1
|
Dong C, Zhou B, Zhao B, Lin K, Tian Y, Zhang R, Xie D, Wu S, Yang L. GLP-1RAs attenuated obesity and reversed leptin resistance partly via activating the microbiome-derived inosine/A2A pathway. Acta Pharm Sin B 2025; 15:1023-1038. [PMID: 40177547 PMCID: PMC11959926 DOI: 10.1016/j.apsb.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/26/2024] [Accepted: 07/24/2024] [Indexed: 03/19/2025] Open
Abstract
Extensive evidence has demonstrated that glucagon-like peptide-1 receptor agonists (GLP-1RAs) can ameliorate obesity. Our previous studies revealed that (Ex-4)2-Fc, a long-acting GLP-1RA we developed, depends on the leptin pathway to treat obesity. However, the mechanisms linking (Ex-4)2-Fc and leptin resistance remain largely unclear. To address this question, we explored the mechanism of GLP-1RAs from the perspective of the gut microbiota, as increasing evidence indicates an important link between the gut microbiota and obesity. This study aimed to explore the potential role of the gut microbiota in the treatment of GLP-1RAs. We found that (Ex-4)2-Fc treatment reshaped obesity-induced gut microbiota disturbances and substantially increased the abundance of Akkermansia muciniphila (Am). In addition, (Ex-4)2-Fc did not respond well in antibiotic-treated (ATB) Obese mice. Subsequent studies have shown that this defect can be overcome by gavage with Am. In addition, we found that Am enhanced (Ex-4)2-Fc therapy by producing the metabolite inosine. Inosine regulates the macrophage adenosine A2A receptor (A2A) pathway to indirectly reduce leptin levels in adipocytes Thus, elucidating the role of metabolites in regulating the leptin pathway will provide new insights into GLP-1RAs therapy and may lead to more effective strategies for guiding the clinical use of antidiabetic agents.
Collapse
Affiliation(s)
- Chunyan Dong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Bailing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Binyan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Ke Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yaomei Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Rui Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Daoyuan Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Siwen Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
2
|
Li X, Zheng S, Xu H, Zhang Z, Han X, Wei Y, Jin H, Du X, Xu H, Li M, Zhang Z, Wang S, Sun G, Zhang D. The direct and indirect inhibition of proinflammatory adipose tissue macrophages by acarbose in diet-induced obesity. Cell Rep Med 2025; 6:101883. [PMID: 39742869 PMCID: PMC11866445 DOI: 10.1016/j.xcrm.2024.101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/30/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025]
Abstract
Inflammation is critical for obesity and obesity-induced insulin resistance (IR). In this study, we reveal the function and mechanism of acarbose on adipose tissue macrophage (ATM)-mediated inflammation in obesity and obesity-induced IR. First, acarbose enhances the abundance of propionic acid-producing Parasutterella, therefore indirectly inhibiting the survival and proinflammatory function of M1-like ATMs via GPR43. Most interestingly, acarbose can directly inhibit M1-like ATM-mediated inflammation through GPR120. Diet-induced obese mice exhibit nitrobenzoxadiazoles (NBD) fluorescence-labeled ATMs, but lean mice that also orally received NBD fluorescence-labeled acarbose do not exhibit NBD fluorescence-labeled ATMs. This direct inhibition of macrophages by acarbose is validated in mouse and human macrophages in vitro. In conclusion, our study reveals that acarbose directly and indirectly inhibits proinflammatory macrophage phenotype, which contributes to the improvement of obesity and obesity-induced IR. The understanding of the immune regulatory effects of acarbose may extend its potential for further therapeutic applications.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shimeng Zheng
- Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Haozhe Xu
- Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zihan Zhang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaotong Han
- Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yunxiong Wei
- Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Hua Jin
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaonan Du
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Hufeng Xu
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Mengyi Li
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhongtao Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Songlin Wang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China
| | - Guangyong Sun
- Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Dong Zhang
- Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Beijing 100050, China.
| |
Collapse
|
3
|
Guan H, Zhao S, Li J, Wang Y, Niu P, Zhang Y, Zhang Y, Fang X, Miao R, Tian J. Exploring the design of clinical research studies on the efficacy mechanisms in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1363877. [PMID: 39371930 PMCID: PMC11449758 DOI: 10.3389/fendo.2024.1363877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/23/2024] [Indexed: 10/08/2024] Open
Abstract
This review examines the complexities of Type 2 Diabetes Mellitus (T2DM), focusing on the critical role of integrating omics technologies with traditional experimental methods. It underscores the advancements in understanding the genetic diversity of T2DM and emphasizes the evolution towards personalized treatment modalities. The paper analyzes a variety of omics approaches, including genomics, methylation, transcriptomics, proteomics, metabolomics, and intestinal microbiomics, delineating their substantial contributions to deciphering the multifaceted mechanisms underlying T2DM. Furthermore, the review highlights the indispensable role of non-omics experimental techniques in comprehending and managing T2DM, advocating for their integration in the development of tailored medicine and precision treatment strategies. By identifying existing research gaps and suggesting future research trajectories, the review underscores the necessity for a comprehensive, multidisciplinary approach. This approach synergistically combines clinical insights with cutting-edge biotechnologies, aiming to refine the management and therapeutic interventions of T2DM, and ultimately enhancing patient outcomes. This synthesis of knowledge and methodologies paves the way for innovative advancements in T2DM research, fostering a deeper understanding and more effective treatment of this complex condition.
Collapse
Affiliation(s)
- Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiarui Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ping Niu
- Department of Encephalopathy, The Affiliated Hospital of Changchun university of Chinese Medicine, Jilin, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Deli CK, Fatouros IG, Poulios A, Liakou CA, Draganidis D, Papanikolaou K, Rosvoglou A, Gatsas A, Georgakouli K, Tsimeas P, Jamurtas AZ. Gut Microbiota in the Progression of Type 2 Diabetes and the Potential Role of Exercise: A Critical Review. Life (Basel) 2024; 14:1016. [PMID: 39202758 PMCID: PMC11355287 DOI: 10.3390/life14081016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Type 2 diabetes (T2D) is the predominant metabolic epidemic posing a major threat to global health. Growing evidence indicates that gut microbiota (GM) may critically influence the progression from normal glucose tolerance, to pre-diabetes, to T2D. On the other hand, regular exercise contributes to the prevention and/or treatment of the disease, and evidence suggests that a possible way regular exercise favorably affects T2D is by altering GM composition toward health-promoting bacteria. However, research regarding this potential effect of exercise-induced changes of GM on T2D and the associated mechanisms through which these effects are accomplished is limited. This review presents current data regarding the association of GM composition and T2D and the possible critical GM differentiation in the progression from normal glucose, to pre-diabetes, to T2D. Additionally, potential mechanisms through which GM may affect T2D are presented. The effect of exercise on GM composition and function on T2D progression is also discussed.
Collapse
Affiliation(s)
- Chariklia K. Deli
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Ioannis G. Fatouros
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Poulios
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Christina A. Liakou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Dimitrios Draganidis
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Konstantinos Papanikolaou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Anastasia Rosvoglou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Gatsas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Kalliopi Georgakouli
- Department of Dietetics and Nutrition, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece;
| | - Panagiotis Tsimeas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Z. Jamurtas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| |
Collapse
|
5
|
Ren H, Shi Z, Yang F, Wang S, Yuan F, Li T, Li M, Zhu J, Li J, Wu K, Zhang Y, Ning G, Kristiansen K, Wang W, Gu Y, Zhong H. Deciphering unique and shared interactions between the human gut microbiota and oral antidiabetic drugs. IMETA 2024; 3:e179. [PMID: 38882498 PMCID: PMC11170963 DOI: 10.1002/imt2.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 06/18/2024]
Abstract
The administration of oral antidiabetic drugs (OADs) to patients with type 2 diabetes elicits distinct and shared changes in the gut microbiota, with acarbose and berberine exhibiting greater impacts on the gut microbiota than metformin, vildagliptin, and glipizide. The baseline gut microbiota strongly associates with treatment responses of OADs.
Collapse
Affiliation(s)
- Huahui Ren
- BGI Research Shenzhen China
- Department of Biology Laboratory of Genomics and Molecular Biomedicine University of Copenhagen Copenhagen Denmark
| | | | | | - Shujie Wang
- Department of Endocrine and Metabolic Diseases Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai National Clinical Research Center for Metabolic Diseases Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Fengyi Yuan
- Department of Endocrinology and Metabolism Shenzhen People's Hospital Shenzhen China
| | - Tingting Li
- Department of Endocrine and Metabolic Diseases Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai National Clinical Research Center for Metabolic Diseases Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Min Li
- BGI Research Shenzhen China
| | | | - Junhua Li
- BGI Research Shenzhen China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research Shenzhen China
| | - Kui Wu
- BGI Research Shenzhen China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research Shenzhen China
| | - Yifei Zhang
- Department of Endocrine and Metabolic Diseases Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai National Clinical Research Center for Metabolic Diseases Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai National Clinical Research Center for Metabolic Diseases Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Karsten Kristiansen
- BGI Research Shenzhen China
- Department of Biology Laboratory of Genomics and Molecular Biomedicine University of Copenhagen Copenhagen Denmark
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai National Clinical Research Center for Metabolic Diseases Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yanyun Gu
- Department of Endocrine and Metabolic Diseases Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai National Clinical Research Center for Metabolic Diseases Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | | |
Collapse
|
6
|
Zeng Y, Wu Y, Zhang Q, Xiao X. Crosstalk between glucagon-like peptide 1 and gut microbiota in metabolic diseases. mBio 2024; 15:e0203223. [PMID: 38055342 PMCID: PMC10790698 DOI: 10.1128/mbio.02032-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Gut microbiota exert influence on gastrointestinal mucosal permeability, bile acid metabolism, short-chain fatty acid synthesis, dietary fiber fermentation, and farnesoid X receptor/Takeda G protein-coupled receptor 5 (TGR5) signal transduction. The incretin glucagon-like peptide 1 (GLP-1) is mainly produced by L cells in the gut and regulates postprandial blood glucose. Changes in gut microbiota composition and function have been observed in obesity and type 2 diabetes (T2D). Meanwhile, the function and rhythm of GLP-1 have also been affected in subjects with obesity or T2D. Therefore, it is necessary to discuss the link between the gut microbiome and GLP-1. In this review, we describe the interaction between GLP-1 and the gut microbiota in metabolic diseases. On the one hand, gut microbiota metabolites stimulate GLP-1 secretion, and gut microbiota affect GLP-1 function and rhythm. On the other hand, the mechanism of action of GLP-1 on gut microbiota involves the inflammatory response. Additionally, we discuss the effects and mechanism of various interventions, such as prebiotics, probiotics, antidiabetic drugs, and bariatric surgery, on the crosstalk between gut microbiota and GLP-1. Finally, we stress that gut microbiota can be used as a target for metabolic diseases, and the clinical application of GLP-1 receptor agonists should be individualized.
Collapse
Grants
- 81870545, 81870579, 82170854, 81570715, 81170736 MOST | National Natural Science Foundation of China (NSFC)
- 7202163 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Z201100005520011 Beijing Municipal Science and Technology Commission, Adminitrative Commission of Zhongguancun Science Park
- 2017YFC1309603, 2021YFC2501700, 2016YFA0101002, 2018YFC2001100 MOST | National Key Research and Development Program of China (NKPs)
- 2019DCT-M-05 Beijing Municipal Human Resources and Social Security Bureau (BMHRSSB)
- 2017PT31036, 2018PT31021 Chinese Academy of Medical Sciences (CAMS)
- 2017PT32020, 2018PT32001 Chinese Academy of Medical Sciences (CAMS)
- CIFMS2017-I2M-1-008, CIFMS2021-I2M-1-002 Chinese Academy of Medical Sciences (CAMS)
- 2022-PUMCH- C-019, 2022-PUMCH-B-121 National High Level Hospital Clinical Research Funding
Collapse
Affiliation(s)
- Yuan Zeng
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yifan Wu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Li R, Shokri F, Rincon AL, Rivadeneira F, Medina-Gomez C, Ahmadizar F. Bi-Directional Interactions between Glucose-Lowering Medications and Gut Microbiome in Patients with Type 2 Diabetes Mellitus: A Systematic Review. Genes (Basel) 2023; 14:1572. [PMID: 37628624 PMCID: PMC10454120 DOI: 10.3390/genes14081572] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Background: Although common drugs for treating type 2 diabetes (T2D) are widely used, their therapeutic effects vary greatly. The interaction between the gut microbiome and glucose-lowering drugs is one of the main contributors to the variability in T2D progression and response to therapy. On the one hand, glucose-lowering drugs can alter gut microbiome components. On the other hand, specific gut microbiota can influence glycemic control as the therapeutic effects of these drugs. Therefore, this systematic review assesses the bi-directional relationships between common glucose-lowering drugs and gut microbiome profiles. Methods: A systematic search of Embase, Web of Science, PubMed, and Google Scholar databases was performed. Observational studies and randomised controlled trials (RCTs), published from inception to July 2023, comprising T2D patients and investigating bi-directional interactions between glucose-lowering drugs and gut microbiome, were included. Results: Summarised findings indicated that glucose-lowering drugs could increase metabolic-healthy promoting taxa (e.g., Bifidobacterium) and decrease harmful taxa (e.g., Bacteroides and Intestinibacter). Our findings also showed a significantly different abundance of gut microbiome taxa (e.g., Enterococcus faecium (i.e., E. faecium)) in T2D patients with poor compared to optimal glycemic control. Conclusions: This review provides evidence for glucose-lowering drug and gut microbiome interactions, highlighting the potential of gut microbiome modulators as co-adjuvants for T2D treatment.
Collapse
Affiliation(s)
- Ruolin Li
- Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (R.L.); (F.R.); (C.M.-G.)
| | - Fereshteh Shokri
- Department of Epidemiology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Alejandro Lopez Rincon
- Department of Data Science & Biostatistics, Julius Global Health, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands;
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (R.L.); (F.R.); (C.M.-G.)
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (R.L.); (F.R.); (C.M.-G.)
| | - Fariba Ahmadizar
- Department of Epidemiology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Department of Data Science & Biostatistics, Julius Global Health, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands;
| |
Collapse
|
8
|
Rizza S, Pietrucci D, Longo S, Menghini R, Teofani A, Piciucchi G, Montagna M, Federici M. Impact of Insulin Degludec/Liraglutide Fixed Combination on the Gut Microbiomes of Elderly Patients With Type 2 Diabetes: Results From A Subanalysis of A Small Non-Randomised Single Arm Study. Aging Dis 2023; 14:319-324. [PMID: 37008061 PMCID: PMC10017153 DOI: 10.14336/ad.2023.0118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 04/04/2023] Open
Abstract
In elderly Type 2 Diabetes (T2D) patients the relationship between the destabilization of gut microbiome and reversal of dysbiosis via glucose lowering drugs has not been explored. We investigated the effect of 6 months therapy with a fixed combination of Liraglutide and Degludec on the composition of the gut microbiome and its relationship with Quality of Life, glucose metabolism, depression, cognitive function, and markers of inflammation in a group of very old T2D subjects (n=24, 5 women, 19 men, mean age=82 years). While we observed no significant differences in microbiome biodiversity or community among study participants (N = 24, 19 men, mean age 82 years) who responded with decreased HbA1c (n=13) versus those who did not (n=11), our results revealed a significant increase in Gram-negative Alistipes among the former group (p=0.013). Among the responders, changes in the Alistipes content were associated directly with cognitive improvement (r=0.545, p=0.062) and inversely with TNFα levels (r=-0.608, p=0.036). Our results suggest that this combination drug may have a significant impact on both gastrointestinal microbes and cognitive function in elderly T2D individuals.
Collapse
|