1
|
Loubet F, Robert C, Leclaire C, Theillière C, Saint-Béat C, Lenga Ma Bonda W, Zhai R, Minet-Quinard R, Belville C, Blanchon L, Sapin V, Garnier M, Jabaudon M. Effects of sevoflurane on lung alveolar epithelial wound healing and survival in a sterile in vitro model of acute respiratory distress syndrome. Exp Cell Res 2024; 438:114030. [PMID: 38583855 DOI: 10.1016/j.yexcr.2024.114030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a serious lung condition that often leads to hospitalization in intensive care units and a high mortality rate. Sevoflurane is a volatile anesthetic with growing interest for sedation in ventilated patients with ARDS. It has been shown to have potential lung-protective effects, such as reduced inflammation and lung edema, or improved arterial oxygenation. In this study, we investigated the effects of sevoflurane on lung injury in cultured human carcinoma-derived lung alveolar epithelial (A549) cells. We found that sevoflurane was associated with improved wound healing after exposure to inflammatory cytokines, with preserved cell proliferation but no effect on cell migration properties. Sevoflurane exposure was also associated with enhanced cell viability and active autophagy in A549 cells exposed to cytokines. These findings suggest that sevoflurane may have beneficial effects on lung epithelial injury by promoting alveolar epithelial wound healing and by influencing the survival and proliferation of A549 epithelial cells in vitro. Further research is needed to confirm these findings and to investigate the key cellular mechanisms explaining sevoflurane's potential effects on lung epithelial injury.
Collapse
Affiliation(s)
- Florian Loubet
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Cédric Robert
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Charlotte Leclaire
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Camille Theillière
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Cécile Saint-Béat
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | | | - Ruoyang Zhai
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Régine Minet-Quinard
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France; Department of Medical Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Corinne Belville
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Loic Blanchon
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Vincent Sapin
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France; Department of Medical Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Marc Garnier
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France; Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Matthieu Jabaudon
- iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France; Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France.
| |
Collapse
|
2
|
Nemzek JA, Hakenjos JM, Hoenerhoff MJ, Fry CD. Isoflurane and Pentobarbital Anesthesia for Pulmonary Studies Requiring Prolonged Mechanical Ventilation in Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:41-48. [PMID: 38065567 PMCID: PMC10844742 DOI: 10.30802/aalas-jaalas-23-000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 05/31/2023] [Indexed: 02/08/2024]
Abstract
Mechanical ventilation can be used in mice to support high-risk anesthesia or to create clinically relevant, intensive care models. However, the choice of anesthetic and inspired oxygen concentration for prolonged procedures may affect basic physiology and lung inflammation. To characterize the effects of anesthetics and oxygen concentration in mice experiencing mechanical ventilation, mice were anesthetized with either isoflurane or pentobarbital for tracheostomy followed by mechanical ventilation with either 100% or 21% oxygen. Body temperature, oxygen saturation, and pulse rate were monitored continuously. After 6 h, mice were euthanized for collection of blood and bronchoalveolar lavage fluid for evaluation of biomarkers of inflammation and lung injury, including cell counts and cytokine levels. Overall, both isoflurane and pentobarbital provided suitable anesthesia for 6 h of mechanical ventilation with either 21% or 100% oxygen. We found no differences in lung inflammation biomarkers attributable to either oxygen concentration or the anesthetic. However, the combination of pentobarbital and 100% oxygen resulted in a significantly higher concentration of a biomarker for lung epithelial cell injury. This study demonstrates that the combination of anesthetic agent, mechanical ventilation, and inspired oxygen concentrations can alter vital signs and lung injury biomarkers during prolonged procedures. Their combined impact may influence model development and the interpretation of research results, warranting the need for preliminary evaluation to establish the baseline effects.
Collapse
Affiliation(s)
- Jean A Nemzek
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan; and
| | | | - Mark J Hoenerhoff
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan; and
| | - Christopher D Fry
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan; and
| |
Collapse
|
3
|
Zhai R, Lenga Ma Bonda W, Leclaire C, Saint-Béat C, Theilliere C, Belville C, Coupet R, Blondonnet R, Bouvier D, Blanchon L, Sapin V, Jabaudon M. Effects of sevoflurane on lung epithelial permeability in experimental models of acute respiratory distress syndrome. J Transl Med 2023; 21:397. [PMID: 37331963 DOI: 10.1186/s12967-023-04253-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Preclinical studies in acute respiratory distress syndrome (ARDS) have suggested that inhaled sevoflurane may have lung-protective effects and clinical trials are ongoing to assess its impact on major clinical outcomes in patients with ARDS. However, the underlying mechanisms of these potential benefits are largely unknown. This investigation focused on the effects of sevoflurane on lung permeability changes after sterile injury and the possible associated mechanisms. METHODS To investigate whether sevoflurane could decrease lung alveolar epithelial permeability through the Ras homolog family member A (RhoA)/phospho-Myosin Light Chain 2 (Ser19) (pMLC)/filamentous (F)-actin pathway and whether the receptor for advanced glycation end-products (RAGE) may mediate these effects. Lung permeability was assessed in RAGE-/- and littermate wild-type C57BL/6JRj mice on days 0, 1, 2, and 4 after acid injury, alone or followed by exposure at 1% sevoflurane. Cell permeability of mouse lung epithelial cells was assessed after treatment with cytomix (a mixture of TNFɑ, IL-1β, and IFNγ) and/or RAGE antagonist peptide (RAP), alone or followed by exposure at 1% sevoflurane. Levels of zonula occludens-1, E-cadherin, and pMLC were quantified, along with F-actin immunostaining, in both models. RhoA activity was assessed in vitro. RESULTS In mice after acid injury, sevoflurane was associated with better arterial oxygenation, decreased alveolar inflammation and histological damage, and non-significantly attenuated the increase in lung permeability. Preserved protein expression of zonula occludens-1 and less increase of pMLC and actin cytoskeletal rearrangement were observed in injured mice treated with sevoflurane. In vitro, sevoflurane markedly decreased electrical resistance and cytokine release of MLE-12 cells, which was associated with higher protein expression of zonula occludens-1. Improved oxygenation levels and attenuated increase in lung permeability and inflammatory response were observed in RAGE-/- mice compared to wild-type mice, but RAGE deletion did not influence the effects of sevoflurane on permeability indices after injury. However, the beneficial effect of sevoflurane previously observed in wild-type mice on day 1 after injury in terms of higher PaO2/FiO2 and decreased alveolar levels of cytokines was not found in RAGE-/- mice. In vitro, RAP alleviated some of the beneficial effects of sevoflurane on electrical resistance and cytoskeletal rearrangement, which was associated with decreased cytomix-induced RhoA activity. CONCLUSIONS Sevoflurane decreased injury and restored epithelial barrier function in two in vivo and in vitro models of sterile lung injury, which was associated with increased expression of junction proteins and decreased actin cytoskeletal rearrangement. In vitro findings suggest that sevoflurane may decrease lung epithelial permeability through the RhoA/pMLC/F-actin pathway.
Collapse
Affiliation(s)
- Ruoyang Zhai
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Woodys Lenga Ma Bonda
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Charlotte Leclaire
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Cécile Saint-Béat
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Camille Theilliere
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Corinne Belville
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Randy Coupet
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Raiko Blondonnet
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Damien Bouvier
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
- Department of Medical Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Loic Blanchon
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Vincent Sapin
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
- Department of Medical Biochemistry and Molecular Genetics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Matthieu Jabaudon
- iGReD, UFR de Médecine et des Professions Paramédicales, Place Henri Dunant, CNRS, INSERM, Université Clermont Auvergne, 63000, Clermont-Ferrand, France.
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France.
| |
Collapse
|
4
|
Martínez-Castro S, Monleón B, Puig J, Ferrer Gomez C, Quesada M, Pestaña D, Balvis A, Maseda E, de la Rica AS, Feijoo AM, Badenes R. Sedation with Sevoflurane versus Propofol in COVID-19 Patients with Acute Respiratory Distress Syndrome: Results from a Randomized Clinical Trial. J Pers Med 2023; 13:925. [PMID: 37373914 DOI: 10.3390/jpm13060925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) related to COVID-19 (coronavirus disease 2019) led to intensive care units (ICUs) collapse. Amalgams of sedative agents (including volatile anesthetics) were used due to the clinical shortage of intravenous drugs (mainly propofol and midazolam). METHODS A multicenter, randomized 1:1, controlled clinical trial was designed to compare sedation using propofol and sevoflurane in patients with ARDS associated with COVID-19 infection in terms of oxygenation and mortality. RESULTS Data from a total of 17 patients (10 in the propofol arm and 7 in the sevoflurane arm) showed a trend toward PaO2/FiO2 improvement and the sevoflurane arm's superiority in decreasing the likelihood of death (no statistical significance was found). CONCLUSIONS Intravenous agents are the most-used sedative agents in Spain, even though volatile anesthetics, such as sevoflurane and isoflurane, have shown beneficial effects in many clinical conditions. Growing evidence demonstrates the safety and potential benefits of using volatile anesthetics in critical situations.
Collapse
Affiliation(s)
- Sara Martínez-Castro
- Department Anesthesiology, Surgical-Trauma Intensive Care and Pain Clinic, Hospital Clínic Universitari, University of Valencia, 46010 Valencia, Spain
| | - Berta Monleón
- Department Anesthesiology, Surgical-Trauma Intensive Care and Pain Clinic, Hospital Clínic Universitari, University of Valencia, 46010 Valencia, Spain
| | - Jaume Puig
- Anesthesiology and Intensive Care Department, Consorcio Hospital General Universitario, 46014 Valencia, Spain
| | - Carolina Ferrer Gomez
- Anesthesiology and Intensive Care Department, Consorcio Hospital General Universitario, 46014 Valencia, Spain
| | - Marta Quesada
- Anesthesiology and Intensive Care Department, Consorcio Hospital General Universitario, 46014 Valencia, Spain
| | - David Pestaña
- Anesthesiology and Intensive Care Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Alberto Balvis
- Anesthesiology and Intensive Care Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Emilio Maseda
- Surgical Critical Care Department, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Alejandro Suárez de la Rica
- Anesthesiology and Surgical Critical Care Department, Hospital Universitario De La Princesa, 28006 Madrid, Spain
| | - Ana Monero Feijoo
- Surgical Critical Care Department, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Rafael Badenes
- Department Anesthesiology, Surgical-Trauma Intensive Care and Pain Clinic, Hospital Clínic Universitari, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
5
|
The GABA and GABA-Receptor System in Inflammation, Anti-Tumor Immune Responses, and COVID-19. Biomedicines 2023; 11:biomedicines11020254. [PMID: 36830790 PMCID: PMC9953446 DOI: 10.3390/biomedicines11020254] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
GABA and GABAA-receptors (GABAA-Rs) play major roles in neurodevelopment and neurotransmission in the central nervous system (CNS). There has been a growing appreciation that GABAA-Rs are also present on most immune cells. Studies in the fields of autoimmune disease, cancer, parasitology, and virology have observed that GABA-R ligands have anti-inflammatory actions on T cells and antigen-presenting cells (APCs), while also enhancing regulatory T cell (Treg) responses and shifting APCs toward anti-inflammatory phenotypes. These actions have enabled GABAA-R ligands to ameliorate autoimmune diseases, such as type 1 diabetes (T1D), multiple sclerosis (MS), and rheumatoid arthritis, as well as type 2 diabetes (T2D)-associated inflammation in preclinical models. Conversely, antagonism of GABAA-R activity promotes the pro-inflammatory responses of T cells and APCs, enhancing anti-tumor responses and reducing tumor burden in models of solid tumors. Lung epithelial cells also express GABA-Rs, whose activation helps maintain fluid homeostasis and promote recovery from injury. The ability of GABAA-R agonists to limit both excessive immune responses and lung epithelial cell injury may underlie recent findings that GABAA-R agonists reduce the severity of disease in mice infected with highly lethal coronaviruses (SARS-CoV-2 and MHV-1). These observations suggest that GABAA-R agonists may provide off-the-shelf therapies for COVID-19 caused by new SARS-CoV-2 variants, as well as novel beta-coronaviruses, which evade vaccine-induced immune responses and antiviral medications. We review these findings and further advance the notions that (1) immune cells possess GABAA-Rs to limit inflammation in the CNS, and (2) this natural "braking system" on inflammatory responses may be pharmacologically engaged to slow the progression of autoimmune diseases, reduce the severity of COVID-19, and perhaps limit neuroinflammation associated with long COVID.
Collapse
|
6
|
Becher T, Meiser A, Guenther U, Bellgardt M, Wallenborn J, Kogelmann K, Bracht H, Falthauser A, Nilsson J, Sackey P, Kellner P. Isoflurane vs. propofol for sedation in invasively ventilated patients with acute hypoxemic respiratory failure: an a priori hypothesis substudy of a randomized controlled trial. Ann Intensive Care 2022; 12:116. [PMID: 36538243 PMCID: PMC9765364 DOI: 10.1186/s13613-022-01090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Acute hypoxemic respiratory failure (AHRF) is a leading concern in critically ill patients. Experimental and clinical data suggest that early sedation with volatile anesthestics may improve arterial oxygenation and reduce the plasma and alveolar levels of markers of alveolar epithelial injury and of proinflammatory cytokines. METHODS An a priori hypothesis substudy of a multicenter randomized controlled trial (The Sedaconda trial, EUDRA CT Number 2016-004551-67). In the Sedaconda trial, 301 patients on invasive mechanical ventilation were randomized to 48 h of sedation with isoflurane or propofol in a 1:1 ratio. For the present substudy, patients with a ratio of arterial pressure of oxygen (PaO2) to inspired fraction of oxygen (FiO2), PaO2/FiO2, of ≤ 300 mmHg at baseline were included (n = 162). The primary endpoint was the change in PaO2/FiO2 between baseline and the end of study sedation. A subgroup analysis in patients with PaO2/FiO2 ≤ 200 mmHg was performed (n = 82). RESULTS Between baseline and the end of study sedation (48 h), oxygenation improved to a similar extent in the isoflurane vs. the propofol group (isoflurane: 199 ± 58 to 219 ± 76 mmHg (n = 70), propofol: 202 ± 62 to 236 ± 77 mmHg (n = 89); p = 0.185). On day seven after randomization, PaO2/FiO2 was 210 ± 79 mmHg in the isoflurane group (n = 41) and 185 ± 87 mmHg in the propofol group (n = 44; p = 0.411). In the subgroup of patients with PaO2/FiO2 ≤ 200 mmHg, PaO2/FiO2 increase between baseline and end of study sedation was 152 ± 33 to 186 ± 54 mmHg for isoflurane (n = 37), and 150 ± 38 to 214 ± 85 mmHg for propofol (n = 45; p = 0.029). On day seven, PaO2/FiO2 was 198 ± 69 mmHg in patients randomized to isoflurane (n = 20) and 174 ± 106 mmHg in patients randomized to propofol (n = 20; p = 0.933). Both for the whole study population and for the subgroup with PaO2/FiO2 ≤ 200 mmHg, no significant between-group differences were observed for PaCO2, pH and tidal volume as well as 30-day mortality and ventilator-free days alive. CONCLUSIONS In patients with AHRF, inhaled sedation with isoflurane for a duration of up to 48 h did not lead to improved oxygenation in comparison to intravenous sedation with propofol. Trial registration The main study was registered in the European Medicines Agency's EU Clinical Trial register (EudraCT), 2016-004551-67, before including the first patient. The present substudy was registered at German Clinical Trials Register (DRKS, ID: DRKS00018959) on January 7th, 2020, before opening the main study data base and obtaining access to study results.
Collapse
Affiliation(s)
- Tobias Becher
- grid.412468.d0000 0004 0646 2097Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andreas Meiser
- grid.411937.9Department of Anesthesiology, University Hospital Homburg/Saar, Homburg, Germany
| | - Ulf Guenther
- Oldenburg Research Network Emergency- and Intensive Care Medicine (OFNI), University Clinic of Anaesthesiology, Klinikum Oldenburg, Oldenburg, Germany
| | - Martin Bellgardt
- grid.461703.70000 0004 0581 8039Department of Anesthesiology, Katholisches Klinikum Bochum, Bochum, Germany
| | - Jan Wallenborn
- Department of Anesthesiology, HELIOS Klinikum Aue, Aue, Germany
| | | | - Hendrik Bracht
- grid.410712.10000 0004 0473 882XDepartment of Emergency Medicine, University Hospital Ulm, Ulm, Germany
| | - Andreas Falthauser
- grid.459707.80000 0004 0522 7001Central Emergency Care Unit and Admission HDU, Wels General Hospital, Wels, Austria
| | | | - Peter Sackey
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Unit of Anesthesiology and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Patrick Kellner
- grid.412468.d0000 0004 0646 2097Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
Tian J, Dillion BJ, Henley J, Comai L, Kaufman DL. A GABA-receptor agonist reduces pneumonitis severity, viral load, and death rate in SARS-CoV-2-infected mice. Front Immunol 2022; 13:1007955. [PMID: 36389819 PMCID: PMC9640739 DOI: 10.3389/fimmu.2022.1007955] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/07/2022] [Indexed: 08/31/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) and GABA-receptors (GABA-Rs) form a major neurotransmitter system in the brain. GABA-Rs are also expressed by 1) cells of the innate and adaptive immune system and act to inhibit their inflammatory activities, and 2) lung epithelial cells and GABA-R agonists/potentiators have been observed to limit acute lung injuries. These biological properties suggest that GABA-R agonists may have potential for treating COVID-19. We previously reported that GABA-R agonist treatments protected mice from severe disease induced by infection with a lethal mouse coronavirus (MHV-1). Because MHV-1 targets different cellular receptors and is biologically distinct from SARS-CoV-2, we sought to test GABA therapy in K18-hACE2 mice which develop severe pneumonitis with high lethality following SARS-CoV-2 infection. We observed that GABA treatment initiated immediately after SARS-CoV-2 infection, or 2 days later near the peak of lung viral load, reduced pneumonitis severity and death rates in K18-hACE2 mice. GABA-treated mice had reduced lung viral loads and displayed shifts in their serum cytokine/chemokine levels that are associated with better outcomes in COVID-19 patients. Thus, GABA-R activation had multiple effects that are also desirable for the treatment of COVID-19. The protective effects of GABA against two very different beta coronaviruses (SARS-CoV-2 and MHV-1) suggest that it may provide a generalizable off-the-shelf therapy to help treat diseases induced by new SARS-CoV-2 variants and novel coronaviruses that evade immune responses and antiviral medications. GABA is inexpensive, safe for human use, and stable at room temperature, making it an attractive candidate for testing in clinical trials. We also discuss the potential of GABA-R agonists for limiting COVID-19-associated neuroinflammation.
Collapse
Affiliation(s)
- Jide Tian
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, United States
| | - Barbara J. Dillion
- High Containment Program, University of California, Los Angeles, CA, United States
| | - Jill Henley
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Daniel L. Kaufman
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, United States
| |
Collapse
|
8
|
Büyükfırat E, Koyuncu I, Karahan MA, Gönel A, Binici O, Duran E, Altay N. Effects of propofol and dexmedetomidine on carnitine metabolism in normal human bronchial epithelial cells. Biotech Histochem 2022; 98:62-68. [PMID: 35930239 DOI: 10.1080/10520295.2022.2107239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Propofol and dexmedetomidine (DEX) are widely used for anesthesia and sedation. We investigated the effects of propofol and DEX separately and in combination on the metabolic profile of carnitine in cultured normal human bronchial epithelial cells (BEAS-2B). Cells of the propofol group were cultured with 2 µg/ml propofol in RPMI-1640 medium. Cells of the DEX group were cultured with 0.2 ng/m DEX in RPMI-1640 medium. Cells of the propofol + DEX group were cultured with 2 μg/ml propofol + 0.2 ng/ml DEX in RPMI-1640 medium. The control group was untreated. Cells were incubated for 3 h following treatments. The effects of the drugs on cell viability were assessed using the MTT method and by microscopic examination following staining with acridine orange/ethidium bromide. The effects of drugs on carnitine, acetyl carnitine and 25 acylcarnitine derivative profiles were analyzed using liquid chromatography-tandem mass spectrophotometry. Neither propofol nor DEX affected cell viability. Administration of propofol, DEX or propofol + DEX to BEAS-2B cells caused no significant change in the concentrations of carnitine and acylcarnitine derivatives compared to the control group. We found that propofol and DEX exhibit no negative effects on the carnitine metabolism by BEAS-2B cells in vitro at clinically relevant concentrations. Our findings establish a baseline for clinical studies of the effects of propofol and DEX on carnitine metabolism.
Collapse
Affiliation(s)
- Evren Büyükfırat
- Department of Anesthesiology and Reanimation, Medical Faculty, Harran University, Turkey
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Medical Faculty, Harran University, Turkey
| | - Mahmut Alp Karahan
- Department of Anesthesiology and Reanimation, Medical Faculty, Harran University, Turkey
| | - Ataman Gönel
- Department of Medical Biochemistry, Medical Faculty, Harran University, Turkey
| | - Orhan Binici
- Department of Anesthesiology and Reanimation, Medical Faculty, Harran University, Turkey
| | - Erdoğan Duran
- Department of Anesthesiology and Reanimation, Medical Faculty, Harran University, Turkey
| | - Nuray Altay
- Department of Anesthesiology and Reanimation, Medical Faculty, Harran University, Turkey
| |
Collapse
|
9
|
Jabaudon M, Zhai R, Blondonnet R, Bonda WLM. Inhaled sedation in the intensive care unit. Anaesth Crit Care Pain Med 2022; 41:101133. [PMID: 35907598 DOI: 10.1016/j.accpm.2022.101133] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022]
Abstract
Inhaled sedation with halogenated agents, such as isoflurane or sevoflurane, is now feasible in intensive care unit (ICU) patients through dedicated vaporisers and scavenging systems. Such a sedation strategy requires specific equipment and adequate training of ICU teams. Isoflurane and sevoflurane have ideal pharmacological properties that allow efficient, well-tolerated, and titratable light-to-deep sedation. In addition to their function as sedative agents, these molecules may have clinical benefits that could be especially relevant to ICU patients. Our goal was to summarise the pharmacological basis and practical aspects of inhaled ICU sedation, review the available evidence supporting inhaled sedation as a viable alternative to intravenous sedation, and discuss the remaining areas of uncertainty and future perspectives of development.
Collapse
Affiliation(s)
- Matthieu Jabaudon
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France; GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France.
| | - Ruoyang Zhai
- GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Raiko Blondonnet
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France; GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | | |
Collapse
|
10
|
He LL, Li XF, Jiang JL, Yu H, Dai SH, Jing WW, Yu H. Effect of Volatile Anesthesia versus Total Intravenous Anesthesia on Postoperative Pulmonary Complications in Patients Undergoing Cardiac Surgery: A Randomized Clinical Trial. J Cardiothorac Vasc Anesth 2022; 36:3758-3765. [DOI: 10.1053/j.jvca.2022.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022]
|
11
|
Landoni G, Belloni O, Russo G, Bonaccorso A, Carà G, Jabaudon M. Inhaled Sedation for Invasively Ventilated COVID-19 Patients: A Systematic Review. J Clin Med 2022; 11:jcm11092500. [PMID: 35566625 PMCID: PMC9105857 DOI: 10.3390/jcm11092500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 01/22/2023] Open
Abstract
Background: Volatile anesthetics were used as sedative agents in COVID-19 (Coronavirus Disease 2019) invasively ventilated patients for their potentially beneficial pharmacological effects and due to the temporary shortages of intravenous agents during the pandemic crisis. Methods: Online databases (PubMed, EMBASE, The Cochrane Central Register of Controlled Trial) and the “clinicaltrials.gov” website were searched for studies reporting the use of isoflurane, sevoflurane or desflurane. Results: We identified three manuscripts describing the beneficial effects of isoflurane on 41 COVID-19 patients with acute respiratory distress syndrome (ARDS) in Germany (n = 2) and in the USA (n = 1), in terms of reduction in the use of opioids and other sedatives. We also found a case report of two patients with transient nephrogenic diabetes insipidus, which started after 6 and 8 days of sevoflurane sedation. We identified two randomized controlled trials (RCTs; 92 patients overall), two observational studies (238 patients) on the use of volatile anesthetics in COVID-19 patients that were completed but not yet published, and one RCT interrupted for a low recruitment ratio (19 patients) and thus not published. We also identified five ongoing RCTs on the use of inhaled sedation in ARDS, which are also likely to be recruiting COVID-19 patients and which have currently enrolled a total of >1643 patients. Conclusion: Isoflurane was the most frequently used volatile agent in COVID-19 patients and allowed a reduction in the use of other sedative and analgesic drugs. Randomized evidence is building up and will be useful to confirm or challenge these findings.
Collapse
Affiliation(s)
- Giovanni Landoni
- Department of Anaesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (O.B.); (G.R.); (A.B.); (G.C.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Correspondence:
| | - Olivia Belloni
- Department of Anaesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (O.B.); (G.R.); (A.B.); (G.C.)
| | - Giada Russo
- Department of Anaesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (O.B.); (G.R.); (A.B.); (G.C.)
| | - Alessandra Bonaccorso
- Department of Anaesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (O.B.); (G.R.); (A.B.); (G.C.)
| | - Gianmarco Carà
- Department of Anaesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (O.B.); (G.R.); (A.B.); (G.C.)
| | - Matthieu Jabaudon
- Department of Perioperative Medicine, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France;
- GReD, Université Clermont Auvergne, CNRS, INSERM, F-63000 Clermont-Ferrand, France
| |
Collapse
|
12
|
Lee S, Cho JS, Kim E, Kim Y, Lee J. Effects of Inhalation versus Total Intravenous Anesthesia on Postoperative Pulmonary Complications after Anatomic Pulmonary Resection. J Chest Surg 2022; 55:30-36. [PMID: 35115419 PMCID: PMC8824648 DOI: 10.5090/jcs.21.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/02/2022] Open
Abstract
Background No consensus exists regarding whether volatile anesthetics are superior to intravenous anesthetics for reducing postoperative pulmonary complications (PPCs) in patients undergoing general anesthesia for surgery. Studies of this issue focused on anatomic pulmonary resection are lacking. This study compared the effects of total intravenous anesthesia (TIVA) versus volatile anesthesia on PPCs after anatomic pulmonary resection in patients with lung cancer. Methods This retrospective study examined the medical records of patients with lung cancer who underwent lung resection at our center between January 2018 and October 2020. The primary outcome was the incidence of PPCs, which included prolonged air leak, pneumonia, acute respiratory distress syndrome, empyema, atelectasis requiring bronchofiberscopy (BFS), acute lung injury (ALI), bronchopleural fistula (BPF), pulmonary embolism, and pulmonary edema. Propensity score matching (PSM) was used to balance the 2 groups. In total, 579 anatomic pulmonary resection cases were included in the final analysis. Results The analysis showed no statistically significant difference between the volatile anesthesia and TIVA groups in terms of PPCs, except for prolonged air leak. Neither of the groups showed atelectasis requiring BFS, ALI, BPF, pulmonary embolism, or pulmonary edema after PSM. However, the length of hospitalization, intensive care unit stay, and duration of chest tube indwelling were shorter in the TIVA group. Conclusion Volatile anesthetics showed no superiority compared to TIVA in terms of PPCs after anatomical pulmonary resection in patients with lung cancer. Considering the advantages of each anesthetic modality, appropriate anesthetic modalities should be used in patients with different risk factors and situations.
Collapse
Affiliation(s)
- Soojin Lee
- Department of Thoracic and Cardiovascular Surgery, Biomedical Research Institute, Pusan National University School of Medicine, Busan, Korea
| | - Jeong Su Cho
- Department of Thoracic and Cardiovascular Surgery, Biomedical Research Institute, Pusan National University School of Medicine, Busan, Korea
| | - Eunsoo Kim
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Yeongdae Kim
- Department of Thoracic and Cardiovascular Surgery, Biomedical Research Institute, Pusan National University School of Medicine, Busan, Korea
| | - Jonggeun Lee
- Department of Thoracic and Cardiovascular Surgery, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
13
|
Uhlig C, Labus J. Volatile Versus Intravenous Anesthetics in Cardiac Anesthesia: a Narrative Review. CURRENT ANESTHESIOLOGY REPORTS 2021; 11:275-283. [PMID: 34276252 PMCID: PMC8271298 DOI: 10.1007/s40140-021-00466-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 11/25/2022]
Abstract
Purpose of the Review The present review addresses clinicians and gives an overview about the experimental rationale for pharmacological conditioning associated with volatile anesthetics, opioids, and propofol; the current clinical data; and the technical considerations regarding the clinical routine in cardiac anesthesia. Recent Findings Volatile anesthetics have been standard of care for general anesthesia for cardiac surgery, especially while using cardiopulmonary bypass. The 2019 published MYRIAD trial was not able to show a difference in mortality or cardiac biomarkers for volatile anesthetics compared to total intravenous anesthesia (TIVA), raising the question of equivalence with respect to patient outcome. Summary Reviewing the literature, the scientific foundation for the belief of clinically relevant conditioning by uninterrupted administration of a volatile anesthetic is weak. TIVA can also be performed safely in patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Christopher Uhlig
- Department of Cardiac Anesthesiology, Heart Center Dresden University Hospital, Fetscherstr. 76, 01307 Dresden, Germany
| | - Jakob Labus
- Department of Anesthesiology and Intensive Care Medicine, University Hospital and Medical Faculty, Cologne University, Albertus-Magnus-Platz, 50923 Cologne, Germany
| |
Collapse
|
14
|
Yuan JL, Kang K, Li B, Lu J, Miao MR, Kang X, Zhang JQ, Zhang W. The Effects of Sevoflurane vs. Propofol for Inflammatory Responses in Patients Undergoing Lung Resection: A Meta-Analysis of Randomized Controlled Trials. Front Surg 2021; 8:692734. [PMID: 34277696 PMCID: PMC8282814 DOI: 10.3389/fsurg.2021.692734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/31/2021] [Indexed: 01/14/2023] Open
Abstract
Objective: Inflammatory cytokines are increased during one-lung ventilation in patients undergoing lung resection, and this increase can be fatal. Propofol and sevoflurane are the main anesthetics used for these patients. Unfortunately, there is no consensus on the best choice of an anesthetic agent concerning an inflammatory response in patients undergoing lung resection. This meta-analysis aimed to compare the effects of propofol and sevoflurane on the inflammatory response in patients undergoing lung resection. Methods: We searched electronic databases to identify randomized controlled trials comparing the effects of different anesthetics (sevoflurane vs. propofol) on the inflammatory response. The primary outcome concerned the concentration of systemic inflammatory cytokines. The secondary outcomes concerned the concentrations of inflammatory cytokines in the bronchoalveolar lavage (BAL) fluid from the dependent and independent lung. Random effects analysis of the meta-analyses were performed to synthesize the evidence and to assess the concentrations of inflammatory factors in the sevoflurane and propofol groups. Results: Eight trials involving 488 participants undergoing lung resection with one-lung ventilation were included. There was no significant difference in the concentrations of systemic interleukin (IL)-6, IL-10, or tumor necrosis factor α between the sevoflurane and propofol groups. Compared with the propofol group, BAL levels of IL-6 in the dependent ventilated lung were decreased in the sevoflurane group (three trials, 256 participants; standardized mean difference [SMD], −0.51; 95% confidence interval [CI], −0.90 to −0.11; p = 0.01; I2 = 46%). The BAL levels of IL-6 in the independent ventilated lung were also decreased by sevoflurane (four trials, 362 participants; SMD, −0.70; 95% [CI], −0.93 to −0.47; p < 0.00001; I2 = 0%). Conclusions: There was no difference in the systemic inflammatory response between the sevoflurane and propofol groups. However, compared with propofol, sevoflurane can reduce the local alveolar inflammatory response. Additional research is necessary to confirm whether the inflammatory response is direct or indirect.
Collapse
Affiliation(s)
- Jing-Li Yuan
- Department of Anesthesiology and Perioperative Medicine, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Kang Kang
- Department of Anesthesiology and Perioperative Medicine, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bing Li
- Department of Anesthesiology and Perioperative Medicine, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jie Lu
- Department of Health Statistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Meng-Rong Miao
- Department of Anesthesiology and Perioperative Medicine, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xia Kang
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jia-Qiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology and Perioperative Medicine, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
15
|
GABA A-Receptor Agonists Limit Pneumonitis and Death in Murine Coronavirus-Infected Mice. Viruses 2021; 13:v13060966. [PMID: 34071034 PMCID: PMC8224554 DOI: 10.3390/v13060966] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/20/2023] Open
Abstract
There is an urgent need for new approaches to limit the severity of coronavirus infections. Many cells of the immune system express receptors for the neurotransmitter γ-aminobutyric acid (GABA), and GABA-receptor (GABA-R) agonists have anti-inflammatory effects. Lung epithelial cells also express GABA-Rs, and GABA-R modulators have been shown to limit acute lung injuries. There is currently, however, no information on whether GABA-R agonists might impact the course of a viral infection. Here, we assessed whether clinically applicable GABA-R agonists could be repurposed for the treatment of a lethal coronavirus (murine hepatitis virus 1, MHV-1) infection in mice. We found that oral GABA administration before, or after the appearance of symptoms, very effectively limited MHV-1-induced pneumonitis, severe illness, and death. GABA treatment also reduced viral load in the lungs, suggesting that GABA-Rs may provide a new druggable target to limit coronavirus replication. Treatment with the GABAA-R-specific agonist homotaurine, but not the GABAB-R-specific agonist baclofen, significantly reduced the severity of pneumonitis and death rates in MHV-1-infected mice, indicating that the therapeutic effects were mediated primarily through GABAA-Rs. Since GABA and homotaurine are safe for human consumption, they are promising candidates to help treat coronavirus infections.
Collapse
|
16
|
Wang L, Ma Y, He Y, Deng J, Huang D, Zhang X, Chen K, Qiu S, Chen W. Systematic investigation of the pharmacological mechanism of Tanreqing injection in treating respiratory diseases by UHPLC/Q-TOF-MS/MS based on multiple in-house chemical libraries coupled with network pharmacology. J Pharm Biomed Anal 2021; 202:114141. [PMID: 34015594 DOI: 10.1016/j.jpba.2021.114141] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Tanreqing injection (TRQI), a drug approved by the National Drug Regulatory Authority of China (China SFDA, number: Z20030045), is widely used clinically to treat respiratory diseases. However, as a complex system, the pharmacological mechanism of TRQI for the treatment of respiratory diseases is still unclear. TRQI contains three Chinese medicines that make up the classic Chinese compound formulas Shuang-Huang-Lian (SHL). Moreover, it is known that SHL components are beneficial for characterizing the chemical compounds of TRQI. Therefore, in this study, we applied UHPLC/Q-TOF-MS/MS analysis based on multiple chemical compound libraries to identify the chemical profiles of TRQI and used network pharmacology to predict the potential targets of TRQI active compounds. First, three chemical libraries related to TRQI were created, including the TRQI in-house library, SHL in-house library, and targeted Metlin library. An integrated TRQI library was established by combining three chemical libraries for the identification and characterization of the chemical profiles of TRQI. Second, the potential targets of TRQI active compounds were predicted with the Swiss Target Prediction and TCMSP databases, and targets of respiratory disease were collected from the GeneCards database. Then, the network between the active compounds and common targets was established by Cytoscape 3.7.1. The common targets were imported into the STRING database to construct protein-protein interaction (PPI) networks and select core targets of TRQI against respiratory diseases. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analyses of the core targets were performed by the Omicsbean analytic system and DAVID database, respectively. As a result, a total of 126 compounds were identified, and network pharmacological analysis showed that luteolin, wogonin, baicalein, chenodeoxycholic acid, l-serine, aspartic acid, oroxylin A, syringin, phenylalanine, and glutamic acid could be the active compounds of TRQI; GABBR1, MAPK3, GRM5, FOS, DRD2, GRM1, VEGFA, GRM3 and 92 other potential core targets for the treatment of respiratory diseases by modulating pathways in cancer, the calcium signaling pathway, cAMP signaling pathway, estrogen signaling pathway and TNF-α signaling pathway.
Collapse
Affiliation(s)
- Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Ma
- Chemistry and Biological Engineering College, Yichun University, Yichun, 336000, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Yuqiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiuling Deng
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Doudou Huang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Xiaoli Zhang
- Shanghai Kaibao Pharmaceutical Co., Ltd., Shanghai, 201401, China
| | - Kaixian Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shi Qiu
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wansheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
17
|
Sedating Mechanically Ventilated COVID-19 Patients with Volatile Anesthetics: Insights on the Last-Minute Potential Weapons. Sci Pharm 2021. [DOI: 10.3390/scipharm89010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) has spread globally with the number of cases exceeding seventy million. Although trials on potential treatments of COVID-19 Acute Respiratory Distress Syndrome (ARDS) are promising, the introduction of an effective therapeutic intervention seems elusive. In this review, we explored the potential therapeutic role of volatile anesthetics during mechanical ventilation in the late stages of the disease. COVID-19 is thought to hit the human body via five major mechanisms: direct viral damage, immune overactivation, capillary thrombosis, loss of alveolar capillary membrane integrity, and decreased tissue oxygenation. The overproduction of pro-inflammatory cytokines will eventually lead to the accumulation of inflammatory cells in the lungs, which will lead to ARDS requiring mechanical ventilation. Respiratory failure resulting from ARDS is thought to be the most common cause of death in COVID-19. The literature suggests that these effects could be directly countered by using volatile anesthetics for sedation. These agents possess multiple properties that affect viral replication, immunity, and coagulation. They also have proven benefits at the molecular, cellular, and tissue levels. Based on the comprehensive understanding of the literature, short-term sedation with volatile anesthetics may be beneficial in severe stages of COVID-19 ARDS and trials to study their effects should be encouraged.
Collapse
|
18
|
Oxycodone attenuates vascular leak and lung inflammation in a clinically relevant two-hit rat model of acute lung injury. Cytokine 2020; 138:155346. [PMID: 33187816 DOI: 10.1016/j.cyto.2020.155346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Oxycodone is a synthetic opioid receptor agonist that exerts antinociceptive activity via κ-, μ- and δ-opioid receptors (KOR, MOR and DOR, respectively). Activation of MOR has been reported to provide protection against acute lung injury (ALI). We hypothesized that pretreatment with oxycodone would attenuate lung injury at the level of alveolar tight junctions (TJs) and aquaporins (AQPs) and investigated this possibility in a two-hit model of ALI induced by lipopolysaccharide (LPS) and mechanical ventilation (MV). METHOD Male Sprague Dawley rats and A59 cells were divided into 6 groups: the control group, ALI group, oxycodone-pretreated group, and oxycodone/κ-, μ-, or δ-opioid receptor antagonist-pretreated groups. The rats were pretreated with oxycodone 30 min before intravenous injection of LPS and then allowed to recover for 24 h prior to MV, establishing a two-hit model of ALI. The cells were similarly treated with oxycodone (with or without antagonists) 30 min after exposure to lipopolysaccharide. The cells were cyclically stretched 24 h later to mirror the in vivo MV protocol. RESULTS Oxycodone alleviated the histological lung changes in the rats with ALI and decreased pulmonary microvascular permeability both in vivo and in vitro. Oxycodone upregulated the expression of claudin-5, ZO-1, AQP1, and AQP5 but downregulated the expression of TNF-α, IL-1β, TLR4, NF-κB, MMP9, and caspase-3 and suppressed endothelial apoptosis in vivo and in vitro. These protective effects of oxycodone were partly eliminated by KOR and MOR antagonists but not by DOR antagonists. CONCLUSION Oxycodone pretreatment appears to act via κ- and μ-opioid receptors to ameliorate LPS- and MV-induced lung injury by suppressing inflammation and apoptosis, and this protective effect might be mediated through the inhibition of the TLR4/NF-κB pathways.
Collapse
|
19
|
Tian J, Middleton B, Kaufman DL. GABA administration prevents severe illness and death following coronavirus infection in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.10.04.325423. [PMID: 33024975 PMCID: PMC7536896 DOI: 10.1101/2020.10.04.325423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is an urgent need for new treatments to prevent and ameliorate severe illness and death induced by SARS-CoV-2 infection in COVID-19 patients. The coronavirus mouse hepatitis virus (MHV)-1 causes pneumonitis in mice which shares many pathological characteristics with human SARS-CoV infection. Previous studies have shown that the amino acid gamma-aminobutyric acid (GABA) has anti-inflammatory effects. We tested whether oral treatment with GABA could modulate the MHV-1 induced pneumonitis in susceptible A/J mice. As expected, MHV-1-inoculated control mice became severely ill (as measured by weight loss, clinical score, and the ratio of lung weight to body weight) and >60% of them succumbed to the infection. In contrast, mice that received GABA immediately after MHV-1 inoculation became only mildly ill and all of them recovered. When GABA treatment was initiated after the appearance of illness (3 days post-MHV-1 infection), we again observed that GABA treatment significantly reduced the severity of illness and greatly increased the frequency of recovery. Therefore, the engagement of GABA receptors (GABA-Rs) prevented the MHV-1 infection-induced severe pneumonitis and death in mice. Given that GABA-R agonists, like GABA and homotaurine, are safe for human consumption, stable, inexpensive, and available worldwide, they are promising candidates to help prevent severe illness stemming from SARS-CoV-2 infection and other coronavirus strains.
Collapse
Affiliation(s)
- Jide Tian
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| | - Blake Middleton
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| | - Daniel L Kaufman
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| |
Collapse
|
20
|
Orser BA, Wang DS, Lu WY. Sedating ventilated COVID-19 patients with inhalational anesthetic drugs. EBioMedicine 2020; 55:102770. [PMID: 32344199 PMCID: PMC7172604 DOI: 10.1016/j.ebiom.2020.102770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Beverley A Orser
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario M5G 1E2, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada.
| | - Dian-Shi Wang
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wei-Yang Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
21
|
Yang J, Li N, Zhen Y, Huang Q. γ-aminobutyric acid alleviates LPS-induced acute lung injury in mice through upregulating type B receptors. Arch Med Sci 2019; 19:1116-1123. [PMID: 37560718 PMCID: PMC10408013 DOI: 10.5114/aoms.2019.89984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/23/2019] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION In recent years, studies have shown that GABA has a certain therapeutic effect on acute lung injury (ALI), but its specific mechanism has not been fully elucidated. The study was designed to investigate the protective effect and mechanism of γ-aminobutyric acid (GABA) on ALI induced by lipopolysaccharide (LPS) in mice. MATERIAL AND METHODS C57BL/6 mice were randomly divided into a control group, LPS group, LPS + GABA (10 mg/kg) group and LPS + dexamethasone (Dex, 5 mg/kg) group. The survival rate of each group was observed at different time points after modeling. The levels of tumor necrosis factor α (TNF-α), interleukin (IL) 1β, 10, myeloperoxidase (MPO) and the cell count and protein concentration in bronchoalveolar lavage fluid (BALF) were measured. Lung histopathology and the expression of GABA receptors were observed by HE staining and immunohistochemistry respectively. Lung water content was assessed by wet-dry weight ratio. RESULTS GABA could significantly improve the survival rate and prolong the survival time of animals, alleviate the degree of inflammatory injury and pulmonary edema, reduce the content of MPO, down-regulate the levels of pro-inflammatory cytokines IL-1β and TNF-α, and up-regulate the expression of anti-inflammatory cytokine IL-10. Moreover, GABA could significantly decrease the expression of type A receptors and enhance type B receptors. CONCLUSIONS GABA can effectively alleviate ALI induced by LPS in mice, and its effect may be related to the upregulation of type B receptors.
Collapse
Affiliation(s)
- Jing Yang
- Pediatric Department, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Na Li
- Pediatric Department, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Yuanyuan Zhen
- Pediatric Department, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Qikun Huang
- Pediatric Department, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| |
Collapse
|
22
|
Jerath A, Parotto M, Wasowicz M, Ferguson ND. Opportunity Knocks? The Expansion of Volatile Agent Use in New Clinical Settings. J Cardiothorac Vasc Anesth 2017; 32:1946-1954. [PMID: 29449155 DOI: 10.1053/j.jvca.2017.12.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Angela Jerath
- Department of Anesthesia and Pain Medicine, Toronto General Hospital, Toronto, Ontario, Canada.
| | - Matteo Parotto
- Department of Anesthesia and Pain Medicine, Toronto General Hospital, Toronto, Ontario, Canada
| | - Marcin Wasowicz
- Department of Anesthesia and Pain Medicine, Toronto General Hospital, Toronto, Ontario, Canada
| | - Niall D Ferguson
- Interdepartmental Division of Critical Care Medicine, University of Toronto, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Landoni G, Lomivorotov V, Pisano A, Nigro Neto C, Benedetto U, Biondi Zoccai G, Gemma M, Frassoni S, Agrò FE, Baiocchi M, Barbosa Gomes Galas FR, Bautin A, Bradic N, Carollo C, Crescenzi G, Elnakera AM, El-Tahan MR, Fominskiy E, Farag AG, Gazivoda G, Gianni S, Grigoryev E, Guarracino F, Hanafi S, Huang W, Kunst G, Kunstyr J, Lei C, Lembo R, Li ZJ, Likhvantsev V, Lozovskiy A, Ma J, Monaco F, Navalesi P, Nazar B, Pasyuga V, Porteri E, Royse C, Ruggeri L, Riha H, Santos Silva F, Severi L, Shmyrev V, Uvaliev N, Wang CB, Wang CY, Winterton D, Yong CY, Yu J, Bellomo R, Zangrillo A. MortalitY in caRdIAc surgery (MYRIAD): A randomizeD controlled trial of volatile anesthetics. Rationale and design. Contemp Clin Trials 2017; 59:38-43. [PMID: 28533194 DOI: 10.1016/j.cct.2017.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/14/2017] [Accepted: 05/17/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVE There is initial evidence that the use of volatile anesthetics can reduce the postoperative release of cardiac troponin I, the need for inotropic support, and the number of patients requiring prolonged hospitalization following coronary artery bypass graft (CABG) surgery. Nevertheless, small randomized controlled trials have failed to demonstrate a survival advantage. Thus, whether volatile anesthetics improve the postoperative outcome of cardiac surgical patients remains uncertain. An adequately powered randomized controlled trial appears desirable. DESIGN Single blinded, international, multicenter randomized controlled trial with 1:1 allocation ratio. SETTING Tertiary and University hospitals. INTERVENTIONS Patients (n=10,600) undergoing coronary artery bypass graft will be randomized to receive either volatile anesthetic as part of the anesthetic plan, or total intravenous anesthesia. MEASUREMENTS AND MAIN RESULTS The primary end point of the study will be one-year mortality (any cause). Secondary endpoints will be 30-day mortality; 30-day death or non-fatal myocardial infarction (composite endpoint); cardiac mortality at 30day and at one year; incidence of hospital re-admission during the one year follow-up period and duration of intensive care unit, and hospital stay. The sample size is based on the hypothesis that volatile anesthetics will reduce 1-year unadjusted mortality from 3% to 2%, using a two-sided alpha error of 0.05, and a power of 0.9. CONCLUSIONS The trial will determine whether the simple intervention of adding a volatile anesthetic, an intervention that can be implemented by all anesthesiologists, can improve one-year survival in patients undergoing coronary artery bypass graft surgery.
Collapse
Affiliation(s)
- Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy.
| | - Vladimir Lomivorotov
- Siberian Biomedical Research Center, Department of Anesthesiology and Intensive Care, Novosibirsk, Russia
| | - Antonio Pisano
- Cardiac Anesthesia and Intensive Care Unit, Monaldi Hospital A.O.R.N. "Dei Colli", Via L. Bianchi Naples, 80131, Italy
| | - Caetano Nigro Neto
- Anesthesia Section of Cardiothoracic Surgery, Dante Pazzanese Institute of Cardiology, Sao Paulo, Brazil
| | - Umberto Benedetto
- University of Bristol, School of Clinical Sciences, Bristol Heart Institute, Bristol, United Kingdom
| | - Giuseppe Biondi Zoccai
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Marco Gemma
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Samuele Frassoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Felice Eugenio Agrò
- Anaesthesia, Intensive Care and Pain Management Department, University School of Medicine Campus Bio-Medico, Rome, Italy
| | - Massimo Baiocchi
- Anesthesia and Intensive Care, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | | | - Andrei Bautin
- Department of Anesthesiology and Intensive Care, Federal Almazov North-West Medical Research Centre, Saint-Petersburg, Russia
| | - Nikola Bradic
- Department of Cardiovascular Anesthesiology and Cardiac Intensive Medicine, University Hospital Dubrava, Zagreb, Croatia
| | - Cristiana Carollo
- Department of Medicine, Anesthesia and Intensive Care Unit, Padova University Hospital, Via Cesare Battisti 256, 35128 Padova, Italy
| | - Giuseppe Crescenzi
- Anestesia e Terapia Intensiva Cardiochirurgica, Humanitas Research Hospital, Rozzano, Italy
| | - Abeer M Elnakera
- Anesthesia and Intensive Care, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed R El-Tahan
- Cardiothoracic Anaesthesia & Surgical Intensive Care, King Fahd Hospital, University of Dammam, Al Khobar, Saudi Arabia
| | - Evgeny Fominskiy
- Department of Anaesthesia and Intensive Care, Siberian Biomedical Research Center of the Ministry of Health, Novosibirsk, Russia
| | - Ahmed G Farag
- Department of Anaesthesia and Intensive Care, King Abdullah Medical City in Holy Capital "KAMC-HC", Makkah, Saudi Arabia
| | - Gordana Gazivoda
- Department of Anesthesiology and Intensive Care, Cardiovascular Institute `Dedinje`, Belgrade, Serbia
| | - Stefano Gianni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Evgeny Grigoryev
- Deputy Director for Clinical and Scientific Affairs, Scientific Research Institute of Complex Issues of Cardiovascular Disease, Kemerovo, Russia
| | - Fabio Guarracino
- Department of Anaesthesia and Critical Care Medicine, Azienda Ospedaliero-Universitaria Pisana, Via Paradisa 2, 56123 Pisa, Italy
| | - Sidik Hanafi
- Department of Anaesthesiology and Intensive Care, Sarawak General Hospital, Kuching, Sarawak, Malaysia
| | - Weiqing Huang
- Department of Anesthesiology, Wuhan Asia Heart Hospital, Wuhan, China
| | - Gudrun Kunst
- Department of Anaesthetics, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Jan Kunstyr
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, General University Hospital in Prague, Prague, Czech Republic
| | - Chong Lei
- Department of Anesthesiology and Perioperative Medicine, 1st Affiliative Hospital (Xijing Hospital), Fourth Military Medical University, Xi'an, China
| | - Rosalba Lembo
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Zhi-Jian Li
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Valery Likhvantsev
- Anesthesiology and Intensive Care Department, Moscow Clinical Regional Research Institute, Shepkina st., 61/2, Moscow, Russia
| | - Andrey Lozovskiy
- Department of Anesthesiology and Intensive Care, Ural Institute of Cardiology, Ekaterinburg, Russia
| | - Jun Ma
- Center for Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fabrizio Monaco
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Paolo Navalesi
- Anesthesia and Intensive Care, Dipartimento Scienze Mediche e Chirurgiche, Università della Magna Graecia, Catanzaro, Italy
| | - Bukamal Nazar
- Cardiothoracic ICU and Anaesthesia, MKCC, West Riffa, Bahrain
| | - Vadim Pasyuga
- Department of Cardiac Aneasthesia and Intensive Care, Astrakhan Federal Centre for Cardiac Surgery, Astrakhan, Russia
| | - Elena Porteri
- Dipartimento Cardiotoracico, Azienda Ospedaliera Spedali Civili, Brescia, Italy
| | - Colin Royse
- Department of Surgery, Level 6 Clinical Medical Research Building, The University of Melbourne, Melbourne, Australia
| | - Laura Ruggeri
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Hynek Riha
- Cardiothoracic Anesthesiology and Intensive Care, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Luca Severi
- Anesthesia and Intensive Care, Azienda Ospedaliera San Camillo Forlanini, Roma,Italy
| | - Vladimir Shmyrev
- Siberian Biomedical Research Center, Department of Anesthesiology and Intensive Care, Novosibirsk, Russia
| | - Nikolay Uvaliev
- Department-Anesthesia and Intensive Care, ACIBADEM City Clinic Burgas, Burgas, Bulgaria
| | - Cheng Bin Wang
- Center for Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chew-Yin Wang
- Anaesthesia and Intensive Care, University of Malaya, Kuala Lumpur, Malaysia
| | - Dario Winterton
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Chow-Yen Yong
- Anaesthesia and Intensive Care, Hospital Pulau Pinang, Georgetown, Malaysia
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Shandong, China
| | | | - Alberto Zangrillo
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| |
Collapse
|
24
|
Du G, Wang S, Li Z, Liu J. Sevoflurane Posttreatment Attenuates Lung Injury Induced by Oleic Acid in Dogs. Anesth Analg 2017; 124:1555-1563. [PMID: 28431421 DOI: 10.1213/ane.0000000000002034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND In animal models, both sevoflurane and propofol protect against acute lung injury (ALI), especially when administered prior to ALI onset. We hypothesized that when compared to propofol, sevoflurane administration after the onset of acute respiratory distress syndrome would mitigate oleic acid (OA)-induced ALI in dogs. METHODS Dogs were randomly assigned to receive intravenous OA to induce ALI (n = 7 for each OA group) or saline as an OA control (n = 6 for each control). Dogs were then mechanically ventilated for 6 hours during which propofol (5 mg/kg/h) or sevoflurane (1.0 minimum alveolar concentration) was administered for sedation. Study end points included PO2/FIO2 ratio, pulmonary arterial pressure, pulmonary edema, histology, and tumor nuclear factor-α. RESULTS In OA-injured animals, oxygenation was worse at 1, 2, 3, and 4 hours after 6-hour mechanical ventilation in sevoflurane-sedated animals compared with propofol-sedated animals, with mean difference (95% confidence interval; propofol minus sevoflurane) of 75 (39-111), 87 (55-119), 66 (44-87), and 67 (27-107) mm Hg for the respective time points. However, sevoflurane reduced the elevated pulmonary arterial pressure and vascular resistance, attenuated pulmonary edema as evidenced by reduced extravascular lung water index, and decreased tumor nuclear factor-α and diffuse alveolar damage score compared with propofol in the OA-injured lungs. CONCLUSIONS When compared with propofol, sevoflurane attenuates OA-induced lung damage. However, despite this effect on lung histology and inflammation, sevoflurane worsened oxygenation in OA-induced ALI, possibly via inhibition of hypoxic pulmonary vasoconstriction.
Collapse
Affiliation(s)
- Guizhi Du
- From the *Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; †Department of Neurology, The Second People's Hospital of Chengdu, Chengdu, Sichuan, China; and ‡Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | | | | | | |
Collapse
|
25
|
Jerath A, Parotto M, Wasowicz M, Ferguson ND. Volatile Anesthetics. Is a New Player Emerging in Critical Care Sedation? Am J Respir Crit Care Med 2017; 193:1202-12. [PMID: 27002466 DOI: 10.1164/rccm.201512-2435cp] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Volatile anesthetic agent use in the intensive care unit, aided by technological advances, has become more accessible to critical care physicians. With increasing concern over adverse patient consequences associated with our current sedation practice, there is growing interest to find non-benzodiazepine-based alternative sedatives. Research has demonstrated that volatile-based sedation may provide superior awakening and extubation times in comparison with current intravenous sedation agents (propofol and benzodiazepines). Volatile agents may possess important end-organ protective properties mediated via cytoprotective and antiinflammatory mechanisms. However, like all sedatives, volatile agents are capable of deeply sedating patients, which can have respiratory depressant effects and reduce patient mobility. This review seeks to critically appraise current volatile use in critical care medicine including current research, technical consideration of their use, contraindications, areas of controversy, and proposed future research topics.
Collapse
Affiliation(s)
- Angela Jerath
- 1 Department of Anesthesia and Pain Medicine, Toronto General Hospital, Toronto, Ontario, Canada; and
| | - Matteo Parotto
- 1 Department of Anesthesia and Pain Medicine, Toronto General Hospital, Toronto, Ontario, Canada; and
| | - Marcin Wasowicz
- 1 Department of Anesthesia and Pain Medicine, Toronto General Hospital, Toronto, Ontario, Canada; and
| | - Niall D Ferguson
- 2 Interdepartmental Division of Critical Care Medicine, University of Toronto, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Zhang EF, Hou ZX, Shao T, Yang WW, Hu B, Wang XX, Zhang ZX, Huang Y, Xiong LZ, Hou LC. Combined administration of a sedative dose sevoflurane and 60% oxygen reduces inflammatory responses to sepsis in animals and in human PMBCs. Am J Transl Res 2017; 9:3105-3119. [PMID: 28670397 PMCID: PMC5489909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
Our study aims to investigate the effects of the inhalation of subanesthestic doses of sevoflurane combined with oxygen on sepsis. Male Sprague-Dawley rats or Male ICR/Km mice underwent caecal ligation and puncture (CLP) or intraperitoneal injection of lipopolysccharide (LPS) to induce sepsis, while sham rats were used as control. Then, rats were treated with the inhalation of sevoflurane in oxygen; and air or 100% oxygen was used as control. Seven-day survival, lung injury and inflammatory factors were assessed. In this in vitro experiment, we obtained RAW264.7 macrophages and human peripheral blood mononuclear cells (PBMCs) incubated by LPS or plasma from septic patients to explore the NF-κB pathway in the effect of the inhalation of sevoflurane combined with oxygen in sepsis. In this study, we found that the inhalation of 0.5 MAC of sevoflurane in 60% oxygen was the best protocol for protecting against lethality resulting from sepsis and ALI, and there was a time window for these protective effects. We also founded that 0.5 MAC of sevoflurane in 60% oxygen inhibited the nuclear translocation of NF-κB in human PBMCs induced by LPS or plasma from septic patients. The subanesthesia dose sevoflurane in 60% oxygen may reduce sepsis-induced inflammatory responses in animals and in PBMCs, and the inhibition to the activation of the NF-κB pathway may contribute to this protection.
Collapse
Affiliation(s)
- Er-Fei Zhang
- Department of Anesthesiology and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical UniversityXi’an 710032, Shaanxi Province, P. R. China
- Department of Anesthesiology, The Affiliated Hospital of Yan’an UniversityYan’an 716000, Shaanxi Province, P. R. China
| | - Zuo-Xu Hou
- Department of Aerospace Medicine, The Fourth Military Medical UniversityXi’an 710032, Shaanxi, P. R. China
| | - Tian Shao
- Department of Anesthesiology and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical UniversityXi’an 710032, Shaanxi Province, P. R. China
| | - Wan-Wan Yang
- Department of Anesthesiology and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical UniversityXi’an 710032, Shaanxi Province, P. R. China
| | - Bin Hu
- Department of Anesthesiology, The Affiliated Hospital of Yan’an UniversityYan’an 716000, Shaanxi Province, P. R. China
| | - Xiao-Xia Wang
- Department of Anesthesiology and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical UniversityXi’an 710032, Shaanxi Province, P. R. China
| | - Ze-Xin Zhang
- Department of Anesthesiology and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical UniversityXi’an 710032, Shaanxi Province, P. R. China
| | - Yi Huang
- Department of Anesthesiology and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical UniversityXi’an 710032, Shaanxi Province, P. R. China
| | - Li-Ze Xiong
- Department of Anesthesiology and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical UniversityXi’an 710032, Shaanxi Province, P. R. China
| | - Li-Chao Hou
- Department of Anesthesiology and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical UniversityXi’an 710032, Shaanxi Province, P. R. China
| |
Collapse
|
27
|
Jabaudon M, Boucher P, Imhoff E, Chabanne R, Faure JS, Roszyk L, Thibault S, Blondonnet R, Clairefond G, Guérin R, Perbet S, Cayot S, Godet T, Pereira B, Sapin V, Bazin JE, Futier E, Constantin JM. Sevoflurane for Sedation in Acute Respiratory Distress Syndrome. A Randomized Controlled Pilot Study. Am J Respir Crit Care Med 2017; 195:792-800. [DOI: 10.1164/rccm.201604-0686oc] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Matthieu Jabaudon
- Department of Perioperative Medicine
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | | | | | | | | | - Laurence Roszyk
- Department of Medical Biochemistry and Molecular Biology, and
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Sandrine Thibault
- Department of Clinical Research and Innovation (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France; and
| | - Raiko Blondonnet
- Department of Perioperative Medicine
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Gael Clairefond
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | | | - Sébastien Perbet
- Department of Perioperative Medicine
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | | | | | - Bruno Pereira
- Department of Clinical Research and Innovation (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France; and
| | - Vincent Sapin
- Department of Medical Biochemistry and Molecular Biology, and
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | | | - Emmanuel Futier
- Department of Perioperative Medicine
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| | - Jean-Michel Constantin
- Department of Perioperative Medicine
- Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
| |
Collapse
|
28
|
Jin Z, Suen KC, Ma D. Perioperative "remote" acute lung injury: recent update. J Biomed Res 2017; 31:197-212. [PMID: 28808222 PMCID: PMC5460608 DOI: 10.7555/jbr.31.20160053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/16/2016] [Indexed: 01/21/2023] Open
Abstract
Perioperative acute lung injury (ALI) is a syndrome characterised by hypoxia and chest radiograph changes. It is a serious post-operative complication, associated with considerable mortality and morbidity. In addition to mechanical ventilation, remote organ insult could also trigger systemic responses which induce ALI. Currently, there are limited treatment options available beyond conservative respiratory support. However, increasing understanding of the pathophysiology of ALI and the biochemical pathways involved will aid the development of novel treatments and help to improve patient outcome as well as to reduce cost to the health service. In this review we will discuss the epidemiology of peri-operative ALI; the cellular and molecular mechanisms involved on the pathological process; the clinical considerations in preventing and managing perioperative ALI and the potential future treatment options.
Collapse
Affiliation(s)
- Zhaosheng Jin
- Anaesthetics, Pain Medicine and intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK
| | - Ka Chun Suen
- Anaesthetics, Pain Medicine and intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK
| | - Daqing Ma
- Anaesthetics, Pain Medicine and intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London SW10 9NH, UK
| |
Collapse
|
29
|
Dose-Dependent Protective Effect of Inhalational Anesthetics Against Postoperative Respiratory Complications. Crit Care Med 2017; 45:e30-e39. [DOI: 10.1097/ccm.0000000000002015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Inhibition of endotoxin-induced airway epithelial cell injury by a novel family of pyrrol derivates. J Transl Med 2016; 96:632-40. [PMID: 26999659 DOI: 10.1038/labinvest.2016.46] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/18/2016] [Accepted: 02/02/2016] [Indexed: 01/14/2023] Open
Abstract
Inflammation and apoptosis are crucial mechanisms for the development of the acute respiratory distress syndrome (ARDS). Currently, there is no specific pharmacological therapy for ARDS. We have evaluated the ability of a new family of 1,2,3,5-tetrasubstituted pyrrol compounds for attenuating lipopolysaccharide (LPS)-induced inflammation and apoptosis in an in vitro LPS-induced airway epithelial cell injury model based on the first steps of the development of sepsis-induced ARDS. Human alveolar A549 and human bronchial BEAS-2B cells were exposed to LPS, either alone or in combination with the pyrrol derivatives. Rhein and emodin, two representative compounds with proven activity against the effects of LPS, were used as reference compounds. The pyrrol compound that was termed DTA0118 had the strongest inhibitory activity and was selected as the lead compound to further explore its properties. Exposure to LPS caused an intense inflammatory response and apoptosis in both A549 and BEAS-2B cells. DTA0118 treatment downregulated Toll-like receptor-4 expression and upregulated nuclear factor-κB inhibitor-α expression in cells exposed to LPS. These anti-inflammatory effects were accompanied by a significantly lower secretion of interleukin-6 (IL-6), IL-8, and IL-1β. The observed antiapoptotic effect of DTA0118 was associated with the upregulation of antiapoptotic Bcl-2 and downregulation of proapoptotic Bax and active caspase-3 protein levels. Our findings demonstrate the potent anti-inflammatory and antiapoptotic properties of the pyrrol DTA0118 compound and suggest that it could be considered as a potential drug therapy for the acute phase of sepsis and septic ARDS. Further investigations are needed to examine and validate these mechanisms and effects in a clinically relevant animal model of sepsis and sepsis-induced ARDS.
Collapse
|
31
|
Effects of Volatile Anesthetics on Mortality and Postoperative Pulmonary and Other Complications in Patients Undergoing Surgery. Anesthesiology 2016; 124:1230-45. [DOI: 10.1097/aln.0000000000001120] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Background
It is not known whether modern volatile anesthetics are associated with less mortality and postoperative pulmonary or other complications in patients undergoing general anesthesia for surgery.
Methods
A systematic literature review was conducted for randomized controlled trials fulfilling following criteria: (1) population: adult patients undergoing general anesthesia for surgery; (2) intervention: patients receiving sevoflurane, desflurane, or isoflurane; (3) comparison: volatile anesthetics versus total IV anesthesia or volatile anesthetics; (4) reporting on: (a) mortality (primary outcome) and (b) postoperative pulmonary or other complications; (5) study design: randomized controlled trials. The authors pooled treatment effects following Peto odds ratio (OR) meta-analysis and network meta-analysis methods.
Results
Sixty-eight randomized controlled trials with 7,104 patients were retained for analysis. In cardiac surgery, volatile anesthetics were associated with reduced mortality (OR = 0.55; 95% CI, 0.35 to 0.85; P = 0.007), less pulmonary (OR = 0.71; 95% CI, 0.52 to 0.98; P = 0.038), and other complications (OR = 0.74; 95% CI, 0.58 to 0.95; P = 0.020). In noncardiac surgery, volatile anesthetics were not associated with reduced mortality (OR = 1.31; 95% CI, 0.83 to 2.05, P = 0.242) or lower incidences of pulmonary (OR = 0.67; 95% CI, 0.42 to 1.05; P = 0.081) and other complications (OR = 0.70; 95% CI, 0.46 to 1.05; P = 0.092).
Conclusions
In cardiac, but not in noncardiac, surgery, when compared to total IV anesthesia, general anesthesia with volatile anesthetics was associated with major benefits in outcome, including reduced mortality, as well as lower incidence of pulmonary and other complications. Further studies are warranted to address the impact of volatile anesthetics on outcome in noncardiac surgery.
Collapse
|
32
|
Non-ventilatory approaches to prevent postoperative pulmonary complications. Best Pract Res Clin Anaesthesiol 2015; 29:397-410. [PMID: 26643103 DOI: 10.1016/j.bpa.2015.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023]
Abstract
This educational narrative review provides a summary of non-ventilatory strategies to prevent postoperative pulmonary complications (PPCs). It highlights patient- and procedure-related risk factors for PPCs that are non-modifiable, potentially modifiable, or well modifiable. Non-ventilatory strategies, mainly based on the modification of risk factors, play a key role in reducing PPCs. Non-modifiable risk factors, most importantly age, American Society of Anesthesiologists (ASA) class, and risk of the procedure, should be recognized and patients intensively screened for the potential to optimize other, potentially or well-modifiable, risk factors. Potentially modifiable risk factors, mainly comorbidities and the surgical approach, increase the risk of PPCs. Patient-related factors can be improved while procedure-related factors may be adapted in high-risk patients. Well-modifiable risk factors, mainly certain anesthesia techniques, for example, general anesthesia, intravenous opioids or liberal fluid management, and smoking or alcohol abuse, should be avoided as far as possible in order to prevent PPCs.
Collapse
|
33
|
Wang Y, Mao G, Lv Y, Huang Q, Wang G. MicroRNA-181b stimulates inflammation via the nuclear factor-κB signaling pathway in vitro. Exp Ther Med 2015; 10:1584-1590. [PMID: 26622531 DOI: 10.3892/etm.2015.2702] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 07/29/2015] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) is characterized by severe lung edema and an increase in the inflammatory reaction. Considerable evidence has indicated that microRNAs (miRNAs or miRs) are involved in various human diseases; however, the expression profile and function of miRNAs in ALI have been rarely reported. The present study used miRNA microarray and reverse transcription-quantitative polymerase chain reaction to demonstrate that miR-181b is the one of the most significantly upregulated miRNA after lipopolysaccharide (LPS) stimulation in human bronchial epithelial cells, BEAS-2B. To elaborate the role of miR-181b in ALI, an assay was performed to investigate the overexpression of miR-181b in BEAS-2B cells, and the expression of inflammatory factors was then analyzed. The overexpression of miR-181b resulted in the induction of an increment in interleukin (IL)-6 levels. p65 was identified to be a primary component of NF-κB, since it was upregulated in the miR-181b overexpression in the BEAS-2B cells, while pyrrolidine dithiocarbamate, a specific inhibitor of NF-κB, was found to be able to abrogate the upregulation of the expression of p65. In conclusion, the findings of the present study suggested that miR-181b may be involved in the process of LPS-induced inflammation in BEAS-2B cells by activating the NF-κB signaling pathway, which implies that it may serve as a potential therapeutic target for ALI.
Collapse
Affiliation(s)
- Yazhen Wang
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Genxiang Mao
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Yuandong Lv
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Qingdong Huang
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Guofu Wang
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
34
|
Jin S, Merchant ML, Ritzenthaler JD, McLeish KR, Lederer ED, Torres-Gonzalez E, Fraig M, Barati MT, Lentsch AB, Roman J, Klein JB, Rane MJ. Baclofen, a GABABR agonist, ameliorates immune-complex mediated acute lung injury by modulating pro-inflammatory mediators. PLoS One 2015; 10:e0121637. [PMID: 25848767 PMCID: PMC4388838 DOI: 10.1371/journal.pone.0121637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 02/12/2015] [Indexed: 11/22/2022] Open
Abstract
Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a physiological role for GABABR2 in the repair process of lung damage. GABABR2 agonists may play a potential therapeutic role in ALI.
Collapse
Affiliation(s)
- Shunying Jin
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Michael L. Merchant
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Jeffrey D. Ritzenthaler
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- Robley Rex VA Medical Center, Zorn Avenue, Louisville, Kentucky, United States of America
| | - Eleanor D. Lederer
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Robley Rex VA Medical Center, Zorn Avenue, Louisville, Kentucky, United States of America
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Edilson Torres-Gonzalez
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Mostafa Fraig
- Department of Pathology, University of Louisville, Louisville, Kentucky, United States of America
| | - Michelle T. Barati
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Alex B. Lentsch
- Department of Surgery, University of Cincinnati, Cincinnati, OH, United States of America
| | - Jesse Roman
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Robley Rex VA Medical Center, Zorn Avenue, Louisville, Kentucky, United States of America
| | - Jon B. Klein
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- Robley Rex VA Medical Center, Zorn Avenue, Louisville, Kentucky, United States of America
| | - Madhavi J. Rane
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
35
|
Effects of volatile vs. propofol-based intravenous anesthetics on the alveolar inflammatory responses to one-lung ventilation: a meta-analysis of randomized controlled trials. J Anesth 2015; 29:570-9. [DOI: 10.1007/s00540-015-1987-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 02/08/2015] [Indexed: 11/25/2022]
|
36
|
Villar J, Cabrera-Benítez NE, Ramos-Nuez A, Flores C, García-Hernández S, Valladares F, López-Aguilar J, Blanch L, Slutsky AS. Early activation of pro-fibrotic WNT5A in sepsis-induced acute lung injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:568. [PMID: 25331176 PMCID: PMC4220065 DOI: 10.1186/s13054-014-0568-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 10/02/2014] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The mechanisms of lung repair and fibrosis in the acute respiratory distress syndrome (ARDS) are poorly known. Since the role of WNT/β-catenin signaling appears to be central to lung healing and fibrosis, we hypothesized that this pathway is activated very early in the lungs after sepsis. METHODS We tested our hypothesis using a three-step experimental design: (1) in vitro lung cell injury model with human bronchial epithelial BEAS-2B and lung fibroblasts (MRC-5) cells exposed to endotoxin for 18 hours; (2) an animal model of sepsis-induced ARDS induced by cecal ligation and perforation, and (3) lung biopsies from patients who died within the first 24 hours of septic ARDS. We examined changes in protein levels of target genes involved in the Wnt pathway, including WNT5A, non-phospho (Ser33/37/Thr41) β-catenin, matrix metalloproteinase-7 (MMP7), cyclin D1, and vascular endothelial growth factor (VEGF) by Western blotting and immunohistochemistry. Finally, we validated the main gene targets of this pathway in experimental animals and human lungs. RESULTS Protein levels of WNT5A, non-phospho (Ser33/37/Thr41) β-catenin, total β-catenin, MMP7, cyclin D1, and VEGF increased after endotoxin stimulation in BEAS-2B and MRC-5 cells. Lungs from septic animals and from septic humans demonstrated acute lung inflammation, collagen deposition, and marked increase of WNT5A and MMP7 protein levels. CONCLUSIONS Our findings suggest that the WNT/β-catenin signaling pathway is activated very early in sepsis-induced ARDS and could play an important role in lung repair and fibrosis. Modulation of this pathway might represent a potential target for treatment for septic and ARDS patients.
Collapse
Affiliation(s)
- Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain. .,Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain. .,Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.
| | - Nuria E Cabrera-Benítez
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain. .,Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain.
| | - Angela Ramos-Nuez
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain. .,Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain.
| | - Carlos Flores
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain. .,Research Unit, Hospital Universitario NS de Candelaria, Santa Cruz de Tenerife, Spain.
| | - Sonia García-Hernández
- Department of Anatomy, Pathology & Histology, Medical School University of La Laguna and Hospital Universitario de Canarias, La Laguna, Tenerife, Spain.
| | - Francisco Valladares
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain. .,Department of Anatomy, Pathology & Histology, Medical School University of La Laguna and Hospital Universitario de Canarias, La Laguna, Tenerife, Spain.
| | - Josefina López-Aguilar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain. .,Critical Care Center, Corporació Sanitaria Parc Taulí, Sabadell, Barcelona, Spain.
| | - Lluís Blanch
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain. .,Critical Care Center, Corporació Sanitaria Parc Taulí, Sabadell, Barcelona, Spain.
| | - Arthur S Slutsky
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada. .,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
37
|
Qin Z, Lv E, Zhan L, Xing X, Jiang J, Zhang M. Intravenous pretreatment with emulsified isoflurane preconditioning protects kidneys against ischemia/reperfusion injury in rats. BMC Anesthesiol 2014; 14:28. [PMID: 24739487 PMCID: PMC3996162 DOI: 10.1186/1471-2253-14-28] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/09/2014] [Indexed: 01/02/2023] Open
Abstract
Background Emulsified isoflurane (EIso) is a novel intravenous general anesthetic, which can provide rapid anesthetic induction and recovery. EIso preconditioning could attenuate heart, lung and liver ischemia/reperfusion (I/R) injury. We tested the hypothesis that intravenous pretreatment with EIso would protect kidneys against I/R injury by inhibiting systemic inflammatory responses and improving renal antioxidative ability. Methods Rats were randomly divided into these six groups: sham, I/R, intralipid, 1, 2 or 4 ml/kg EIso. Rats were subjected to 45 min left renal pedicle occlusion followed by 3 h reperfusion after right nephrectomy. Rat were treated with intravenous 8% EIso with 1, 2 or 4 ml/kg, or 30% intralipid with 2 ml/kg for 30 min before ischemia, respectively. After reperfusion, renal functional parameters, serum mediator concentrations and markers of oxidative stress in kidney tissues were determined, and renal histopathological analysis were performed. Results Serum creatinine, blood urea nitrogen, cystatin c, tumor necrosis factor-α, interleukin-6, and interleukin-10 concentrations were significantly increased after renal I/R as compared to the sham group. So was renal tissue MDA content and histological scores, but renal tissue SOD activity was decreased. Additionally, severe morphological damages were observed in these study groups. In contrast, 2 or 4 ml/kg EIso reduced serum creatinine, blood urea nitrogen, cystatin c, tumor necrosis factor-α, and interleukin-6 levels, decreased renal tissue MDA content and histological scores, increased serum interleukin-10 level and tissue SOD activity as compared to the I/R, intralipid and 1 ml/kg EIso groups. Renal morphological damages were alleviated after pretreatment of 2 or 4 ml/kg EIso. Conclusions Intravenous EIso produces preconditioning against renal I/R injury in rats, which might be mediated by attenuating inflammation and increasing antioxidation ability.
Collapse
Affiliation(s)
- Zhaojun Qin
- Department of Anesthesiology, Three Gorges University People's Hospital, Yichang, China, No. 4, Hudi Street, Xiling District, Yichang 443000, Hubei, People's Republic of China
| | - En Lv
- Department of Anesthesiology, Three Gorges University People's Hospital, Yichang, China, No. 4, Hudi Street, Xiling District, Yichang 443000, Hubei, People's Republic of China
| | - Leyun Zhan
- Department of Anesthesiology, Three Gorges University People's Hospital, Yichang, China, No. 4, Hudi Street, Xiling District, Yichang 443000, Hubei, People's Republic of China
| | - Xiangfei Xing
- Department of Anesthesiology, Three Gorges University People's Hospital, Yichang, China, No. 4, Hudi Street, Xiling District, Yichang 443000, Hubei, People's Republic of China
| | - Jianli Jiang
- Department of Anesthesiology, Three Gorges University People's Hospital, Yichang, China, No. 4, Hudi Street, Xiling District, Yichang 443000, Hubei, People's Republic of China
| | - Min Zhang
- Department of Anesthesiology, Three Gorges University People's Hospital, Yichang, China, No. 4, Hudi Street, Xiling District, Yichang 443000, Hubei, People's Republic of China
| |
Collapse
|
38
|
Burburan SM, Silva JD, Abreu SC, Samary CS, Guimarães IHL, Xisto DG, Morales MM, Rocco PRM. Effects of inhalational anaesthetics in experimental allergic asthma. Anaesthesia 2014; 69:573-82. [PMID: 24666314 DOI: 10.1111/anae.12593] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2013] [Indexed: 12/20/2022]
Abstract
We evaluated whether isoflurane, halothane and sevoflurane attenuate the inflammatory response and improve lung morphofunction in experimental asthma. Fifty-six BALB/c mice were sensitised and challenged with ovalbumin and anaesthetised with isoflurane, halothane, sevoflurane or pentobarbital sodium for one hour. Lung mechanics and histology were evaluated. Gene expression of pro-inflammatory (tumour necrosis factor-α), pro-fibrogenic (transforming growth factor-β) and pro-angiogenic (vascular endothelial growth factor) mediators, as well as oxidative process modulators, were analysed. These modulators included nuclear factor erythroid-2 related factor 2, sirtuin, catalase and glutathione peroxidase. Isoflurane, halothane and sevoflurane reduced airway resistance, static lung elastance and atelectasis when compared with pentobarbital sodium. Sevoflurane minimised bronchoconstriction and cell infiltration, and decreased tumour necrosis factor-α, transforming growth factor-β, vascular endothelial growth factor, sirtuin, catalase and glutathione peroxidase, while increasing nuclear factor erythroid-2-related factor 2 expression. Sevoflurane down-regulated inflammatory, fibrogenic and angiogenic mediators, and modulated oxidant-antioxidant imbalance, improving lung function in this model of asthma.
Collapse
Affiliation(s)
- S M Burburan
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Brazilian National Cancer Institute - INCa, and Ipanema Federal Hospital, Ministry of Health, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Intravenous Glutamine Administration Reduces Lung and Distal Organ Injury in Malnourished Rats With Sepsis. Shock 2014; 41:222-32. [DOI: 10.1097/shk.0000000000000102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Fahlenkamp A, Coburn M, Rossaint R, Stoppe C, Haase H. Comparison of the effects of xenon and sevoflurane anaesthesia on leucocyte function in surgical patients: a randomized trial † †This article is accompanied by Editorial III. Br J Anaesth 2014; 112:272-80. [DOI: 10.1093/bja/aet330] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
41
|
Nonventilatory strategies to prevent postoperative pulmonary complications. Curr Opin Anaesthesiol 2013; 26:141-51. [PMID: 23385322 DOI: 10.1097/aco.0b013e32835e8bac] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW In this review, we aimed at providing the most recent and relevant clinical evidence regarding the use of nonventilatory strategies to prevent postoperative pulmonary complications (PPCs) after noncardiac surgery. RECENT FINDINGS Although nonavoidable, most comorbidities can be modified in order to reduce the incidence of pulmonary events postoperatively. The physical status of patients suffering from chronic obstructive pulmonary disease, asthma, obstructive sleep apnea, and congestive heart failure can be improved preoperatively, and a number of measures can be undertaken to prevent PPCs, including physiotherapy for pulmonary rehabilitation and drug therapies. Also, smokers may benefit from both short and long-term smoke cessation. Furthermore, the risk of PPCs may be reduced upon: choice of an adequate anesthesia strategy (e.g. regional vs. general); appropriate neuromuscular blockade and reversal; use of volatile instead of intravenous anesthetics in lung surgery; judicious intravascular volume expansion (restrictive vs. liberal strategy); regional instead of systemic analgesia after major surgery in high-risk patients; more strict indication for nasogastric decompression in order to avoid silent aspiration; and laparoscopic instead of open bariatric surgery. SUMMARY Nonventilatory strategies can play an important role in reducing PPCs and improving clinical outcome after noncardiac surgery, especially in high-risk patients.
Collapse
|
42
|
Fuchs K, Kukuk D, Mahling M, Quintanilla-Martinez L, Reischl G, Reutershan J, Lang F, Röcken M, Pichler BJ, Kneilling M. Impact of Anesthetics on 3′-[18F]Fluoro-3′-Deoxythymidine ([18F]FLT) Uptake in Animal Models of Cancer and Inflammation. Mol Imaging 2013. [DOI: 10.2310/7290.2012.00042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kerstin Fuchs
- From the Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, and the Departments of Dermatology, Pathology, Anesthesiology and Intensive Care Medicine, and Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Damaris Kukuk
- From the Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, and the Departments of Dermatology, Pathology, Anesthesiology and Intensive Care Medicine, and Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Moritz Mahling
- From the Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, and the Departments of Dermatology, Pathology, Anesthesiology and Intensive Care Medicine, and Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- From the Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, and the Departments of Dermatology, Pathology, Anesthesiology and Intensive Care Medicine, and Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Gerald Reischl
- From the Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, and the Departments of Dermatology, Pathology, Anesthesiology and Intensive Care Medicine, and Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jörg Reutershan
- From the Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, and the Departments of Dermatology, Pathology, Anesthesiology and Intensive Care Medicine, and Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Florian Lang
- From the Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, and the Departments of Dermatology, Pathology, Anesthesiology and Intensive Care Medicine, and Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Röcken
- From the Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, and the Departments of Dermatology, Pathology, Anesthesiology and Intensive Care Medicine, and Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Bernd J. Pichler
- From the Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, and the Departments of Dermatology, Pathology, Anesthesiology and Intensive Care Medicine, and Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Manfred Kneilling
- From the Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Department of Preclinical Imaging and Radiopharmacy, and the Departments of Dermatology, Pathology, Anesthesiology and Intensive Care Medicine, and Physiology, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
43
|
Isoflurane regulates atypical type-A γ-aminobutyric acid receptors in alveolar type II epithelial cells. Anesthesiology 2013; 118:1065-75. [PMID: 23485993 DOI: 10.1097/aln.0b013e31828e180e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Volatile anesthetics act primarily through upregulating the activity of γ-aminobutyric acid type A (GABAA) receptors. They also exhibit antiinflammatory actions in the lung. Rodent alveolar type II (ATII) epithelial cells express GABAA receptors and the inflammatory factor cyclooxygenase-2 (COX-2). The goal of this study was to determine whether human ATII cells also express GABAA receptors and whether volatile anesthetics upregulate GABAA receptor activity, thereby reducing the expression of COX-2 in ATII cells. METHODS The expression of GABAA receptor subunits and COX-2 in ATII cells of human lung tissue and in the human ATII cell line A549 was studied with immunostaining and immunoblot analyses. Patch clamp recordings were used to study the functional and pharmacological properties of GABAA receptors in cultured A549 cells. RESULTS ATII cells in human lungs and cultured A549 cells expressed GABAA receptor subunits and COX-2. GABA induced currents in A549 cells, with half-maximal effective concentration of 2.5 µM. Isoflurane (0.1-250 µM) enhanced the GABA currents, which were partially inhibited by bicuculline. Treating A549 cells with muscimol or with isoflurane (250 µM) reduced the expression of COX-2, an effect that was attenuated by cotreatment with bicuculline. CONCLUSIONS GABAA receptors expressed by human ATII cells differ pharmacologically from those in neurons, exhibiting a higher affinity for GABA and lower sensitivity to bicuculline. Clinically relevant concentrations of isoflurane increased the activity of GABAA receptors and reduced the expression of COX-2 in ATII cells. These findings reveal a novel mechanism that could contribute to the antiinflammatory effect of isoflurane in the human lung.
Collapse
|
44
|
Year in review in Intensive Care Medicine 2012: I. Neurology and neurointensive care, epidemiology and nephrology, biomarkers and inflammation, nutrition, experimentals. Intensive Care Med 2012; 39:232-46. [PMID: 23248038 PMCID: PMC3569582 DOI: 10.1007/s00134-012-2774-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 01/06/2023]
|
45
|
Cabrera-Benitez NE, Pérez-Roth E, Casula M, Ramos-Nuez Á, Ríos-Luci C, Rodríguez-Gallego C, Sologuren I, Jakubkiene V, Slutsky AS, Padrón JM, Villar J. Anti-inflammatory activity of a novel family of aryl ureas compounds in an endotoxin-induced airway epithelial cell injury model. PLoS One 2012; 7:e48468. [PMID: 23144889 PMCID: PMC3493555 DOI: 10.1371/journal.pone.0048468] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 09/25/2012] [Indexed: 01/11/2023] Open
Abstract
Background Despite our increased understanding of the mechanisms involved in acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS), there is no specific pharmacological treatment of proven benefit. We used a novel screening methodology to examine potential anti-inflammatory effects of a small structure-focused library of synthetic carbamate and urea derivatives in a well established cell model of lipopolysaccharide (LPS)-induced ALI/ARDS. Methodology/Principal Findings After a pilot study to develop an in vitro LPS-induced airway epithelial cell injury model, a library of synthetic carbamate and urea derivates was screened against representative panels of human solid tumor cell lines and bacterial and fungal strains. Molecules that were non-cytotoxic and were inactive in terms of antiproliferative and antimicrobial activities were selected to study the effects on LPS-induced inflammatory response in an in vitro cell culture model using A549 human alveolar and BEAS-2B human bronchial cells. These cells were exposed for 18 h to LPS obtained from Escherichia coli, either alone or in combination with the test compounds. The LPS antagonists rhein and emodin were used as reference compounds. The most active compound (CKT0103) was selected as the lead compound and the impact of CKT0103 on pro-inflammatory IL-6 and IL-8 cytokine levels, expression of toll-like receptor-4 (TLR4) and nuclear factor kappa B inhibitor alpha (IκBα) was measured. CKT0103 significantly inhibited the synthesis and release of IL-6 and IL-8 induced by LPS. This suppression was associated with inhibition of TLR4 up-regulation and IκBα down-regulation. Immunocytochemical staining for TLR4 and IκBα supported these findings. Conclusions/Significance Using a novel screening methodology, we identified a compound – CKT0103 – with potent anti-inflammatory effects. These findings suggest that CKT0103 is a potential target for the treatment of the acute phase of sepsis and sepsis-induced ALI/ARDS.
Collapse
Affiliation(s)
- Nuria E. Cabrera-Benitez
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain
| | - Eduardo Pérez-Roth
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Milena Casula
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain
| | - Ángela Ramos-Nuez
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain
| | - Carla Ríos-Luci
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | | | - Ithaisa Sologuren
- Department of Immunology, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain
| | - Virginija Jakubkiene
- Department of Organic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius, Lithuania
| | - Arthur S. Slutsky
- Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain
- Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Canada
- * E-mail:
| |
Collapse
|