drew University, USA; David Geffen School of Medicine at University of California, USA
| | - Xiaoxu Ge
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Xipeng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Chen Chen
- Department of Molecular Cell and Biology, University of California at Berkeley, USA
| | - Yanzhong Wang
- School of Population Health and Environmental Science, King's College London, UK
| | - Ming Li
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Jun Yin
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Juan Zhang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yating Chen
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yanyan Jiang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Weijing Zhao
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Di Yang
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, USA
| | - Taishan Zheng
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Ming Lu
- Department of Endocrinology & Metabolism, Putuo Hospital Attached to Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai 200000, China
| | - Langen Zhuang
- Department of Endocrinology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
25
|
Prudente S, Ludovico O, Trischitta V. Familial diabetes of adulthood: A bin of ignorance that needs to be addressed. Nutr Metab Cardiovasc Dis 2017; 27:1053-1059. [PMID: 29174219 DOI: 10.1016/j.numecd.2017.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/29/2017] [Accepted: 10/15/2017] [Indexed: 01/15/2023]
Abstract
AIMS The aim of this article was to share with a wide readership some data and related reasoning about a multigenerational form of diabetes mellitus of adulthood. DATA SYNTHESIS We have recently described a familial form of diabetes mellitus, which in the routine clinical setting of adult individuals is simplistically diagnosed as type 2 diabetes. Such misdiagnosis involves as much as 3% of adult unrelated diabetic patients with no evidence of autoimmune disease. More recent data, obtained by means of a next-generation sequencing, indicate that approximately 25% of such patients carry mutations in the genes involved in monogenic diabetes, thus leaving unraveled the molecular causes of the remaining 75% individuals. CONCLUSIONS Our proposal is to define the latter patients as being affected by familial diabetes of adulthood (FDA), a clear admission of ignorance and a limbo where adult patients with multigenerational diabetes with no genetic definition of their hyperglycemia have to wait for better times.
Collapse
Affiliation(s)
- S Prudente
- Research Unit of Metabolic and Cardiovascular Diseases, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| | - O Ludovico
- Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - V Trischitta
- Research Unit of Metabolic and Cardiovascular Diseases, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; Department of Experimental Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
26
|
van Otterdijk SD, Binder AM, Szarc vel Szic K, Schwald J, Michels KB. DNA methylation of candidate genes in peripheral blood from patients with type 2 diabetes or the metabolic syndrome. PLoS One 2017; 12:e0180955. [PMID: 28727822 PMCID: PMC5519053 DOI: 10.1371/journal.pone.0180955] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/23/2017] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The prevalence of type 2 diabetes (T2D) and the metabolic syndrome (MetS) is increasing and several studies suggested an involvement of DNA methylation in the development of these metabolic diseases. This study was designed to investigate if differential DNA methylation in blood can function as a biomarker for T2D and/or MetS. METHODS Pyrosequencing analyses were performed for the candidate genes KCNJ11, PPARγ, PDK4, KCNQ1, SCD1, PDX1, FTO and PEG3 in peripheral blood leukocytes (PBLs) from 25 patients diagnosed with only T2D, 9 patients diagnosed with T2D and MetS and 11 control subjects without any metabolic disorders. RESULTS No significant differences in gene-specific methylation between patients and controls were observed, although a trend towards significance was observed for PEG3. Differential methylation was observed between the groups in 4 out of the 42 single CpG loci located in the promoters regions of the genes FTO, KCNJ11, PPARγ and PDK4. A trend towards a positive correlation was observed for PEG3 methylation with HDL cholesterol levels. DISCUSSION Altered levels of DNA methylation in PBLs of specific loci might serve as a biomarker for T2D or MetS, although further investigation is required.
Collapse
Affiliation(s)
- Sanne D. van Otterdijk
- Institute for Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexandra M. Binder
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States of America
| | - Katarzyna Szarc vel Szic
- Institute for Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Schwald
- Institute for Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
| | - Karin B. Michels
- Institute for Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States of America
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
27
|
Feng Y, Liu J, Wang M, Liu M, Shi L, Yuan W, Ye J, Hu D, Wan J. The E23K variant of the Kir6.2 subunit of the ATP-sensitive potassium channel increases susceptibility to ventricular arrhythmia in response to ischemia in rats. Int J Cardiol 2017; 232:192-198. [DOI: 10.1016/j.ijcard.2017.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022]
|
28
|
Nagashima K, Tanaka D, Inagaki N. Epidemiology, clinical characteristics, and genetic etiology of neonatal diabetes in Japan. Pediatr Int 2017; 59:129-133. [PMID: 27809389 DOI: 10.1111/ped.13199] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 08/12/2016] [Accepted: 09/20/2016] [Indexed: 11/29/2022]
Abstract
Neonatal diabetes mellitus (NDM) is a rare but potentially devastating metabolic disorder, with a reported incidence of one per 300 000-500 000 births generally, and hyperglycemia develops within the first 6 months of life. NDM is classified into two categories clinically. One is transient NDM (TNDM), in which insulin secretion is spontaneously recovered by several months of age, but sometimes recurs later, and the other is permanent NDM (PNDM), requiring lifelong medication. Recent molecular analysis of NDM identified at least 12 genetic abnormalities: chromosome 6q24, KCNJ11, ABCC8, INS, FOXP3, GCK, IPF1, PTF1A, EIF2AK3, GLUT2, HNF1β, and GLIS3. Of these, imprinting defects on chromosome 6q24 and the KCNJ11 mutation have been recognized as the major causes of TNDM and PNDM, respectively, in Caucasian subjects. Although the pathogenesis and epidemiology of NDM in Japan seem to be clinically distinct, they are still unclear. In this review, we summarize the epidemiology, clinical characteristics, and genetic etiology in Japanese patients with NDM compared with the data on Caucasian patients.
Collapse
Affiliation(s)
- Kazuaki Nagashima
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daisuke Tanaka
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
Vedovato N, Cliff E, Proks P, Poovazhagi V, Flanagan SE, Ellard S, Hattersley AT, Ashcroft FM. Neonatal diabetes caused by a homozygous KCNJ11 mutation demonstrates that tiny changes in ATP sensitivity markedly affect diabetes risk. Diabetologia 2016; 59:1430-1436. [PMID: 27118464 PMCID: PMC4901145 DOI: 10.1007/s00125-016-3964-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/23/2016] [Indexed: 11/16/2022]
Abstract
AIMS/HYPOTHESIS The pancreatic ATP-sensitive potassium (KATP) channel plays a pivotal role in linking beta cell metabolism to insulin secretion. Mutations in KATP channel genes can result in hypo- or hypersecretion of insulin, as in neonatal diabetes mellitus and congenital hyperinsulinism, respectively. To date, all patients affected by neonatal diabetes due to a mutation in the pore-forming subunit of the channel (Kir6.2, KCNJ11) are heterozygous for the mutation. Here, we report the first clinical case of neonatal diabetes caused by a homozygous KCNJ11 mutation. METHODS A male patient was diagnosed with diabetes shortly after birth. At 5 months of age, genetic testing revealed he carried a homozygous KCNJ11 mutation, G324R, (Kir6.2-G324R) and he was successfully transferred to sulfonylurea therapy (0.2 mg kg(-1) day(-1)). Neither heterozygous parent was affected. Functional properties of wild-type, heterozygous and homozygous mutant KATP channels were examined after heterologous expression in Xenopus oocytes. RESULTS Functional studies indicated that the Kir6.2-G324R mutation reduces the channel ATP sensitivity but that the difference in ATP inhibition between homozygous and heterozygous channels is remarkably small. Nevertheless, the homozygous patient developed neonatal diabetes, whereas the heterozygous parents were, and remain, unaffected. Kir6.2-G324R channels were fully shut by the sulfonylurea tolbutamide, which explains why the patient's diabetes was well controlled by sulfonylurea therapy. CONCLUSIONS/INTERPRETATION The data demonstrate that tiny changes in KATP channel activity can alter beta cell electrical activity and insulin secretion sufficiently to cause diabetes. They also aid our understanding of how the Kir6.2-E23K variant predisposes to type 2 diabetes.
Collapse
Affiliation(s)
- Natascia Vedovato
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Edward Cliff
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Peter Proks
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | | | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
30
|
Kim SH. Maturity-Onset Diabetes of the Young: What Do Clinicians Need to Know? Diabetes Metab J 2015; 39:468-77. [PMID: 26706916 PMCID: PMC4696982 DOI: 10.4093/dmj.2015.39.6.468] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/25/2015] [Indexed: 11/15/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes that is characterized by an early onset, autosomal dominant mode of inheritance and a primary defect in pancreatic β-cell function. MODY represents less than 2% of all diabetes cases and is commonly misdiagnosed as type 1 or type 2 diabetes mellitus. At least 13 MODY subtypes with distinct genetic etiologies have been identified to date. A correct genetic diagnosis is important as it often leads to personalized treatment for those with diabetes and enables predictive genetic testing for their asymptomatic relatives. Next-generation sequencing may provide an efficient method for screening mutations in this form of diabetes as well as identifying new MODY genes. In this review, I discuss a current update on MODY in the literatures and cover the studies that have been performed in Korea.
Collapse
Affiliation(s)
- Sung Hoon Kim
- Division of Endocrinology & Metabolism, Department of Medicine, Cheil General Hospital & Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea.
| |
Collapse
|
31
|
Zhang M, Zhou JJ, Cui W, Li Y, Yang P, Chen X, Sheng C, Li H, Qu S. Molecular and phenotypic characteristics of maturity-onset diabetes of the young compared with early onset type 2 diabetes in China. J Diabetes 2015; 7:858-63. [PMID: 25588466 DOI: 10.1111/1753-0407.12253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/17/2014] [Accepted: 12/02/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The aim of the present study was to investigate the contribution of maturity-onset diabetes of the young (MODY) genes to the etiology of 14 Chinese MODY families and to assess phenotypic differences between patients with MODY but without a known genetic cause of diabetes (MODYX) and those with early onset type 2 diabetes (T2D). METHODS The study included 14 MODY probands from unrelated families and 59 patients (age of onset ≤35 years) diagnosed as early onset T2D. A standard meal test and metabolic studies were performed to characterize the clinical features of all patients. All probands with MODY were analyzed for nucleotide variations in promoters, exons, and exon-intron boundaries of 13 known MODY genes by direct DNA sequencing. RESULTS Mutations in 13 known MODY genes were not present in the 14 Chinese families and they were classified as MODYX. However, different polymorphisms were identified, with I27L (42.9%; 12/28) and S487N (46.4%; 13/28) of hepatocyte nuclear factor 4α (HNF1α/MODY3) being two most frequent polymorphisms. Two new polymorphisms, namely T412I and D504H, were detected in carboxyl ester lipase (CEL/MODY8). Compared with patients with early onset T2D, patients with MODYX were diagnosed with diabetes at a younger age (28.3 ± 6.5 vs 24.3 ± 6.5 years; P < 0.05) and had a lower body mass index (BMI; 28.3 ± 6.1 vs 24.1 ± 4.3 kg/m(2) ; P < 0.01) and homeostatic model assessment of β-cell function (47.6 [22.2-89.4] vs 18.5 [6.5-33.7]; P < 0.05). CONCLUSION Herein we report on 14 Chinese families with MODYX and describe its phenotype. Compared with early onset T2D, MODYX is characterized by lower BMI and decreased insulin-secreting capacity.
Collapse
Affiliation(s)
- Manna Zhang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiao Jiao Zhou
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjie Cui
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Yang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyun Chen
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunjun Sheng
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Li
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
The E23K and A190A variations of the KCNJ11 gene are associated with early-onset type 2 diabetes and blood pressure in the Chinese population. Mol Cell Biochem 2015; 404:133-41. [PMID: 25725792 DOI: 10.1007/s11010-015-2373-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/23/2015] [Indexed: 01/19/2023]
Abstract
Conflicting associations between define (KCNJ11) variations and susceptibility to late-onset (>40 years old) type 2 diabetes mellitus (T2DM) have been reported in different ethnic groups. We investigated whether the E23K (G→A, rs5219) or A190A (C→T, rs5218) variations in KCNJ11 are associated with early-onset T2DM and blood pressure in the Chinese population. Case-control study of 175 unrelated Chinese patients with early-onset T2DM (age of onset <40 years old) who receive (ins+, n = 57) or do not receive insulin (ins-, n = 118), and 182 non-diabetic control subjects. PCR-direct sequencing was performed to genotype E23K and A190A; the genotypic frequencies and associations with clinical characteristics were analyzed. The genotypic frequencies of E23K-GA+AA were higher and A190A-TT was lower in the early-onset T2DM group, especially the T2D-ins+ group, compared to the non-diabetic control group (p < 0.01 or 0.05, respectively). In non-diabetic subjects, E23K-AA carriers had significantly higher 2 h plasma glucose and lower 2 h insulin than E23K-GG carriers (both p < 0.05). A190A-TT or E23K-GG carriers had higher systolic blood pressure (SBP) than CC or AA carriers in the non-diabetic control and T2DM groups (both p < 0.05). In the T2DM ins+ group, E23K-AA carriers had lower onset age and duration of diabetes and higher BMI than GG carriers, and A190A-TT carriers had higher SBP than CC carriers (all p < 0.05). The E23K-GA or AA genotypes may increase the susceptibility to early-onset T2DM, while A190A-TT may protect against early-onset T2DM. On the other hand the A190A-TT or E23K-GG genotypes may increase the risk of hypertension in the Chinese population.
Collapse
|