1
|
Su Y, Rahaman MH, Liu W, Wen Y, Zhai J. Methane oxidation driven by multiple electron acceptors in the water level fluctuation zone of the Three Gorges Reservoir area, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176041. [PMID: 39244041 DOI: 10.1016/j.scitotenv.2024.176041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Water level fluctuations in China's Three Gorges Reservoir (TGR) area are typical of many reservoirs and significantly impact water level fluctuation zones (WLFZ), including upstream rivers. Understanding methane oxidation in the TGR-WLFZ is crucial for evaluating the impact of large-scale reservoir construction on global climate change. In this study, we investigated methane oxidation rates in the TGR-WLFZ, focusing on periods of drying and flooding. The highest methane oxidation rates were observed during the drying period, ranging from 35.69 to 56.32 nmol/(g soil)/d, while the lowest rates were recorded during the flooding period, at 11.58 to 11.98 nmol/(g soil)/d, in lab-scale simulated columns. Using 13CH4 labeling experiments, we measured CH4 oxidation potentials for aerobic methane oxidation (AMO) using oxygen and anaerobic oxidation of methane (AOM) using nitrite, nitrate, sulfate, ferric iron, and manganese oxide as electron acceptors at varying concentrations. AMO was the dominant process across all experiments, with potentials ranging from 145.71 to 180.77 nmol 13CO2/(g soil)/d. For AOM, metal-dependent oxidation, particularly with Fe (III) and Mn(IV), was predominant (12.64-17.59 and 3.91-12.69 nmol 13CO2/(g soil)/d, respectively), followed by nitrite and nitrate-dependent pathways (1.49-9.10 nmol 13CO2/(g soil)/d). Sulfate-dependent AOM was limited (1.33-3.27 nmol 13CO2/(g soil)/d). Metagenomic analysis identified key microorganisms responsible for AMO, such as unclassified_f_Methylobacteriaeae and Methylobacterium sp., and for AOM are Ca. Methylomirabilis oxyfera, Ca. Methanoperedens nitroreducens and Ca. Methylomirabilis sp. Complete functional genes and enzymes for the methane oxidation and reverse methanogenesis pathways were obtained in each hydrological period, with the highest content during the drying period and the lowest during flooding. Our study shows that reservoirs, traditionally considered significant sources of methane, may also act as methane sinks. This finding raises new questions: How do different methane oxidation pathways respond to water level fluctuations in reservoirs, and are some pathways more resilient to changes in hydrological conditions?
Collapse
Affiliation(s)
- Yiming Su
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Chongqing University, Chongqing 400045, China
| | - Md Hasibur Rahaman
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China
| | - Wenbo Liu
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China
| | - Yuhong Wen
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Chongqing University, Chongqing 400045, China
| | - Jun Zhai
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Chongqing University, Chongqing 400045, China; Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China.
| |
Collapse
|
2
|
Xiang Y, Liu G, Yin Y, Li Y, Wang D, Cai Y, Jiang G. Human activities shape important geographic differences in fish mercury concentration levels. NATURE FOOD 2024; 5:836-845. [PMID: 39327525 DOI: 10.1038/s43016-024-01049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
Fish consumption is a major route of human exposure to mercury (Hg), yet limited understanding of how anthropogenic activities drive geographic variations in fish Hg worldwide hinders effective Hg pollution management. Here we characterized global geographic variations in total Hg (THg) and methylmercury (MeHg), compared THg and MeHg levels between the United States and China, and used a structural equation model to link the geographic variability of MeHg in fish to human activities. Despite previously reported higher Hg emissions in China, Chinese fish have lower THg and MeHg levels than fish in the United States owing to a lower trophic magnification slope, shortened food chains and shorter fish lifespans. The structural equation model revealed strong impacts of human activities on MeHg levels in fish. In the future, China may face elevated MeHg levels in fish with the ongoing recovery of food web ecology, highlighting the importance of local policies.
Collapse
Affiliation(s)
- Yuping Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Guangliang Liu
- Institute of Environment and Health, Jianghan University, Wuhan, China
- Department of Chemistry and Biochemistry and Institute of Environment, Florida International University, Miami, FL, USA
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- Institute of Environment and Health, Jianghan University, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Dingyong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Yong Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- Department of Chemistry and Biochemistry and Institute of Environment, Florida International University, Miami, FL, USA.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Evers DC, Ackerman JT, Åkerblom S, Bally D, Basu N, Bishop K, Bodin N, Braaten HFV, Burton MEH, Bustamante P, Chen C, Chételat J, Christian L, Dietz R, Drevnick P, Eagles-Smith C, Fernandez LE, Hammerschlag N, Harmelin-Vivien M, Harte A, Krümmel EM, Brito JL, Medina G, Barrios Rodriguez CA, Stenhouse I, Sunderland E, Takeuchi A, Tear T, Vega C, Wilson S, Wu P. Global mercury concentrations in biota: their use as a basis for a global biomonitoring framework. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:325-396. [PMID: 38683471 PMCID: PMC11213816 DOI: 10.1007/s10646-024-02747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 05/01/2024]
Abstract
An important provision of the Minamata Convention on Mercury is to monitor and evaluate the effectiveness of the adopted measures and its implementation. Here, we describe for the first time currently available biotic mercury (Hg) data on a global scale to improve the understanding of global efforts to reduce the impact of Hg pollution on people and the environment. Data from the peer-reviewed literature were compiled in the Global Biotic Mercury Synthesis (GBMS) database (>550,000 data points). These data provide a foundation for establishing a biomonitoring framework needed to track Hg concentrations in biota globally. We describe Hg exposure in the taxa identified by the Minamata Convention: fish, sea turtles, birds, and marine mammals. Based on the GBMS database, Hg concentrations are presented at relevant geographic scales for continents and oceanic basins. We identify some effective regional templates for monitoring methylmercury (MeHg) availability in the environment, but overall illustrate that there is a general lack of regional biomonitoring initiatives around the world, especially in Africa, Australia, Indo-Pacific, Middle East, and South Atlantic and Pacific Oceans. Temporal trend data for Hg in biota are generally limited. Ecologically sensitive sites (where biota have above average MeHg tissue concentrations) have been identified throughout the world. Efforts to model and quantify ecosystem sensitivity locally, regionally, and globally could help establish effective and efficient biomonitoring programs. We present a framework for a global Hg biomonitoring network that includes a three-step continental and oceanic approach to integrate existing biomonitoring efforts and prioritize filling regional data gaps linked with key Hg sources. We describe a standardized approach that builds on an evidence-based evaluation to assess the Minamata Convention's progress to reduce the impact of global Hg pollution on people and the environment.
Collapse
Affiliation(s)
- David C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA
| | | | - Dominique Bally
- African Center for Environmental Health, BP 826 Cidex 03, Abidjan, Côte d'Ivoire
| | - Nil Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Upsalla, Sweden
| | - Nathalie Bodin
- Research Institute for Sustainable Development Seychelles Fishing Authority, Victoria, Seychelles
| | | | - Mark E H Burton
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Celia Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - John Chételat
- Environment and Cliamte Change Canada, National Wildlife Research Centre, Ottawa, ON, K1S 5B6, Canada
| | - Linroy Christian
- Department of Analytical Services, Dunbars, Friars Hill, St John, Antigua and Barbuda
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Paul Drevnick
- Teck American Incorporated, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Collin Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Luis E Fernandez
- Sabin Center for Environment and Sustainability and Department of Biology, Wake Forest University, Winston-Salem, NC, 29106, USA
- Centro de Innovación Científica Amazonica (CINCIA), Puerto Maldonado, Madre de Dios, Peru
| | - Neil Hammerschlag
- Shark Research Foundation Inc, 29 Wideview Lane, Boutiliers Point, NS, B3Z 0M9, Canada
| | - Mireille Harmelin-Vivien
- Aix-Marseille Université, Université de Toulon, CNRS/INSU/IRD, Institut Méditerranéen d'Océanologie (MIO), UM 110, Campus de Luminy, case 901, 13288, Marseille, cedex 09, France
| | - Agustin Harte
- Basel, Rotterdam and Stockholm Conventions Secretariat, United Nations Environment Programme (UNEP), Chem. des Anémones 15, 1219, Vernier, Geneva, Switzerland
| | - Eva M Krümmel
- Inuit Circumpolar Council-Canada, Ottawa, Canada and ScienTissiME Inc, Barry's Bay, ON, Canada
| | - José Lailson Brito
- Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracana, Rio de Janeiro, RJ, Brazil
| | - Gabriela Medina
- Director of Basel Convention Coordinating Centre, Stockholm Convention Regional Centre for Latin America and the Caribbean, Hosted by the Ministry of Environment, Montevideo, Uruguay
| | | | - Iain Stenhouse
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Elsie Sunderland
- Harvard University, Pierce Hall 127, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Akinori Takeuchi
- National Institute for Environmental Studies, Health and Environmental Risk Division, 16-2 Onogawa Tsukuba, Ibaraki, 305-8506, Japan
| | - Tim Tear
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Claudia Vega
- Centro de Innovaccion Cientifica Amazonica (CINCIA), Jiron Ucayali 750, Puerto Maldonado, Madre de Dios, 17001, Peru
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, N-9296, Tromsø, Norway
| | - Pianpian Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
4
|
Su Y, Liu W, Rahaman MH, Chen Z, Zhai J. Methane emission from water level fluctuation zone of the Three Gorges Reservoir: Seasonal variation and microbial mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168935. [PMID: 38042199 DOI: 10.1016/j.scitotenv.2023.168935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Periodic and significant water level fluctuations within the Three Gorges Reservoir (TGR) create a complex water level fluctuation zone (WLFZ) that can significantly influence greenhouse gas emissions. However, the scarcity of comprehensive studies investigating long-term monitoring and analysis of CH4 flux patterns and underlying mechanisms concerning water level variations, environmental characteristics, and microbial communities has limited our understanding. This study conducted a four-year monitoring campaign to examine in situ CH4 emissions from three representative sampling sites. Results indicated that the CH4 flux remained relatively stable at lower water levels, specifically at the control site (S1). However, water level fluctuations significantly influenced CH4 emissions at the sampling sites situated within the WLFZ. Notably, the highest CH4 flux of 0.252 ± 0.089 mg/(m2·h) was observed during the drying period (June to August), while the lowest CH4 flux of 0.048 ± 0.026 mg/(m2·h) was recorded during the flooding period. Moreover, CH4 emissions through the water-air interface surpassed those through the soil-air interface. The CH4 flux positively correlated with organic carbon, temperature, and soil moisture. The relative abundance of methane metabolism microorganisms peaked during the drying period and decreased during the impounding and flooding periods. The primary methanogenesis pathway was hydrogenotrophic, whereas methanotrophic processes were mainly aerobic, with Ca. Methylomirabilis governing the anaerobic methanotrophic process. Overall, the current findings serve as crucial theoretical references for understanding CH4 emissions and carbon metabolism processes within WLFZ environments.
Collapse
Affiliation(s)
- Yiming Su
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Chongqing University, Chongqing 400045, China
| | - Wenbo Liu
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China
| | - Md Hasibur Rahaman
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha, Suchdol, Czech Republic
| | - Jun Zhai
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Chongqing University, Chongqing 400045, China; Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China.
| |
Collapse
|
5
|
Qin A, Ran S, He T, Yin D, Xu Y. The Effects of Different Soil Component Couplings on the Methylation and Bioavailability of Mercury in Soil. TOXICS 2023; 11:942. [PMID: 37999594 PMCID: PMC10674802 DOI: 10.3390/toxics11110942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Soil composition can influence the chemical forms and bioavailability of soil mercury (Hg). However, previous studies have predominantly focused on the influence of individual components on the biogeochemical behavior of soil Hg, while the influence of various component interactions among several individual factors remain unclear. In this study, artificial soil was prepared by precisely regulating its components, and a controlled potted experiment was conducted to investigate the influence of various organic and inorganic constituents, as well as different soil textures resulting from their coupling, on soil Hg methylation and its bioavailability. Our findings show that inorganic components in the soils primarily exhibit adsorption and fixation effects on Hg, thereby reducing the accumulation of total mercury (THg) and methylmercury (MeHg) in plants. It is noteworthy that iron sulfide simultaneously resulted in an increase in soil MeHg concentration (277%). Concentrations of THg and MeHg in soil with peat were lower in rice but greater in spinach. A correlation analysis indicated that the size of soil particles was a crucial factor affecting the accumulation of Hg in plants. Consequently, even though fulvic acid activated soil Hg, it significantly increased the proportion of soil particles smaller than 100.8 μm, thus inhibiting the accumulation of Hg in plants, particularly reducing the concentration of THg (93%) and MeHg (85%) in water spinach. These results demonstrate that the interaction of organic and inorganic components can influence the biogeochemical behavior of soil Hg not only through their chemical properties, but also by altering the soil texture.
Collapse
Affiliation(s)
- Aming Qin
- Key Laboratory of Karst Georesources and Environment, Guizhou University, Ministry of Education, Guiyang 550025, China; (A.Q.); (S.R.); (D.Y.)
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Shu Ran
- Key Laboratory of Karst Georesources and Environment, Guizhou University, Ministry of Education, Guiyang 550025, China; (A.Q.); (S.R.); (D.Y.)
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment, Guizhou University, Ministry of Education, Guiyang 550025, China; (A.Q.); (S.R.); (D.Y.)
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment, Guizhou University, Ministry of Education, Guiyang 550025, China; (A.Q.); (S.R.); (D.Y.)
| | - Yiyuan Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China;
| |
Collapse
|
6
|
Wang X, Xie Q, Wang Y, Lü H, Fu M, Wang D, Li J. Hg bioaccumulation in the aquatic food web from tributaries of the Three Gorges Reservoir, China and potential consumption advisories. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131902. [PMID: 37364435 DOI: 10.1016/j.jhazmat.2023.131902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/04/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
The Three Gorges Reservoir (TGR) holds the distinction of being China's largest reservoir, and the presence of pollutants in the fish from the reservoir have a direct impact on the health of local residents. Thus, 349 fish specimens of 21 species and 1 benthos (Bellamya aeruginosas) were collected from four typical tributaries of the TGR from 2019 to 2020. These specimens were analyzed for the concentrations of total mercury (THg) and methylmercury (MeHg), and some representative samples were tested for δ13C and δ15N values to reveal the characteristics of bioaccumulation and biomagnification. The maximum safe daily consumption was estimated based on the oral reference dose (0.1 μg kg-1 bw/day according to US-EPA, 2017). The results showed that the mean THg and MeHg concentrations in fish from the TGR tributaries were 73.18 ± 49.21 ng g-1 and 48.42 ± 40.66 ng g-1, respectively, with the trophic magnification factors (TMFs) of THg and MeHg being 0.066 and 0.060, respectively. Among all the fish species in the tributaries, the highest daily maximum safe consumption amount was 1253.89 g for S. asotus consumed by adults, while the lowest was 62.88 g for C. nasus consumed by children.
Collapse
Affiliation(s)
- Xueheng Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; College of Fisheries, Southwest University, Chongqing 400715, China
| | - Qing Xie
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; College of Resources, Environment and Safety, Chongqing Vocational Institute of Engineering, Chongqing 402260, China; College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yongmin Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; College of Fisheries, Southwest University, Chongqing 400715, China
| | - Hongjian Lü
- College of Fisheries, Southwest University, Chongqing 400715, China; National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing 400715, China
| | - Mei Fu
- College of Fisheries, Southwest University, Chongqing 400715, China; National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing 400715, China
| | - Dingyong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; College of Fisheries, Southwest University, Chongqing 400715, China.
| | - Jiajia Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; College of Fisheries, Southwest University, Chongqing 400715, China; National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing 400715, China.
| |
Collapse
|
7
|
Liu E, Xue J, Zhang G, Wang Y, Wang D, Yin D, He T. Distribution and Release of Mercury Regulated by the Decomposition of a Pioneer Habitat-Adapted Plant in the Water-Level-Fluctuating Zone of the Three Gorges Reservoir. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:1. [PMID: 37335383 DOI: 10.1007/s00128-023-03760-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Pioneer habitat-adapted bermudagrass is prevalent in the water-level-fluctuating zone of the Three Gorges Reservoir area. This study was performed to explore the response characteristics of dissolved organic matter (DOM) qualities to bermudagrass decomposition and their regulation in the distribution and release of mercury (Hg) and methylmercury (MeHg) in the soil-water system. Compared to the control, the bermudagrass decomposition resulted in a great increase in the protein-like components in the water in the initial stages (p < 0.01), but it also greatly reduced the humification degree of water DOM (p < 0.01). However, it accelerated the consumption of protein-like components, the humification rate, and the synthesis of humic-like DOM in the water over time. This changing pattern of the DOM qualities resulted in an initial elevation and a subsequent great decrease in the dissolved Hg and MeHg concentrations in the pore water, which ultimately reduced their release levels into the overlying water by 26.50% and 54.42%, respectively, compared to the control. Our results indicate the potential inhibitory effects of short-term bermudagrass decomposition caused by flooding and how decomposition affects the release of total Hg and MeHg by shaping the DOM qualities, and they have implications for similar aquatic systems in which herbaceous plants are frequently decomposed after submergence.
Collapse
Affiliation(s)
- Enxin Liu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - Jinping Xue
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ge Zhang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| |
Collapse
|
8
|
Chen CZ, Chai Y, Wang YJ, Li P, Liu L, Li ZH. Physiological and molecular responses in the silver carp (Hypophthalmichthys molitrix) larvae after acute mercury exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49760-49770. [PMID: 36780075 DOI: 10.1007/s11356-023-25842-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/06/2023] [Indexed: 02/14/2023]
Abstract
The current study was performed to examine the acute toxicity of mercuric chloride (HgCl2) on the silver carp (Hypophthalmichthys molitrix) larvae. Probit analysis was used to determine the median lethal concentration (LC50). The LC50 values of Hg2+ for the fish larvae at 24, 48, 72, and 96 h were 267.72, 252.97, 225.57, and 97.80 μg/L, respectively. The safe concentration of Hg was 9.78 μg/L for fish larvae. Based on the 96 h LC50, fish were exposed to four different groups including 0, 6.11, 12.23, and 24.45 μg/L for 96 h to assess the effects of different concentrations of Hg2+ on antioxidant capacity, energy metabolism parameters, and related gene expression. The findings revealed that there were no significant differences in the activities of superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) in fish larvae among all the groups (P < 0.05). In the 12.23 μg/L group, fish larvae had a maximum in catalase (CAT) activity. The creatine kinase (CK) activities of fish larvae in control and 6.11 μg/L groups were significantly lower than those groups (P < 0.05). A high concentration of Hg2+ significantly upregulated the mRNA levels of heat shock protein 70 (HSP70) and metallothionein (MT) genes in fish larvae. Furthermore, the IBR index value showed the highest value in the 24.45 μg/L group. Overall, this study provides an increased understanding of the effects of Hg-acute toxicity on silver carp larvae.
Collapse
Affiliation(s)
- Cheng-Zhuang Chen
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Yi Chai
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei Province, China
| | - Ya-Jun Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei Province, China
| | - Ping Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
| |
Collapse
|
9
|
Feng P, Xiang Y, Cao D, Li H, Wang L, Wang M, Jiang T, Wang Y, Wang D, Shen H. Occurrence of methylmercury in aerobic environments: Evidence of mercury bacterial methylation based on simulation experiments. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129560. [PMID: 35999748 DOI: 10.1016/j.jhazmat.2022.129560] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Methylmercury (MeHg) is mainly produced by anaerobic δ-proteobacteria such as sulfate-reducing bacteria (SRB). However, mercury bio-methylation has also been found to occur in the aerobic soil of the Three Gorges Reservoir (TGR). Using γ-proteobacterial TGR bacteria (TGRB) and δ-proteobacterial Desulfomicrobium escambiense strains, the efficiency of mercury methylation and demethylation was evaluated using an isotope tracer technique. Kinetics simulation showed that the bacterial Hg methylation rate (km) of TGRB3 was 4.36 × 10-9 pg·cell-1·h-1, which was significantly lower than that of D. escambiense (170.74 ×10-9 pg·cell-1·h-1) under anaerobic conditions. Under facultative and/or aerobic conditions, D. escambiense could not survive, while the km of TGRB3 were 0.35 × 10-9 and 0.29 × 10-9 pg·cell-1·h-1, respectively. Furthermore, the bacterial MeHg tolerance threshold of TGRB3 was 3.47 × 10-9 pg·cell-1, which was 98.6-fold lower than that of D. escambiense under anaerobic conditions. However, the MeHg tolerance threshold of TGRB3 remained at 0.50-0.52 × 10-9 pg·cell-1 under facultative and/or aerobic conditions. Notably, bacterial Hg methylation rates (km) were higher than the corresponding bacterial MeHg demethylation rates (kd1). These results establish the contribution of some aerobic and/or facultative anaerobic bacteria to net environmental MeHg production in terrestrial ecosystems and provide a novel understanding of the biogeochemical cycle of MeHg. SYNOPSIS: Hg methylation of facultative and/or aerobic bacteria may contribute to the net production of environmental methylmercury in terrestrial ecosystems.
Collapse
Affiliation(s)
- Pengyu Feng
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yuping Xiang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dan Cao
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Hui Li
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Lanqing Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Mingxuan Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Tao Jiang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Hong Shen
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Biological Science Research Center of Southwest University, Chongqing 400715, China.
| |
Collapse
|
10
|
Wang J, Xiang Y, Tian X, Zhang C, Gong G, Xue J, Jiang T, Wang D, Wang Y. Role of the rhizosphere of a flooding-tolerant herb in promoting mercury methylation in water-level fluctuation zones. J Environ Sci (China) 2022; 119:139-151. [PMID: 35934459 DOI: 10.1016/j.jes.2022.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
The water-level fluctuation zone (WLFZ) has been considered as a hotspot for mercury (Hg) methylation. Flooding-tolerant herbs are gradually acclimated to this water-land ecotone, tending to form substantial root systems for improving erosion resistance. Accompanying rhizosphere microzone plays crucial but unclear roles in methylmercury (MeHg) formation in the WLFZ. Thus, we conducted this study in the WLFZ of the Three Gorges Reservoir, to explore effects of the rhizosphere of a dominant flooding-tolerant herb (bermudagrass) on MeHg production. The elevated Hg and MeHg in rhizosphere soils suggest that the rhizosphere environment provides favorable conditions for Hg accumulation and methylation. The increased bioavailable Hg and microbial activity in the rhizosphere probably serve as important factors driving MeHg formation in the presence of bermudagrass. Simultaneously, the rhizosphere environments changed the richness, diversity, and distribution of hgcA-containing microorganisms. Here, a typical iron-reducing bacterium (Geobacteraceae) has been screened, however, the majority of hgcA genes detected in rhizosphere, near-, and non-rhizosphere soils of the WLFZ were unclassified. Collectively, these results provide new insights into the elevated MeHg production as related to microbial processes in the rhizosphere of perennial herbs in the WLFZ, with general implications for Hg cycling in other ecosystems with water-level fluctuations.
Collapse
Affiliation(s)
- Juan Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yuping Xiang
- Laboratory of Environmental Nanotechnology & Health Effect, Chinese Academy of Sciences, Research Center for Eco-Environmental Sciences, Beijing 100085, China
| | - Xiaosong Tian
- College of Resources and Safety, Chongqing Vocational Institute of Engineering, Chongqing 402260, China
| | - Cheng Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Guiqing Gong
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Jinping Xue
- Institut des Sciences Analytiques et des Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, CNRS, Université de Pau et des Pays de l'Adour, Pau 64000, France
| | - Tao Jiang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Yongmin Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
11
|
Zhao S, Wang J, Feng S, Xiao Z, Chen C. Effects of ecohydrological interfaces on migrations and transformations of pollutants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150140. [PMID: 34509841 DOI: 10.1016/j.scitotenv.2021.150140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
With the rapid development of society, the soil and water environments in many countries are suffering from severe pollution. Pollutants in different phases will eventually gather into the soil and water environments, and a series of migrations and transformations will take place at ecohydrological interfaces with water flow. However, it is still not clear how ecohydrological interfaces affect the migration and the transformation of pollutants. Therefore, this paper summarizes the physical, ecological, and biogeochemical characteristics of ecohydrological interfaces on the basis of introducing the development history of ecohydrology and the concept of ecohydrological interfaces. The effects of ecohydrological interfaces on the migration and transformation of heavy metals, organic pollutants, and carbon‑nitrogen‑phosphorus (C-N-P) pollutants are emphasized. Lastly, the prospects of applying ecohydrological interfaces for the removal of pollutants from the soil and water environment are put forward, including strengthening the ability to monitor and simulate ecohydrological systems at micro and macro scales, enhancing interdisciplinary research, and identifying main influencing factors that can provide theoretical basis and technical support.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Jianhua Wang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Shijin Feng
- College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Zailun Xiao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chunyan Chen
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
12
|
Baptista-Salazar C, Quadra GR, Sobek A, Jonsson S. Insights into the factors influencing mercury concentrations in tropical reservoir sediments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1542-1553. [PMID: 34524328 PMCID: PMC8528188 DOI: 10.1039/d1em00156f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Thousands of dams are currently under construction or planned worldwide to meet the growing need for electricity. The creation of reservoirs could, however, lead to conditions that promote the accumulation of mercury (Hg) in surface sediments and the subsequent production of methylmercury (MeHg). Once produced, MeHg can bioaccumulate to harmful levels in organisms. It is unclear to what extent variations in physical features and biogeochemical factors of the reservoir impact Hg accumulation. The objective of this study was to identify key drivers of the accumulation of total Hg (THg) in tropical reservoir sediments. The concentration of THg in all analyzed depth intervals of 22 sediment cores from the five contrasting reservoirs investigated ranged from 16 to 310 ng g-1 (n = 212, in the different sediment cores, the maximum depth varied from 18 to 96 cm). Our study suggests reservoir size to be an important parameter determining the concentration of THg accumulating in tropical reservoir sediments, with THg ranging up to 50 ng g-1 in reservoirs with an area exceeding 400 km2 and from 100 to 200 ng g-1 in reservoirs with an area less than 80 km2. In addition to the reservoir size, the role of land use, nutrient loading, biome and sediment properties (e.g., organic carbon content) was tested as potential drivers of THg levels. The principal component analysis conducted suggested THg to be related to the properties of the watershed (high degree of forest cover and low degree of agricultural land use), size and age of the reservoir, water residence time and the levels of nutrients in the reservoir. A direct correlation between THg and tested variables was, however, only observed with the area of the reservoir.
Collapse
Affiliation(s)
| | - Gabrielle R Quadra
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza. Universidade Federal de Juiz de Fora, 36036 900, Juiz de Fora, Brazil
| | - Anna Sobek
- Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden.
| | - Sofi Jonsson
- Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
13
|
Xu Y, He T, Wu P, Yin D, Ran S. Fulvic acid: A key factor governing mercury bioavailability in a polluted plateau wetland. WATER RESEARCH 2021; 205:117652. [PMID: 34583206 DOI: 10.1016/j.watres.2021.117652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Fulvic acids (FAs) are known to regulate the fate of mercury (Hg) in sediments, but the key effects of their properties are still unclear. In this study, field investigations and simulation experiments were conducted in a heavy metal-polluted wetland to identify FA characteristics and their association with the production and bioaccumulation of methylmercury (MeHg). Compared to permanently inundated areas (PIA), seasonally inundated areas (SIAs) had lower total Hg levels in sediments, whereas higher MeHg levels in sediments (0.20 ± 0.09 ng g-1 vs. 0.55 ± 0.31 ng g-1) and benthos (0.25 ± 0.22 ng g-1 vs. 1.62 ± 1.78 ng g-1). Meanwhile, the THg and MeHg concentrations in the same macrophyte species between PIA and SIA also followed a similar rule with benthos. FA-bound Hg in the sediment was significantly correlated with MeHg in the sediment (p < 0.01), as well as THg and MeHg in benthos (p < 0.05), indicating that FAs have the capacity to promote MeHg production and bioaccumulation. Moreover, the FAs in the sediments of the SIA had lower fractions and alkyl C/O-alkyl C ratios, but higher molecular weights and THg/MeHg concentrations than those in the PIA, indicating that FAs in SIA have increased bioavailability and enhanced competition for Hg, favoring significantly elevated FA-bound Hg levels. Biological exposure testing further demonstrated that FAs extracted from SIA had a greater ability to increase the production and bioaccumulation of MeHg than those extracted from PIA. Overall, these results highlight that the molecular composition and sources of FAs, excluding their concentrations, are one of important factors responsible for the obvious spatial heterogeneity of MeHg in sediments and aquatic organisms in the wetland.
Collapse
Affiliation(s)
- Yiyuan Xu
- College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Shu Ran
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
14
|
Xie Q, Wang Y, Li S, Zhang C, Tian X, Cheng N, Zhang Y, Wang D. Total mercury and methylmercury in human hair and food: Implications for the exposure and health risk to residents in the Three Gorges Reservoir Region, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117041. [PMID: 33838440 DOI: 10.1016/j.envpol.2021.117041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Three Gorges Dam (TGD) is the largest hydroelectric construction in the world, and its potential impacts on the ecological environment and human health risks have invoked considerable global concern. However, as a mercury (Hg) sensitive system, limited work was conducted on the Hg exposure level of local residents around the Three Gorges Reservoir (TGR). Thus, 540 human hair samples and 22 species of local food samples were collected to assess the Hg exposure and human health risk to the residents located in the Three Gorges Reservoir Region (TGRR) and to investigate their dietary exposure to Hg. The results showed that the geometric mean concentrations of total mercury (THg) and methylmercury (MeHg) in hair were 0.42 ± 0.43 μg g-1 and 0.23 ± 0.32 μg g-1, respectively, lower than the reference level (1.0 μg g-1) recommended by the United States Environmental Protection Agency (US EPA), indicating a low level Hg exposure for residents around the TGR. No significant difference in the accumulation of Hg in hair between the gender subgroups was observed, whereas age difference, smoking and alcohol drinking behavior, and fish consumption frequency were significant predictors of hair Hg level. Besides, THg and MeHg of all the investigated food samples did not exceed the corresponding Chinese national standard. The average probable daily intakes (PDIs) of THg and MeHg were 0.032 μg kg-1 day-1 and 0.007 μg kg-1 day-1, which were obviously below the recommended values of 0.57 μg kg-1 day-1 and 0.1 μg kg-1 day-1, respectively. The cereal (mainly rice) contribution of THg (76.0%) and MeHg (74.4%) intakes to the local residents around the TGR was much higher than that of fish (10.7% and 22.9%, respectively) due to the considerable rice consumption. Overall, residents around the TGR were at a low Hg exposure and rice consumption was the major pathway for Hg exposure.
Collapse
Affiliation(s)
- Qing Xie
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yongmin Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Shouying Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Cheng Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xiaosong Tian
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Nan Cheng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yongjiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China; Department of Environment and Quality Test, Chongqing Chemical Industry Vocational College, Chongqing, 401220, China
| | - Dingyong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
15
|
da Silva Oliveira CA, Kasper D, Sargentini Junior É, Bolson MA, Torrezani L, Zara LF. Influence of environmental conditions on the mercury levels of the sediment along the Balbina Reservoir, Brazilian Amazon. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:50. [PMID: 33420665 DOI: 10.1007/s10661-020-08837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Mercury dynamics in hydroelectric reservoirs have been studied worldwide. In tropical reservoirs, especially in those of the Amazon, the influence of geochemistry on Hg levels along this aquatic system is not well understood. The main objective of the present study was to assess the influence of environmental conditions (physical and chemical water parameters, trace element concentrations of sediment and sediment geochemistry) on mercury levels of sediment along the Balbina Reservoir (Amazon basin, Brazil). Sediment was collected along the reservoir and in the main tributaries in May 2015 (n = 10). These samples were assessed for labile iron (LFe), manganese (LMn), aluminum (LAl) and mercury (LHg) concentrations, total mercury (THg) concentrations, organic matter (OM) content, and granulometry. Concentrations in the sediment were 4-212 (LFe), 2-460 (LAl), 180-613 (LMn), < detection limit-256 (LHg), and 12-307 μg kg-1 dry weight (THg). In general, these concentrations decreased along the reservoir from upstream to downstream, reaching the lowest concentrations in the middle of the lake, and they increased in the sampling points near the dam. The lability and concentrations of mercury were influenced by the concentrations of LFe, LMn, LAl, and the granulometry and OM content of the sediment. Altogether, THg concentrations of sediments of the Balbina Reservoir encompass the range of concentrations of other reservoirs or natural lakes in the Amazon basin (from ten to a few hundred μg kg-1 dry weight).
Collapse
Affiliation(s)
| | - Daniele Kasper
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-900, Brazil
| | | | | | | | | |
Collapse
|
16
|
Zhang G, Yin D, He T, Xu Y, Ran S, Zhou X, Tian X, Wang Y. Mercury Bioaccumulation in Freshwater Snails as Influenced by Soil Composition. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:153-159. [PMID: 33392685 DOI: 10.1007/s00128-020-03071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Soil properties largely control the fate of mercury (Hg), including the synthesis of neurovirulent methylmercury (MeHg). Here, the freshwater snail (Cipangopaludina cahayensis), a snail species commonly bred in flooded farmland, was used in a test of biotoxicity exposure to explore the effects of soil components on Hg bioavailability. The results show that snails incubated on the surface of slightly Hg-polluted flooded soil (2.0 mg/kg) have MeHg concentrations of 7.9 ± 1.5 mg/kg, which greatly exceed the limit of contaminants in food in China (0.5 mg/kg). The addition of ferrous disulfide can significantly increase the MeHg concentrations in soils while reducing the concentrations of total Hg (THg) and MeHg levels in snails by 59.1% and 64.3%, respectively. Peat-derived fulvic acid has the capacity to reduce the MeHg concentrations in soils and snails by 23.8% and 33.2%, respectively, whereas it increases the dissolved Hg levels in overlying water by 104.3%. Moreover, Fe-Mn oxides and humic acid can consistently reduce THg and MeHg concentrations in snails. Overall, freshwater snails bred in Hg-polluted areas may suffer from a high risk of Hg exposure, and importantly, some soil components such as ferrous disulfide and humic acid have strong inhibitory effects on Hg bioaccumulation in snails.
Collapse
Affiliation(s)
- Ge Zhang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- College of Resources and Environment, Guizhou University, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- College of Resources and Environment, Guizhou University, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Yiyuan Xu
- College of Resources and Environment, Guizhou University, Guiyang, 550025, China
| | - Shu Ran
- College of Resources and Environment, Guizhou University, Guiyang, 550025, China
| | - Xian Zhou
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xiang Tian
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Yan Wang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
17
|
Zhu J, Tang L, Qiao S, Wang L, Feng Y, Wang L, Wu Q, Ding P, Zhang Z, Li L. Low-dose methylmercury exposure impairs the locomotor activity of zebrafish: Role of intestinal inositol metabolism. ENVIRONMENTAL RESEARCH 2020; 190:110020. [PMID: 32777273 DOI: 10.1016/j.envres.2020.110020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental toxicant with neurotoxic effects. Although its neurotoxicity had been more studied, the role of gut microbiota remains unclear. In this study, adult zebrafish and larvae were exposed to MeHgCl at the dose of 0, 1 and 10 ng/mL. MeHgCl exposure impaired the locomotor activity via upregulation of apoptosis and autophagy related genes in the brain. Intestinal and cerebral metabolome indicated that phosphatidylinositol signaling system and inositol phosphate metabolism pathways were significantly impacted in adult zebrafish upon MeHgCl exposure. The levels of myo-inositol (MI) in the intestine and brain were decreased and positively correlated. 16 S rRNA sequencing data from adult zebrafish showed that MeHgCl exposure also shifted the structure of gut microbiota and reduced the relative abundance of Bacteroidetes and Proteobacteria, which were further identified at genus level as Aeromonas and Cetobacterium. Further functional analysis indicated that MeHgCl disrupted inositol phosphate metabolism of gut microbiota. Notably, MI supplementation restored the impairment of locomotor activity and inhibited the upregulation of apoptosis and autophagy related genes, such as bcl-2 and atg5. Thus, this study not only revealed the key role of gut microbiota in MeHgCl-mediated neurotoxicity but also gave new insights into antagonizing its toxicity.
Collapse
Affiliation(s)
- Jun Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Lei Tang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Shanlei Qiao
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Lijuan Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Yiming Feng
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Li Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Qian Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, 410078, PR China
| | - Zhan Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China.
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China.
| |
Collapse
|
18
|
Liu J, Wang D, Zhang J, Liem-Nguyen V, Huang R, Jiang T. Evaluation of Hg methylation in the water-level-fluctuation zone of the Three Gorges Reservoir region by using the MeHg/Hg T ratio. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110468. [PMID: 32200146 DOI: 10.1016/j.ecoenv.2020.110468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
In the recent decade, the hydroelectric reservoir is identified as a methylmercury (MeHg) hotspot and gained much attention. The artificial water level management in the Three Gorges Reservoir (TGR) in China formed a water-level-fluctuation zone (WLFZ) undergoing flooding drying rotations annually. However, the mercury (Hg) methylation and major geochemical driving factors at different elevations in the WLFZ remain unclear. Here we use total Hg (HgT) normalized MeHg (MeHg/HgT ratio) to evaluate Hg methylation degree in a one-year field study at 155, 165 m elevations in the WLFZ and with >175 m elevation as the reference. Results demonstrate that MeHg/HgT ratio at the WLFZ could reach 4.1% in soils, and both 155 and 165 m elevations have a higher Hg methylation degree than the >175 m elevation. However, the differences in MeHg/HgT ratios both in soils and waters between 155 and 165 m elevations are not significant. This indicates the influence of different submerging periods on the MeHg/HgT at the WLFZ elevations is not observed. The significant correlation between the MeHg/HgT ratio and soil organic carbon (SOC) content implies a MeHg retention in re-exposed soils after flooding. Decoupling of MeHg/HgT ratios between submerged soil and overlying water are found at both elevations and therefore make MeHg/HgT in waters alone cannot be used to evaluate Hg methylation degree in this study. The calculation of HgT and MeHg partitioning coefficient (Kd) found an immobilization of MeHg by submerged soils at the WLFZ during the flooding period. Major geochemical factors, determined through principal component analysis (PCA), in affecting Hg methylation are the redox cycling of sulfur and the distribution of organic matters in the WLFZ.
Collapse
Affiliation(s)
- Jiang Liu
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400716, China; Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Dingyong Wang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400716, China.
| | - Jinzhong Zhang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400716, China.
| | - Van Liem-Nguyen
- Laboratory of Advanced Materials Chemistry, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
19
|
Du H, Sun T, Wang D, Ming M. Bacterial and archaeal compositions and influencing factors in soils under different submergence time in a mercury-sensitive reservoir. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110155. [PMID: 31972452 DOI: 10.1016/j.ecoenv.2019.110155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Soils in the water-level-fluctuating zone (WLFZ) of Three Gorges Reservoir (TGR) inundated by water for different periods of time are confirmed to have disparate characteristics to mercury (Hg), and thus it is of great significance to further investigate microbial compositions and influencing factors. The objective of this study was to compare bacterial and archaeal richness, α-diversities and compositions, as well as affecting variables, especially Hg concentrations, among soils under different submergence time-SI (inundated soil), SS (semi-inundated soil), SN(non-inundated soil) and SSe (sediment)-based on high throughput sequencing. Results showed that sediment had significantly higher bacterial and archaeal richness and α-diversities than the other soil types. Anaerolinea and Aeromonas, as well as Altiarchaeales, Nitrosoarchaeum, and Methanosarta were dominant in SSe, while sharply decreasing in the other soil types, with significant difference among groups. An unclassified genus in SCG critically predominating in SI, SS and SN, drastically reduced in SSe, with extremely significant difference among groups. Bathyarchaeota and Nitrososphaera, both dominating in SSe, decreased dramatically and almost vanished in SI and SN. All the variables except pH posed a significant positive effect on bacterial and archaeal compositions in SSe, while opposite effect in the other three soil types. MeHg and THg concentrations had relatively weaker effects on microbial compositions comparing to variables like NH4+, CEC, OM and SO42+.
Collapse
Affiliation(s)
- Hongxia Du
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Bioresource for Bioenergy, Southwest University, Chongqing, 400715, China
| | - Tao Sun
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ma Ming
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Bioresource for Bioenergy, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
20
|
Yin D, Wang Y, Xiang Y, Xu Q, Xie Q, Zhang C, Liu J, Wang D. Production and migration of methylmercury in water-level-fluctuating zone of the Three Gorges Reservoir, China: Dual roles of flooding-tolerant perennial herb. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120962. [PMID: 31442691 DOI: 10.1016/j.jhazmat.2019.120962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/29/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Water-level-fluctuating zone (WLFZ) is a prevalent water-land ecotone favorable for mercury (Hg) methylation. The succession of flooding tolerance plants in WLFZ gradually changes the landscape, and also brings a new question worth understanding whether these plants would enhance methylmercury (MeHg) production in WLFZ and increase risks to the aquatic environment. Given bermudagrass (Cynodon dactylon (L). Pers) as the dominant perennial herb with high flooding-tolerance in WLFZ of the Three Gorges Reservoir (TGR), we conducted a comprehensive study to investigate its roles in the production and migration of MeHg in WLFZ by field observations and stable isotope tracer experiments. Results showed that both elevated MeHg levels and Hg methylation rates appeared in soil/sediment in bermudagrass growing area, implying that the growth of bermudagrass could significantly enhance MeHg production. However, MeHg migration from sediment to water was restricted during the flooding period of the TGR, as obviously higher partitioning coefficients of MeHg between the sediment and porewater (p < 0.05) and lower MeHg release fluxes were observed in vegetated area, indicating that the presence of bermudagrass instead probably decreased the water MeHg level. Whereas, it is noteworthy that elevated MeHg in soil/sediment induced by the bermudagrass could pose potential risks to the benthos and further to the TGR food chain.
Collapse
Affiliation(s)
- Deliang Yin
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Yuping Xiang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qinqin Xu
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qing Xie
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Cheng Zhang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Jiang Liu
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|