1
|
Chen X, Feng W, Yan F, Li W, Xu P, Tang Y. Alteration of antioxidant status, glucose metabolism, and hypoxia signal pathway in Eirocheir sinensis after acute hypoxic stress and reoxygenation. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109604. [PMID: 36906248 DOI: 10.1016/j.cbpc.2023.109604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Dissolved oxygen (DO) is crucial for the survival of Chinese mitten crab (Eirocheir sinensis); low DO levels adversely affect the health of these crabs. In this study, we evaluated the underlying response mechanism of E. sinensis to acute hypoxic stress by analyzing antioxidant parameters, glycolytic indicators, and hypoxia signaling factors. The crabs were exposed to hypoxia for 0, 3, 6, 12, and 24 h and reoxygenated for 1, 3, 6, 12, and 24 h. The hepatopancreas, muscle, gill, and hemolymph were sampled at different exposure times to detect the biochemical parameters and gene expression. The results showed that the activity of catalase, antioxidants, and malondialdehyde in tissues significantly increased under acute hypoxia and gradually decreased during the reoxygenation phase. Under acute hypoxic stress, glycolysis indices, including hexokinase (HK), phosphofructokinase, pyruvate kinase (PK), pyruvic acid (PA), lactate dehydrogenase (LDH), lactic acid (LA), succinate dehydrogenase (SDH), glucose, and glycogen in the hepatopancreas, hemolymph, and gills increased to varying degrees but recovered to the control levels after reoxygenation. Gene expression data showed that hypoxia signaling pathway-related genes, including hypoxia-inducible factor-1α/β (HIF1α/β), prolyl hydroxylase (PHD), factor inhibiting hypoxia-inducible factor (FIH), and glycolysis-related factors (HK and PK) were upregulated, showing that the HIF signaling pathway was activated under hypoxic conditions. In conclusion, acute hypoxic exposure activated the antioxidant defense system, glycolysis, and HIF pathway to respond to adverse conditions. These data contribute to elucidating the defense and adaptive mechanisms of crustaceans to acute hypoxic stress and reoxygenation.
Collapse
Affiliation(s)
- Xue Chen
- College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China
| | - Wenrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Fengyuan Yan
- College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China
| | - Wenjing Li
- Jiangsu Haorun Biological Industry Group Co., Ltd, Taizhou 225300, China; Jiangsu Haorun National Crab Seed Technology Co., Ltd, Taizhou 225300, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongkai Tang
- College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
2
|
Pereira F, Pereira A, Monteiro SM, Venâncio C, Félix L. Mitigation of nicotine-induced developmental effects by 24-epibrassinolide in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109552. [PMID: 36682642 DOI: 10.1016/j.cbpc.2023.109552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
Nicotine is a highly addictive substance that can cause teratogenic impacts in the embryo through redox-dependent pathways. As antioxidants, naturally occurring chemicals can protect cells from redox imbalance. The purpose of this study was to evaluate the effectiveness of 24-epibrassinolide (24-EPI), a natural brassinosteroid with well-known antioxidant properties, in protecting zebrafish embryos against nicotine's teratogenic effects. For 96 h, embryos (2 h post-fertilization - hpf) were exposed to 100 μM nicotine, co-exposed with 24-EPI (0.01, 0.1, and 1 μM), and 24-EPI alone (1 μM). Lethal and sublethal developmental characteristics were evaluated during exposure. Biochemical tests were performed at the conclusion of the exposure, and distinct behavioural paradigms were analysed 24 h later. Nicotine exposure resulted in a higher proportion of larvae with deformities, which were decreased following co-exposure to 24-EPI. Nicotine exposure also caused an increase in oxidative stress as observed by the increased activity of superoxide dismutase and catalase accompanied by an increase in the malondialdehyde levels. Besides, metabolic changes were noticed as observed by the increased lactate dehydrogenase activity that were hypothesised to be associated to nicotine-induced hypoxia which may be responsible for the increased oxidative damage. In addition, locomotor deficits were observed as well as a decrease in the acetylcholinesterase activity denoting nicotine-induced cognitive dysfunction. However, co-exposure to 24-EPI alleviated behavioural deficits and improved nicotine-induced emotional states. Overall, and although further studies are required to clarify these effects, 24-EPI showed promising ameliorative properties against the teratogenic effects induced by nicotine.
Collapse
Affiliation(s)
- Francisco Pereira
- Life Sciences and Environment School (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Adriana Pereira
- Life Sciences and Environment School (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Sandra M Monteiro
- Life Sciences and Environment School (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, Vila Real, Portugal; Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, Vila Real, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, Vila Real, Portugal; Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, Vila Real, Portugal; Department of Animal Science, School of Agrarian and Veterinary Sciences (ECAV), UTAD, Vila Real, Portugal
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, Vila Real, Portugal; Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, Vila Real, Portugal.
| |
Collapse
|
3
|
Yu H, He Y, Zhang J, Zhang Z, Zhang X. Hepatic transcriptome analysis reveals the metabolic strategies of largemouth bass (Micropterus salmoides) under different dissolved oxygen condition. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101032. [PMID: 36371883 DOI: 10.1016/j.cbd.2022.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Dissolved oxygen (DO) affects aquatic animals at a fundamental level so that the differences in its metabolic strategies under prolonged hypoxic conditions need an urgent exploration. In this experiment, largemouth bass (Micropterus salmoides) were chronically exposed (6 weeks) to severe hypoxia (S-HYP, DO: 2.0 ± 0.4 mg/L) and mild hypoxia (M-HYP, DO: 5.1 ± 0.4 mg/L). Compared to the control group (CON, DO:8.4 ± 0.4 mg/L), 1196 and 232 differentially expressed genes (DEGs) were obtained in S-HYP and M-HPY groups via transcriptome analysis, respectively. In S-HYP, lipolysis was promoted while anabolism was blocked. Meanwhile, significantly less fat droplet area was observed in the liver histology of S-HYP. Additionally, the cell cycle also responded to hypoxia, being blocked in the G1 phase with the suspension of DNA replication process. In M-HYP, the processing of protein in the endoplasmic reticulum and the synthesis of various aminoacyl t-RNA were inhibited, and a novel balance of the urea cycle might be established in the biosynthesis of arginine. The key DEGs involved in the above metabolic pathways, such as atgl, cpt1, arg1, etc., were validated by Q-PCR yielding results consistent with transcriptome data. This study indicates that the largemouth bass is prone to increase the proportion of lipid as an energy supply to adapt to the reprogramming of energy metabolism, while reducing the rate of cell proliferation to adapt to chronic severe hypoxia. This is also an undescribed observation in fish liver metabolism that largemouth bass may transform the synthesis and processing strategies of protein when exposed to chronic mild hypoxia.
Collapse
Affiliation(s)
- Haodong Yu
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ya He
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jinying Zhang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ziyi Zhang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
4
|
Zhao L, Yan H, Cheng L, He K, Liu Q, Luo J, Luo W, Zhang X, Yan T, Du Z, Li Z, Yang S. Metabolic response provides insights into the mechanism of adaption to hypoxia in largemouth bass (Micropterus salmoides) under intermittent hypoxic conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113957. [PMID: 35999769 DOI: 10.1016/j.ecoenv.2022.113957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
In metabolism, molecular oxygen is a necessary substrate. Oxygen imbalances are linked to a variety of circumstances in the organism's homeostasis. Recently, the positive effects of hypoxia treatment in improving exercise ability and hypoxia tolerance have become a research focus. We explored the effects of intermittent hypoxia exposure (IHE, for one hour or three hours per day) on the hypoxia tolerance of largemouth bass in this study. The results showed that (1) IHE significantly reduced the LOEcrit (the critical O2 tension for loss of equilibrium) value of largemouth bass, indicating that its hypoxia tolerance was enhanced. (2) The level of oxidative stress in the liver decreased in the HH3 group (exposed to a hypoxic condition for 3 h per day) compared to HH1 group (exposed to a hypoxic condition for 1 h per day). (3) IHE reduced the content of lactic acid and enhanced the process of gluconeogenesis in the liver. (4) Importantly, lipid mobilization and fatty acid oxidation in the liver of largemouth bass were significantly enhanced during IHE. In short, the results of this study indicate that IHE can improve hypoxia tolerance by regulating the energy metabolism of largemouth bass.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Liangshun Cheng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhiqiong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
5
|
Chowdhury S, Saikia SK. Use of Zebrafish as a Model Organism to Study Oxidative Stress: A Review. Zebrafish 2022; 19:165-176. [PMID: 36049069 DOI: 10.1089/zeb.2021.0083] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Dioxygen is an integral part of every living organism, but its concentration varies from organ to organ. Production of metabolites from dioxygen may result in oxidative stress. Since oxidative stress has the potential to damage various biomolecules in the cell, therefore, it has presently become an active field of research. Oxidative stress has been studied in a wide range of model organisms from vertebrates to invertebrates, from rodents to piscine organisms, and from in vivo to in vitro models. But zebrafish (adults, larvae, or embryonic stage) emerged out to be the most promising vertebrate model organism to study oxidative stress because of its vast advantages (transparent embryo, cost-effectiveness, similarity to human genome, easy developmental processes, numerous offspring per spawning, and many more). This is evidenced by voluminous number of researches on oxidative stress in zebrafish exposed to chemicals, radiations, nanoparticles, pesticides, heavy metals, etc. On these backgrounds, this review attempts to highlight the potentiality of zebrafish as model of oxidative stress compared with other companion models. Several areas, from biomedical to environmental research, have been covered to explain it as a more convenient and reliable animal model for experimental research on oxidative mechanisms.
Collapse
Affiliation(s)
- Sabarna Chowdhury
- Aquatic Ecology and Fish Biology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
| | - Surjya Kumar Saikia
- Aquatic Ecology and Fish Biology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
| |
Collapse
|
6
|
Lee Y, Kim MS, Park JJC, Lee YH, Lee JS. Oxidative stress-mediated synergistic deleterious effects of nano- and microplastics in the hypoxia-conditioned marine rotifer Brachionus plicatilis. MARINE POLLUTION BULLETIN 2022; 181:113933. [PMID: 35850089 DOI: 10.1016/j.marpolbul.2022.113933] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
While pollution due to nano- and micro-sized plastics (NMPs) and hypoxic conditions both occur in coastal areas, the deleterious potential of co-exposure to hypoxia and NMPs (hypoxia and micro-sized plastics, HMPs; hypoxia and nano-sized plastics, HNPs) is largely unclear. Here, we provide evidence for multigenerational effects of HMP and HNP in the marine rotifer Brachionus plicatilis by investigating changes in its life traits, antioxidant system, and hypoxia-inducible factor (HIF) pathway using an orthogonal experimental design, with nanoscale and microscale particles measuring 0.05 μm and 6.0 μm in diameter, respectively, and hypoxic conditions of 0.5 mg/L for six generations. Combined exposure to NMPs and hypoxia caused a significant decrease in fecundity and overproduction of reactive oxygen species (ROS). The HIF pathway and circadian clock genes were also significantly upregulated in response to HMP and HNP exposure. In particular, synergistic deleterious effects of HNP were evident, suggesting that size-dependent toxicity can be a major driver of the effects of hypoxia and NMP co-exposure. After several generations of exposure, ROS levels returned to basal levels and transcriptomic resilience was observed, although rotifer reproduction remained suppressed. These findings help eluciating the underlying molecular mechanisms involved in responses to plastic pollution in hypoxic conditions.
Collapse
Affiliation(s)
- Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jordan Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W1M0, Canada
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
7
|
Hematogenesis Adaptation to Long-Term Hypoxia Acclimation in Zebrafish (Danio rerio). FISHES 2022. [DOI: 10.3390/fishes7030098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
When fish live in the wild or are cultured artificially, they will inevitably suffer from hypoxia. At the same time, blood physiological indexes represent the physiological state of fish. In order to study the effect of long-term hypoxia acclimation on fish hematogenesis, we cultured zebrafish embryos into adulthood in a hypoxia incubator (1.5 ± 0.2 mg/L). Then we compared the hematological parameters of zebrafish cultured in normoxia and hypoxia conditions. Transcriptome sequencing analysis of the main hematopoietic tissue, the head kidney, was also compared between the two groups. Results showed that the number of erythrocytes increased significantly in the long-term hypoxia acclimated group, while the size of several cell types, such as red blood cells, eosinophils, basophils, small lymphocytes and thrombocytes, decreased significantly. The transcriptomic comparisons revealed that there were 6475 differentially expressed genes (DEGs) between the two groups. A Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that hematopoiesis and cell proliferation signaling were the most significantly enriched pathways in the head kidney of hypoxia acclimated zebrafish. In addition, many genes involved in the hematopoietic process showed significantly higher levels of expression in the hypoxia acclimated zebrafish, when compared to the normoxia zebrafish. When considered together, these data allowed us to conclude that long-term hypoxia can promote the hematopoiesis process and cell proliferation signaling in the zebrafish head kidney, which resulted in higher red blood cell production. Higher numbers of red blood cells allow for better adaptation to the hypoxic environment. In conclusion, this study provides a basis for the in-depth understanding of the effects of hypoxia on hematogenesis in fish species.
Collapse
|
8
|
Souza JP, Mansano AS, Venturini FP, Marangoni VS, Lins PMP, Silva BPC, Dressler B, Zucolotto V. Toxicity of gold nanorods on Ceriodaphnia dubia and Danio rerio after sub-lethal exposure and recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25316-25326. [PMID: 33453024 DOI: 10.1007/s11356-021-12423-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Gold nanorods (AuNRs) are rod-shaped nanoparticles (NPs) with special optical properties that allow their application in several areas including photothermal therapy, diagnosis, drug and gene delivery, cellular imaging, and biosensors. Their high potential for many applications increases the possibility of release in aquatic environments, which can cause risks to organisms. In this study, we evaluated toxic effects of AuNRs on cladoceran and fish (Ceriodaphnia dubia and Danio rerio) and their recovery after post-exposure periods. The EC50 of 0.03 mg L-1 was found for C. dubia in the acute exposure. There was a significant decrease in the number of neonates produced and in the filtration rate of C. dubia after sub-lethal exposure to AuNRs. The toxic mechanism of these NPs to cladocerans was attributed to increases in the reactive oxygen species (ROS) generation. After 4 h of recovery in clean medium, C. dubia were able to reestablish the filtration rate. Enzymatic biomarkers for D. rerio showed significant increases in the activity of superoxide dismutase, catalase, and lipid peroxidation after sub-lethal exposure to AuNRs. These biomarkers were recovered after 168 h in clean water. These results are pivotal on the comprehension of AuNR toxicity to aquatic organisms and are useful in assessing this novel nanomaterial impacts on aquatic biota.
Collapse
Affiliation(s)
- Jaqueline P Souza
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador Sãocarlense, 400, São Carlos, SP, 13560-970, Brazil.
| | - Adrislaine S Mansano
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador Sãocarlense, 400, São Carlos, SP, 13560-970, Brazil
| | - Francine P Venturini
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador Sãocarlense, 400, São Carlos, SP, 13560-970, Brazil
| | - Valéria S Marangoni
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador Sãocarlense, 400, São Carlos, SP, 13560-970, Brazil
| | - Paula M P Lins
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador Sãocarlense, 400, São Carlos, SP, 13560-970, Brazil
| | - Barbara P C Silva
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador Sãocarlense, 400, São Carlos, SP, 13560-970, Brazil
| | - Bárbara Dressler
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador Sãocarlense, 400, São Carlos, SP, 13560-970, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador Sãocarlense, 400, São Carlos, SP, 13560-970, Brazil
| |
Collapse
|
9
|
Luu I, Ikert H, Craig PM. Chronic exposure to anthropogenic and climate related stressors alters transcriptional responses in the liver of zebrafish (Danio rerio) across multiple generations. Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108918. [PMID: 33141083 DOI: 10.1016/j.cbpc.2020.108918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/09/2020] [Accepted: 10/18/2020] [Indexed: 01/04/2023]
Abstract
The antidepressant, venlafaxine (VFX), and climate change stressors, such as increased water temperature and decreased dissolved oxygen, are current threats to aquatic environments. This study aimed to determine how microRNAs (miRNAs) and predicted targeted transcripts were altered in livers of zebrafish exposed to these stressors, and livers of their un-exposed F1 and F2 offspring. Following a 21 day exposure to multiple stressors (1 μg/L VFX, +5 °C ambient, 50% O2), then a subsequent 21 day recovery, relative abundances of cyp3a65, hsp70, hsp90, and ppargc1a and miRNAs predicted to target them (miR-142a, miR-16c, miR-181c, and miR-129, respectively) were measured in the liver via quantitative PCR (RT-qPCR). There were significant decreases in miR-142a in the exposed F0 generation and the exposed F1 generation. While there were no changes detected in cyp3a65 relative abundance, there was a significant inverse relationship between cyp3a65 and miR-142a. Hsp70 expression significantly increased in the F1 generation, which persisted to the F2 generation and the relative abundance of hsp90 significantly increased in all generations. There was a significant reduction in miR-181c in the F1 generation, but there was no significant relationship between miR-181c and hsp90. Finally, there was a significant decrease in ppargc1a relative abundance in the F1 generation which was associated with an increase in miR-129. Combined, these results suggest that parental exposure to multiple, environmentally relevant stressors can confer transcriptional and epigenetic responses in the F1 and F2 generations, although identifying which stressor is a driving force becomes unclear.
Collapse
Affiliation(s)
- Ivy Luu
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo N2L 3G1, Ontario, Canada
| | - Heather Ikert
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo N2L 3G1, Ontario, Canada.
| | - Paul M Craig
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo N2L 3G1, Ontario, Canada
| |
Collapse
|
10
|
Condensed tannins enhanced antioxidant capacity and hypoxic stress survivability but not growth performance and fatty acid profile of juvenile Japanese seabass (Lateolabrax japonicus). Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114671] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Suzuki J, Imamura M, Fujita M. Oxidative stress response of caddisfly Stenopsyche marmorata larvae to abrupt hypoxia-normoxia shift. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:66-72. [PMID: 30954017 DOI: 10.1016/j.aquatox.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Natural and anthropogenic effects cause low dissolved oxygen conditions (hypoxia) and subsequent reoxygenated conditions (normoxia) in river systems. However, oxidative stress responses to hypoxia-normoxia shift in aquatic insects are still poorly understood. Here, we exposed caddisfly Stenopsyche marmorata larvae to 30-min hypoxic followed by 1-d normoxic exposure, with experiments being repeated at 14 °C (Exp.1) and 20 °C (Exp.2), respectively. Exp.1 was conducted in December 2016 using overwintering larvae, and Exp.2 was conducted in June 2016 using non-wintering larvae. The responses of superoxide dismutase (SOD) and catalase (CAT) activity, oxygen radical absorption capacity (ORAC), lipid peroxidation (LPO), and energy reserves were investigated. The hypoxia-normoxia shift considerably inhibited CAT and ORAC in Exp.1. In addition, the energy reserves were decreased in response to exposure to severe hypoxia-normoxia. However, LPO was not induced under these conditions. It is conceivable that regulating antioxidant defense enzymes and utilizing energy reserves may suppress the expected increases in LPO. In contrast, the hypoxia-normoxia shift in Exp.2 had almost no effect on oxidative stress response, with only ORAC being induced. Exp.1 had a lower dissolved oxygen partial pressure and a larger difference in the oxygen partial pressure between hypoxia and normoxia than Exp.2. The severity of hypoxia-normoxia shift and the differences in the life cycles (overwintering or non-wintering) may cause the difference in the response of ORAC in Exp.1 and Exp.2. This study revealed that the effect of the hypoxia-normoxia shift on oxidative stress response in aquatic insects and the strength of the impact of the shift on oxidative stress response may be influenced by water temperature and life cycles.
Collapse
Affiliation(s)
- Jumpei Suzuki
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko 1646, Abiko, Chiba, 270-1194, Japan.
| | - Masahiro Imamura
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko 1646, Abiko, Chiba, 270-1194, Japan
| | - Masafumi Fujita
- Department of Civil, Architectural and Environmental Engineering, Ibaraki University, Nakanarusawa 4-12-1, Hitachi, Ibaraki, 316-8511, Japan
| |
Collapse
|
12
|
Wood CM. The fallacy of the P crit - are there more useful alternatives? ACTA ACUST UNITED AC 2018; 221:221/22/jeb163717. [PMID: 30420494 DOI: 10.1242/jeb.163717] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
P crit - generally defined as the P O2 below which the animal can no longer maintain a stable rate of O2 consumption (Ṁ O2 ), such that Ṁ O2 becomes dependent upon P O2 - provides a single number into which a vast amount of experimental effort has been invested. Here, with specific reference to water-breathers, I argue that this focus on the P crit is not useful for six reasons: (1) calculation of P crit usually involves selective data editing; (2) the value of P crit depends greatly on the way it is determined; (3) there is no good theoretical justification for the concept; (4) P crit is not the transition point from aerobic to anaerobic metabolism, and it disguises what is really going on; (5) P crit is not a reliable index of hypoxia tolerance; and (6) P crit carries minimal information content. Preferable alternatives are loss of equilibrium (LOE) tests for hypoxia tolerance, and experimental description of full Ṁ O2 versus P O2 profiles accompanied by measurements of ventilation, lactate appearance and metabolic rate by calorimetry. If the goal is to assess the ability of the animal to regulate Ṁ O2 from this profile in a mathematical fashion, promising, more informative alternatives to P crit are the regulation index and Michaelis-Menten or sigmoidal allosteric analyses.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 .,Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1.,Rosenstiel School of Marine and Atmospheric Science, University of Miami, FL 33149, USA
| |
Collapse
|
13
|
Testing hypoxia: physiological effects of long-term exposure in two freshwater fishes. Oecologia 2017; 186:37-47. [PMID: 29110076 DOI: 10.1007/s00442-017-3992-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/25/2017] [Indexed: 01/24/2023]
Abstract
Hypoxic or oxygen-free zones are linked to large-scale mortalities of fauna in aquatic environments. Studies investigating the hypoxia tolerance of fish are limited and focused on marine species and short-term exposure. However, there has been minimal effort to understand the implications of long-term exposure on fish and their ability to acclimate. To test the effects of long-term exposure (months) of fish to hypoxia we devised a novel method to control the level of available oxygen. Juvenile golden perch (Macquaria ambigua ambigua), and silver perch (Bidyanus bidyanus), two key native species found within the Murray Darling Basin, Australia, were exposed to different temperatures (20, 24 and 28 °C) combined with normoxic (6-8 mgO2 L-1 or 12-14 kPa) and hypoxic (3-4 mgO2 L-1 or 7-9 kPa) conditions. After 10 months, fish were placed in individual respirometry chambers to measure standard and maximum metabolic rate (SMR and MMR), absolute aerobic scope (AAS) and hypoxia tolerance. Golden perch had a much higher tolerance to hypoxia exposure than silver perch, as most silver perch died after only 1 month exposure. Golden perch acclimated to hypoxia had reduced MMR at 20 and 28 °C, but there was no change to SMR. Long-term exposure to hypoxia improved the tolerance of golden perch to hypoxia, compared to individuals held under normoxic conditions suggesting that golden perch can acclimate to levels around 3 mgO2 L-1 (kPa ~ 7) and lower. The contrasting tolerance of two sympatric fish species to hypoxia highlights our lack of understanding of how hypoxia effects fish after long-term exposure.
Collapse
|
14
|
Moreira DC, Oliveira MF, Liz-Guimarães L, Diniz-Rojas N, Campos ÉG, Hermes-Lima M. Current Trends and Research Challenges Regarding "Preparation for Oxidative Stress". Front Physiol 2017; 8:702. [PMID: 28993737 PMCID: PMC5622305 DOI: 10.3389/fphys.2017.00702] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/31/2017] [Indexed: 12/26/2022] Open
Abstract
Survival under stress, such as exposure to hypoxia, anoxia, freezing, dehydration, air exposure of water breathing organisms, and estivation, is commonly associated to enhanced endogenous antioxidants, a phenomenon coined "preparation for oxidative stress" (POS). The regulation of free radical metabolism seems to be crucial under these selective pressures, since this response is widespread among animals. A hypothesis of how POS works at the molecular level was recently proposed and relies on two main processes: increased reactive species production under hypoxia, and activation of redox-sensitive transcription factors and signaling pathways, increasing the expression of antioxidants. The present paper brings together the current knowledge on POS and considers its future directions. Data indicate the presence of POS in 83 animal species (71.6% among investigated species), distributed in eight animal phyla. Three main research challenges on POS are presented: (i) to identify the molecular mechanism(s) that mediate/induce POS, (ii) to identify the evolutionary origins of POS in animals, and (iii) to determine the presence of POS in natural environments. We firstly discuss the need of evidence for increased RS production in hypoxic conditions that underlie the POS response. Secondly, we discuss the phylogenetic origins of POS back 700 million years, by identifying POS-positive responses in cnidarians. Finally, we present the first reports of the POS adaptation strategy in the wild. The investigation of these research trends and challenges may prove useful to understand the evolution of animal redox adaptations and how they adapt to increasing stressful environments on Earth.
Collapse
Affiliation(s)
- Daniel C. Moreira
- Departamento de Biologia Celular, Universidade de BrasíliaBrasilia, Brazil
- Área de Morfologia, Faculdade de Medicina, Universidade de BrasíliaBrasilia, Brazil
| | - Marcus F. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Lara Liz-Guimarães
- Departamento de Biologia Celular, Universidade de BrasíliaBrasilia, Brazil
| | - Nilda Diniz-Rojas
- Departamento de Genética e Morfologia, Universidade de BrasíliaBrasilia, Brazil
| | - Élida G. Campos
- Departamento de Biologia Celular, Universidade de BrasíliaBrasilia, Brazil
| | | |
Collapse
|