1
|
Crimi C, Carlucci A, Nava S. Optimising non-invasive ventilation in acute COPD exacerbations: Beyond pressure and volume settings. Pulmonology 2025; 31:2448080. [PMID: 39981735 DOI: 10.1080/25310429.2024.2448080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Affiliation(s)
- Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Respiratory Medicine Unit, Policlinico "G. Rodolico-San Marco" University Hospital, Catania, Italy
| | - Annalisa Carlucci
- Department of Medicina e Chirurgia, Università Insubria, Varese-Como, Varese, Italy
- Pulmonary Rehabilitation Unit, Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Stefano Nava
- Alma Mater Studiorum, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Respiratory and Critical Care Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Perez J, Brandan L, Telias I. Monitoring patients with acute respiratory failure during non-invasive respiratory support to minimize harm and identify treatment failure. Crit Care 2025; 29:147. [PMID: 40205493 PMCID: PMC11983977 DOI: 10.1186/s13054-025-05369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Non-invasive respiratory support (NRS), including high flow nasal oxygen therapy, continuous positive airway pressure and non-invasive ventilation, is a cornerstone in the management of critically ill patients who develop acute respiratory failure (ARF). Overall, NRS reduces the work of breathing and relieves dyspnea in many patients with ARF, sometimes avoiding the need for intubation and invasive mechanical ventilation with variable efficacy across diverse clinical scenarios. Nonetheless, prolonged exposure to NRS in the presence of sustained high respiratory drive and effort can result in respiratory muscle fatigue, cardiovascular collapse, and impaired oxygen delivery to vital organs, leading to poor outcomes in patients who ultimately fail NRS and require intubation. Assessment of patients' baseline characteristics before starting NRS, close physiological monitoring to evaluate patients' response to respiratory support, adjustment of device settings and interface, and, most importantly, early identification of failure or of paramount importance to avoid the negative consequences of delayed intubation. This review highlights the role of respiratory monitoring across various modalities of NRS in patients with ARF including dyspnea, general respiratory parameters, measures of drive and effort, and lung imaging. It includes technical specificities related to the target population and emphasizes the importance of clinicians' physiological understanding and tailoring clinical decisions to individual patients' needs.
Collapse
Affiliation(s)
- Joaquín Perez
- Department of Physical Therapy and Rehabilitation, Anchorena San Martín Clinic, Buenos Aires, Argentina
- Department of Emergency Medicine, Carlos G. Durand Hospital, Buenos Aires, Argentina
| | - Luciano Brandan
- Department of Physical Therapy and Rehabilitation, Clínica del Parque, Ciudad Autónoma de Buenos Aires, Argentina
- Department of Physical Therapy and Rehabilitation, Eva Perón Hospital, Buenos Aires, Argentina
| | - Irene Telias
- Division of Respirology and Critical Care Medicine, University Health Network and Sinai Health System, Toronto, Canada.
- Interdepartmental Division of Critical Care Medicine, Department of Medicine, University of Toronto, Toronto, Canada.
- Medical-Surgical-Neuro-Intensive Care Unit, Toronto Western Hospital, University Health Network, 399 Bathurst St., Room 2McL 411C, Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
3
|
Grassion L, González-Bermejo J. Where are we With Home-Based Noninvasive Mechanical Ventilation and How Can we Go Further? Arch Bronconeumol 2025:S0300-2896(25)00080-8. [PMID: 40118689 DOI: 10.1016/j.arbres.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/23/2025]
Affiliation(s)
- Léo Grassion
- Service des maladies respiratoires, CHU Haut Leveque, Pessac, France; Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Jesús González-Bermejo
- Service de médecine de réadaptation respiratoire (Département R3S), AP-HP, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris, France; INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et Clinique, Sorbonne Université, Paris, France.
| |
Collapse
|
4
|
Del Bono MR, Damiani LF, Plotnikow GA, Consalvo S, Di Salvo E, Murias G. Ineffective respiratory efforts and their potential consequences during mechanical ventilation. Med Intensiva 2025:502133. [PMID: 39919955 DOI: 10.1016/j.medine.2025.502133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 02/09/2025]
Abstract
The implementation of invasive mechanical ventilation (IMV) in critically ill patients involves two crucial moments: the total control phase, affected among other things by the use of analgesics and sedatives, and the transition phase to spontaneous ventilation, which seeks to shorten IMV times and where optimizing patient-ventilator interaction is one of the main challenges. Ineffective inspiratory efforts (IEE) arise when there is no coordination between patient effort and ventilator support. IIE are common in different ventilatory modes and are associated with worse clinical outcomes: dyspnea, increased sedation requirements, increased IMV days and longer intensive care unit (ICU) and hospital stay. These are manifested graphically as an abrupt decrease in expiratory flow, being more frequent during expiration. However, and taking into consideration that it is still unknown whether this association is causal or rather a marker of disease severity, recognizing the potential physiological consequences, reviewing diagnostic methods and implementing detection and treatment strategies that can limit them, seems reasonable.
Collapse
Affiliation(s)
- Mauro Robertino Del Bono
- Servicio de Rehabilitación, Unidad de Cuidados Intensivos, Hospital Británico de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Luis Felipe Damiani
- Departamento de Ciencias de la Salud, Carrera de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gustavo Adrián Plotnikow
- Servicio de Rehabilitación, Unidad de Cuidados Intensivos, Hospital Británico de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Facultad de Medicina y Ciencias de la Salud, Universidad Abierta Interamericana, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sebastián Consalvo
- Unidad de Cuidados Intensivos, Hospital Británico de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Emanuel Di Salvo
- Servicio de Rehabilitación, Unidad de Cuidados Intensivos, Hospital Británico de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gastón Murias
- Unidad de Cuidados Intensivos, Hospital Británico de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
5
|
Bianchi IM, Arisi E, Pozzi M, Orlando A, Puce R, Maggio G, Capra Marzani F, Mojoli F. A Bench Model of Asynchrony in 6 Ventilators Equipped With Waveform-Guided Options. Respir Care 2025. [PMID: 39969914 DOI: 10.1089/respcare.11422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Background: Pressure support ventilation is frequently associated with patient-ventilator asynchrony. Algorithms based on ventilator waveforms have been developed to automatically detect patient respiratory activity and to guide triggering and cycling. The aim of this study was to assess the performance in terms of synchronization of 6 mechanical ventilators, all provided with a waveform-guided software. Methods: This was a bench study to compare standard and new-generation systems simulating different respiratory mechanics, levels of assistance, and respiratory efforts. Six mechanical ventilators were tested: Hamilton G5 (G5) and C6 (C6), IMT bellavista1000 (B1000), Mindray SV300, and Philips RespironicsV200 (V200) and V60 (V60). Apart from V60, the other ventilators were tested twice: with default settings for standard triggering and cycling and with the waveform-guided automation. Results: With the automated settings, breaths with trigger delay ≤ 300 ms increased with B1000, G5, and C6. Ineffective efforts decreased with B1000, G5, C6, and V200. Improvement of triggering was mainly driven by findings obtained in the obstructive profile. With the automated settings, breaths with cycling delay > 300 ms decreased with B1000, G5, C6, and V200 while early cycled breaths increased with B1000. Improvement of cycling was mainly driven by findings obtained in the obstructive profile, whereas worsening of cycling was observed in the restrictive profile with 2 ventilators (B100 and V200). With the automated settings, the asynchrony index (AI) was reduced with G5 and C6 when all the profiles were grouped. In the obstructive profile, the AI decreased with B1000, G5, C6, and V200; in the restrictive profile, the AI increased with B1000. Conclusions: Waveforms-based algorithms have the potential to improve patient-ventilator synchronization. Automation had the most favorable impact when obstructive patients were simulated, while caution should be paid with restrictive ones.
Collapse
Affiliation(s)
- Isabella Maria Bianchi
- Dr Bianchi is affiliated with Department of Anesthesia and Intensive Care Medicine, Papa Giovanni XXXIII Hospital, Bergamo, Italy; and Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, Unit of Anaesthesia and Intensive Care, University of Pavia, Pavia, Italy
| | - Eric Arisi
- Drs Arisi, Pozzi, Puce, Maggio, and Marzani are affiliated with Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marco Pozzi
- Drs Arisi, Pozzi, Puce, Maggio, and Marzani are affiliated with Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anita Orlando
- Drs Orlando and Mojoli are affiliated with Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, Unit of Anaesthesia and Intensive Care, University of Pavia, Pavia, Italy; and Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Roberta Puce
- Drs Arisi, Pozzi, Puce, Maggio, and Marzani are affiliated with Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giuseppe Maggio
- Drs Arisi, Pozzi, Puce, Maggio, and Marzani are affiliated with Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federico Capra Marzani
- Drs Arisi, Pozzi, Puce, Maggio, and Marzani are affiliated with Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesco Mojoli
- Drs Orlando and Mojoli are affiliated with Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, Unit of Anaesthesia and Intensive Care, University of Pavia, Pavia, Italy; and Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
6
|
Marchasson L, Rault C, Le Pape S, Arrivé F, Coudroy R, Frat JP, Bironneau V, Jutant EM, Heraud Q, Drouot X, Thille AW. Impact of sleep disturbances on outcomes in intensive care units. Crit Care 2024; 28:331. [PMID: 39385194 PMCID: PMC11466020 DOI: 10.1186/s13054-024-05118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Sleep deprivation is common in intensive care units (ICUs) and may alter respiratory performance. Few studies have assessed the role of sleep disturbances on outcomes in critically ill patients. OBJECTIVES We hypothesized that sleep disturbances may be associated with poor outcomes in ICUs. METHODS Post-hoc analysis pooling three observational studies assessing sleep by complete polysomnography in 131 conscious and non-sedated patients included at different times of their ICU stay. Sleep was assessed early in a group of patients admitted for acute respiratory failure while breathing spontaneously (n = 34), or under mechanical ventilation in patients with weaning difficulties (n = 45), or immediately after extubation (n = 52). Patients admitted for acute respiratory failure who required intubation, those under mechanical ventilation who had prolonged weaning, and those who required reintubation after extubation were considered as having poor clinical outcomes. Durations of deep sleep, rapid eye movement (REM) sleep, and atypical sleep were compared according to the timing of polysomnography and the clinical outcomes. RESULTS Whereas deep sleep remained preserved in patients admitted for acute respiratory failure, it was markedly reduced under mechanical ventilation and after extubation (p < 0.01). Atypical sleep was significantly more frequent in patients under mechanical ventilation than in those breathing spontaneously (p < 0.01). REM sleep was uncommon at any time of their ICU stay. Patients with complete disappearance of REM sleep (50% of patients) were more likely to have poor clinical outcomes than those with persistent REM sleep (24% vs. 9%, p = 0.03). CONCLUSION Complete disappearance of REM sleep was significantly associated with poor clinical outcomes in critically ill patients.
Collapse
Affiliation(s)
- Laura Marchasson
- INSERM CIC 1402, IS-ALIVE Research Group, University of Poitiers, Poitiers, France.
- Médecine Intensive Réanimation, CHU de Poitiers, Poitiers, France.
| | - Christophe Rault
- INSERM CIC 1402, IS-ALIVE Research Group, University of Poitiers, Poitiers, France
- Neurophysiologie Clinique et Explorations Fonctionnelles, CHU de Poitiers, Poitiers, France
| | - Sylvain Le Pape
- INSERM CIC 1402, IS-ALIVE Research Group, University of Poitiers, Poitiers, France
- Médecine Intensive Réanimation, CHU de Poitiers, Poitiers, France
| | - François Arrivé
- INSERM CIC 1402, IS-ALIVE Research Group, University of Poitiers, Poitiers, France
- Médecine Intensive Réanimation, CHU de Poitiers, Poitiers, France
| | - Rémi Coudroy
- INSERM CIC 1402, IS-ALIVE Research Group, University of Poitiers, Poitiers, France
- Médecine Intensive Réanimation, CHU de Poitiers, Poitiers, France
| | - Jean-Pierre Frat
- INSERM CIC 1402, IS-ALIVE Research Group, University of Poitiers, Poitiers, France
- Médecine Intensive Réanimation, CHU de Poitiers, Poitiers, France
| | - Vanessa Bironneau
- INSERM CIC 1402, IS-ALIVE Research Group, University of Poitiers, Poitiers, France
- Pneumologie, CHU de Poitiers, Poitiers, France
| | - Etienne-Marie Jutant
- INSERM CIC 1402, IS-ALIVE Research Group, University of Poitiers, Poitiers, France
- Pneumologie, CHU de Poitiers, Poitiers, France
| | - Quentin Heraud
- INSERM CIC 1402, IS-ALIVE Research Group, University of Poitiers, Poitiers, France
- Médecine Intensive Réanimation, CHU de Poitiers, Poitiers, France
| | - Xavier Drouot
- INSERM CIC 1402, IS-ALIVE Research Group, University of Poitiers, Poitiers, France
- Neurophysiologie Clinique et Explorations Fonctionnelles, CHU de Poitiers, Poitiers, France
| | - Arnaud W Thille
- INSERM CIC 1402, IS-ALIVE Research Group, University of Poitiers, Poitiers, France
- Médecine Intensive Réanimation, CHU de Poitiers, Poitiers, France
| |
Collapse
|
7
|
Ran X, Scharffenberg M, Wittenstein J, Leidermann M, Güldner A, Koch T, Gama de Abreu M, Huhle R. Induction of subject-ventilator asynchrony by variation of respiratory parameters in a lung injury model in pigs. Respir Res 2024; 25:358. [PMID: 39363180 PMCID: PMC11448015 DOI: 10.1186/s12931-024-02984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Subject-ventilator asynchrony (SVA) was shown to be associated with negative clinical outcomes. To elucidate pathophysiology pathways and effects of SVA on lung tissue histology a reproducible animal model of artificially induced asynchrony was developed and evaluated. METHODS Alterations in ventilator parameters were used to induce the three main types of asynchrony: ineffective efforts (IE), auto-triggering (AT), and double-triggering (DT). Airway flow and pressure, as well as oesophageal pressure waveforms, were recorded, asynchrony cycles were manually classified and the asynchrony index (AIX) was calculated. Bench tests were conducted on an active lung simulator with ventilator settings altered cycle by cycle. The developed algorithm was evaluated in three pilot experiments and a study in pigs ventilated for twelve hours with AIX = 25%. RESULTS IE and AT were induced reliably and fail-safe by end-expiratory hold and adjustment of respiratory rate, respectively. DT was provoked using airway pressure ramp prolongation, however not controlled specifically in the pilots. In the subsequent study, an AIX = 28.8% [24.0%-34.4%] was induced and maintained over twelve hours. CONCLUSIONS The method allows to reproducibly induce and maintain three clinically relevant types of SVA observed in ventilated patients and may thus serve as a useful tool for future investigations on cellular and inflammatory effects of asynchrony.
Collapse
Affiliation(s)
- Xi Ran
- Medical Research Center, Chongqing General Hospital, Chongqing University, Chongqing, China
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Martin Scharffenberg
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Jakob Wittenstein
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Mark Leidermann
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Andreas Güldner
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Thea Koch
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Intensive Care and Resuscitation, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Robert Huhle
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.
| |
Collapse
|
8
|
Chen Y, Yuan Y, Chang Q, Zhang H, Li F, Chen Z. Continuous estimation of respiratory system compliance and airway resistance during pressure-controlled ventilation without end-inspiration occlusion. BMC Pulm Med 2024; 24:249. [PMID: 38769572 PMCID: PMC11107031 DOI: 10.1186/s12890-024-03061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Assessing mechanical properties of the respiratory system (Cst) during mechanical ventilation necessitates an end-inspiration flow of zero, which requires an end-inspiratory occlusion maneuver. This lung model study aimed to observe the effect of airflow obstruction on the accuracy of respiratory mechanical properties during pressure-controlled ventilation (PCV) by analyzing dynamic signals. METHODS A Hamilton C3 ventilator was attached to a lung simulator that mimics lung mechanics in healthy, acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD) models. PCV and volume-controlled ventilation (VCV) were applied with tidal volume (VT) values of 5.0, 7.0, and 10.0 ml/kg. Performance characteristics and respiratory mechanics were assessed and were calibrated by virtual extrapolation using expiratory time constant (RCexp). RESULTS During PCV ventilation, drive pressure (DP) was significantly increased in the ARDS model. Peak inspiratory flow (PIF) and peak expiratory flow (PEF) gradually declined with increasing severity of airflow obstruction, while DP, end-inspiration flow (EIF), and inspiratory cycling ratio (EIF/PIF%) increased. Similar estimated values of Crs and airway resistance (Raw) during PCV and VCV ventilation were obtained in healthy adult and mild obstructive models, and the calculated errors did not exceed 5%. An underestimation of Crs and an overestimation of Raw were observed in the severe obstruction model. CONCLUSION Using the modified dynamic signal analysis approach, respiratory system properties (Crs and Raw) could be accurately estimated in patients with non-severe airflow obstruction in the PCV mode.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, West Huaihai Road, Shanghai, 200030, China.
| | - Yueyang Yuan
- School of Mechanical and Electrical Engineering, Hunan City University, Yiyang, 413099, China
| | - Qing Chang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, West Huaihai Road, Shanghai, 200030, China
| | - Hai Zhang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, West Huaihai Road, Shanghai, 200030, China
| | - Feng Li
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No.241, West Huaihai Road, Shanghai, 200030, China
| | - Zhaohui Chen
- College of Information Technology, Shanghai Jian Qiao University, Shanghai, 201306, China
| |
Collapse
|
9
|
Al-Husinat L, Jouryyeh B, Rawashdeh A, Robba C, Silva PL, Rocco PRM, Battaglini D. The Role of Ultrasonography in the Process of Weaning from Mechanical Ventilation in Critically Ill Patients. Diagnostics (Basel) 2024; 14:398. [PMID: 38396437 PMCID: PMC10888003 DOI: 10.3390/diagnostics14040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Weaning patients from mechanical ventilation (MV) is a complex process that may result in either success or failure. The use of ultrasound at the bedside to assess organs may help to identify the underlying mechanisms that could lead to weaning failure and enable proactive measures to minimize extubation failure. Moreover, ultrasound could be used to accurately identify pulmonary diseases, which may be responsive to respiratory physiotherapy, as well as monitor the effectiveness of physiotherapists' interventions. This article provides a comprehensive review of the role of ultrasonography during the weaning process in critically ill patients.
Collapse
Affiliation(s)
- Lou’i Al-Husinat
- Department of Clinical Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Basil Jouryyeh
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (A.R.)
| | - Ahlam Rawashdeh
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (A.R.)
| | - Chiara Robba
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, 16132 Genova, Italy
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941, Brazil; (P.L.S.); (P.R.M.R.)
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941, Brazil; (P.L.S.); (P.R.M.R.)
| | - Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| |
Collapse
|
10
|
Decavèle M, Bureau C, Campion S, Nierat MC, Rivals I, Wattiez N, Faure M, Mayaux J, Morawiec E, Raux M, Similowski T, Demoule A. Interventions Relieving Dyspnea in Intubated Patients Show Responsiveness of the Mechanical Ventilation-Respiratory Distress Observation Scale. Am J Respir Crit Care Med 2023; 208:39-48. [PMID: 36973007 DOI: 10.1164/rccm.202301-0188oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Rationale: Breathing difficulties are highly stressful. In critically ill patients, they are associated with an increased risk of posttraumatic manifestations. Dyspnea, the corresponding symptom, cannot be directly assessed in noncommunicative patients. This difficulty can be circumvented using observation scales such as the mechanical ventilation-respiratory distress observation scale (MV-RDOS). Objective: To investigate the performance and responsiveness of the MV-RDOS to infer dyspnea in noncommunicative intubated patients. Methods: Communicative and noncommunicative patients exhibiting breathing difficulties under mechanical ventilation were prospectively included and assessed using a dyspnea visual analog scale, MV-RDOS, EMG activity of alae nasi and parasternal intercostals, and EEG signatures of respiratory-related cortical activation (preinspiratory potentials). Inspiratory-muscle EMG and preinspiratory cortical activities are surrogates of dyspnea. Assessments were conducted at baseline, after adjustment of ventilator settings, and, in some cases, after morphine administration. Measurements and Main Results: Fifty patients (age, 67 [(interquartile interval [IQR]), 61-76] yr; Simplified Acute Physiology Score II, 52 [IQR, 35-62]) were included, 25 of whom were noncommunicative. Relief occurred in 25 (50%) patients after ventilator adjustments and in 21 additional patients after morphine administration. In noncommunicative patients, MV-RDOS score decreased from 5.5 (IQR, 4.2-6.6) at baseline to 4.2 (IQR, 2.1-4.7; P < 0.001) after ventilator adjustments and 2.5 (IQR, 2.1-4.2; P = 0.024) after morphine administration. MV-RDOS and alae nasi/parasternal EMG activities were positively correlated (ρ = 0.41 and 0.37, respectively). MV-RDOS scores were higher in patients with EEG preinspiratory potentials (4.9 [IQR, 4.2-6.3] vs. 4.0 [IQR, 2.1-4.9]; P = 0.002). Conclusions: The MV-RDOS seems able to detect and monitor respiratory symptoms reasonably well in noncommunicative intubated patients. Clinical trial registered with www.clinicaltrials.gov (NCT02801838).
Collapse
Affiliation(s)
- Maxens Decavèle
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
- Service de Médecine Intensive et Réanimation (Département R3S) and
| | - Côme Bureau
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
- Service de Médecine Intensive et Réanimation (Département R3S) and
| | - Sébastien Campion
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
- Département d'Anesthésie Réanimation, Groupe Hospitalier Universitaire Assistance Publique-Hôpitaux de Paris Sorbonne Université, site Pitié-Salpêtrière, Paris, France; and
| | - Marie-Cécile Nierat
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| | - Isabelle Rivals
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
- Equipe de Statistique Appliquée, Ecole Supérieure de Physique et de Chimie Industrielles Paris, Unité Mixte de Recherche en Santé 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Nicolas Wattiez
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| | - Morgane Faure
- Service de Médecine Intensive et Réanimation (Département R3S) and
| | - Julien Mayaux
- Service de Médecine Intensive et Réanimation (Département R3S) and
| | - Elise Morawiec
- Service de Médecine Intensive et Réanimation (Département R3S) and
| | - Mathieu Raux
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
- Département d'Anesthésie Réanimation, Groupe Hospitalier Universitaire Assistance Publique-Hôpitaux de Paris Sorbonne Université, site Pitié-Salpêtrière, Paris, France; and
| | - Thomas Similowski
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
- Département d'Anesthésie Réanimation, Groupe Hospitalier Universitaire Assistance Publique-Hôpitaux de Paris Sorbonne Université, site Pitié-Salpêtrière, Paris, France; and
| | - Alexandre Demoule
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche en Santé 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
- Service de Médecine Intensive et Réanimation (Département R3S) and
| |
Collapse
|
11
|
Shimatani T, Kyogoku M, Ito Y, Takeuchi M, Khemani RG. Fundamental concepts and the latest evidence for esophageal pressure monitoring. J Intensive Care 2023; 11:22. [PMID: 37217973 DOI: 10.1186/s40560-023-00671-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Transpulmonary pressure is an essential physiologic concept as it reflects the true pressure across the alveoli, and is a more precise marker for lung stress. To calculate transpulmonary pressure, one needs an estimate of both alveolar pressure and pleural pressure. Airway pressure during conditions of no flow is the most widely accepted surrogate for alveolar pressure, while esophageal pressure remains the most widely measured surrogate marker for pleural pressure. This review will cover important concepts and clinical applications for esophageal manometry, with a particular focus on how to use the information from esophageal manometry to adjust or titrate ventilator support. The most widely used method for measuring esophageal pressure uses an esophageal balloon catheter, although these measurements can be affected by the volume of air in the balloon. Therefore, when using balloon catheters, it is important to calibrate the balloon to ensure the most appropriate volume of air, and we discuss several methods which have been proposed for balloon calibration. In addition, esophageal balloon catheters only estimate the pleural pressure over a certain area within the thoracic cavity, which has resulted in a debate regarding how to interpret these measurements. We discuss both direct and elastance-based methods to estimate transpulmonary pressure, and how they may be applied for clinical practice. Finally, we discuss a number of applications for esophageal manometry and review many of the clinical studies published to date which have used esophageal pressure. These include the use of esophageal pressure to assess lung and chest wall compliance individually which can provide individualized information for patients with acute respiratory failure in terms of setting PEEP, or limiting inspiratory pressure. In addition, esophageal pressure has been used to estimate effort of breathing which has application for ventilator weaning, detection of upper airway obstruction after extubation, and detection of patient and mechanical ventilator asynchrony.
Collapse
Affiliation(s)
- Tatsutoshi Shimatani
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, Japan.
- Department of Critical Care Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.
| | - Miyako Kyogoku
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, 840 Murodo-cho, Osaka, Izumi, Japan
- Department of Critical Care Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yukie Ito
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, 840 Murodo-cho, Osaka, Izumi, Japan
| | - Muneyuki Takeuchi
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, 840 Murodo-cho, Osaka, Izumi, Japan
- Department of Critical Care Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Robinder G Khemani
- Pediatric ICU, Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, 4650 Sunset Blvd., CA, Los Angeles, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 1975, USA
| |
Collapse
|
12
|
Knauert MP, Ayas NT, Bosma KJ, Drouot X, Heavner MS, Owens RL, Watson PL, Wilcox ME, Anderson BJ, Cordoza ML, Devlin JW, Elliott R, Gehlbach BK, Girard TD, Kamdar BB, Korwin AS, Lusczek ER, Parthasarathy S, Spies C, Sunderram J, Telias I, Weinhouse GL, Zee PC. Causes, Consequences, and Treatments of Sleep and Circadian Disruption in the ICU: An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2023; 207:e49-e68. [PMID: 36999950 PMCID: PMC10111990 DOI: 10.1164/rccm.202301-0184st] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
Background: Sleep and circadian disruption (SCD) is common and severe in the ICU. On the basis of rigorous evidence in non-ICU populations and emerging evidence in ICU populations, SCD is likely to have a profound negative impact on patient outcomes. Thus, it is urgent that we establish research priorities to advance understanding of ICU SCD. Methods: We convened a multidisciplinary group with relevant expertise to participate in an American Thoracic Society Workshop. Workshop objectives included identifying ICU SCD subtopics of interest, key knowledge gaps, and research priorities. Members attended remote sessions from March to November 2021. Recorded presentations were prepared and viewed by members before Workshop sessions. Workshop discussion focused on key gaps and related research priorities. The priorities listed herein were selected on the basis of rank as established by a series of anonymous surveys. Results: We identified the following research priorities: establish an ICU SCD definition, further develop rigorous and feasible ICU SCD measures, test associations between ICU SCD domains and outcomes, promote the inclusion of mechanistic and patient-centered outcomes within large clinical studies, leverage implementation science strategies to maximize intervention fidelity and sustainability, and collaborate among investigators to harmonize methods and promote multisite investigation. Conclusions: ICU SCD is a complex and compelling potential target for improving ICU outcomes. Given the influence on all other research priorities, further development of rigorous, feasible ICU SCD measurement is a key next step in advancing the field.
Collapse
|
13
|
Vedrenne-Cloquet M, Khirani S, Khemani R, Lesage F, Oualha M, Renolleau S, Chiumello D, Demoule A, Fauroux B. Pleural and transpulmonary pressures to tailor protective ventilation in children. Thorax 2023; 78:97-105. [PMID: 35803726 DOI: 10.1136/thorax-2021-218538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/12/2022] [Indexed: 02/07/2023]
Abstract
This review aims to: (1) describe the rationale of pleural (PPL) and transpulmonary (PL) pressure measurements in children during mechanical ventilation (MV); (2) discuss its usefulness and limitations as a guide for protective MV; (3) propose future directions for paediatric research. We conducted a scoping review on PL in critically ill children using PubMed and Embase search engines. We included peer-reviewed studies using oesophageal (PES) and PL measurements in the paediatric intensive care unit (PICU) published until September 2021, and excluded studies in neonates and patients treated with non-invasive ventilation. PL corresponds to the difference between airway pressure and PPL Oesophageal manometry allows measurement of PES, a good surrogate of PPL, to estimate PL directly at the bedside. Lung stress is the PL, while strain corresponds to the lung deformation induced by the changing volume during insufflation. Lung stress and strain are the main determinants of MV-related injuries with PL and PPL being key components. PL-targeted therapies allow tailoring of MV: (1) Positive end-expiratory pressure (PEEP) titration based on end-expiratory PL (direct measurement) may be used to avoid lung collapse in the lung surrounding the oesophagus. The clinical benefit of such strategy has not been demonstrated yet. This approach should consider the degree of recruitable lung, and may be limited to patients in which PEEP is set to achieve an end-expiratory PL value close to zero; (2) Protective ventilation based on end-inspiratory PL (derived from the ratio of lung and respiratory system elastances), might be used to limit overdistention and volutrauma by targeting lung stress values < 20-25 cmH2O; (3) PPL may be set to target a physiological respiratory effort in order to avoid both self-induced lung injury and ventilator-induced diaphragm dysfunction; (4) PPL or PL measurements may contribute to a better understanding of cardiopulmonary interactions. The growing cardiorespiratory system makes children theoretically more susceptible to atelectrauma, myotrauma and right ventricle failure. In children with acute respiratory distress, PPL and PL measurements may help to characterise how changes in PEEP affect PPL and potentially haemodynamics. In the PICU, PPL measurement to estimate respiratory effort is useful during weaning and ventilator liberation. Finally, the use of PPL tracings may improve the detection of patient ventilator asynchronies, which are frequent in children. Despite these numerous theoritcal benefits in children, PES measurement is rarely performed in routine paediatric practice. While the lack of robust clincal data partially explains this observation, important limitations of the existing methods to estimate PPL in children, such as their invasiveness and technical limitations, associated with the lack of reference values for lung and chest wall elastances may also play a role. PPL and PL monitoring have numerous potential clinical applications in the PICU to tailor protective MV, but its usefulness is counterbalanced by technical limitations. Paediatric evidence seems currently too weak to consider oesophageal manometry as a routine respiratory monitoring. The development and validation of a noninvasive estimation of PL and multimodal respiratory monitoring may be worth to be evaluated in the future.
Collapse
Affiliation(s)
- Meryl Vedrenne-Cloquet
- Pediatric intensive care unit, Necker-Enfants Malades Hospitals, Paris, France .,Université de Paris Cité, VIFASOM, Paris, France.,Pediatric Non Invasive Ventilation Unit, Necker-Enfants Malades Hospitals, Paris, France
| | - Sonia Khirani
- Pediatric Non Invasive Ventilation Unit, Necker-Enfants Malades Hospitals, Paris, France.,ASV Santé, Genevilliers, France
| | - Robinder Khemani
- Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Fabrice Lesage
- Pediatric intensive care unit, Necker-Enfants Malades Hospitals, Paris, France
| | - Mehdi Oualha
- Pediatric intensive care unit, Necker-Enfants Malades Hospitals, Paris, France
| | - Sylvain Renolleau
- Pediatric intensive care unit, Necker-Enfants Malades Hospitals, Paris, France
| | - Davide Chiumello
- Dipartimento di Anestesia, Rianimazione e Terapia del Dolore, Fondazione, IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Alexandre Demoule
- Service de Médecine Intensive et Réanimation (Département R3S), AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Paris, France.,UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, Sorbonne Université, INSERM, Paris, France
| | - Brigitte Fauroux
- Université de Paris Cité, VIFASOM, Paris, France.,Pediatric Non Invasive Ventilation Unit, Necker-Enfants Malades Hospitals, Paris, France
| |
Collapse
|
14
|
Attention-based convolutional long short-term memory neural network for detection of patient-ventilator asynchrony from mechanical ventilation. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Umbrello M, Antonucci E, Muttini S. Neurally Adjusted Ventilatory Assist in Acute Respiratory Failure-A Narrative Review. J Clin Med 2022; 11:jcm11071863. [PMID: 35407471 PMCID: PMC9000024 DOI: 10.3390/jcm11071863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 03/25/2022] [Indexed: 02/08/2023] Open
Abstract
Maintaining spontaneous breathing has both potentially beneficial and deleterious consequences in patients with acute respiratory failure, depending on the balance that can be obtained between the protecting and damaging effects on the lungs and the diaphragm. Neurally adjusted ventilatory assist (NAVA) is an assist mode, which supplies the respiratory system with a pressure proportional to the integral of the electrical activity of the diaphragm. This proportional mode of ventilation has the theoretical potential to deliver lung- and respiratory-muscle-protective ventilation by preserving the physiologic defense mechanisms against both lung overdistention and ventilator overassistance, as well as reducing the incidence of diaphragm disuse atrophy while maintaining patient–ventilator synchrony. This narrative review presents an overview of NAVA technology, its basic principles, the different methods to set the assist level and the findings of experimental and clinical studies which focused on lung and diaphragm protection, machine–patient interaction and preservation of breathing pattern variability. A summary of the findings of the available clinical trials which investigate the use of NAVA in acute respiratory failure will also be presented and discussed.
Collapse
|
16
|
The Effect of Clusters of Double Triggering and Ineffective Efforts in Critically Ill Patients. Crit Care Med 2022; 50:e619-e629. [PMID: 35120043 DOI: 10.1097/ccm.0000000000005471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To characterize clusters of double triggering and ineffective inspiratory efforts throughout mechanical ventilation and investigate their associations with mortality and duration of ICU stay and mechanical ventilation. DESIGN Registry-based, real-world study. BACKGROUND Asynchronies during invasive mechanical ventilation can occur as isolated events or in clusters and might be related to clinical outcomes. SUBJECTS Adults requiring mechanical ventilation greater than 24 hours for whom greater than or equal to 70% of ventilator waveforms were available. INTERVENTIONS We identified clusters of double triggering and ineffective inspiratory efforts and determined their power and duration. We used Fine-Gray's competing risk model to analyze their effects on mortality and generalized linear models to analyze their effects on duration of mechanical ventilation and ICU stay. MEASUREMENTS AND MAIN RESULTS We analyzed 58,625,796 breaths from 180 patients. All patients had clusters (mean/d, 8.2 [5.4-10.6]; mean power, 54.5 [29.6-111.4]; mean duration, 20.3 min [12.2-34.9 min]). Clusters were less frequent during the first 48 hours (5.5 [2.5-10] vs 7.6 [4.4-9.9] in the remaining period [p = 0.027]). Total number of clusters/d was positively associated with the probability of being discharged alive considering the total period of mechanical ventilation (p = 0.001). Power and duration were similar in the two periods. Power was associated with the probability of being discharged dead (p = 0.03), longer mechanical ventilation (p < 0.001), and longer ICU stay (p = 0.035); cluster duration was associated with longer ICU stay (p = 0.027). CONCLUSIONS Clusters of double triggering and ineffective inspiratory efforts are common. Although higher numbers of clusters might indicate better chances of survival, clusters with greater power and duration indicate a risk of worse clinical outcomes.
Collapse
|
17
|
Mojoli F, Pozzi M, Orlando A, Bianchi IM, Arisi E, Iotti GA, Braschi A, Brochard L. Timing of inspiratory muscle activity detected from airway pressure and flow during pressure support ventilation: the waveform method. Crit Care 2022; 26:32. [PMID: 35094707 PMCID: PMC8802480 DOI: 10.1186/s13054-022-03895-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Whether respiratory efforts and their timing can be reliably detected during pressure support ventilation using standard ventilator waveforms is unclear. This would give the opportunity to assess and improve patient–ventilator interaction without the need of special equipment.
Methods In 16 patients under invasive pressure support ventilation, flow and pressure waveforms were obtained from proximal sensors and analyzed by three trained physicians and one resident to assess patient’s spontaneous activity. A systematic method (the waveform method) based on explicit rules was adopted. Esophageal pressure tracings were analyzed independently and used as reference. Breaths were classified as assisted or auto-triggered, double-triggered or ineffective. For assisted breaths, trigger delay, early and late cycling (minor asynchronies) were diagnosed. The percentage of breaths with major asynchronies (asynchrony index) and total asynchrony time were computed. Results Out of 4426 analyzed breaths, 94.1% (70.4–99.4) were assisted, 0.0% (0.0–0.2) auto-triggered and 5.8% (0.4–29.6) ineffective. Asynchrony index was 5.9% (0.6–29.6). Total asynchrony time represented 22.4% (16.3–30.1) of recording time and was mainly due to minor asynchronies. Applying the waveform method resulted in an inter-operator agreement of 0.99 (0.98–0.99); 99.5% of efforts were detected on waveforms and agreement with the reference in detecting major asynchronies was 0.99 (0.98–0.99). Timing of respiratory efforts was accurately detected on waveforms: AUC for trigger delay, cycling delay and early cycling was 0.865 (0.853–0.876), 0.903 (0.892–0.914) and 0.983 (0.970–0.991), respectively. Conclusions Ventilator waveforms can be used alone to reliably assess patient’s spontaneous activity and patient–ventilator interaction provided that a systematic method is adopted. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-03895-4.
Collapse
|
18
|
Damiani LF, Engelberts D, Bastia L, Osada K, Katira BH, Otulakowski G, Goligher EC, Reid WD, Dubo S, Bruhn A, Post M, Kavanagh BP, Brochard LJ. Impact of Reverse Triggering Dyssynchrony During Lung-Protective Ventilation on Diaphragm Function: An Experimental Model. Am J Respir Crit Care Med 2021; 205:663-673. [PMID: 34941477 DOI: 10.1164/rccm.202105-1089oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Reverse triggering is a patient-ventilator interaction where a respiratory muscle contraction is triggered by a passive mechanical insufflation. Its impact on diaphragm structure and function is unknown. OBJECTIVE To establish an animal model of reverse triggering with lung injury receiving lung-protective ventilation and to assess its impact on structure and function of the diaphragm. METHODS Lung injury was induced by surfactant depletion and high stress ventilation in 32 ventilated pigs. Animals were allocated to receive passive mechanical ventilation or a lung-protective strategy with adjustments facilitating the occurrence of reverse triggering for 3 hours. Diaphragm function (transdiaphragmatic pressure (Pdi) during phrenic nerve stimulation [Force/frequency curve]) and structure (biopsies) were assessed. The impact of reverse triggering on diaphragm function was analyzed according to the breathing effort. RESULTS Compared to passive ventilation, the protective ventilation group with reverse triggering received significantly lower tidal volume (7 vs 10 ml/kg) and higher respiratory rate (45 vs 31 bpm). An entrainment pattern of 1:1 was frequent. Breathing effort induced by reverse triggering was highly variable across animals. Reverse triggering with the lowest tercile of breathing effort was associated with 23% higher twitch Pdi compared to passive ventilation, whereas reverse triggering with high breathing effort was associated with a 10% lower twitch Pdi and a higher proportion of abnormal muscle fibers. CONCLUSION In a reproducible animal model of reverse triggering with variable levels of breathing effort and entrainment patterns, reverse triggering with high effort is associated with impaired diaphragm function whereas reverse triggering with low effort is associated with preserved diaphragm force.
Collapse
Affiliation(s)
- L Felipe Damiani
- Pontificia Universidad Católica de Chile - Facultad de Medicina, Departamento de Ciencias de la Salud, Santiago, Chile
| | - Doreen Engelberts
- Hospital for Sick Children, 7979, Physiology & Experimental Medicine, Toronto, Ontario, Canada
| | - Luca Bastia
- SickKids, 7979, Translational Medicine, Toronto, Ontario, Canada.,University of Milan-Bicocca, 9305, Medicine, Milano, Lombardia, Italy
| | - Kohei Osada
- SickKids, 7979, Translational Medicine, Toronto, Ontario, Canada
| | - Bhushan H Katira
- Hospital for Sick Children, 7979, Paediatric Critical Care Medicine, Toronto, Ontario, Canada
| | - Gail Otulakowski
- Hospital for Sick Children Research Institute, Lung Biology, Toronto, Ontario, Canada
| | - Ewan C Goligher
- University Health Network, 7989, Department of Medicine, Division of Respirology, Critical Care Program, Toronto, Ontario, Canada.,University of Toronto, 7938, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada
| | - W Darlene Reid
- University of Toronto, Department of Physical Therapy, Toronto, Ontario, Canada
| | - Sebastián Dubo
- Universidad de Concepcion, 28056, Departamento de Kinesiología, Facultad de Medicina, Concepcion, Chile
| | - Alejandro Bruhn
- Pontificia Universidad Católica de Chile - Facultad de Medicina, Departamento de Medicina Intensiva, Santiago, Chile
| | - Martin Post
- Hospital for Sick Children, Lung Biology, Toronto, Ontario, Canada
| | - Brian P Kavanagh
- Hospital Sick Children, Department of Critical Care Medicine, Toronto, Ontario, Canada
| | - Laurent J Brochard
- St Michael's Hospital in Toronto, Li Ka Shing Knowledge Institute, Keenan Research Centre, Toronto, Ontario, Canada.,University of Toronto, 7938, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada;
| |
Collapse
|
19
|
Bureau C, Decavèle M, Campion S, Nierat MC, Mayaux J, Morawiec E, Raux M, Similowski T, Demoule A. Proportional assist ventilation relieves clinically significant dyspnea in critically ill ventilated patients. Ann Intensive Care 2021; 11:177. [PMID: 34919178 PMCID: PMC8683518 DOI: 10.1186/s13613-021-00958-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/22/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Dyspnea is common and often severe symptom in mechanically ventilated patients. Proportional assist ventilation (PAV) is an assist ventilatory mode that adjusts the level of assistance to the activity of respiratory muscles. We hypothesized that PAV reduce dyspnea compared to pressure support ventilation (PSV). PATIENTS AND METHODS Mechanically ventilated patients with clinically significant dyspnea were included. Dyspnea intensity was assessed by the Dyspnea-Visual Analog Scale (D-VAS) and the Intensive Care-Respiratory Distress Observation Scale (IC-RDOS) at inclusion (PSV-Baseline), after personalization of ventilator settings in order to minimize dyspnea (PSV-Personalization), and after switch to PAV. Respiratory drive was assessed by record of electromyographic activity of inspiratory muscles, the proportion of asynchrony was analyzed. RESULTS Thirty-four patients were included (73% males, median age of 66 [57-77] years). The D-VAS score was lower with PSV-Personalization (37 mm [20‒55]) and PAV (31 mm [14‒45]) than with PSV-Baseline (62 mm [28‒76]) (p < 0.05). The IC-RDOS score was lower with PAV (4.2 [2.4‒4.7]) and PSV-Personalization (4.4 [2.4‒4.9]) than with PSV-Baseline (4.8 [4.1‒6.5]) (p < 0.05). The electromyographic activity of parasternal intercostal muscles was lower with PAV and PSV-Personalization than with PSV-Baseline. The asynchrony index was lower with PAV (0% [0‒0.55]) than with PSV-Baseline and PSV-Personalization (0.68% [0‒2.28] and 0.60% [0.31‒1.41], respectively) (p < 0.05). CONCLUSION In mechanically ventilated patients exhibiting clinically significant dyspnea with PSV, personalization of PSV settings and PAV results in not different decreased dyspnea and activity of muscles to a similar degree, even though PAV was able to reduce asynchrony more effectively.
Collapse
Affiliation(s)
- Côme Bureau
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France. .,AP-HP 6 Sorbonne Université, site Pitié-Salpêtrière, Service de Pneumologie, Médecine Intensive et Réanimation, Département R3S, Hôpital Pitié-Salpêtrière, 47-83 bld de l'hôpital, 75651, Paris cedex 13, France.
| | - Maxens Decavèle
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France.,AP-HP 6 Sorbonne Université, site Pitié-Salpêtrière, Service de Pneumologie, Médecine Intensive et Réanimation, Département R3S, Hôpital Pitié-Salpêtrière, 47-83 bld de l'hôpital, 75651, Paris cedex 13, France
| | - Sébastien Campion
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France.,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Département d'Anesthésie Réanimation, 75013, Paris, France
| | - Marie-Cécile Nierat
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France
| | - Julien Mayaux
- AP-HP 6 Sorbonne Université, site Pitié-Salpêtrière, Service de Pneumologie, Médecine Intensive et Réanimation, Département R3S, Hôpital Pitié-Salpêtrière, 47-83 bld de l'hôpital, 75651, Paris cedex 13, France
| | - Elise Morawiec
- AP-HP 6 Sorbonne Université, site Pitié-Salpêtrière, Service de Pneumologie, Médecine Intensive et Réanimation, Département R3S, Hôpital Pitié-Salpêtrière, 47-83 bld de l'hôpital, 75651, Paris cedex 13, France
| | - Mathieu Raux
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France.,AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Département d'Anesthésie Réanimation, 75013, Paris, France
| | - Thomas Similowski
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France.,AP-HP 6 Sorbonne Université, site Pitié-Salpêtrière, Service de Pneumologie, Médecine Intensive et Réanimation, Département R3S, Hôpital Pitié-Salpêtrière, 47-83 bld de l'hôpital, 75651, Paris cedex 13, France
| | - Alexandre Demoule
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 75005, Paris, France.,AP-HP 6 Sorbonne Université, site Pitié-Salpêtrière, Service de Pneumologie, Médecine Intensive et Réanimation, Département R3S, Hôpital Pitié-Salpêtrière, 47-83 bld de l'hôpital, 75651, Paris cedex 13, France
| |
Collapse
|
20
|
Al-Bassam W, Parikh T, Neto AS, Idrees Y, Kubicki MA, Hodgson CL, Subramaniam A, Reddy MP, Gullapalli N, Michel C, Matthewman MC, Naughton J, Pereira J, Shehabi Y, Bellomo R. Pressure support ventilation in intensive care patients receiving prolonged invasive ventilation. CRIT CARE RESUSC 2021; 23:394-402. [PMID: 38046681 PMCID: PMC10692625 DOI: 10.51893/2021.4.oa4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: To our knowledge, the use and management of pressure support ventilation (PSV) in patients receiving prolonged (≥ 7 days) invasive mechanical ventilation has not previously been described. Objective: To collect and analyse data on the use and management of PSV in critically ill patients receiving prolonged ventilation. Design, setting and participants: We performed a multicentre retrospective observational study in Australia, with a focus on PSV in patients ventilated for ≥ 7 days. Main outcome measures: We obtained detailed data on ventilator management twice daily (8am and 8pm moments) for the first 7 days of ventilation. Results: Among 143 consecutive patients, 90/142 (63.4%) had received PSV by Day 7, and PSV accounted for 40.5% (784/1935) of ventilation moments. The most common pressure support level was 10 cmH2O (352/780) observations [45.1%]) with little variation over time, and 37 of 114 patients (32.4%) had no change in pressure support. Mean tidal volume during PSV was 8.3 (7.0-9.5) mL/kg predicted bodyweight (PBW) compared with 7.5 (7.0-8.3) mL/kg PBW during mandatory ventilation (P < 0.001). For 74.6% (247/331) of moments, despite a tidal volume of more than 8 mL/kg PBW, the pressure support level was not changed. Among 122 patients exposed to PSV, 97 (79.5%) received likely over-assistance according to rapid shallow breathing index criteria. Of 784 PSV moments, 411 (52.4%) were also likely over-assisted according to rapid shallow breathing index criteria, and 269/346 (77.7%) having no subsequent adjustment of pressure support. Conclusions: In patients receiving prolonged ventilation, almost two-thirds received PSV, which accounted for 40.5% of mechanical ventilation time. Half of the PSV-treated patients were exposed to high tidal volume and two-thirds to likely over-assistance. These observations provide evidence that can be used to inform interventional studies of PSV management.
Collapse
Affiliation(s)
- Wisam Al-Bassam
- Department of Intensive Care, Monash Medical Centre, Melbourne, VIC, Australia
| | - Tapan Parikh
- Department of Intensive Care, Monash Medical Centre, Melbourne, VIC, Australia
| | - Ary Serpa Neto
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
- Data Analytics Research and Evaluation Centre, Austin Hospital and University of Melbourne, Melbourne, VIC, Australia
| | - Yamamah Idrees
- Department of Intensive Care, Ballarat Base Hospital, Ballarat, VIC, Australia
| | - Mark A. Kubicki
- Department of Intensive Care, Ballarat Base Hospital, Ballarat, VIC, Australia
| | - Carol L. Hodgson
- Department of Intensive Care, The Alfred, Melbourne, VIC, Australia
| | - Ashwin Subramaniam
- Department of Intensive Care, Frankston Hospital, Melbourne, VIC, Australia
| | | | - Navya Gullapalli
- School of Medicine, Monash University, Melbourne, VIC, Australia
| | - Claire Michel
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
| | | | - Jack Naughton
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
| | - Jason Pereira
- Department of Intensive Care, The Alfred, Melbourne, VIC, Australia
| | - Yahya Shehabi
- Department of Intensive Care, Monash Medical Centre, Melbourne, VIC, Australia
- Department of Surgery, Monash University, Melbourne, VIC, Australia
| | - Rinaldo Bellomo
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
- Data Analytics Research and Evaluation Centre, Austin Hospital and University of Melbourne, Melbourne, VIC, Australia
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
- Department of Critical Care, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Kampolis CF, Mermiri M, Mavrovounis G, Koutsoukou A, Loukeri AA, Pantazopoulos I. Comparison of advanced closed-loop ventilation modes with pressure support ventilation for weaning from mechanical ventilation in adults: A systematic review and meta-analysis. J Crit Care 2021; 68:1-9. [PMID: 34839229 DOI: 10.1016/j.jcrc.2021.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/26/2021] [Accepted: 11/14/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE To compare neurally adjusted ventilatory assist (NAVA), proportional assist ventilation (PAV), adaptive support ventilation (ASV) and Smartcare pressure support (Smartcare/PS) with standard pressure support ventilation (PSV) regarding their effectiveness for weaning critically ill adults from invasive mechanical ventilation (IMV). METHODS Electronic databases were searched to identify parallel-group randomized controlled trials (RCTs) comparing NAVA, PAV, ASV, or Smartcare/PS with PSV, in adult patients under IMV through July 28, 2021. Primary outcome was weaning success. Secondary outcomes included weaning time, total MV duration, reintubation or use of non-invasive MV (NIMV) within 48 h after extubation, in-hospital and intensive care unit (ICU) mortality, in-hospital and ICU length of stay (LOS) (PROSPERO registration No:CRD42021270299). RESULTS Twenty RCTs were finally included. Compared to PSV, NAVA was associated with significantly lower risk for in-hospital and ICU death and lower requirements for post-extubation NIMV. Moreover, PAV showed significant advantage over PSV in terms of weaning rates, MV duration and ICU LOS. No significant differences were found between ASV or Smart care/PS and PSV. CONCLUSIONS Moderate certainty evidence suggest that PAV increases weaning success rates, shortens MV duration and ICU LOS compared to PSV. It is also noteworthy that NAVA seems to improve in-hospital and ICU survival.
Collapse
Affiliation(s)
- Christos F Kampolis
- Department of Emergency Medicine, "Hippokration" General Hospital of Athens, Athens, Greece.
| | - Maria Mermiri
- Department of Emergency Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, General University Hospital of Larissa, Mezourlo 41110, Larissa, Greece
| | - Georgios Mavrovounis
- Department of Emergency Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, General University Hospital of Larissa, Mezourlo 41110, Larissa, Greece
| | - Antonia Koutsoukou
- Intensive Care Unit, 1st Department of Respiratory Medicine, "Sotiria" Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Ioannis Pantazopoulos
- Department of Emergency Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, General University Hospital of Larissa, Mezourlo 41110, Larissa, Greece
| |
Collapse
|
22
|
Haudebourg AF, Maraffi T, Tuffet S, Perier F, de Prost N, Razazi K, Mekontso Dessap A, Carteaux G. Refractory ineffective triggering during pressure support ventilation: effect of proportional assist ventilation with load-adjustable gain factors. Ann Intensive Care 2021; 11:147. [PMID: 34669080 PMCID: PMC8527439 DOI: 10.1186/s13613-021-00935-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/07/2021] [Indexed: 12/21/2022] Open
Abstract
Background Ineffective triggering is frequent during pressure support ventilation (PSV) and may persist despite ventilator adjustment, leading to refractory asynchrony. We aimed to assess the effect of proportional assist ventilation with load-adjustable gain factors (PAV+) on the occurrence of refractory ineffective triggering. Design Observational assessment followed by prospective cross-over physiological study. Setting Academic medical ICU. Patients Ineffective triggering was detected during PSV by a twice-daily inspection of the ventilator’s screen. The impact of pressure support level (PSL) adjustments on the occurrence of asynchrony was recorded. Patients experiencing refractory ineffective triggering, defined as persisting asynchrony at the lowest tolerated PSL, were included in the physiological study. Interventions Physiological study: Flow, airway, and esophageal pressures were continuously recorded during 10 min under PSV with the lowest tolerated PSL, and then under PAV+ with the gain adjusted to target a muscle pressure between 5 and 10 cmH2O. Measurements Primary endpoint was the comparison of asynchrony index between PSV and PAV+ after PSL and gain adjustments. Results Among 36 patients identified having ineffective triggering under PSV, 21 (58%) exhibited refractory ineffective triggering. The lowest tolerated PSL was higher in patients with refractory asynchrony as compared to patients with non-refractory ineffective triggering. Twelve out of the 21 patients with refractory ineffective triggering were included in the physiological study. The median lowest tolerated PSL was 17 cmH2O [12–18] with a PEEP of 7 cmH2O [5–8] and FiO2 of 40% [39–42]. The median gain during PAV+ was 73% [65–80]. The asynchrony index was significantly lower during PAV+ than PSV (2.7% [1.0–5.4] vs. 22.7% [10.3–40.1], p < 0.001) and consistently decreased in every patient with PAV+. Esophageal pressure–time product (PTPes) did not significantly differ between the two modes (107 cmH2O/s/min [79–131] under PSV vs. 149 cmH2O/s/min [129–170] under PAV+, p = 0.092), but the proportion of PTPes lost in ineffective triggering was significantly lower with PAV+ (2 cmH2O/s/min [1–6] vs. 8 cmH2O/s/min [3–30], p = 0.012). Conclusions Among patients with ineffective triggering under PSV, PSL adjustment failed to eliminate asynchrony in 58% of them (21 of 36 patients). In these patients with refractory ineffective triggering, switching from PSV to PAV+ significantly reduced or even suppressed the incidence of asynchrony. Supplementary Information The online version contains supplementary material available at 10.1186/s13613-021-00935-0.
Collapse
Affiliation(s)
- Anne-Fleur Haudebourg
- Service de Médecine Intensive Réanimation, DHU A-TVB, Hôpitaux Universitaires Henri Mondor - Albert Chenevier, Assistance Publique - Hôpitaux de Paris (AP-HP), Créteil, France. .,Groupe de Recherche Clinique CARMAS, IMRB, Faculté de Médecine de Créteil, Université Paris Est-Créteil, Créteil, France.
| | - Tommaso Maraffi
- Groupe de Recherche Clinique CARMAS, IMRB, Faculté de Médecine de Créteil, Université Paris Est-Créteil, Créteil, France.,Service de Réanimation et Surveillance Continue Adulte, Centre hospitalier intercommunal de Créteil, 94000, Créteil, France
| | - Samuel Tuffet
- Service de Médecine Intensive Réanimation, DHU A-TVB, Hôpitaux Universitaires Henri Mondor - Albert Chenevier, Assistance Publique - Hôpitaux de Paris (AP-HP), Créteil, France.,Groupe de Recherche Clinique CARMAS, IMRB, Faculté de Médecine de Créteil, Université Paris Est-Créteil, Créteil, France.,Institut Mondor de Recherche Biomédicale INSERM 955, Créteil, France
| | - François Perier
- Service de Médecine Intensive Réanimation, DHU A-TVB, Hôpitaux Universitaires Henri Mondor - Albert Chenevier, Assistance Publique - Hôpitaux de Paris (AP-HP), Créteil, France.,Groupe de Recherche Clinique CARMAS, IMRB, Faculté de Médecine de Créteil, Université Paris Est-Créteil, Créteil, France
| | - Nicolas de Prost
- Service de Médecine Intensive Réanimation, DHU A-TVB, Hôpitaux Universitaires Henri Mondor - Albert Chenevier, Assistance Publique - Hôpitaux de Paris (AP-HP), Créteil, France.,Groupe de Recherche Clinique CARMAS, IMRB, Faculté de Médecine de Créteil, Université Paris Est-Créteil, Créteil, France
| | - Keyvan Razazi
- Service de Médecine Intensive Réanimation, DHU A-TVB, Hôpitaux Universitaires Henri Mondor - Albert Chenevier, Assistance Publique - Hôpitaux de Paris (AP-HP), Créteil, France.,Groupe de Recherche Clinique CARMAS, IMRB, Faculté de Médecine de Créteil, Université Paris Est-Créteil, Créteil, France
| | - Armand Mekontso Dessap
- Service de Médecine Intensive Réanimation, DHU A-TVB, Hôpitaux Universitaires Henri Mondor - Albert Chenevier, Assistance Publique - Hôpitaux de Paris (AP-HP), Créteil, France.,Groupe de Recherche Clinique CARMAS, IMRB, Faculté de Médecine de Créteil, Université Paris Est-Créteil, Créteil, France
| | - Guillaume Carteaux
- Service de Médecine Intensive Réanimation, DHU A-TVB, Hôpitaux Universitaires Henri Mondor - Albert Chenevier, Assistance Publique - Hôpitaux de Paris (AP-HP), Créteil, France.,Groupe de Recherche Clinique CARMAS, IMRB, Faculté de Médecine de Créteil, Université Paris Est-Créteil, Créteil, France.,Institut Mondor de Recherche Biomédicale INSERM 955, Créteil, France
| |
Collapse
|
23
|
De Oliveira B, Aljaberi N, Taha A, Abduljawad B, Hamed F, Rahman N, Mallat J. Patient-Ventilator Dyssynchrony in Critically Ill Patients. J Clin Med 2021; 10:4550. [PMID: 34640566 PMCID: PMC8509510 DOI: 10.3390/jcm10194550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Patient-ventilator dyssynchrony is a mismatch between the patient's respiratory efforts and mechanical ventilator delivery. Dyssynchrony can occur at any phase throughout the respiratory cycle. There are different types of dyssynchrony with different mechanisms and different potential management: trigger dyssynchrony (ineffective efforts, autotriggering, and double triggering); flow dyssynchrony, which happens during the inspiratory phase; and cycling dyssynchrony (premature cycling and delayed cycling). Dyssynchrony has been associated with patient outcomes. Thus, it is important to recognize and address these dyssynchronies at the bedside. Patient-ventilator dyssynchrony can be detected by carefully scrutinizing the airway pressure-time and flow-time waveforms displayed on the ventilator screens along with assessing the patient's comfort. Clinicians need to know how to depict these dyssynchronies at the bedside. This review aims to define the different types of dyssynchrony and then discuss the evidence for their relationship with patient outcomes and address their potential management.
Collapse
Affiliation(s)
- Bruno De Oliveira
- Critical Care Institute, Cleveland Clinic Abu Dhabi, Al Maryah Island, Abu Dhabi P.O. Box 112412, United Arab Emirates; (B.D.O.); (N.A.); (A.T.); (B.A.); (F.H.); (N.R.)
| | - Nahla Aljaberi
- Critical Care Institute, Cleveland Clinic Abu Dhabi, Al Maryah Island, Abu Dhabi P.O. Box 112412, United Arab Emirates; (B.D.O.); (N.A.); (A.T.); (B.A.); (F.H.); (N.R.)
| | - Ahmed Taha
- Critical Care Institute, Cleveland Clinic Abu Dhabi, Al Maryah Island, Abu Dhabi P.O. Box 112412, United Arab Emirates; (B.D.O.); (N.A.); (A.T.); (B.A.); (F.H.); (N.R.)
| | - Baraa Abduljawad
- Critical Care Institute, Cleveland Clinic Abu Dhabi, Al Maryah Island, Abu Dhabi P.O. Box 112412, United Arab Emirates; (B.D.O.); (N.A.); (A.T.); (B.A.); (F.H.); (N.R.)
| | - Fadi Hamed
- Critical Care Institute, Cleveland Clinic Abu Dhabi, Al Maryah Island, Abu Dhabi P.O. Box 112412, United Arab Emirates; (B.D.O.); (N.A.); (A.T.); (B.A.); (F.H.); (N.R.)
| | - Nadeem Rahman
- Critical Care Institute, Cleveland Clinic Abu Dhabi, Al Maryah Island, Abu Dhabi P.O. Box 112412, United Arab Emirates; (B.D.O.); (N.A.); (A.T.); (B.A.); (F.H.); (N.R.)
| | - Jihad Mallat
- Critical Care Institute, Cleveland Clinic Abu Dhabi, Al Maryah Island, Abu Dhabi P.O. Box 112412, United Arab Emirates; (B.D.O.); (N.A.); (A.T.); (B.A.); (F.H.); (N.R.)
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Faculty of Medicine, Normandy University, UNICAEN, ED 497, 1400 Caen, France
- Department of Anesthesiology and Critical Care Medicine, Centre Hospitalier de Lens, 62300 Lens, France
| |
Collapse
|
24
|
Kyo M, Shimatani T, Hosokawa K, Taito S, Kataoka Y, Ohshimo S, Shime N. Patient-ventilator asynchrony, impact on clinical outcomes and effectiveness of interventions: a systematic review and meta-analysis. J Intensive Care 2021; 9:50. [PMID: 34399855 PMCID: PMC8365272 DOI: 10.1186/s40560-021-00565-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
Background Patient–ventilator asynchrony (PVA) is a common problem in patients undergoing invasive mechanical ventilation (MV) in the intensive care unit (ICU), and may accelerate lung injury and diaphragm mis-contraction. The impact of PVA on clinical outcomes has not been systematically evaluated. Effective interventions (except for closed-loop ventilation) for reducing PVA are not well established. Methods We performed a systematic review and meta-analysis to investigate the impact of PVA on clinical outcomes in patients undergoing MV (Part A) and the effectiveness of interventions for patients undergoing MV except for closed-loop ventilation (Part B). We searched the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, ClinicalTrials.gov, and WHO-ICTRP until August 2020. In Part A, we defined asynchrony index (AI) ≥ 10 or ineffective triggering index (ITI) ≥ 10 as high PVA. We compared patients having high PVA with those having low PVA. Results Eight studies in Part A and eight trials in Part B fulfilled the eligibility criteria. In Part A, five studies were related to the AI and three studies were related to the ITI. High PVA may be associated with longer duration of mechanical ventilation (mean difference, 5.16 days; 95% confidence interval [CI], 2.38 to 7.94; n = 8; certainty of evidence [CoE], low), higher ICU mortality (odds ratio [OR], 2.73; 95% CI 1.76 to 4.24; n = 6; CoE, low), and higher hospital mortality (OR, 1.94; 95% CI 1.14 to 3.30; n = 5; CoE, low). In Part B, interventions involving MV mode, tidal volume, and pressure-support level were associated with reduced PVA. Sedation protocol, sedation depth, and sedation with dexmedetomidine rather than propofol were also associated with reduced PVA. Conclusions PVA may be associated with longer MV duration, higher ICU mortality, and higher hospital mortality. Physicians may consider monitoring PVA and adjusting ventilator settings and sedatives to reduce PVA. Further studies with adjustment for confounding factors are warranted to determine the impact of PVA on clinical outcomes. Trial registration protocols.io (URL: https://www.protocols.io/view/the-impact-of-patient-ventilator-asynchrony-in-adu-bsqtndwn, 08/27/2020). Supplementary Information The online version contains supplementary material available at 10.1186/s40560-021-00565-5.
Collapse
Affiliation(s)
- Michihito Kyo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Tatsutoshi Shimatani
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Koji Hosokawa
- Department of Anesthesiology and Reanimatology, Faculty of Medicine Sciences, University of Fukui, 23-3 Eiheijicho, Yoshidagun, Fukui, 910-1193, Japan
| | - Shunsuke Taito
- Division of Rehabilitation, Department of Clinical Practice and Support, Hiroshima University Hospital, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan.,Systematic Review Workshop Peer Support Group (SRWS-PSG), Osaka, Japan
| | - Yuki Kataoka
- Department of Internal Medicine, Kyoto Min-Iren Asukai Hospital, Tanaka Asukai-cho 89, Sakyo-ku, Kyoto, 606-8226, Japan.,Systematic Review Workshop Peer Support Group (SRWS-PSG), Osaka, Japan.,Section of Clinical Epidemiology, Department of Community Medicine, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Healthcare Epidemiology, Graduate School of Medicine and Public Health, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
25
|
Quantifying patient spontaneous breathing effort using model-based methods. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Albaiceta GM, Brochard L, Dos Santos CC, Fernández R, Georgopoulos D, Girard T, Jubran A, López-Aguilar J, Mancebo J, Pelosi P, Skrobik Y, Thille AW, Wilcox ME, Blanch L. The central nervous system during lung injury and mechanical ventilation: a narrative review. Br J Anaesth 2021; 127:648-659. [PMID: 34340836 DOI: 10.1016/j.bja.2021.05.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022] Open
Abstract
Mechanical ventilation induces a number of systemic responses for which the brain plays an essential role. During the last decade, substantial evidence has emerged showing that the brain modifies pulmonary responses to physical and biological stimuli by various mechanisms, including the modulation of neuroinflammatory reflexes and the onset of abnormal breathing patterns. Afferent signals and circulating factors from injured peripheral tissues, including the lung, can induce neuronal reprogramming, potentially contributing to neurocognitive dysfunction and psychological alterations seen in critically ill patients. These impairments are ubiquitous in the presence of positive pressure ventilation. This narrative review summarises current evidence of lung-brain crosstalk in patients receiving mechanical ventilation and describes the clinical implications of this crosstalk. Further, it proposes directions for future research ranging from identifying mechanisms of multiorgan failure to mitigating long-term sequelae after critical illness.
Collapse
Affiliation(s)
- Guillermo M Albaiceta
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain; Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
| | - Laurent Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Claudia C Dos Santos
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Rafael Fernández
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Critical Care Department, Althaia Xarxa Assistencial Universitaria de Manresa, Universitat Internacional de Catalunya, Manresa, Spain
| | - Dimitris Georgopoulos
- Intensive Care Medicine Department, University Hospital of Heraklion, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Timothy Girard
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amal Jubran
- Division of Pulmonary and Critical Care Medicine, Hines VA Hospital, Hines, IL, USA; Loyola University of Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Josefina López-Aguilar
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Jordi Mancebo
- Servei Medicina Intensiva, University Hospital Sant Pau, Barcelona, Spain
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy; Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Yoanna Skrobik
- Department of Medicine, McGill University, Regroupement de Soins Critiques Respiratoires, Réseau de Soins Respiratoires FRQS, Montreal, QC, Canada
| | - Arnaud W Thille
- CHU de Poitiers, Médecine Intensive Réanimation, Poitiers, France; INSERM CIC 1402 ALIVE, Université de Poitiers, Poitiers, France
| | - Mary E Wilcox
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Medicine, Division of Respirology (Critical Care Medicine), University Health Network, Toronto, ON, Canada
| | - Lluis Blanch
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CIBER)-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| |
Collapse
|
27
|
Oto B, Annesi J, Foley RJ. Patient-ventilator dyssynchrony in the intensive care unit: A practical approach to diagnosis and management. Anaesth Intensive Care 2021; 49:86-97. [PMID: 33906464 DOI: 10.1177/0310057x20978981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patient-ventilator dyssynchrony or asynchrony occurs when, for any parameter of respiration, discordance exists between the patient's spontaneous effort and the ventilator's provided support. If not recognised, it may promote oversedation, prolong the duration of mechanical ventilation, create risk for lung injury, and generally confuse the clinical picture. Seven forms of dyssynchrony are common: (a) ineffective triggering; (b) autotriggering; (c) inadequate flow; (d) too much flow; (e) premature cycling; (f) delayed cycling; and (g) peak pressure apnoea. 'Reverse triggering' also occurs and may mimic premature cycling. Correct diagnosis of these phenomena often permits management by simple ventilator optimisation rather than by less desirable measures.
Collapse
Affiliation(s)
- Brandon Oto
- Adult Critical Care, UConn Health, Farmington, USA
| | - Janet Annesi
- Respiratory Therapy Department, UConn Health, Farmington, USA
| | - Raymond J Foley
- Division of Pulmonary, Critical Care, and Sleep Medicine, UConn Health, Farmington, USA
| |
Collapse
|
28
|
|
29
|
Zhang Z, Liu J, Xi J, Gong Y, Zeng L, Ma P. Derivation and Validation of an Ensemble Model for the Prediction of Agitation in Mechanically Ventilated Patients Maintained Under Light Sedation. Crit Care Med 2021; 49:e279-e290. [PMID: 33470778 DOI: 10.1097/ccm.0000000000004821] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Light sedation is recommended over deep sedation for invasive mechanical ventilation to improve clinical outcome but may increase the risk of agitation. This study aimed to develop and prospectively validate an ensemble machine learning model for the prediction of agitation on a daily basis. DESIGN Variables collected in the early morning were used to develop an ensemble model by aggregating four machine learning algorithms including support vector machines, C5.0, adaptive boosting with classification trees, and extreme gradient boosting with classification trees, to predict the occurrence of agitation in the subsequent 24 hours. SETTING The training dataset was prospectively collected in 95 ICUs from 80 Chinese hospitals on May 11, 2016, and the validation dataset was collected in 20 out of these 95 ICUs on December 16, 2019. PATIENTS Invasive mechanical ventilation patients who were maintained under light sedation for 24 hours prior to the study day and who were to be maintained at the same sedation level for the next 24 hours. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS A total of 578 invasive mechanical ventilation patients from 95 ICUs in 80 Chinese hospitals, including 459 in the training dataset and 119 in the validation dataset, were enrolled. Agitation was observed in 36% (270/578) of the invasive mechanical ventilation patients. The stepwise regression model showed that higher body temperature (odds ratio for 1°C increase: 5.29; 95% CI, 3.70-7.84; p < 0.001), greater minute ventilation (odds ratio for 1 L/min increase: 1.15; 95% CI, 1.02-1.30; p = 0.019), higher Richmond Agitation-Sedation Scale (odds ratio for 1-point increase: 2.43; 95% CI, 1.92-3.16; p < 0.001), and days on invasive mechanical ventilation (odds ratio for 1-d increase: 0.95; 95% CI, 0.93-0.98; p = 0.001) were independently associated with agitation in the subsequent 24 hours. In the validation dataset, the ensemble model showed good discrimination (area under the receiver operating characteristic curve, 0.918; 95% CI, 0.866-0.969) and calibration (Hosmer-Lemeshow test p = 0.459) in predicting the occurrence of agitation within 24 hours. CONCLUSIONS This study developed an ensemble model for the prediction of agitation in invasive mechanical ventilation patients under light sedation. The model showed good calibration and discrimination in an independent dataset.
Collapse
Affiliation(s)
- Zhongheng Zhang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingtao Liu
- SICU, The 8th Medical Center of General Hospital of Chinese People's Liberation Army, Beijing, People's Republic of China
| | - Jingjing Xi
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yichun Gong
- SICU, The 8th Medical Center of General Hospital of Chinese People's Liberation Army, Beijing, People's Republic of China
| | - Lin Zeng
- Research Center of Clinical Epidemiology, The Third Hospital of Peking University, Beijing, China
| | - Penglin Ma
- SICU, The 8th Medical Center of General Hospital of Chinese People's Liberation Army, Beijing, People's Republic of China
| |
Collapse
|
30
|
Pham T, Montanya J, Telias I, Piraino T, Magrans R, Coudroy R, Damiani LF, Mellado Artigas R, Madorno M, Blanch L, Brochard L. Automated detection and quantification of reverse triggering effort under mechanical ventilation. Crit Care 2021; 25:60. [PMID: 33588912 PMCID: PMC7883535 DOI: 10.1186/s13054-020-03387-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Reverse triggering (RT) is a dyssynchrony defined by a respiratory muscle contraction following a passive mechanical insufflation. It is potentially harmful for the lung and the diaphragm, but its detection is challenging. Magnitude of effort generated by RT is currently unknown. Our objective was to validate supervised methods for automatic detection of RT using only airway pressure (Paw) and flow. A secondary objective was to describe the magnitude of the efforts generated during RT. METHODS We developed algorithms for detection of RT using Paw and flow waveforms. Experts having Paw, flow and esophageal pressure (Pes) assessed automatic detection accuracy by comparison against visual assessment. Muscular pressure (Pmus) was measured from Pes during RT, triggered breaths and ineffective efforts. RESULTS Tracings from 20 hypoxemic patients were used (mean age 65 ± 12 years, 65% male, ICU survival 75%). RT was present in 24% of the breaths ranging from 0 (patients paralyzed or in pressure support ventilation) to 93.3%. Automatic detection accuracy was 95.5%: sensitivity 83.1%, specificity 99.4%, positive predictive value 97.6%, negative predictive value 95.0% and kappa index of 0.87. Pmus of RT ranged from 1.3 to 36.8 cmH20, with a median of 8.7 cmH20. RT with breath stacking had the highest levels of Pmus, and RTs with no breath stacking were of similar magnitude than pressure support breaths. CONCLUSION An automated detection tool using airway pressure and flow can diagnose reverse triggering with excellent accuracy. RT generates a median Pmus of 9 cmH2O with important variability between and within patients. TRIAL REGISTRATION BEARDS, NCT03447288.
Collapse
Affiliation(s)
- Tài Pham
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond St, Toronto, ON, M5B 1W8, Canada. .,Interdepartmental Division of Critical Care Medicine, University of Toronto, 209 Victoria St, Toronto, ON, M5B 1T8, Canada. .,Université Paris-Saclay, AP-HP, Service de médecine intensive-réanimation, Hôpital de Bicêtre, DMU CORREVE, FHU SEPSIS, Groupe de recherche clinique CARMAS, Le Kremlin-Bicêtre, France.
| | | | - Irene Telias
- grid.415502.7Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond St, Toronto, ON M5B 1W8 Canada ,grid.17063.330000 0001 2157 2938Interdepartmental Division of Critical Care Medicine, University of Toronto, 209 Victoria St, Toronto, ON M5B 1T8 Canada ,grid.231844.80000 0004 0474 0428Division of Respirology, Department of Medicine, University Health Network, Toronto, Canada ,grid.492573.e0000 0004 6477 6457Sinai Health System, Toronto, Canada
| | - Thomas Piraino
- grid.415502.7St. Michael’s Hospital, Unity Health Toronto, Toronto, Canada ,grid.25073.330000 0004 1936 8227Division of Critical Care, Department of Anesthesia, McMaster University, Hamilton, Canada
| | | | - Rémi Coudroy
- grid.415502.7Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond St, Toronto, ON M5B 1W8 Canada ,grid.17063.330000 0001 2157 2938Interdepartmental Division of Critical Care Medicine, University of Toronto, 209 Victoria St, Toronto, ON M5B 1T8 Canada ,grid.411162.10000 0000 9336 4276Médecine Intensive Réanimation, CHU de Poitiers, Poitiers, France ,grid.11166.310000 0001 2160 6368INSERM CIC 1402, Groupe ALIVE, Université de Poitiers, Poitiers, France
| | - L. Felipe Damiani
- grid.415502.7Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond St, Toronto, ON M5B 1W8 Canada ,grid.17063.330000 0001 2157 2938Interdepartmental Division of Critical Care Medicine, University of Toronto, 209 Victoria St, Toronto, ON M5B 1T8 Canada ,grid.7870.80000 0001 2157 0406Departamento Ciencias de la Salud, Carrera de Kinesiología, Faculdad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricard Mellado Artigas
- grid.415502.7Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond St, Toronto, ON M5B 1W8 Canada ,grid.17063.330000 0001 2157 2938Interdepartmental Division of Critical Care Medicine, University of Toronto, 209 Victoria St, Toronto, ON M5B 1T8 Canada ,grid.410458.c0000 0000 9635 9413Surgical ICU, Department of Anesthesia, Hospital Clínic, Barcelona, Spain
| | - Matías Madorno
- grid.441574.70000000090137393Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| | - Lluis Blanch
- grid.7080.f0000 0001 2296 0625Critical Care Center, Hospital Universitari Parc Taulí, Institut D’Investigació I Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain ,grid.413448.e0000 0000 9314 1427Biomedical Research Networking Center in Respiratory Disease (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Laurent Brochard
- grid.415502.7Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond St, Toronto, ON M5B 1W8 Canada ,grid.17063.330000 0001 2157 2938Interdepartmental Division of Critical Care Medicine, University of Toronto, 209 Victoria St, Toronto, ON M5B 1T8 Canada
| | | |
Collapse
|
31
|
Abstract
Acute respiratory distress syndrome (ARDS) is a fatal condition with insufficiently clarified etiology. Supportive care for severe hypoxemia remains the mainstay of essential interventions for ARDS. In recent years, adequate ventilation to prevent ventilator-induced lung injury (VILI) and patient self-inflicted lung injury (P-SILI) as well as lung-protective mechanical ventilation has an increasing attention in ARDS. Ventilation-perfusion mismatch may augment severe hypoxemia and inspiratory drive and consequently induce P-SILI. Respiratory drive and effort must also be carefully monitored to prevent P-SILI. Airway occlusion pressure (P0.1) and airway pressure deflection during an end-expiratory airway occlusion (Pocc) could be easy indicators to evaluate the respiratory drive and effort. Patient-ventilator dyssynchrony is a time mismatching between patient’s effort and ventilator drive. Although it is frequently unrecognized, dyssynchrony can be associated with poor clinical outcomes. Dyssynchrony includes trigger asynchrony, cycling asynchrony, and flow delivery mismatch. Ventilator-induced diaphragm dysfunction (VIDD) is a form of iatrogenic injury from inadequate use of mechanical ventilation. Excessive spontaneous breathing can lead to P-SILI, while excessive rest can lead to VIDD. Optimal balance between these two manifestations is probably associated with the etiology and severity of the underlying pulmonary disease. High-flow nasal cannula (HFNC) and non-invasive positive pressure ventilation (NPPV) are non-invasive techniques for supporting hypoxemia. While they are beneficial as respiratory supports in mild ARDS, there can be a risk of delaying needed intubation. Mechanical ventilation and ECMO are applied for more severe ARDS. However, as with HFNC/NPPV, inappropriate assessment of breathing workload potentially has a risk of delaying the timing of shifting from ventilator to ECMO. Various methods of oxygen administration in ARDS are important. However, it is also important to evaluate whether they adequately reduce the breathing workload and help to improve ARDS.
Collapse
Affiliation(s)
- Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
32
|
Blokpoel RGT, Koopman AA, van Dijk J, Kneyber MCJ. Additional work of breathing from trigger errors in mechanically ventilated children. Respir Res 2020; 21:296. [PMID: 33172465 PMCID: PMC7653668 DOI: 10.1186/s12931-020-01561-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/01/2020] [Indexed: 01/12/2023] Open
Abstract
Background Patient–ventilator asynchrony is associated with increased morbidity and mortality. A direct causative relationship between Patient–ventilator asynchrony and adverse clinical outcome have yet to be demonstrated. It is hypothesized that during trigger errors excessive pleural pressure swings are generated, contributing to increased work-of-breathing and self-inflicted lung injury. The objective of this study was to determine the additional work-of-breathing and pleural pressure swings caused by trigger errors in mechanically ventilated children. Methods Prospective observational study in a tertiary paediatric intensive care unit in an university hospital. Patients ventilated > 24 h and < 18 years old were studied. Patients underwent a 5-min recording of the ventilator flow–time, pressure–time and oesophageal pressure–time scalar. Pressure–time–product calculations were made as a proxy for work-of-breathing. Oesophageal pressure swings, as a surrogate for pleural pressure swings, during trigger errors were determined. Results Nine-hundred-and-fifty-nine trigger errors in 28 patients were identified. The additional work-of-breathing caused by trigger errors showed great variability among patients. The more asynchronous breaths were present the higher the work-of-breathing of these breaths. A higher spontaneous breath rate led to a lower amount of trigger errors. Patient–ventilator asynchrony was not associated with prolonged duration of mechanical ventilation or paediatric intensive care stay. Conclusions The additional work-of-breathing caused by trigger errors in ventilated children can take up to 30–40% of the total work-of-breathing. Trigger errors were less common in patients breathing spontaneously and those able to generate higher pressure–time–product and pressure swings. Trial registration Not applicable.
Collapse
Affiliation(s)
- Robert G T Blokpoel
- Department of Paediatrics, Division of Paediatric Intensive Care, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Internal Postal Code CA 62, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| | - Alette A Koopman
- Department of Paediatrics, Division of Paediatric Intensive Care, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Internal Postal Code CA 62, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Jefta van Dijk
- Department of Paediatrics, Division of Paediatric Intensive Care, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Internal Postal Code CA 62, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Martin C J Kneyber
- Department of Paediatrics, Division of Paediatric Intensive Care, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Internal Postal Code CA 62, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.,Critical Care, Anaesthesiology, Peri-Operative Medicine and Emergency Medicine (CAPE), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
33
|
How to ventilate obstructive and asthmatic patients. Intensive Care Med 2020; 46:2436-2449. [PMID: 33169215 PMCID: PMC7652057 DOI: 10.1007/s00134-020-06291-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/12/2020] [Indexed: 11/11/2022]
Abstract
Exacerbations are part of the natural history of chronic obstructive pulmonary disease and asthma. Severe exacerbations can cause acute respiratory failure, which may ultimately require mechanical ventilation. This review summarizes practical ventilator strategies for the management of patients with obstructive airway disease. Such strategies include non-invasive mechanical ventilation to prevent intubation, invasive mechanical ventilation, from the time of intubation to weaning, and strategies intended to prevent post-extubation acute respiratory failure. The role of tracheostomy, the long-term prognosis, and potential future adjunctive strategies are also discussed. Finally, the physiological background that underlies these strategies is detailed.
Collapse
|
34
|
Luo XY, He X, Zhou YM, Wang YM, Chen JR, Chen GQ, Li HL, Yang YL, Zhang L, Zhou JX. Patient-ventilator asynchrony in acute brain-injured patients: a prospective observational study. Ann Intensive Care 2020; 10:144. [PMID: 33074406 PMCID: PMC7570406 DOI: 10.1186/s13613-020-00763-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
Background Patient–ventilator asynchrony is common in mechanically ventilated patients and may be related to adverse outcomes. Few studies have reported the occurrence of asynchrony in brain-injured patients. We aimed to investigate the prevalence, type and severity of patient–ventilator asynchrony in mechanically ventilated patients with brain injury. Methods This prospective observational study enrolled acute brain-injured patients undergoing mechanical ventilation. Esophageal pressure monitoring was established after enrollment. Flow, airway pressure, and esophageal pressure–time waveforms were recorded for a 15-min interval, four times daily for 3 days, for visually detecting asynchrony by offline analysis. At the end of each dataset recording, the respiratory drive was determined by the airway occlusion maneuver. The asynchrony index was calculated to represent the severity. The relationship between the prevalence and the severity of asynchrony with ventilatory modes and settings, respiratory drive, and analgesia and sedation were determined. Association of severe patient–ventilator asynchrony, which was defined as an asynchrony index ≥ 10%, with clinical outcomes was analyzed. Results In 100 enrolled patients, a total of 1076 15-min waveform datasets covering 330,292 breaths were collected, in which 70,156 (38%) asynchronous breaths were detected. Asynchrony occurred in 96% of patients with the median (interquartile range) asynchrony index of 12.4% (4.3%–26.4%). The most prevalent type was ineffective triggering. No significant difference was found in either prevalence or asynchrony index among different classifications of brain injury (p > 0.05). The prevalence of asynchrony was significantly lower during pressure control/assist ventilation than during other ventilatory modes (p < 0.05). Compared to the datasets without asynchrony, the airway occlusion pressure was significantly lower in datasets with ineffective triggering (p < 0.001). The asynchrony index was significantly higher during the combined use of opioids and sedatives (p < 0.001). Significantly longer duration of ventilation and hospital length of stay after the inclusion were found in patients with severe ineffective triggering (p < 0.05). Conclusions Patient–ventilator asynchrony is common in brain-injured patients. The most prevalent type is ineffective triggering and its severity is likely related to a long duration of ventilation and hospital stay. Prevalence and severity of asynchrony are associated with ventilatory modes, respiratory drive and analgesia/sedation strategy, suggesting treatment adjustment in this particular population. Trial registration The study has been registered on 4 July 2017 in ClinicalTrials.gov (NCT03212482) (https://clinicaltrials.gov/ct2/show/NCT03212482).
Collapse
Affiliation(s)
- Xu-Ying Luo
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, No. 119, South 4th Ring West Road, Beijing, 100070, China
| | - Xuan He
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, No. 119, South 4th Ring West Road, Beijing, 100070, China
| | - Yi-Min Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, No. 119, South 4th Ring West Road, Beijing, 100070, China
| | - Yu-Mei Wang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, No. 119, South 4th Ring West Road, Beijing, 100070, China
| | - Jing-Ran Chen
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, No. 119, South 4th Ring West Road, Beijing, 100070, China
| | - Guang-Qiang Chen
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, No. 119, South 4th Ring West Road, Beijing, 100070, China
| | - Hong-Liang Li
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, No. 119, South 4th Ring West Road, Beijing, 100070, China
| | - Yan-Lin Yang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, No. 119, South 4th Ring West Road, Beijing, 100070, China
| | - Linlin Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, No. 119, South 4th Ring West Road, Beijing, 100070, China
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, No. 119, South 4th Ring West Road, Beijing, 100070, China.
| |
Collapse
|
35
|
Sottile PD, Albers D, Smith BJ, Moss MM. Ventilator dyssynchrony - Detection, pathophysiology, and clinical relevance: A Narrative review. Ann Thorac Med 2020; 15:190-198. [PMID: 33381233 PMCID: PMC7720746 DOI: 10.4103/atm.atm_63_20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/05/2020] [Indexed: 01/21/2023] Open
Abstract
Mortality associated with the acute respiratory distress syndrome remains unacceptably high due in part to ventilator-induced lung injury (VILI). Ventilator dyssynchrony is defined as the inappropriate timing and delivery of a mechanical breath in response to patient effort and may cause VILI. Such deleterious patient–ventilator interactions have recently been termed patient self-inflicted lung injury. This narrative review outlines the detection and frequency of several different types of ventilator dyssynchrony, delineates the different mechanisms by which ventilator dyssynchrony may propagate VILI, and reviews the potential clinical impact of ventilator dyssynchrony. Until recently, identifying ventilator dyssynchrony required the manual interpretation of ventilator pressure and flow waveforms. However, computerized interpretation of ventilator waive forms can detect ventilator dyssynchrony with an area under the receiver operating curve of >0.80. Using such algorithms, ventilator dyssynchrony occurs in 3%–34% of all breaths, depending on the patient population. Moreover, two types of ventilator dyssynchrony, double-triggered and flow-limited breaths, are associated with the more frequent delivery of large tidal volumes >10 mL/kg when compared with synchronous breaths (54% [95% confidence interval (CI), 47%–61%] and 11% [95% CI, 7%–15%]) compared with 0.9% (95% CI, 0.0%–1.9%), suggesting a role in propagating VILI. Finally, a recent study associated frequent dyssynchrony-defined as >10% of all breaths-with an increase in hospital mortality (67 vs. 23%, P = 0.04). However, the clinical significance of ventilator dyssynchrony remains an area of active investigation and more research is needed to guide optimal ventilator dyssynchrony management.
Collapse
Affiliation(s)
- Peter D Sottile
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - David Albers
- Department of Pediatrics, Division of Clinical Informatics, University of Colorado, Aurora, Colorado, USA
| | - Bradford J Smith
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marc M Moss
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
36
|
Daou M, Telias I, Younes M, Brochard L, Wilcox ME. Abnormal Sleep, Circadian Rhythm Disruption, and Delirium in the ICU: Are They Related? Front Neurol 2020; 11:549908. [PMID: 33071941 PMCID: PMC7530631 DOI: 10.3389/fneur.2020.549908] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/18/2020] [Indexed: 12/23/2022] Open
Abstract
Delirium is a syndrome characterized by acute brain failure resulting in neurocognitive disturbances affecting attention, awareness, and cognition. It is highly prevalent among critically ill patients and is associated with increased morbidity and mortality. A core domain of delirium is represented by behavioral disturbances in sleep-wake cycle probably related to circadian rhythm disruption. The relationship between sleep, circadian rhythm and intensive care unit (ICU)-acquired delirium is complex and likely bidirectional. In this review, we explore the proposed pathophysiological mechanisms of sleep disruption and circadian dysrhythmia as possible contributing factors in transitioning to delirium in the ICU and highlight some of the most relevant caveats for understanding the relationship between these complex phenomena. Specifically, we will (1) review the physiological consequences of poor sleep quality and efficiency; (2) explore how the neural substrate underlying the circadian clock functions may be disrupted in delirium; (3) discuss the role of sedative drugs as contributors to delirium and chrono-disruption; and, (4) describe the association between abnormal sleep-pathological wakefulness, circadian dysrhythmia, delirium and critical illness. Opportunities to improve sleep and readjust circadian rhythmicity to realign the circadian clock may exist as therapeutic targets in both the prevention and treatment of delirium in the ICU. Further research is required to better define these conditions and understand the underlying physiologic relationship to develop effective prevention and therapeutic strategies.
Collapse
Affiliation(s)
- Marietou Daou
- Interdepartment Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Department of Medicine (Respirology), University Health Network, Toronto, ON, Canada
| | - Irene Telias
- Interdepartment Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Department of Medicine (Respirology), University Health Network, Toronto, ON, Canada.,Department of Medicine (Critical Care Medicine), St. Michael's Hospital, Toronto, ON, Canada.,Keenan Research Centre, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | | | - Laurent Brochard
- Interdepartment Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Department of Medicine (Critical Care Medicine), St. Michael's Hospital, Toronto, ON, Canada.,Keenan Research Centre, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | - M Elizabeth Wilcox
- Interdepartment Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Department of Medicine (Respirology), University Health Network, Toronto, ON, Canada
| |
Collapse
|
37
|
Telias I, Junhasavasdikul D, Rittayamai N, Piquilloud L, Chen L, Ferguson ND, Goligher EC, Brochard L. Airway Occlusion Pressure As an Estimate of Respiratory Drive and Inspiratory Effort during Assisted Ventilation. Am J Respir Crit Care Med 2020; 201:1086-1098. [PMID: 32097569 DOI: 10.1164/rccm.201907-1425oc] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Rationale: Monitoring and controlling respiratory drive and effort may help to minimize lung and diaphragm injury. Airway occlusion pressure (P0.1) is a noninvasive measure of respiratory drive.Objectives: To determine 1) the validity of "ventilator" P0.1 (P0.1vent) displayed on the screen as a measure of drive, 2) the ability of P0.1 to detect potentially injurious levels of effort, and 3) how P0.1vent displayed by different ventilators compares to a "reference" P0.1 (P0.1ref) measured from airway pressure recording during an occlusion.Methods: Analysis of three studies in patients, one in healthy subjects, under assisted ventilation, and a bench study with six ventilators. P0.1vent was validated against measures of drive (electrical activity of the diaphragm and muscular pressure over time) and P0.1ref. Performance of P0.1ref and P0.1vent to detect predefined potentially injurious effort was tested using derivation and validation datasets using esophageal pressure-time product as the reference standard.Measurements and Main Results: P0.1vent correlated well with measures of drive and with the esophageal pressure-time product (within-subjects R2 = 0.8). P0.1ref >3.5 cm H2O was 80% sensitive and 77% specific for detecting high effort (≥200 cm H2O ⋅ s ⋅ min-1); P0.1ref ≤1.0 cm H2O was 100% sensitive and 92% specific for low effort (≤50 cm H2O ⋅ s ⋅ min-1). The area under the receiver operating characteristics curve for P0.1vent to detect potentially high and low effort were 0.81 and 0.92, respectively. Bench experiments showed a low mean bias for P0.1vent compared with P0.1ref for most ventilators but precision varied; in patients, precision was lower. Ventilators estimating P0.1vent without occlusions could underestimate P0.1ref.Conclusions: P0.1 is a reliable bedside tool to assess respiratory drive and detect potentially injurious inspiratory effort.
Collapse
Affiliation(s)
- Irene Telias
- Interdepartmental Division of Critical Care Medicine and.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, Toronto, Ontario, Canada
| | - Detajin Junhasavasdikul
- Interdepartmental Division of Critical Care Medicine and.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Faculty of Medicine Ramathibodi Hospital and
| | - Nuttapol Rittayamai
- Interdepartmental Division of Critical Care Medicine and.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Division of Respiratory Diseases and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Lise Piquilloud
- Adult Intensive Care and Burn Unit, University Hospital and University of Lausanne, Lausanne, Switzerland; and
| | - Lu Chen
- Interdepartmental Division of Critical Care Medicine and.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Niall D Ferguson
- Interdepartmental Division of Critical Care Medicine and.,Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada.,Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine and.,Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine and.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Jonkman AH, Rauseo M, Carteaux G, Telias I, Sklar MC, Heunks L, Brochard LJ. Proportional modes of ventilation: technology to assist physiology. Intensive Care Med 2020; 46:2301-2313. [PMID: 32780167 PMCID: PMC7417783 DOI: 10.1007/s00134-020-06206-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/30/2020] [Indexed: 01/17/2023]
Abstract
Proportional modes of ventilation assist the patient by adapting to his/her effort, which contrasts with all other modes. The two proportional modes are referred to as neurally adjusted ventilatory assist (NAVA) and proportional assist ventilation with load-adjustable gain factors (PAV+): they deliver inspiratory assist in proportion to the patient’s effort, and hence directly respond to changes in ventilatory needs. Due to their working principles, NAVA and PAV+ have the ability to provide self-adjusted lung and diaphragm-protective ventilation. As these proportional modes differ from ‘classical’ modes such as pressure support ventilation (PSV), setting the inspiratory assist level is often puzzling for clinicians at the bedside as it is not based on usual parameters such as tidal volumes and PaCO2 targets. This paper provides an in-depth overview of the working principles of NAVA and PAV+ and the physiological differences with PSV. Understanding these differences is fundamental for applying any assisted mode at the bedside. We review different methods for setting inspiratory assist during NAVA and PAV+ , and (future) indices for monitoring of patient effort. Last, differences with automated modes are mentioned.
Collapse
Affiliation(s)
- Annemijn H Jonkman
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Room 4-08, Toronto, ON, M5B 1T8, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Department of Intensive Care Medicine, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Michela Rauseo
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Room 4-08, Toronto, ON, M5B 1T8, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Guillaume Carteaux
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor, Créteil, F-94010, France.,Groupe de Recherche Clinique CARMAS, Université Paris Est-Créteil, Créteil, F-94010, France.,Institut Mondor de Recherche Biomédicale INSERM 955, Créteil, F-94010, France
| | - Irene Telias
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Room 4-08, Toronto, ON, M5B 1T8, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael C Sklar
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Room 4-08, Toronto, ON, M5B 1T8, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Leo Heunks
- Department of Intensive Care Medicine, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Laurent J Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Room 4-08, Toronto, ON, M5B 1T8, Canada. .,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
39
|
Damiani LF, Bruhn A, Retamal J, Bugedo G. Patient-ventilator dyssynchronies: Are they all the same? A clinical classification to guide actions. J Crit Care 2020; 60:50-57. [PMID: 32739760 DOI: 10.1016/j.jcrc.2020.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022]
Abstract
Patient ventilatory dyssynchrony (PVD) is a mismatch between the respiratory drive of the patient and ventilatory assistance. It is a complex event seen in almost all ventilated patients and at any ventilator mode, with uncertain significance and prognosis. Due to its different pathophysiological mechanisms, there is still not consensual classification to guide us in selecting the best treatment. In the present review we aimed to summarize some clinical data on PVD, and to propose a clinical classification based on the type of PVD, from potentially innocuous to clearly harmful PVD, which could help clinicians in the decision-making process from adjusting ventilator settings to deeply sedate or paralyze the patient. Clearly, further studies are needed addressing risk factors, physiologic mechanisms and direct consequences of PVD in order to help clinicians to design effective and proven strategies at the bedside.
Collapse
Affiliation(s)
- L Felipe Damiani
- Departamento Ciencias de la Salud, Carrera de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile; Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile.
| | - Alejandro Bruhn
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Jaime Retamal
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Guillermo Bugedo
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile
| |
Collapse
|
40
|
Noninvasive Neurally Adjusted Ventilator Assist Ventilation in the Postoperative Period Produces Better Patient-Ventilator Synchrony but Not Comfort. Pulm Med 2020; 2020:4705042. [PMID: 32655950 PMCID: PMC7327603 DOI: 10.1155/2020/4705042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/26/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022] Open
Abstract
Background Noninvasive neurally adjusted ventilatory assist (NAVA) has been shown to improve patient-ventilator interaction in many settings. There is still scarce data with regard to postoperative patients indicated for noninvasive ventilation (NIV) which this study elates. The purpose of this trial was to evaluate postoperative patients for synchrony and comfort in noninvasive pressure support ventilation (NIV-PSV) vs. NIV-NAVA. Methods Twenty-two subjects received either NIV-NAVA or NIV-PSV in an object-blind, prospective, randomized, crossover fashion (observational trial). We evaluated blood gases and ventilator tracings throughout as well as comfort of ventilation at the end of each ventilation phase. Results There was an effective reduction in ventilator delays (p < 0.001) and negative pressure duration in NIV-NAVA as compared to NIV-PSV (p < 0.001). Although we used optimized settings in NIV-PSV, explaining the overall low incidence of asynchrony, NIV-NAVA led to reductions in the NeuroSync-index (p < 0.001) and all types of asynchrony except for double triggering that was significantly more frequent in NIV-NAVA vs. NIV-PSV (p = 0.02); ineffective efforts were reduced to zero by use of NIV-NAVA. In our population of previously lung-healthy subjects, we did not find differences in blood gases and patient comfort between the two modes. Conclusion In the postoperative setting, NIV-NAVA is well suitable for use and effective in reducing asynchronies as well as a surrogate for work of breathing. Although increased synchrony was not transferred into an increased comfort, there was an advantage with regard to patient-ventilator interaction. The trial was registered at the German clinical Trials Register (DRKS no.: DRKS00005408).
Collapse
|
41
|
Vassilakopoulos T, Toumpanakis D, Mancebo J. What's new about pulmonary hyperinflation in mechanically ventilated critical patients. Intensive Care Med 2020; 46:2381-2384. [PMID: 32472214 PMCID: PMC7256337 DOI: 10.1007/s00134-020-06105-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/11/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Theodoros Vassilakopoulos
- 3rd Department of Critical Care Medicine, Evgenideion Hospital, National & Kapodistrian University of Athens, Athens, Greece.
| | - Dimitrios Toumpanakis
- 3rd Department of Critical Care Medicine, Evgenideion Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Jordi Mancebo
- Intensive Care Medicine, Hospital de Sant Pau, Barcelona, Spain.
| |
Collapse
|
42
|
Hadfield DJ, Rose L, Reid F, Cornelius V, Hart N, Finney C, Penhaligon B, Molai J, Harris C, Saha S, Noble H, Clarey E, Thompson L, Smith J, Johnson L, Hopkins PA, Rafferty GF. Neurally adjusted ventilatory assist versus pressure support ventilation: a randomized controlled feasibility trial performed in patients at risk of prolonged mechanical ventilation. Crit Care 2020; 24:220. [PMID: 32408883 PMCID: PMC7224141 DOI: 10.1186/s13054-020-02923-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/24/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The clinical effectiveness of neurally adjusted ventilatory assist (NAVA) has yet to be demonstrated, and preliminary studies are required. The study aim was to assess the feasibility of a randomized controlled trial (RCT) of NAVA versus pressure support ventilation (PSV) in critically ill adults at risk of prolonged mechanical ventilation (MV). METHODS An open-label, parallel, feasibility RCT (n = 78) in four ICUs of one university-affiliated hospital. The primary outcome was mode adherence (percentage of time adherent to assigned mode), and protocol compliance (binary-≥ 65% mode adherence). Secondary exploratory outcomes included ventilator-free days (VFDs), sedation, and mortality. RESULTS In the 72 participants who commenced weaning, median (95% CI) mode adherence was 83.1% (64.0-97.1%) and 100% (100-100%), and protocol compliance was 66.7% (50.3-80.0%) and 100% (89.0-100.0%) in the NAVA and PSV groups respectively. Secondary outcomes indicated more VFDs to D28 (median difference 3.0 days, 95% CI 0.0-11.0; p = 0.04) and fewer in-hospital deaths (relative risk 0.5, 95% CI 0.2-0.9; p = 0.032) for NAVA. Although overall sedation was similar, Richmond Agitation and Sedation Scale (RASS) scores were closer to zero in NAVA compared to PSV (p = 0.020). No significant differences were observed in duration of MV, ICU or hospital stay, or ICU, D28, and D90 mortality. CONCLUSIONS This feasibility trial demonstrated good adherence to assigned ventilation mode and the ability to meet a priori protocol compliance criteria. Exploratory outcomes suggest some clinical benefit for NAVA compared to PSV. Clinical effectiveness trials of NAVA are potentially feasible and warranted. TRIAL REGISTRATION ClinicalTrials.gov, NCT01826890. Registered 9 April 2013.
Collapse
Affiliation(s)
- Daniel J Hadfield
- Critical Care, King's College Hospital, London, UK.
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK.
| | - Louise Rose
- Florence Nightingale Faculty of Nursing, Midwifery & Palliative Care, King's College London, London, UK
- Sunnybrook Health Sciences Centre and Sunnybrook Research Institute, Toronto, Canada
| | - Fiona Reid
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - Victoria Cornelius
- Faculty of Medicine, School of Public Health, Imperial College, London, UK
| | - Nicholas Hart
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
- Lane Fox Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Clare Finney
- Critical Care, King's College Hospital, London, UK
| | | | | | - Clair Harris
- Critical Care, King's College Hospital, London, UK
| | - Sian Saha
- Critical Care, King's College Hospital, London, UK
| | | | - Emma Clarey
- Critical Care, King's College Hospital, London, UK
| | | | - John Smith
- Critical Care, King's College Hospital, London, UK
| | - Lucy Johnson
- Critical Care, King's College Hospital, London, UK
| | | | - Gerrard F Rafferty
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| |
Collapse
|
43
|
Diagnostic Accuracy of Diaphragm Ultrasound in Detecting and Characterizing Patient-Ventilator Asynchronies during Noninvasive Ventilation. Anesthesiology 2020; 132:1494-1502. [PMID: 32205549 DOI: 10.1097/aln.0000000000003239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Management of acute respiratory failure by noninvasive ventilation is often associated with asynchronies, like autotriggering or delayed cycling, incurred by leaks from the interface. These events are likely to impair patient's tolerance and to compromise noninvasive ventilation. The development of methods for easy detection and monitoring of asynchronies is therefore necessary. The authors describe two new methods to detect patient-ventilator asynchronies, based on ultrasound analysis of diaphragm excursion or thickening combined with airway pressure. The authors tested these methods in a diagnostic accuracy study. METHODS Fifteen healthy subjects were placed under noninvasive ventilation and subjected to artificially induced leaks in order to generate the main asynchronies (autotriggering or delayed cycling) at event-appropriate times of the respiratory cycle. Asynchronies were identified and characterized by conjoint assessment of ultrasound records and airway pressure waveforms; both were visualized on the ultrasound screen. The performance and accuracy of diaphragm excursion and thickening to detect each asynchrony were compared with a "control method" of flow/pressure tracings alone, and a "working standard method" combining flow, airway pressure, and diaphragm electromyography signals analyses. RESULTS Ultrasound recordings were performed for the 15 volunteers, unlike electromyography recordings which could be collected in only 9 of 15 patients (60%). Autotriggering was correctly identified by continuous recording of electromyography, excursion, thickening, and flow/pressure tracings with sensitivity of 93% (95% CI, 89-97%), 94% (95% CI, 91-98%), 91% (95% CI, 87-96%), and 79% (95% CI, 75-84%), respectively. Delayed cycling was detected by electromyography, excursion, thickening, and flow/pressure tracings with sensitivity of 84% (95% CI, 77-90%), 86% (95% CI, 80-93%), 89% (95% CI, 83-94%), and 67% (95% CI, 61-73%), respectively. CONCLUSIONS Ultrasound is a simple, bedside adjustable, clinical tool to detect the majority of patient-ventilator asynchronies associated with noninvasive ventilation leaks, provided that it is possible to visualize the airway pressure curve on the ultrasound machine screen. Ultrasound detection of autotriggering and delayed cycling is more accurate than isolated observation of pressure and flow tracings, and more feasible than electromyogram.
Collapse
|
44
|
Diniz-Silva F, Moriya HT, Alencar AM, Amato MBP, Carvalho CRR, Ferreira JC. Neurally adjusted ventilatory assist vs. pressure support to deliver protective mechanical ventilation in patients with acute respiratory distress syndrome: a randomized crossover trial. Ann Intensive Care 2020; 10:18. [PMID: 32040785 PMCID: PMC7010869 DOI: 10.1186/s13613-020-0638-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/02/2020] [Indexed: 01/06/2023] Open
Abstract
Background Protective mechanical ventilation is recommended for patients with acute respiratory distress syndrome (ARDS), but it usually requires controlled ventilation and sedation. Using neurally adjusted ventilatory assist (NAVA) or pressure support ventilation (PSV) could have additional benefits, including the use of lower sedative doses, improved patient–ventilator interaction and shortened duration of mechanical ventilation. We designed a pilot study to assess the feasibility of keeping tidal volume (VT) at protective levels with NAVA and PSV in patients with ARDS. Methods We conducted a prospective randomized crossover trial in five ICUs from a university hospital in Brazil and included patients with ARDS transitioning from controlled ventilation to partial ventilatory support. NAVA and PSV were applied in random order, for 15 min each, followed by 3 h in NAVA. Flow, peak airway pressure (Paw) and electrical activity of the diaphragm (EAdi) were captured from the ventilator, and a software (Matlab, Mathworks, USA), automatically detected inspiratory efforts and calculated respiratory rate (RR) and VT. Asynchrony events detection was based on waveform analysis. Results We randomized 20 patients, but the protocol was interrupted for five (25%) patients for whom we were unable to maintain VT below 6.5 mL/kg in PSV due to strong inspiratory efforts and for one patient for whom we could not detect EAdi signal. For the 14 patients who completed the protocol, VT was 5.8 ± 1.1 mL/kg for NAVA and 5.6 ± 1.0 mL/kg for PSV (p = 0.455) and there were no differences in RR (24 ± 7 for NAVA and 23 ± 7 for PSV, p = 0.661). Paw was greater in NAVA (21 ± 3 cmH2O) than in PSV (19 ± 3 cmH2O, p = 0.001). Most patients were under continuous sedation during the study. NAVA reduced triggering delay compared to PSV (p = 0.020) and the median asynchrony Index was 0.7% (0–2.7) in PSV and 0% (0–2.2) in NAVA (p = 0.6835). Conclusions It was feasible to keep VT in protective levels with NAVA and PSV for 75% of the patients. NAVA resulted in similar VT, RR and Paw compared to PSV. Our findings suggest that partial ventilatory assistance with NAVA and PSV is feasible as a protective ventilation strategy in selected ARDS patients under continuous sedation. Trial registration ClinicalTrials.gov (NCT01519258). Registered 26 January 2012, https://clinicaltrials.gov/ct2/show/NCT01519258
Collapse
Affiliation(s)
- Fabia Diniz-Silva
- Divisao de Pneumologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, SP, BR, Av. Dr. Enéas de Carvalho Aguiar, 44, 5 andar, bloco 2, sala 1, São Paulo, SP, CEP 05403900, Brazil
| | - Henrique T Moriya
- Biomedical Engineering Laboratory, Escola Politécnica da USP, Av. Prof. Luciano Gualberto, trav. 3, 158, Cidade Universitária, São Paulo, SP, CEP 05586-0600, Brazil
| | - Adriano M Alencar
- Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, São Paulo, SP, CEP 05314-970, Brazil
| | - Marcelo B P Amato
- Divisao de Pneumologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, SP, BR, Av. Dr. Enéas de Carvalho Aguiar, 44, 5 andar, bloco 2, sala 1, São Paulo, SP, CEP 05403900, Brazil
| | - Carlos R R Carvalho
- Divisao de Pneumologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, SP, BR, Av. Dr. Enéas de Carvalho Aguiar, 44, 5 andar, bloco 2, sala 1, São Paulo, SP, CEP 05403900, Brazil
| | - Juliana C Ferreira
- Divisao de Pneumologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, SP, BR, Av. Dr. Enéas de Carvalho Aguiar, 44, 5 andar, bloco 2, sala 1, São Paulo, SP, CEP 05403900, Brazil.
| |
Collapse
|
45
|
Al Otair HA, BaHammam AS. Ventilator- and interface-related factors influencing patient-ventilator asynchrony during noninvasive ventilation. Ann Thorac Med 2020; 15:1-8. [PMID: 32002040 PMCID: PMC6967144 DOI: 10.4103/atm.atm_24_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/05/2019] [Indexed: 11/29/2022] Open
Abstract
Patient-ventilator asynchrony (PVA) is common in patients receiving noninvasive ventilation (NIV). This occurs primarily when the triggering and cycling-off of ventilatory assistance are not synchronized with the patient's inspiratory efforts and could result in increased work of breathing and niv failure. In general, five types of asynchrony can occur during NIV: ineffective inspiratory efforts, double-triggering, auto-triggering, short-ventilatory cycling, and long-ventilatory cycling. Many factors that affect PVA are mostly related to the degree of air leakage, level of pressure support, and the type and properties of the interface used. Careful monitoring and adjustment of these factors are essential to reduce PVA and improve patient comfort. In this article, we discuss the machine and interface-related factors that influence PVA during NIV and its effect on the respiratory mechanics during pressure support ventilation, which is the ventilatory mode used most commonly during NIV. For that, we critically evaluated studies that assessed ventilator- and interface-related factors that influence PVA during NIV and proposed therapeutic solutions.
Collapse
Affiliation(s)
- Hadil A Al Otair
- Department of Clinical Sciences, University of Sharjah, Sharjah, UAE
| | - Ahmed S BaHammam
- Department of Medicine, The University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
46
|
|
47
|
Moury PH, Cuisinier A, Durand M, Bosson JL, Chavanon O, Payen JF, Jaber S, Albaladejo P. Diaphragm thickening in cardiac surgery: a perioperative prospective ultrasound study. Ann Intensive Care 2019; 9:50. [PMID: 31016412 PMCID: PMC6478777 DOI: 10.1186/s13613-019-0521-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/04/2019] [Indexed: 02/07/2023] Open
Abstract
Background Diaphragm paresis is common after cardiac surgery and may delay the weaning from the ventilator. Our objective was to evaluate diaphragm thickening during weaning and secondly the muscle thickness as a marker of myotrauma. Methods Patients undergoing elective cardiac surgery were prospectively included. Ultrasonic index of right hemidiaphragm thickening fraction (TF) was measured as a surrogate criterion of work of breathing. A TF < 20% was defined as a low diaphragm thickening. Measurements of TF were performed during three periods to study diaphragm thickening evolution defined by the difference between two consecutive time line point: preoperative (D − 1), during a spontaneous breathing trial (SBT) in the intensive care unit and postoperative (D + 1). We studied three patterns of diaphragm thickness at end expiration evolution from D − 1 to D + 1: > 10% decrease, stability and > 10% increase. Demographical data, length of surgery, type of surgery, ICU length of stay (LOS) and extubation failure were collected. Results Of the 100 consecutively included patients, 75 patients had a low diaphragm thickening during SBT. Compared to TF values at D − 1 (36% ± 18), TF was reduced during SBT (17% ± 14) and D + 1 (12% ± 11) (P < 0.0001). Thickness and TF did not change according to the type of surgery or cooling method. TF at SBT was correlated to the length of surgery (both r = − 0.4; P < 0.0001). Diaphragm thickness as continuous variable did not change over time. Twenty-eight patients (42%) had a > 10% decrease thickness, 19 patients (29%) stability and 19 patients (28%) in > 10% increase, and this thickness evolution pattern was associated with: a longer LOS 3 days [2–5] versus 2 days [2–4] and 2 days [2], respectively (ANOVA P = 0.046), and diaphragm thickening evolution (ANOVA P = 0.02). Two patients experience extubation failure. Conclusion These findings indicate that diaphragm thickening is frequently decreased after elective cardiac surgery without impact on respiratory outcome, whereas an altered thickness pattern was associated with a longer length of stay in the ICU. Contractile activity influenced thickness evolution. Trial registry number ClinicalTrial.gov ID NCT02208479 Electronic supplementary material The online version of this article (10.1186/s13613-019-0521-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pierre-Henri Moury
- Department of Anesthesia and Intensive Care Medicine, Université Grenoble-Alpes, Grenoble University Hospital, Grenoble, France.
| | - Adrien Cuisinier
- Department of Anesthesia and Intensive Care Medicine, Université Grenoble-Alpes, Grenoble University Hospital, Grenoble, France
| | - Michel Durand
- Department of Anesthesia and Intensive Care Medicine, Université Grenoble-Alpes, Grenoble University Hospital, Grenoble, France
| | - Jean-Luc Bosson
- Department of Biostatistics, ThEMAS, TIMC, UMR, CNRS 5525, Université Grenoble Alpes, Grenoble University Hospital, Grenoble, France
| | - Olivier Chavanon
- Department of Cardiac Surgery, Université Grenoble Alpes, Grenoble University Hospital, Grenoble, France
| | - Jean-François Payen
- Department of Anesthesia and Intensive Care Medicine, Université Grenoble-Alpes, Grenoble University Hospital, Grenoble, France
| | - Samir Jaber
- Intensive Care Unit, Anesthesiology and Critical Care Department B, Saint Eloi Teaching Hospital, Université Montpellier 1, Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Pierre Albaladejo
- Department of Anesthesia and Intensive Care, ThEMAS, TIMC, UMR, CNRS 5525, Université Grenoble-Alpes, Grenoble University Hospital, Grenoble, France
| |
Collapse
|
48
|
Bruni A, Garofalo E, Pelaia C, Messina A, Cammarota G, Murabito P, Corrado S, Vetrugno L, Longhini F, Navalesi P. Patient-ventilator asynchrony in adult critically ill patients. Minerva Anestesiol 2019; 85:676-688. [PMID: 30762325 DOI: 10.23736/s0375-9393.19.13436-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Patient-ventilator asynchrony is considered a major clinical problem for mechanically ventilated patients. It occurs during partial ventilatory support, when the respiratory muscles and the ventilator interact to contribute generating the volume output. In this review article, we consider all studies published on patient-ventilator asynchrony in the last 25 years. EVIDENCE ACQUISITION We selected 62 studies. The different forms of asynchrony are first defined and classified. We also describe the methods used for detecting and quantifying asynchronies. We then outline the outcome variables considered for evaluating the clinical consequences of asynchronies. The methodology for detection and quantification of patient-ventilator asynchrony are quite heterogeneous. In particular, the Asynchrony Index is calculated differently among studies. EVIDENCE SYNTHESIS Sixteen studies established some relationship between asynchronies and one or more clinical outcomes, such as duration of mechanical ventilation (seven studies), mortality (five studies), length of intensive care and hospital stay (four studies), patient comfort (four studies), quality of sleep (three studies), and rate of tracheotomy (three studies). In patients with severe patient-ventilator asynchrony, four of seven studies (57%) report prolonged duration of mechanical ventilation, one of five (20%) increased mortality, one of four (25%) longer intensive care and hospital lengths of stay, four of four (100%) worsened comfort, three of four (75%) deteriorated quality of sleep, and one of three (33%) increased rate of tracheotomy. CONCLUSIONS Given the varying outcomes considered and the erratic results, it remains unclear whether asynchronies really affects patient outcome, and the relationship between asynchronies and outcome is causative or associative.
Collapse
Affiliation(s)
- Andrea Bruni
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Eugenio Garofalo
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Corrado Pelaia
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | | | - Gianmaria Cammarota
- Unit of Anesthesia and Intensive Care, "Maggiore della Carità" Hospital, Novara, Italy
| | - Paolo Murabito
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", "G. Rodolico" University Policlinic, University of Catania, Catania, Italy
| | - Silvia Corrado
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Luigi Vetrugno
- Department of Anesthesia and Intensive Care, University of Udine, Udine, Italy
| | - Federico Longhini
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy -
| | - Paolo Navalesi
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
49
|
Lamouret O, Crognier L, Vardon Bounes F, Conil JM, Dilasser C, Raimondi T, Ruiz S, Rouget A, Delmas C, Seguin T, Minville V, Georges B. Neurally adjusted ventilatory assist (NAVA) versus pressure support ventilation: patient-ventilator interaction during invasive ventilation delivered by tracheostomy. Crit Care 2019; 23:2. [PMID: 30616669 PMCID: PMC6323755 DOI: 10.1186/s13054-018-2288-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prolonged weaning is a major issue in intensive care patients and tracheostomy is one of the last resort options. Optimized patient-ventilator interaction is essential to weaning. The purpose of this study was to compare patient-ventilator synchrony between pressure support ventilation (PSV) and neurally adjusted ventilatory assist (NAVA) in a selected population of tracheostomised patients. METHODS We performed a prospective, sequential, non-randomized and single-centre study. Two recording periods of 60 min of airway pressure, flow, and electrical activity of the diaphragm during PSV and NAVA were recorded in a random assignment and eight periods of 1 min were analysed for each mode. We searched for macro-asynchronies (ineffective, double, and auto-triggering) and micro-asynchronies (inspiratory trigger delay, premature, and late cycling). The number and type of asynchrony events per minute and asynchrony index (AI) were determined. The two respiratory phases were compared using the non-parametric Wilcoxon test after testing the equality of the two variances (F-Test). RESULTS Among the 61 patients analysed, the total AI was lower in NAVA than in PSV mode: 2.1% vs 14% (p < 0.0001). This was mainly due to a decrease in the micro-asynchronies index: 0.35% vs 9.8% (p < 0.0001). The occurrence of macro-asynchronies was similar in both ventilator modes except for double triggering, which increased in NAVA. The tidal volume (ml/kg) was lower in NAVA than in PSV (5.8 vs 6.2, p < 0.001), and the respiratory rate was higher in NAVA than in PSV (28 vs 26, p < 0.05). CONCLUSION NAVA appears to be a promising ventilator mode in tracheotomised patients, especially for those requiring prolonged weaning due to the decrease in asynchronies.
Collapse
Affiliation(s)
- Olivier Lamouret
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France. .,Department of Anaesthesiology and Critical Care Unit, University Hospital of Toulouse, 31059, Toulouse Cedex 9, France.
| | - Laure Crognier
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Fanny Vardon Bounes
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Jean-Marie Conil
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Caroline Dilasser
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Thibaut Raimondi
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Stephanie Ruiz
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Antoine Rouget
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Clément Delmas
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Thierry Seguin
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Vincent Minville
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Bernard Georges
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| |
Collapse
|
50
|
Kataoka J, Kuriyama A, Norisue Y, Fujitani S. Proportional modes versus pressure support ventilation: a systematic review and meta-analysis. Ann Intensive Care 2018; 8:123. [PMID: 30535648 PMCID: PMC6288104 DOI: 10.1186/s13613-018-0470-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/04/2018] [Indexed: 12/29/2022] Open
Abstract
Background Proportional modes (proportional assist ventilation, PAV, and neurally adjusted ventilatory assist, NAVA) could improve patient–ventilator interaction and consequently may be efficient as a weaning mode. The purpose of this systematic review is to examine whether proportional modes improved patient–ventilator interaction and whether they had an impact on the weaning success and length of mechanical ventilation, in comparison with PSV.
Methods We searched PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials from inception through May 13, 2018. We included both parallel-group and crossover randomized studies that examined the efficacy of proportional modes in comparison with PSV in mechanically ventilated adults. The primary outcomes were (1) asynchrony index (AI), (2) weaning failure, and (3) duration of mechanical ventilation. Results We included 15 studies (four evaluated PAV, ten evaluated NAVA, and one evaluated both modes). Although the use of proportional modes was not associated with a reduction in AI (WMD − 1.43; 95% CI − 3.11 to 0.25; p = 0.096; PAV—one study, and NAVA—seven studies), the use of proportional modes was associated with a reduction in patients with AI > 10% (RR 0.15; 95% CI 0.04–0.58; p = 0.006; PAV—two studies, and NAVA—five studies), compared with PSV. There was a significant heterogeneity among studies for AI, especially with NAVA. Compared with PSV, use of proportional modes was associated with a reduction in weaning failure (RR 0.44; 95% CI 0.26–0.75; p = 0.003; PAV—three studies) and duration of mechanical ventilation (WMD − 1.78 days; 95% CI − 3.24 to − 0.32; p = 0.017; PAV—three studies, and NAVA—two studies). Reduced duration of mechanical ventilation was found with PAV but not with NAVA. Conclusion The use of proportional modes was associated with a reduction in the incidence with AI > 10%, weaning failure and duration of mechanical ventilation, compared with PSV. However, reduced weaning failure and duration of mechanical ventilation were found with only PAV. Due to a significant heterogeneity among studies and an insufficient number of studies, further investigation seems warranted to better understand the impact of proportional modes. Clinical trial registration PROSPERO registration number, CRD42017059791. Registered 20 March 2017 Electronic supplementary material The online version of this article (10.1186/s13613-018-0470-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Kataoka
- Department of Pulmonary and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, 3-4-32 Todaijima, Urayasu, 2790001, Japan.
| | - Akira Kuriyama
- Emergency and Critical Care Center, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki, Okayama, 7108602, Japan
| | - Yasuhiro Norisue
- Department of Pulmonary and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, 3-4-32 Todaijima, Urayasu, 2790001, Japan
| | - Shigeki Fujitani
- Department of Emergency Medicine and Critical Care Medicine, St. Marianna University, 2-16-1 Sugao, Miyamae-ku, Kawasaki, 2168511, Japan
| |
Collapse
|