1
|
Labar AS, Ulrich BC, Lovelace TC, Bain WG, Shah FA, White EB, Abe EA, Giacona F, Alba GA, Thompson BT, Schmidt EP, Zuchelkowski BE, Evankovich JW, Yang H, Ramanan R, Murray H, Haidar G, Snyder ME, Qin S, Wang X, Zhang Y, Nouraie SM, Dela Cruz C, Turnquist HR, Ray P, Ray A, Methé B, Benos PV, Morris A, McVerry BJ, Alladina J, Kitsios GD. Plasma Levels of Soluble ST2 Reflect Extrapulmonary Organ Dysfunction and Predict Outcomes in Acute Respiratory Failure. Crit Care Med 2025:00003246-990000000-00529. [PMID: 40402026 DOI: 10.1097/ccm.0000000000006716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
OBJECTIVES Soluble ST2 (sST2), a decoy receptor for the alarmin interleukin-33 (IL-33), has been implicated in adverse clinical outcomes in acute respiratory failure (ARF). We evaluated sST2 distribution across diverse cohorts of patients with different etiologies of ARF, compared plasma and lower respiratory tract (LRT) concentrations, and examined associations with individual organ dysfunction, biological subphenotypes, and outcomes. DESIGN Observational study. SETTING Multicenter cohorts of ARF patients. PATIENTS A total of 1432 ARF patients, including 863 non-COVID and 569 COVID-19 cases, from five cohorts. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS sST2 levels were measured in plasma and LRT specimens (when available) and analyzed for associations with ARF etiology, severity, organ dysfunction, systemic host response, subphenotypes, and 30-day mortality. Plasma sST2 levels were higher in non-COVID ARF patients compared with COVID-19 patients (p < 0.05) and were markedly elevated compared with LRT levels (> 19-fold), with weak intercompartmental correlation. Elevated plasma sST2 levels were associated with extrapulmonary organ dysfunction and a hyperinflammatory ARF subphenotype but not with respiratory indices, including hypoxemia. Plasma sST2 independently predicted 30-day mortality in pooled cohort data, adjusted for age, sex, and illness severity. In longitudinal measurements, nonsurvivors had persistently elevated plasma sST2 levels in the first 2 weeks of critical illness compared with survivors. CONCLUSIONS Plasma sST2 levels independently predict outcomes in ARF and are strongly associated with extrapulmonary organ dysfunction. The weak correlation between plasma and LRT sST2 levels suggests a predominantly systemic source. These findings highlight the potential of the IL-33/ST2 axis as a therapeutic target and warrant further investigation into its role in multiple organ dysfunction in ARF.
Collapse
Affiliation(s)
- Amy S Labar
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Bryan C Ulrich
- Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Tyler C Lovelace
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
- Joint CMU-Pitt PhD Program in Computation Biology, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA
| | - William G Bain
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Veterans Affairs Pittsburgh Health System, Pittsburgh, PA
| | - Faraaz A Shah
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Veterans Affairs Pittsburgh Health System, Pittsburgh, PA
| | - Emma B White
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Elizabeth A Abe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Francesca Giacona
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - George A Alba
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - B Taylor Thompson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Eric P Schmidt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | | | - John W Evankovich
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Haopu Yang
- Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Raj Ramanan
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Holt Murray
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Ghady Haidar
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Mark E Snyder
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Shulin Qin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
| | - Xiahong Wang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Seyed M Nouraie
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Charles Dela Cruz
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Veterans Affairs Pittsburgh Health System, Pittsburgh, PA
| | - Hēth R Turnquist
- Departments of Surgery and Immunology, Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Prabir Ray
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Barbara Methé
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
| | | | - Alison Morris
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Bryan J McVerry
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
| | - Jehan Alladina
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Georgios D Kitsios
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
2
|
Massimo G, Martina T, Sascha D. Hemoadsorption in septic shock - CON. Intensive Care Med 2025:10.1007/s00134-025-07911-3. [PMID: 40327079 DOI: 10.1007/s00134-025-07911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/11/2025] [Indexed: 05/07/2025]
Affiliation(s)
- Girardis Massimo
- Department of Anaesthesia and Intensive Care, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy.
| | - Tosi Martina
- Department of Anaesthesia and Intensive Care, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - David Sascha
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Gromelsky Ljungcrantz E, Askman S, Sjövall F, Paulsson M. Biomarkers in lower respiratory tract samples in the diagnosis of ventilator-associated pneumonia: a systematic review. Eur Respir Rev 2025; 34:240229. [PMID: 40306955 PMCID: PMC12041932 DOI: 10.1183/16000617.0229-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/23/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Ventilator-associated pneumonia (VAP) is the most common intensive care unit-acquired infection, yet its diagnosis is complicated by the lack of reliable diagnostic criteria and validated biomarkers. Due to the compartmentalisation of the immune response, host proteins in respiratory tract samples are more likely than serum proteins to accurately identify VAP. However, a reliable biomarker is still missing and it is generally agreed that >90% sensitivity and specificity are required for the introduction of a VAP biomarker into clinical routine. METHODS A structured database search was performed to identify publications aimed at deriving or verifying human respiratory tract VAP biomarkers. The results were screened by two independent reviewers and summarised using statistical and narrative synthesis. RESULTS 40 articles were identified, focusing on 29 unique biomarkers with clinical and microbiological diagnoses of VAP as the reference standard. The most frequently studied biomarker was soluble triggering receptor expressed on myeloid cell 1 (sTREM-1) (n=16), followed by various interleukins (n=7), neutrophil-related proteins (n=8) and amylase as a surrogate for microaspiration (n=4). The target accuracy of >90% specificity and sensitivity for VAP was reported in four publications on sTREM-1, one on pentraxin-3 (PTX3) and one on heparin-binding protein (HBP). Meta-analysis of sTREM-1 resulted in a sensitivity of 78% (95% CI 61-89%) and specificity of 76% (95% CI 49-91%). DISCUSSION This systematic review found that no biomarker can currently be recommended for clinical use due to performance below 90% specificity or sensitivity, or insufficient data (PTX3 and HBP). Accurate clinical phenotyping into VAP subcategories may enable the discovery of VAP biomarkers with higher accuracy.
Collapse
Affiliation(s)
| | - Sanna Askman
- Infection Medicine, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
| | - Fredrik Sjövall
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Intensive Care and Perioperative Medicine, Skåne University Hospital, Malmö, Sweden
| | - Magnus Paulsson
- Infection Medicine, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
- Clinical Microbiology, Laboratory Medicine, Region Skåne, Lund, Sweden
| |
Collapse
|
4
|
Neyton LPA, Matthay MA, Dela Cruz CS, Rizzo AN. Beyond immunosuppression: decoding systemic immune dysregulation in ICU-acquired pneumonia. Eur Respir J 2025; 65:2500185. [PMID: 40274294 DOI: 10.1183/13993003.00185-2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 04/26/2025]
Affiliation(s)
- Lucile P A Neyton
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Charles S Dela Cruz
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, PA, USA
| | - Alicia N Rizzo
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh School of Medicine, PA, USA
| |
Collapse
|
5
|
Cidade JP, Guerreiro G, Póvoa P. A clinical guide to assess the immune response to sepsis: from bench to bedside. CRITICAL CARE SCIENCE 2024; 36:e20240179en. [PMID: 39775434 PMCID: PMC11634233 DOI: 10.62675/2965-2774.20240179-en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 01/11/2025]
Affiliation(s)
- José Pedro Cidade
- Centro Hospitalar Lisboa OcidentalHospital São Francisco XavierDepartment of Intensive CareLisboaPortugalIntensive Care Unit 4, Department of Intensive Care, Hospital São Francisco Xavier, Centro Hospitalar Lisboa Ocidental - Lisbon, Portugal.
| | - Gonçalo Guerreiro
- Centro Hospitalar Lisboa OcidentalHospital São Francisco XavierDepartment of Intensive CareLisboaPortugalIntensive Care Unit 4, Department of Intensive Care, Hospital São Francisco Xavier, Centro Hospitalar Lisboa Ocidental - Lisbon, Portugal.
| | - Pedro Póvoa
- Centro Hospitalar Lisboa OcidentalHospital São Francisco XavierDepartment of Intensive CareLisboaPortugalIntensive Care Unit 4, Department of Intensive Care, Hospital São Francisco Xavier, Centro Hospitalar Lisboa Ocidental - Lisbon, Portugal.
| |
Collapse
|
6
|
David S, Stahl K, Bode C. Plasma exchange in septic shock: are we ready for prime time? PRO. Intensive Care Med 2024; 50:1903-1907. [PMID: 39259294 DOI: 10.1007/s00134-024-07635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Affiliation(s)
- Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland.
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Germany.
| | - Klaus Stahl
- Department of Gastroenterology, Infectious Diseases and Hepatology, Hannover Medical School, Hannover, Germany
| | - Christian Bode
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
Stiel L, Gaudet A, Thietart S, Vallet H, Bastard P, Voiriot G, Oualha M, Sarton B, Kallel H, Brechot N, Kreitmann L, Benghanem S, Joffre J, Jouan Y. Innate immune response in acute critical illness: a narrative review. Ann Intensive Care 2024; 14:137. [PMID: 39227416 PMCID: PMC11371990 DOI: 10.1186/s13613-024-01355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/23/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Activation of innate immunity is a first line of host defense during acute critical illness (ACI) that aims to contain injury and avoid tissue damages. Aberrant activation of innate immunity may also participate in the occurrence of organ failures during critical illness. This review aims to provide a narrative overview of recent advances in the field of innate immunity in critical illness, and to consider future potential therapeutic strategies. MAIN TEXT Understanding the underlying biological concepts supporting therapeutic strategies modulating immune response is essential in decision-making. We will develop the multiple facets of innate immune response, especially its cellular aspects, and its interaction with other defense mechanisms. We will first describe the pathophysiological mechanisms of initiation of innate immune response and its implication during ACI. We will then develop the amplification of innate immunity mediated by multiple effectors. Our review will mainly focus on myeloid and lymphoid cellular effectors, the major actors involved in innate immune-mediated organ failure. We will third discuss the interaction and integration of innate immune response in a global view of host defense, thus considering interaction with non-immune cells through immunothrombosis, immunometabolism and long-term reprogramming via trained immunity. The last part of this review will focus on the specificities of the immune response in children and the older population. CONCLUSIONS Recent understanding of the innate immune response integrates immunity in a highly dynamic global vision of host response. A better knowledge of the implicated mechanisms and their tissue-compartmentalization allows to characterize the individual immune profile, and one day eventually, to develop individualized bench-to-bedside immunomodulation approaches as an adjuvant resuscitation strategy.
Collapse
Affiliation(s)
- Laure Stiel
- Department of Intensive Care Medicine, Groupe Hospitalier de la Région Mulhouse Sud Alsace, Mulhouse, France.
- Lipness Team, INSERM Research Team, LNC UMR 1231 and LabEx LipSTIC, University of Burgundy, Dijon, France.
| | - Alexandre Gaudet
- CHU Lille, Department of Intensive Care Medicine, Critical Care Center, Univ. Lille, 59000, Lille, France
- CIIL (Centre d'Infection et d'Immunité de Lille), Institut Pasteur de Lille, U1019-UMR9017, 59000, Lille, France
| | - Sara Thietart
- Département de Gériatrie, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
- Inserm, PARCC U970, F75, Université Paris Cité, Paris, France
| | - Hélène Vallet
- Department of Geriatric Medicine, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Hôpital Saint Antoine, Paris, France
- INSERM UMR1135, Centre d'immunologie et des Maladies Infectieuses, Sorbonne Université, Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Guillaume Voiriot
- Service de Médecine Intensive Réanimation, Hôpital Tenon, Hôpitaux de Paris, Paris, France
- Centre de Recherche, Saint-Antoine UMRS_938, INSERM, Sorbonne Université, Assistance Publique, Paris, France
| | - Mehdi Oualha
- Pediatric Intensive Care Unit, Necker Hospital, APHP, Centre-Paris University, Paris, France
| | - Benjamine Sarton
- Service de Réanimation Polyvalente Purpan, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- ToNIC Lab (Toulouse NeuroImaging Center) INSERM/UPS UMR 1214, 31300, Toulouse, France
| | - Hatem Kallel
- Service de Réanimation, Centre Hospitalier de Cayenne, Guyane, France
| | - Nicolas Brechot
- Service de Médecine Intensive Réanimation, Sorbonne Université, Hôpitaux Universitaires Pitié Salpêtrière- Charles Foix, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Center for Interdisciplinary Research in Biology (CIRB)-UMRS, INSERM U1050-CNRS 7241, College de France, Paris, France
| | - Louis Kreitmann
- Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
- ICU West, The Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Sarah Benghanem
- Service de Médecine Intensive Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jérémie Joffre
- Service de Réanimation Médicale, Hôpital de Saint Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Centre de Recherche Saint Antoine INSERM, U938, Sorbonne University, Paris, France
| | - Youenn Jouan
- Service de Médecine Intensive Réanimation, CHRU Tours, Tours, France
- Services de Réanimation Chirurgicale Cardiovasculaire et de Chirurgie Cardiaque, CHRU Tours, Tours, France
- INSERM, U1100 Centre d'Etudes des Pathologies Respiratoires, Faculté de Médecine de Tours, Tours, France
| |
Collapse
|
8
|
Mannes M, Savukoski S, Ignatius A, Halbgebauer R, Huber-Lang M. Crepuscular rays - The bright side of complement after tissue injury. Eur J Immunol 2024; 54:e2350848. [PMID: 38794857 DOI: 10.1002/eji.202350848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Acute injuries trigger an intense activation of the body's defense mechanisms aiming to limit damage and initiate healing. Among the crucial components of the intravascular immune system, the complement system plays a significant role in traumatic injuries, albeit often negatively. It has been suggested that excessive activation of the complement system, transitioning from a localized and timed response to a systemic one, can lead to a loss of its host-protective characteristics. Complement activation products have been associated with the severity of injuries, which sometimes serve as predictors for the onset of organ dysfunctions. Animal studies utilizing complement-targeting agents have provided the basis for considering complement in the management of traumatic injuries in humans. However, numerous studies suggest that the spatial and temporal aspects of complement inhibition are crucial for its efficacy. Understanding the underlying mechanism of the injury is essential to determine where, when, and whether complement inhibition is warranted. Despite the detrimental effects of uncontrolled complement activation, its regulated activation may contribute to essential aspects of healing, such as waste removal and regeneration. This review focuses on the beneficial roles of complement activation in trauma, which are often overlooked or given less consideration but are of immense importance.
Collapse
Affiliation(s)
- Marco Mannes
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Susa Savukoski
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute for Orthopaedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
9
|
Póvoa P, Coelho L, Cidade JP, Ceccato A, Morris AC, Salluh J, Nobre V, Nseir S, Martin-Loeches I, Lisboa T, Ramirez P, Rouzé A, Sweeney DA, Kalil AC. Biomarkers in pulmonary infections: a clinical approach. Ann Intensive Care 2024; 14:113. [PMID: 39020244 PMCID: PMC11254884 DOI: 10.1186/s13613-024-01323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/27/2024] [Indexed: 07/19/2024] Open
Abstract
Severe acute respiratory infections, such as community-acquired pneumonia, hospital-acquired pneumonia, and ventilator-associated pneumonia, constitute frequent and lethal pulmonary infections in the intensive care unit (ICU). Despite optimal management with early appropriate empiric antimicrobial therapy and adequate supportive care, mortality remains high, in part attributable to the aging, growing number of comorbidities, and rising rates of multidrug resistance pathogens. Biomarkers have the potential to offer additional information that may further improve the management and outcome of pulmonary infections. Available pathogen-specific biomarkers, for example, Streptococcus pneumoniae urinary antigen test and galactomannan, can be helpful in the microbiologic diagnosis of pulmonary infection in ICU patients, improving the timing and appropriateness of empiric antimicrobial therapy since these tests have a short turnaround time in comparison to classic microbiology. On the other hand, host-response biomarkers, for example, C-reactive protein and procalcitonin, used in conjunction with the clinical data, may be useful in the diagnosis and prediction of pulmonary infections, monitoring the response to treatment, and guiding duration of antimicrobial therapy. The assessment of serial measurements overtime, kinetics of biomarkers, is more informative than a single value. The appropriate utilization of accurate pathogen-specific and host-response biomarkers may benefit clinical decision-making at the bedside and optimize antimicrobial stewardship.
Collapse
Affiliation(s)
- Pedro Póvoa
- Department of Intensive Care, Hospital de São Francisco Xavier, ULSLO, Lisbon, Portugal.
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisbon, Portugal.
- Center for Clinical Epidemiology and Research Unit of Clinical Epidemiology, OUH Odense University Hospital, Odense, Denmark.
| | - Luís Coelho
- Department of Intensive Care, Hospital de São Francisco Xavier, ULSLO, Lisbon, Portugal
- Pulmonary Department, CDP Dr. Ribeiro Sanches, ULS Santa Maria, Lisbon, Portugal
| | - José Pedro Cidade
- Department of Intensive Care, Hospital de São Francisco Xavier, ULSLO, Lisbon, Portugal
- Center for Clinical Epidemiology and Research Unit of Clinical Epidemiology, OUH Odense University Hospital, Odense, Denmark
| | - Adrian Ceccato
- Critical Care Center, Institut d'Investigació i Innovació Parc Taulí I3PT-CERCA, Hospital Universitari Parc Taulí, Univeristat Autonoma de Barcelona, Sabadell, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Intensive Care Unit, Hospital Universitari Sagrat Cor, Grupo Quironsalud, Barcelona, Spain
| | - Andrew Conway Morris
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
- JVF Intensive Care Unit, Addenbrooke's Hospital, Cambridge, UK
| | - Jorge Salluh
- Postgraduate Program, D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Postgraduate Program of Internal Medicine, Federal University of Rio de Janeiro, (UFRJ), Rio de Janeiro, Brazil
| | - Vandack Nobre
- School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Saad Nseir
- 1Univ. Lille, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
- CNRS, UMR 8576, 59000, Lille, France
- INSERM, U1285, 59000, Lille, France
- CHU Lille, Service de Médecine Intensive Réanimation, 59000, Lille, France
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James Hospital, Dublin, Ireland
- Department of Pneumology, Hospital Clinic of Barcelona-August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Thiago Lisboa
- Postgraduate Program Pulmonary Science, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paula Ramirez
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Department of Critical Care Medicine, Hospital Universitario Y Politécnico La Fe, Valencia, Spain
| | - Anahita Rouzé
- 1Univ. Lille, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
- CNRS, UMR 8576, 59000, Lille, France
- INSERM, U1285, 59000, Lille, France
- CHU Lille, Service de Médecine Intensive Réanimation, 59000, Lille, France
| | - Daniel A Sweeney
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, La Jolla, San Diego, CA, USA
| | - Andre C Kalil
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
10
|
Cavaillon JM, Chousterman BG, Skirecki T. Compartmentalization of the inflammatory response during bacterial sepsis and severe COVID-19. JOURNAL OF INTENSIVE MEDICINE 2024; 4:326-340. [PMID: 39035623 PMCID: PMC11258514 DOI: 10.1016/j.jointm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/23/2024]
Abstract
Acute infections cause local and systemic disorders which can lead in the most severe forms to multi-organ failure and eventually to death. The host response to infection encompasses a large spectrum of reactions with a concomitant activation of the so-called inflammatory response aimed at fighting the infectious agent and removing damaged tissues or cells, and the anti-inflammatory response aimed at controlling inflammation and initiating the healing process. Fine-tuning at the local and systemic levels is key to preventing local and remote injury due to immune system activation. Thus, during bacterial sepsis and Coronavirus disease 2019 (COVID-19), concomitant systemic and compartmentalized pro-inflammatory and compensatory anti-inflammatory responses are occurring. Immune cells (e.g., macrophages, neutrophils, natural killer cells, and T-lymphocytes), as well as endothelial cells, differ from one compartment to another and contribute to specific organ responses to sterile and microbial insult. Furthermore, tissue-specific microbiota influences the local and systemic response. A better understanding of the tissue-specific immune status, the organ immunity crosstalk, and the role of specific mediators during sepsis and COVID-19 can foster the development of more accurate biomarkers for better diagnosis and prognosis and help to define appropriate host-targeted treatments and vaccines in the context of precision medicine.
Collapse
Affiliation(s)
| | - Benjamin G. Chousterman
- Department of Anesthesia and Critical Care, Lariboisière University Hospital, DMU Parabol, APHP Nord, Paris, France
- Inserm U942, University of Paris, Paris, France
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
11
|
Stevens J, Tezel O, Bonnefil V, Hapstack M, Atreya MR. Biological basis of critical illness subclasses: from the bedside to the bench and back again. Crit Care 2024; 28:186. [PMID: 38812006 PMCID: PMC11137966 DOI: 10.1186/s13054-024-04959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Critical illness syndromes including sepsis, acute respiratory distress syndrome, and acute kidney injury (AKI) are associated with high in-hospital mortality and long-term adverse health outcomes among survivors. Despite advancements in care, clinical and biological heterogeneity among patients continues to hamper identification of efficacious therapies. Precision medicine offers hope by identifying patient subclasses based on clinical, laboratory, biomarker and 'omic' data and potentially facilitating better alignment of interventions. Within the previous two decades, numerous studies have made strides in identifying gene-expression based endotypes and clinico-biomarker based phenotypes among critically ill patients associated with differential outcomes and responses to treatment. In this state-of-the-art review, we summarize the biological similarities and differences across the various subclassification schemes among critically ill patients. In addition, we highlight current translational gaps, the need for advanced scientific tools, human-relevant disease models, to gain a comprehensive understanding of the molecular mechanisms underlying critical illness subclasses.
Collapse
Affiliation(s)
- Joseph Stevens
- Division of Immunobiology, Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Oğuzhan Tezel
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Valentina Bonnefil
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45627, USA
| | - Matthew Hapstack
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mihir R Atreya
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45627, USA.
| |
Collapse
|
12
|
Shankar-Hari M, Calandra T, Soares MP, Bauer M, Wiersinga WJ, Prescott HC, Knight JC, Baillie KJ, Bos LDJ, Derde LPG, Finfer S, Hotchkiss RS, Marshall J, Openshaw PJM, Seymour CW, Venet F, Vincent JL, Le Tourneau C, Maitland-van der Zee AH, McInnes IB, van der Poll T. Reframing sepsis immunobiology for translation: towards informative subtyping and targeted immunomodulatory therapies. THE LANCET. RESPIRATORY MEDICINE 2024; 12:323-336. [PMID: 38408467 PMCID: PMC11025021 DOI: 10.1016/s2213-2600(23)00468-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 02/28/2024]
Abstract
Sepsis is a common and deadly condition. Within the current model of sepsis immunobiology, the framing of dysregulated host immune responses into proinflammatory and immunosuppressive responses for the testing of novel treatments has not resulted in successful immunomodulatory therapies. Thus, the recent focus has been to parse observable heterogeneity into subtypes of sepsis to enable personalised immunomodulation. In this Personal View, we highlight that many fundamental immunological concepts such as resistance, disease tolerance, resilience, resolution, and repair are not incorporated into the current sepsis immunobiology model. The focus for addressing heterogeneity in sepsis should be broadened beyond subtyping to encompass the identification of deterministic molecular networks or dominant mechanisms. We explicitly reframe the dysregulated host immune responses in sepsis as altered homoeostasis with pathological disruption of immune-driven resistance, disease tolerance, resilience, and resolution mechanisms. Our proposal highlights opportunities to identify novel treatment targets and could enable successful immunomodulation in the future.
Collapse
Affiliation(s)
- Manu Shankar-Hari
- Institute for Regeneration and Repair, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
| | - Thierry Calandra
- Service of Immunology and Allergy, Center of Human Immunology Lausanne, Department of Medicine and Department of Laboratory Medicine and Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine and Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Hallie C Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kenneth J Baillie
- Institute for Regeneration and Repair, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Lieuwe D J Bos
- Department of Intensive Care, Academic Medical Center, Amsterdam, Netherlands
| | - Lennie P G Derde
- Intensive Care Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Simon Finfer
- Critical Care Division, The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
| | - Richard S Hotchkiss
- Department of Anesthesiology and Critical Care Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - John Marshall
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada
| | | | - Christopher W Seymour
- Department of Critical Care Medicine, The Clinical Research, Investigation, and Systems Modeling of Acute illness (CRISMA) Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fabienne Venet
- Immunology Laboratory, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | | | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France
| | - Anke H Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Iain B McInnes
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine and Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Torrance HD, Zhang P, Longbottom ER, Mi Y, Whalley JP, Allcock A, Kwok AJ, Cano-Gamez E, Geoghegan CG, Burnham KL, Antcliffe DB, Davenport EE, Pearse RM, O’Dwyer MJ, Hinds CJ, Knight JC, Gordon AC. A Transcriptomic Approach to Understand Patient Susceptibility to Pneumonia After Abdominal Surgery. Ann Surg 2024; 279:510-520. [PMID: 37497667 PMCID: PMC10829899 DOI: 10.1097/sla.0000000000006050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
OBJECTIVE To describe immune pathways and gene networks altered following major abdominal surgery and to identify transcriptomic patterns associated with postoperative pneumonia. BACKGROUND Nosocomial infections are a major healthcare challenge, developing in over 20% of patients aged 45 or over undergoing major abdominal surgery, with postoperative pneumonia associated with an almost 5-fold increase in 30-day mortality. METHODS From a prospective consecutive cohort (n=150) undergoing major abdominal surgery, whole-blood RNA was collected preoperatively and at 3 time-points postoperatively (2-6, 24, and 48 h). Twelve patients diagnosed with postoperative pneumonia and 27 matched patients remaining infection-free were identified for analysis with RNA-sequencing. RESULTS Compared to preoperative sampling, 3639 genes were upregulated and 5043 downregulated at 2 to 6 hours. Pathway analysis demonstrated innate-immune activation with neutrophil degranulation and Toll-like-receptor signaling upregulation alongside adaptive-immune suppression. Cell-type deconvolution of preoperative RNA-sequencing revealed elevated S100A8/9-high neutrophils alongside reduced naïve CD4 T-cells in those later developing pneumonia. Preoperatively, a gene-signature characteristic of neutrophil degranulation was associated with postoperative pneumonia acquisition ( P =0.00092). A previously reported Sepsis Response Signature (SRSq) score, reflecting neutrophil dysfunction and a more dysregulated host response, at 48 hours postoperatively, differed between patients subsequently developing pneumonia and those remaining infection-free ( P =0.045). Analysis of the novel neutrophil gene-signature and SRSq scores in independent major abdominal surgery and polytrauma cohorts indicated good predictive performance in identifying patients suffering later infection. CONCLUSIONS Major abdominal surgery acutely upregulates innate-immune pathways while simultaneously suppressing adaptive-immune pathways. This is more prominent in patients developing postoperative pneumonia. Preoperative transcriptomic signatures characteristic of neutrophil degranulation and postoperative SRSq scores may be useful predictors of subsequent pneumonia risk.
Collapse
Affiliation(s)
- Hew D. Torrance
- Division of Anaesthetics, Pain Medicine & Intensive Care Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London. UK
| | - Ping Zhang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford. UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - E. Rebecca Longbottom
- Centre for Translational Medicine & Therapeutics, William Harvey Institute, Faculty of Medicine & Dentistry at Queen Mary University of London, London. UK
| | - Yuxin Mi
- Wellcome Centre for Human Genetics, University of Oxford, Oxford. UK
| | - Justin P. Whalley
- Wellcome Centre for Human Genetics, University of Oxford, Oxford. UK
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL
| | - Alice Allcock
- Wellcome Centre for Human Genetics, University of Oxford, Oxford. UK
| | - Andrew J. Kwok
- Wellcome Centre for Human Genetics, University of Oxford, Oxford. UK
| | - Eddie Cano-Gamez
- Wellcome Centre for Human Genetics, University of Oxford, Oxford. UK
| | | | - Katie L. Burnham
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - David B. Antcliffe
- Division of Anaesthetics, Pain Medicine & Intensive Care Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London. UK
| | - Emma E. Davenport
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Rupert M. Pearse
- Centre for Translational Medicine & Therapeutics, William Harvey Institute, Faculty of Medicine & Dentistry at Queen Mary University of London, London. UK
| | - Michael J. O’Dwyer
- Department of Anaesthesia and Critical Care, St Vincent’s University Hospital, Dublin. Ireland
| | - Charles J. Hinds
- Centre for Translational Medicine & Therapeutics, William Harvey Institute, Faculty of Medicine & Dentistry at Queen Mary University of London, London. UK
| | - Julian C. Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford. UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Anthony C. Gordon
- Division of Anaesthetics, Pain Medicine & Intensive Care Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London. UK
| |
Collapse
|
14
|
Vogeler M, Schenz J, Müller E, Weigand M, Fischer D. [The Immune System of the Critically Ill Patient]. Anasthesiol Intensivmed Notfallmed Schmerzther 2024; 59:96-112. [PMID: 38354730 DOI: 10.1055/a-2070-3516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Critically ill patients often experience a dysregulated immune response, leading to immune dysfunction. Sepsis, trauma, severe infections, and certain medical conditions can trigger a state of systemic inflammation, known as the cytokine storm. This hyperactive immune response can cause collateral damage to healthy tissues and organs, exacerbating the patient's condition. On the other hand, some critically ill patients may suffer from immune paralysis which can increase the risk of nosocomial infections.Fever is an evolutionary adaptation that evolved as an effective defense mechanism to fight invading pathogens. By raising body temperature, fever enhances the immune response, inhibits pathogen growth, promotes recovery, and aids in the formation of immune memory. Understanding the role of fever in the context of immune defense is crucial for optimizing medical interventions and supporting the body's natural ability to combat infections.Future Directions: Advancements in immunology research and technology hold promise for better understanding the immune system's complexities in critically ill patients. Personalized medicine approaches may be developed to tailor therapies to individual patients based on their immune profile, optimizing treatment outcomes. Based on recent studies prognostic parameters such as lymphocyte count, IL-10 concentration and mHLA-DR expression can be used to stratify the immunological response pattern in septic patients.Conclusion: The immune system's response in critically ill patients is a multifaceted process, involving intricate interactions between various immune cells, cytokines, and organs. Striking the delicate balance between immune activation and suppression remains a significant challenge in clinical practice. Continued research and therapeutic innovations are vital to improve patient outcomes and reduce the burden of critical illness on healthcare systems.
Collapse
|
15
|
Wildi K, Livingstone S, Ainola C, Colombo SM, Heinsar S, Sato N, Sato K, Bouquet M, Wilson E, Abbate G, Passmore M, Hyslop K, Liu K, Wang X, Palmieri C, See Hoe LE, Jung JS, Ki K, Mueller C, Laffey J, Pelosi P, Li Bassi G, Suen J, Fraser J. Application of anti-inflammatory treatment in two different ovine Acute Respiratory Distress Syndrome injury models: a preclinical randomized intervention study. Sci Rep 2023; 13:17986. [PMID: 37863994 PMCID: PMC10589361 DOI: 10.1038/s41598-023-45081-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
Whilst the presence of 2 subphenotypes among the heterogenous Acute Respiratory Distress Syndrome (ARDS) population is becoming clinically accepted, subphenotype-specific treatment efficacy has yet to be prospectively tested. We investigated anti-inflammatory treatment in different ARDS models in sheep, previously shown similarities to human ARDS subphenotypes, in a preclinical, randomized, blinded study. Thirty anesthetized sheep were studied up to 48 h and randomized into: (a) OA: oleic acid (n = 15) and (b) OA-LPS: oleic acid and subsequent lipopolysaccharide (n = 15) to achieve a PaO2/FiO2 ratio of < 150 mmHg. Then, animals were randomly allocated to receive treatment with methylprednisolone or erythromycin or none. Assessed outcomes were oxygenation, pulmonary mechanics, hemodynamics and survival. All animals reached ARDS. Treatment with methylprednisolone, but not erythromycin, provided the highest therapeutic benefit in Ph2 animals, leading to a significant increase in PaO2/FiO2 ratio by reducing pulmonary edema, dead space ventilation and shunt fraction. Animals treated with methylprednisolone displayed a higher survival up to 48 h than all others. In animals treated with erythromycin, there was no treatment benefit regarding assessed physiological parameters and survival in both phenotypes. Treatment with methylprednisolone improves oxygenation and survival, more so in ovine phenotype 2 which resembles the human hyperinflammatory subphenotype.
Collapse
Affiliation(s)
- Karin Wildi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia.
- The University of Queensland, Brisbane, Australia.
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Samantha Livingstone
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Carmen Ainola
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Sebastiano Maria Colombo
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Department of Anaesthesia and Intensive Care Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silver Heinsar
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Noriko Sato
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
| | - Kei Sato
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Mahé Bouquet
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Emily Wilson
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Gabriella Abbate
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Margaret Passmore
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Kieran Hyslop
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Keibun Liu
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
| | - Xiaomeng Wang
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chiara Palmieri
- The University of Queensland, School of Veterinary Science, Gatton, Australia
| | - Louise E See Hoe
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Jae-Seung Jung
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Katrina Ki
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Christian Mueller
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | - John Laffey
- Galway University Hospitals, University of Galway, Galway, Ireland
| | - Paolo Pelosi
- Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
- Queensland University of Technology, Brisbane, Australia
- Uniting Care Hospitals, St Andrews War Memorial and The Wesley Intensive Care Units, Brisbane, Australia
| | - Jacky Suen
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - John Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
- Uniting Care Hospitals, St Andrews War Memorial and The Wesley Intensive Care Units, Brisbane, Australia
| |
Collapse
|
16
|
Ceccato A, Camprubí-Rimblas M, Bos LDJ, Povoa P, Martin-Loeches I, Forné C, Areny-Balagueró A, Campaña-Duel E, Morales-Quinteros L, Quero S, Ramirez P, Esperatti M, Torres A, Blanch L, Artigas A. Evaluation of the Kinetics of Pancreatic Stone Protein as a Predictor of Ventilator-Associated Pneumonia. Biomedicines 2023; 11:2676. [PMID: 37893050 PMCID: PMC10604889 DOI: 10.3390/biomedicines11102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Ventilator-associated pneumonia (VAP) is a severe condition. Early and adequate antibiotic treatment is the most important strategy for improving prognosis. Pancreatic Stone Protein (PSP) has been described as a biomarker that increases values 3-4 days before the clinical diagnosis of nosocomial sepsis in different clinical settings. We hypothesized that serial measures of PSP and its kinetics allow for an early diagnosis of VAP. METHODS The BioVAP study was a prospective observational study designed to evaluate the role of biomarker dynamics in the diagnosis of VAP. To determine the association between repeatedly measured PSP and the risk of VAP, we used joint models for longitudinal and time-to-event data. RESULTS Of 209 patients, 43 (20.6%) patients developed VAP, with a median time of 4 days. Multivariate joint models with PSP, CRP, and PCT did not show an association between biomarkers and VAP for the daily absolute value, with a hazard ratio (HR) for PSP of 1.01 (95% credible interval: 0.97 to 1.05), for CRP of 1.00 (0.83 to 1.22), and for PCT of 0.95 (0.82 to 1.08). The daily change of biomarkers provided similar results, with an HR for PSP of 1.15 (0.94 to 1.41), for CRP of 0.76 (0.35 to 1.58), and for PCT of 0.77 (0.40 to 1.45). CONCLUSION Neither absolute PSP values nor PSP kinetics alone nor in combination with other biomarkers were useful in improving the prediction diagnosis accuracy in patients with VAP. CLINICAL TRIAL REGISTRATION Registered retrospectively on August 3rd, 2012. NCT02078999.
Collapse
Affiliation(s)
- Adrian Ceccato
- Critical Care Center, Institut d’Investigació i Innovació Parc Taulí I3PT-CERCA, Hospital Universitari Parc Taulí, Univeristat Autonoma de Barcelona, 08208 Sabadell, Spain; (M.C.-R.); (A.A.-B.); (E.C.-D.); (L.M.-Q.); (S.Q.); (L.B.)
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain; (I.M.-L.); (A.T.)
- Intensive Care Unit, Hospital Universitari Sagrat Cor, Grupo Quironsalud, 08029 Barcelona, Spain
| | - Marta Camprubí-Rimblas
- Critical Care Center, Institut d’Investigació i Innovació Parc Taulí I3PT-CERCA, Hospital Universitari Parc Taulí, Univeristat Autonoma de Barcelona, 08208 Sabadell, Spain; (M.C.-R.); (A.A.-B.); (E.C.-D.); (L.M.-Q.); (S.Q.); (L.B.)
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain; (I.M.-L.); (A.T.)
| | - Lieuwe D. J. Bos
- Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Pedro Povoa
- Department of Critical Care Medicine, Hospital de São Francisco Xavier, CHLO, 1449-005 Lisbon, Portugal;
- Nova Medical School, New University of Lisbon, 1169-056 Lisbon, Portugal
- Center for Clinical Epidemiology and Research Unit of Clinical Epidemiology, OUH Odense University Hospital, 5000 Odense, Denmark
| | - Ignacio Martin-Loeches
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain; (I.M.-L.); (A.T.)
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James Hospital, D08 NHY1 Dublin, Ireland
- Department of Pneumology, Hospital Clinic of Barcelona—August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
| | - Carles Forné
- Heorfy Consulting, 25007 Lleida, Spain;
- Department of Basic Medical Sciences, University of Lleida, 25198 Lleida, Spain
| | - Aina Areny-Balagueró
- Critical Care Center, Institut d’Investigació i Innovació Parc Taulí I3PT-CERCA, Hospital Universitari Parc Taulí, Univeristat Autonoma de Barcelona, 08208 Sabadell, Spain; (M.C.-R.); (A.A.-B.); (E.C.-D.); (L.M.-Q.); (S.Q.); (L.B.)
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain; (I.M.-L.); (A.T.)
| | - Elena Campaña-Duel
- Critical Care Center, Institut d’Investigació i Innovació Parc Taulí I3PT-CERCA, Hospital Universitari Parc Taulí, Univeristat Autonoma de Barcelona, 08208 Sabadell, Spain; (M.C.-R.); (A.A.-B.); (E.C.-D.); (L.M.-Q.); (S.Q.); (L.B.)
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain; (I.M.-L.); (A.T.)
| | - Luis Morales-Quinteros
- Critical Care Center, Institut d’Investigació i Innovació Parc Taulí I3PT-CERCA, Hospital Universitari Parc Taulí, Univeristat Autonoma de Barcelona, 08208 Sabadell, Spain; (M.C.-R.); (A.A.-B.); (E.C.-D.); (L.M.-Q.); (S.Q.); (L.B.)
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain; (I.M.-L.); (A.T.)
- Servei de Medicina Intensiva, Hospital de la Santa Creu y Sant Pau, 08025 Barcelona, Spain
| | - Sara Quero
- Critical Care Center, Institut d’Investigació i Innovació Parc Taulí I3PT-CERCA, Hospital Universitari Parc Taulí, Univeristat Autonoma de Barcelona, 08208 Sabadell, Spain; (M.C.-R.); (A.A.-B.); (E.C.-D.); (L.M.-Q.); (S.Q.); (L.B.)
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain; (I.M.-L.); (A.T.)
| | - Paula Ramirez
- Servicio de Medicina Intensiva, Hospital Universitario y Politécnico la Fe, 46026 Valencia, Spain;
| | - Mariano Esperatti
- Escuela Superior de Medicina, Universidad Nacional de Mar del Plata, Mar del Plata B7602AYL, Argentina;
- Unidad de Cuidados Intensivos, Hospital Privado de Comunidad, Mar del Plata B7602AYL, Argentina
| | - Antoni Torres
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain; (I.M.-L.); (A.T.)
- Department of Pneumology, Hospital Clinic of Barcelona—August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
| | - Lluis Blanch
- Critical Care Center, Institut d’Investigació i Innovació Parc Taulí I3PT-CERCA, Hospital Universitari Parc Taulí, Univeristat Autonoma de Barcelona, 08208 Sabadell, Spain; (M.C.-R.); (A.A.-B.); (E.C.-D.); (L.M.-Q.); (S.Q.); (L.B.)
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain; (I.M.-L.); (A.T.)
| | - Antonio Artigas
- Critical Care Center, Institut d’Investigació i Innovació Parc Taulí I3PT-CERCA, Hospital Universitari Parc Taulí, Univeristat Autonoma de Barcelona, 08208 Sabadell, Spain; (M.C.-R.); (A.A.-B.); (E.C.-D.); (L.M.-Q.); (S.Q.); (L.B.)
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain; (I.M.-L.); (A.T.)
| |
Collapse
|
17
|
Shaver CM. Devil is in the airspace: compartmentalisation of inflammation during COVID ARDS. Thorax 2023; 78:848-849. [PMID: 37286237 PMCID: PMC10468805 DOI: 10.1136/thorax-2023-220325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Affiliation(s)
- C M Shaver
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
18
|
de Brabander J, Boers LS, Kullberg RFJ, Zhang S, Nossent EJ, Heunks LMA, Vlaar APJ, Bonta PI, Schultz MJ, van der Poll T, Duitman J, Bos LDJ. Persistent alveolar inflammatory response in critically ill patients with COVID-19 is associated with mortality. Thorax 2023; 78:912-921. [PMID: 37142421 DOI: 10.1136/thorax-2023-219989] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023]
Abstract
INTRODUCTION Patients with COVID-19-related acute respiratory distress syndrome (ARDS) show limited systemic hyperinflammation, but immunomodulatory treatments are effective. Little is known about the inflammatory response in the lungs and if this could be targeted using high-dose steroids (HDS). We aimed to characterise the alveolar immune response in patients with COVID-19-related ARDS, to determine its association with mortality, and to explore the association between HDS treatment and the alveolar immune response. METHODS In this observational cohort study, a comprehensive panel of 63 biomarkers was measured in repeated bronchoalveolar lavage (BAL) fluid and plasma samples of patients with COVID-19 ARDS. Differences in alveolar-plasma concentrations were determined to characterise the alveolar inflammatory response. Joint modelling was performed to assess the longitudinal changes in alveolar biomarker concentrations, and the association between changes in alveolar biomarker concentrations and mortality. Changes in alveolar biomarker concentrations were compared between HDS-treated and matched untreated patients. RESULTS 284 BAL fluid and paired plasma samples of 154 patients with COVID-19 were analysed. 13 biomarkers indicative of innate immune activation showed alveolar rather than systemic inflammation. A longitudinal increase in the alveolar concentration of several innate immune markers, including CC motif ligand (CCL)20 and CXC motif ligand (CXCL)1, was associated with increased mortality. Treatment with HDS was associated with a subsequent decrease in alveolar CCL20 and CXCL1 levels. CONCLUSIONS Patients with COVID-19-related ARDS showed an alveolar inflammatory state related to the innate host response, which was associated with a higher mortality. HDS treatment was associated with decreasing alveolar concentrations of CCL20 and CXCL1.
Collapse
Affiliation(s)
- Justin de Brabander
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Leonoor S Boers
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Robert F J Kullberg
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Shiqi Zhang
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Esther J Nossent
- Pulmonary Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Leo M A Heunks
- Intensive Care Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Alexander P J Vlaar
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Peter I Bonta
- Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Infection & Immunity, Inflammatory Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - JanWillem Duitman
- Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Infection & Immunity, Inflammatory Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Experimental Immunology (EXIM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Lieuwe D J Bos
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Horner E, Lord JM, Hazeldine J. The immune suppressive properties of damage associated molecular patterns in the setting of sterile traumatic injury. Front Immunol 2023; 14:1239683. [PMID: 37662933 PMCID: PMC10469493 DOI: 10.3389/fimmu.2023.1239683] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Associated with the development of hospital-acquired infections, major traumatic injury results in an immediate and persistent state of systemic immunosuppression, yet the underlying mechanisms are poorly understood. Detected in the circulation in the minutes, days and weeks following injury, damage associated molecular patterns (DAMPs) are a heterogeneous collection of proteins, lipids and DNA renowned for initiating the systemic inflammatory response syndrome. Suggesting additional immunomodulatory roles in the post-trauma immune response, data are emerging implicating DAMPs as potential mediators of post-trauma immune suppression. Discussing the results of in vitro, in vivo and ex vivo studies, the purpose of this review is to summarise the emerging immune tolerising properties of cytosolic, nuclear and mitochondrial-derived DAMPs. Direct inhibition of neutrophil antimicrobial activities, the induction of endotoxin tolerance in monocytes and macrophages, and the recruitment, activation and expansion of myeloid derived suppressor cells and regulatory T cells are examples of some of the immune suppressive properties assigned to DAMPs so far. Crucially, with studies identifying the molecular mechanisms by which DAMPs promote immune suppression, therapeutic strategies that prevent and/or reverse DAMP-induced immunosuppression have been proposed. Approaches currently under consideration include the use of synthetic polymers, or the delivery of plasma proteins, to scavenge circulating DAMPs, or to treat critically-injured patients with antagonists of DAMP receptors. However, as DAMPs share signalling pathways with pathogen associated molecular patterns, and pro-inflammatory responses are essential for tissue regeneration, these approaches need to be carefully considered in order to ensure that modulating DAMP levels and/or their interaction with immune cells does not negatively impact upon anti-microbial defence and the physiological responses of tissue repair and wound healing.
Collapse
Affiliation(s)
- Emily Horner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|
20
|
Jeffrey M, Denny KJ, Lipman J, Conway Morris A. Differentiating infection, colonisation, and sterile inflammation in critical illness: the emerging role of host-response profiling. Intensive Care Med 2023; 49:760-771. [PMID: 37344680 DOI: 10.1007/s00134-023-07108-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023]
Abstract
Infection results when a pathogen produces host tissue damage and elicits an immune response. Critically ill patients experience immune activation secondary to both sterile and infectious insults, with overlapping clinical phenotypes and underlying immunological mechanisms. Patients also undergo a shift in microbiota with the emergence of pathogen-dominant microbiomes. Whilst the combination of inflammation and microbial shift has long challenged intensivists in the identification of true infection, the advent of highly sensitive molecular diagnostics has further confounded the diagnostic dilemma as the number of microbial detections increases. Given the key role of the host immune response in the development and definition of infection, profiling the host response offers the potential to help unravel the conundrum of distinguishing colonisation and sterile inflammation from true infection. This narrative review provides an overview of current approaches to distinguishing colonisation from infection using routinely available techniques and proposes matrices to support decision-making in this setting. In searching for new tools to better discriminate these states, the review turns to the understanding of the underlying pathobiology of the host response to infection. It then reviews the techniques available to assess this response in a clinically applicable context. It will cover techniques including profiling of transcriptome, protein expression, and immune functional assays, detailing the current state of knowledge in diagnostics along with the challenges and opportunities. The ultimate infection diagnostic tool will likely combine an assessment of both host immune response and sensitive pathogen detection to improve patient management and facilitate antimicrobial stewardship.
Collapse
Affiliation(s)
- Mark Jeffrey
- John V Farman Intensive Care Unit, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Division of Anaesthesia, Department of Medicine, Level 4, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Kerina J Denny
- Department of Intensive Care, Gold Coast University Hospital, Southport, QLD, Australia
- School of Medicine, University of Queensland, Herston, Brisbane, Australia
| | - Jeffrey Lipman
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia
- Jamieson Trauma Institute and Intensive Care Services, Royal Brisbane and Women's Hospital, Brisbane, Australia
- Nimes University Hospital, University of Montpellier, Nimes, France
| | - Andrew Conway Morris
- John V Farman Intensive Care Unit, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Division of Anaesthesia, Department of Medicine, Level 4, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Kitsios GD, Nouraie SM, Qin S, Zhang Y, Ray P, Ray A, Lee JS, Morris A, McVerry BJ, Bain W. Distinct profiles of host responses between plasma and lower respiratory tract during acute respiratory failure. ERJ Open Res 2023; 9:00743-2022. [PMID: 37284423 PMCID: PMC10240306 DOI: 10.1183/23120541.00743-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/14/2023] [Indexed: 06/08/2023] Open
Abstract
Current plasma-based subphenotyping approaches in acute respiratory failure represent host responses at a systemic level but do not capture important differences in lower respiratory tract biology https://bit.ly/40kTdDG.
Collapse
Affiliation(s)
- Georgios D. Kitsios
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seyed Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shulin Qin
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Prabir Ray
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janet S. Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Bain
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Lindell RB, Meyer NJ. Interrogating the sepsis host immune response using cytomics. Crit Care 2023; 27:93. [PMID: 36941659 PMCID: PMC10027588 DOI: 10.1186/s13054-023-04366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2023. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2023 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .
Collapse
Affiliation(s)
- Robert B Lindell
- Division of Critical Care Medicine, Department of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Pediatric Sepsis Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nuala J Meyer
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Center for Translational Lung Biology and Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Gomes SV, Dias BV, Júnior PAM, Pereira RR, de Souza DMS, Breguez GS, de Lima WG, Magalhães CLDB, Cangussú SD, Talvani A, Queiroz KB, Calsavara AJC, Costa DC. High-fat diet increases mortality and intensifies immunometabolic changes in septic mice. J Nutr Biochem 2023; 116:109315. [PMID: 36921735 DOI: 10.1016/j.jnutbio.2023.109315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/21/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Immunometabolic changes in the liver and white adipose tissue (WAT) caused by high-fat (HF) diet intake may worse metabolic adaptation and protection against pathogens in sepsis. We investigate the effect of chronic HF diet (15 weeks) on mortality and immunometabolic responses in female mice after sepsis induced by cecum ligation and perforation (CLP). At week 14, animals were divided into four groups: sham C diet (C-Sh), sepsis C diet (C-Sp), sham HF diet (HF-Sh) and sepsis HF diet (HF-Sp). The surviving animals were euthanised on the 7th day. The HF diet decreased survival rate (58.3% vs 76.2% C-Sp group), increased serum cytokine storm (IL-6 (1.41 ×; vs HF-Sh), IL-1β (1.37 ×; vs C-Sp), TNF (1.34 ×; vs C-Sp and 1.72 ×; vs HF-Sh), IL-17 (1.44 ×; vs HF-Sh), IL-10 (1.55 ×; vs C-Sp and 1.41 ×; HF-Sh), WAT inflammation (IL-6 (8.7 ×; vs C-Sp and 2.4 ×; vs HF-Sh), TNF (5 ×; vs C-Sp and 1.7 ×;vs HF-Sh), IL-17 (1.7 ×; vs C-Sp), IL-10 (7.4 ×; vs C-Sp and 1.3 ×; vs HF-Sh), and modulated lipid metabolism in septic mice. In the HF-Sp group liver's, we observed hepatomegaly, hydropic degeneration, necrosis, an increase in oxidative stress (reduction of CAT activity (-81.7%; vs HF-Sh); increase MDA levels (82.8%; vs HF-Sh), and hepatic IL-6 (1.9 ×; vs HF-Sh), and TNF (1.3 × %;vs HF-Sh) production. Furthermore, we found a decrease in the total number of inflammatory, mononuclear cells, and in the regenerative processes, and binucleated hepatocytes in a HF-Sp group liver's. Our results suggested that the organism under metabolic stress of a HF diet during sepsis may worsen the inflammatory landscape and hepatocellular injury and may harm the liver regenerative process.
Collapse
Affiliation(s)
- Sttefany Viana Gomes
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Bruna Vidal Dias
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Pedro Alves Machado Júnior
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Renata Rebeca Pereira
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Gustavo Silveira Breguez
- Multiuser Research Laboratory, School of Nutrition, School of Nutrition, Postgraduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Wanderson Geraldo de Lima
- Morphopathology Laboratory, Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Cintia Lopes de Brito Magalhães
- Laboratory of Biology and Technology of Microorganisms (LBTM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Silvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Karina Barbosa Queiroz
- Laboratory of Experimental Nutrition (LABNEx), Department of Food, Postgraduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Allan Jefferson Cruz Calsavara
- Laboratory of Cognition and Health (LACOS), School of Medicine, Department of Pediatric and Adult Clinics (DECPA), Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|