1
|
Hou X, Liu L, Xu D, Lai D, Zhou L. Involvement of LaeA and Velvet Proteins in Regulating the Production of Mycotoxins and Other Fungal Secondary Metabolites. J Fungi (Basel) 2024; 10:561. [PMID: 39194887 DOI: 10.3390/jof10080561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Fungi are rich sources of secondary metabolites of agrochemical, pharmaceutical, and food importance, such as mycotoxins, antibiotics, and antitumor agents. Secondary metabolites play vital roles in fungal pathogenesis, growth and development, oxidative status modulation, and adaptation/resistance to various environmental stresses. LaeA contains an S-adenosylmethionine binding site and displays methyltransferase activity. The members of velvet proteins include VeA, VelB, VelC, VelD and VosA for each member with a velvet domain. LaeA and velvet proteins can form multimeric complexes such as VosA-VelB and VelB-VeA-LaeA. They belong to global regulators and are mainly impacted by light. One of their most important functions is to regulate gene expressions that are responsible for secondary metabolite biosynthesis. The aim of this mini-review is to represent the newest cognition of the biosynthetic regulation of mycotoxins and other fungal secondary metabolites by LaeA and velvet proteins. In most cases, LaeA and velvet proteins positively regulate production of fungal secondary metabolites. The regulated fungal species mainly belong to the toxigenic fungi from the genera of Alternaria, Aspergillus, Botrytis, Fusarium, Magnaporthe, Monascus, and Penicillium for the production of mycotoxins. We can control secondary metabolite production to inhibit the production of harmful mycotoxins while promoting the production of useful metabolites by global regulation of LaeA and velvet proteins in fungi. Furthermore, the regulation by LaeA and velvet proteins should be a practical strategy in activating silent biosynthetic gene clusters (BGCs) in fungi to obtain previously undiscovered metabolites.
Collapse
Affiliation(s)
- Xuwen Hou
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Liyao Liu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dan Xu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Daowan Lai
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ligang Zhou
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Chen W, Son YE, Cho HJ, Choi D, Park HS, Yu JH. Phylogenomics analysis of velvet regulators in the fungal kingdom. Microbiol Spectr 2024; 12:e0371723. [PMID: 38179919 PMCID: PMC10845976 DOI: 10.1128/spectrum.03717-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024] Open
Abstract
All life forms have evolved to respond appropriately to various environmental and internal cues. In the animal kingdom, the prototypical regulator class of such cellular responses is the Rel homology domain proteins including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Fungi, the close relatives of animals, have also evolved with their own NF-κB-like regulators called velvet family proteins to govern cellular and chemical development. Here, we conducted a detailed investigation of the taxonomic broad presence of velvet proteins. We observed that velvet proteins are widely distributed in the fungal kingdom. Moreover, we have identified and characterized 21 major velvet clades in fungi. We have further revealed that the highly conserved velvet domain is composed of three distinct motifs and acts as an evolutionarily independent domain, which can be shuffled with various functional domains. Such rearrangements of the velvet domain have resulted in the functional and type diversity of the present velvet regulators. Importantly, our in-deep analyses of the primary and 3D structures of the various velvet domains showed that the fungal velvet domains can be divided into two major clans: the VelB and the VosA clans. The 3D structure comparisons revealed a close similarity of the velvet domain with many other eukaryotic DNA-binding proteins, including those of the Rel, Runt, and signal transducer and activator of transcription families, sharing a common β-sandwich fold. Altogether, this study improves our understanding of velvet regulators in the fungal kingdom.IMPORTANCEFungi are the relatives of animals in Opisthokonta and closely associated with human life by interactive ways such as pathogenicity, food, and secondary metabolites including beneficial ones like penicillin and harmful ones like the carcinogenic aflatoxins. Similar to animals, fungi have also evolved with NF-κB-like velvet family regulators. The velvet proteins constitute a large protein family of fungal transcription factors sharing a common velvet domain and play a key role in coordinating fungal secondary metabolism, developmental and differentiation processes. Our current understanding on velvet regulators is mostly from Ascomycota fungi; however, they remain largely unknown outside Ascomycota. Therefore, this study performed a taxonomic broad investigation of velvet proteins across the fungal kingdom and conducted a detailed analysis on velvet distribution, structure, diversity, and evolution. The results provide a holistic view of velvet regulatory system in the fungal kingdom.
Collapse
Affiliation(s)
- Wanping Chen
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - He-Jin Cho
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Dasol Choi
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, South Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Ramírez Martínez C, Gómez-Pérez LS, Ordaz A, Torres-Huerta AL, Antonio-Perez A. Current Trends of Bacterial and Fungal Optoproteins for Novel Optical Applications. Int J Mol Sci 2023; 24:14741. [PMID: 37834188 PMCID: PMC10572898 DOI: 10.3390/ijms241914741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Photoproteins, luminescent proteins or optoproteins are a kind of light-response protein responsible for the conversion of light into biochemical energy that is used by some bacteria or fungi to regulate specific biological processes. Within these specific proteins, there are groups such as the photoreceptors that respond to a given light wavelength and generate reactions susceptible to being used for the development of high-novel applications, such as the optocontrol of metabolic pathways. Photoswitchable proteins play important roles during the development of new materials due to their capacity to change their conformational structure by providing/eliminating a specific light stimulus. Additionally, there are bioluminescent proteins that produce light during a heatless chemical reaction and are useful to be employed as biomarkers in several fields such as imaging, cell biology, disease tracking and pollutant detection. The classification of these optoproteins from bacteria and fungi as photoreceptors or photoresponse elements according to the excitation-emission spectrum (UV-Vis-IR), as well as their potential use in novel applications, is addressed in this article by providing a structured scheme for this broad area of knowledge.
Collapse
Affiliation(s)
| | | | | | | | - Aurora Antonio-Perez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Ciudad López Mateos, Atizapán de Zaragoza 52926, Estado de México, Mexico; (C.R.M.); (L.S.G.-P.); (A.O.); (A.L.T.-H.)
| |
Collapse
|
4
|
Moon H, Han KH, Yu JH. Upstream Regulation of Development and Secondary Metabolism in Aspergillus Species. Cells 2022; 12:cells12010002. [PMID: 36611796 PMCID: PMC9818462 DOI: 10.3390/cells12010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In filamentous fungal Aspergillus species, growth, development, and secondary metabolism are genetically programmed biological processes, which require precise coordination of diverse signaling elements, transcription factors (TFs), upstream and downstream regulators, and biosynthetic genes. For the last few decades, regulatory roles of these controllers in asexual/sexual development and primary/secondary metabolism of Aspergillus species have been extensively studied. Among a wide spectrum of regulators, a handful of global regulators govern upstream regulation of development and metabolism by directly and/or indirectly affecting the expression of various genes including TFs. In this review, with the model fungus Aspergillus nidulans as the central figure, we summarize the most well-studied main upstream regulators and their regulatory roles. Specifically, we present key functions of heterotrimeric G proteins and G protein-coupled receptors in signal transduction), the velvet family proteins governing development and metabolism, LaeA as a global regulator of secondary metabolism, and NsdD, a key GATA-type TF, affecting development and secondary metabolism and provide a snapshot of overall upstream regulatory processes underlying growth, development, and metabolism in Aspergillus fungi.
Collapse
Affiliation(s)
- Heungyun Moon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Systems Biotechnology, KonKuk University, Seoul 05029, Republic of Korea
- Correspondence:
| |
Collapse
|
5
|
Wang L, Wang M, Jiao J, Liu H. Roles of AaVeA on Mycotoxin Production via Light in Alternaria alternata. Front Microbiol 2022; 13:842268. [PMID: 35250954 PMCID: PMC8894881 DOI: 10.3389/fmicb.2022.842268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Alternaria alternata is a principal plant pathogen responsible for the biosynthesis of mycotoxins, including tenuazonic acid (TeA), alternariol (AOH), and alternariol monomethyl ether (AME). The velvet gene VeA is involved in fungal growth, development, and secondary metabolism, including mycotoxin biosynthesis via light regulation. In this study, the detailed regulatory roles of AaVeA in A. alternata with various light sources were investigated from the comparative analyses between the wild type and the gene knockout strains. In fungal growth and conidiation, mycelial extension was independent of light regulation in A. alternata. Red light favored conidiation, but blue light repressed it. The absence of AaVeA caused the marked reduction of hyphae extension and conidiophore formation even though red light could not induce more spores in ΔAaVeA mutant. The differentially expressed genes (DEGs) enriched in hyphal growth and conidiation were drastically transcribed from the comparatively transcriptomic profile between the wild type and ΔAaVeA mutant strains with or without light. In mycotoxin production, TeA biosynthesis seems no obvious effect by light regulation, but AOH and AME formation was significantly stimulated by blue light. Nevertheless, the disruption of AaVeA resulted in a marked decrease in mycotoxin production and the action of the stimulation was lost via blue light for the abundant accumulation of AOH and AME in the ΔAaVeA strain. From DEG expression and further verification by RT-qPCR, the loss of AaVeA caused the discontinuous supply of the substrates for mycotoxin biosynthesis and the drastic decline of biosynthetic gene expression. In addition, pathogenicity depends on AaVeA regulation in tomato infected by A. alternata in vivo. These findings provide a distinct understanding of the roles of AaVeA in fungal growth, development, mycotoxin biosynthesis, and pathogenicity in response to various light sources.
Collapse
Affiliation(s)
- Liuqing Wang
- Institute of Quality Standard and Testing Technology of BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology of BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing, China
- *Correspondence: Meng Wang,
| | - Jian Jiao
- Institutes of Science and Development, Chinese Academy of Sciences, Beijing, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| |
Collapse
|
6
|
Costes LH, Lippi Y, Naylies C, Jamin EL, Genthon C, Bailly S, Oswald IP, Bailly JD, Puel O. The Solvent Dimethyl Sulfoxide Affects Physiology, Transcriptome and Secondary Metabolism of Aspergillus flavus. J Fungi (Basel) 2021; 7:jof7121055. [PMID: 34947037 PMCID: PMC8703953 DOI: 10.3390/jof7121055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Dimethyl sulfoxide (DSMO) is a simple molecule widely used because of its great solvating ability, but this solvent also has little-known biological effects, especially on fungi. Aspergillus flavus is a notorious pathogenic fungus which may contaminate a large variety of crops worldwide by producing aflatoxins, endangering at the same time food safety and international trade. The aim of this study was to characterize the effect of DMSO on A. flavus including developmental parameters such as germination and sporulation, as well as its transcriptome profile using high-throughput RNA-sequencing assay and its impact on secondary metabolism (SM). After DMSO exposure, A. flavus displayed depigmented conidia in a dose-dependent manner. The four-day exposition of cultures to two doses of DMSO, chosen on the basis of depigmentation intensity (35 mM “low” and 282 mM “high”), led to no significant impact on fungal growth, germination or sporulation. However, transcriptomic data analysis showed that 4891 genes were differentially regulated in response to DMSO (46% of studied transcripts). A total of 4650 genes were specifically regulated in response to the highest dose of DMSO, while only 19 genes were modulated upon exposure to the lowest dose. Secondary metabolites clusters genes were widely affected by the DMSO, with 91% of clusters impacted at the highest dose. Among these, aflatoxins, cyclopiazonic acid and ustiloxin B clusters were totally under-expressed. The genes belonging to the AFB1 cluster were the most negatively modulated ones, the two doses leading to 63% and 100% inhibition of the AFB1 production, respectively. The SM analysis also showed the disappearance of ustiloxin B and a 10-fold reduction of cyclopiazonic acid level when A. flavus was treated by the higher DMSO dose. In conclusion, the present study showed that DMSO impacted widely A. flavus’ transcriptome, including secondary metabolism gene clusters with the aflatoxins at the head of down-regulated ones. The solvent also inhibits conidial pigmentation, which could illustrate common regulatory mechanisms between aflatoxins and fungal pigment pathways. Because of its effect on major metabolites synthesis, DMSO should not be used as solvent especially in studies testing anti-aflatoxinogenic compounds.
Collapse
Affiliation(s)
- Laura H. Costes
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
| | - Yannick Lippi
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
| | - Claire Naylies
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
| | - Emilien L. Jamin
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
- Metatoul-AXIOM Platform, MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse 31000, France
| | - Clémence Genthon
- INRAE, US1426, GeT-PlaGe, Genotoul, 31326 Castanet-Tolosan, France;
| | - Sylviane Bailly
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
| | - Isabelle P. Oswald
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
| | - Jean-Denis Bailly
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
- Correspondence:
| | - Olivier Puel
- TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, Toulouse 31027, France; (L.H.C.); (Y.L.); (C.N.); (E.L.J.); (S.B.); (I.P.O.); (O.P.)
| |
Collapse
|
7
|
Zhang J, Chen H, Sumarah MW, Gao Q, Wang D, Zhang Y. veA Gene Acts as a Positive Regulator of Conidia Production, Ochratoxin A Biosynthesis, and Oxidative Stress Tolerance in Aspergillus niger. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13199-13208. [PMID: 30456955 DOI: 10.1021/acs.jafc.8b04523] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The veA gene is a key regulator governing morphogenetic development and secondary metabolism in many fungi. Here, we characterized and disrupted a veA orthologue in an ochratoxigenic Aspergillus niger strain. Morphological development, ochratoxin A (OTA) biosynthesis, and oxidative stress tolerance in the wild-type and veA disruption strains were further analyzed. Accordingly, the link between the veA gene and development of specific gene brlA, OTA biosynthesis key gene pks, and oxidative-stress-tolerance-related gene cat was explored. Results demonstrated that the veA gene acts as a positive regulator of conidia production, OTA biosynthesis, and oxidative stress tolerance in A. niger, regardless of light conditions. Darkness promoted conidial production and OTA biosynthesis in the A. niger wild-type strain. Our results contribute to a better understanding of the veA regulatory mechanism and suggest the veA gene as a potential target for developing control strategies for A. niger infection and OTA biosynthesis.
Collapse
Affiliation(s)
| | | | - Mark W Sumarah
- London Research and Development Centre , Agriculture and Agri-Food Canada , 1391 Sandford Street , London , Ontario N5V 4T3 , Canada
| | | | | | | |
Collapse
|
8
|
Global insight into the distribution of velvet-like B protein in Cochliobolus species and implication in pathogenicity and fungicide resistance. World J Microbiol Biotechnol 2018; 34:187. [PMID: 30506400 DOI: 10.1007/s11274-018-2569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
The Cochliobolus genus consist of over 55 species among which the 5 most devastating are Cochliobolus carbonum, Cochliobolus heterostrophus, Cochliobolus miyabeanus, Crocus sativus and Cochliobolus lunatus causing damages in sorghum, wheat, rice, maize, cassava and soybean estimated at over 10 billion USD per annum worldwide. The dynamic pathogenicity of Cochliobolus species and the plethora of infected hosts is determined by the evolution of virulence determinants such as the velvet-like B protein (VelB). Nonetheless, the knowledge on the distribution of Cochliobolus VelB and its implication in pathogenicity and fungicide resistance are often lacking. By scanning through the annotated genomes of C. lunatus, C. heterostrophus, C. carbonum, C. victoriae, C. sativus and C. miyabeanus, it is revealed that the numbers of ortholog VelB and cognates vary. By using the phylogenetic approach, it is established that the diversification rates among velvet-domain-containing proteins for phytopathogenic Cochliobolus species could impact differently on their oxidant and fungicide resistance potentials, ability to form appressoria-like structures and infection pegs during infection. This study provides new insights into the pathogenicity evolution of Cochliobolus species at the VelB locus which is relevant for designing effective strategies for durable management of Cochliobolus diseases.
Collapse
|
9
|
Akhberdi O, Zhang Q, Wang D, Wang H, Hao X, Liu Y, Wei D, Zhu X. Distinct Roles of Velvet Complex in the Development, Stress Tolerance, and Secondary Metabolism in Pestalotiopsis microspora, a Taxol Producer. Genes (Basel) 2018. [PMID: 29538316 DOI: 10.3390/genes9030164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The velvet family proteins have been shown to play critical roles in fungal secondary metabolism and development. However, variations of the roles have been observed in different fungi. We report here the observation on the role of three velvet complex components VeA, VelB, and LaeA in Pestalotiopsis microspora, a formerly reported taxol-producing fungus. Deletion of individual members led to the retardation of vegetative growth and sporulation and pigmentation, suggesting critical roles in these processes. The mutant strain △velB appeared hypersensitive to osmotic stress and the dye Congo red, whereas △veA and △laeA were little affected by the pressures, suggesting only velB was required for the integrity of the cell wall. Importantly, we found that the genes played distinct roles in the biosynthesis of secondary metabolites in P. microspora. For instance, the production of pestalotiollide B, a previously characterized polyketide, required velB and laeA. In contrast, the veA gene appeared to inhibit the pestalotiollide B (PB) role in its biosynthesis. This study suggests that the three components of the velvet complex are important global regulators, but with distinct roles in hyphal growth, asexual production, and secondary metabolism in P. microspora. This work provides information for further understanding the biosynthesis of secondary metabolism in the fungus.
Collapse
Affiliation(s)
- Oren Akhberdi
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Qian Zhang
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Dan Wang
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Haichuan Wang
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Xiaoran Hao
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yanjie Liu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Dongsheng Wei
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Xudong Zhu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
10
|
Regulin A, Kempken F. Fungal genotype determines survival of Drosophila melanogaster when competing with Aspergillus nidulans. PLoS One 2018; 13:e0190543. [PMID: 29293643 PMCID: PMC5749846 DOI: 10.1371/journal.pone.0190543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/15/2017] [Indexed: 01/07/2023] Open
Abstract
Fungi produce an astonishing variety of secondary metabolites, some of which belong to the most toxic compounds in the living world. Several fungal metabolites have anti-insecticidal properties which may yield advantages to the fungus in competition with insects for exploitation of environmental resources. Using the Drosophila melanogaster/Aspergillus nidulans ecological model system to assess secondary metabolite mutant genotypes, we find a major role for the veA allele in insect/fungal confrontations that exceeds the influence of other factors such as LaeA. VeA along with LaeA is a member of a transcriptional complex governing secondary metabolism in A. nidulans. However, historically a mutant veA allele, veA1 reduced in secondary metabolite output, has been used in many studies of this model organism. To test the significance of this allele in our system, Aspergillus nidulans veA wild type, veA1, ΔveA and ΔlaeA were evaluated in confrontation assays to analyze egg laying activity, and the survival rate of larvae. The veA1 genetic background led to a significant increase of larval survival. Adult flies were observed almost exclusively on veA1, ΔveA or ΔlaeA genetic backgrounds, suggesting a role for the velvet complex in insect/fungal interactions. This effect was most profound using the veA1 mutant. Hence, larval survival in confrontations is highly affected by the fungal genotype.
Collapse
Affiliation(s)
- Annika Regulin
- Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität, Kiel, Germany
| | - Frank Kempken
- Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität, Kiel, Germany
- * E-mail:
| |
Collapse
|
11
|
Key role of LaeA and velvet complex proteins on expression of β-lactam and PR-toxin genes in Penicillium chrysogenum: cross-talk regulation of secondary metabolite pathways. ACTA ACUST UNITED AC 2017; 44:525-535. [DOI: 10.1007/s10295-016-1830-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/15/2016] [Indexed: 01/11/2023]
Abstract
Abstract
Penicillium chrysogenum is an excellent model fungus to study the molecular mechanisms of control of expression of secondary metabolite genes. A key global regulator of the biosynthesis of secondary metabolites is the LaeA protein that interacts with other components of the velvet complex (VelA, VelB, VelC, VosA). These components interact with LaeA and regulate expression of penicillin and PR-toxin biosynthetic genes in P. chrysogenum. Both LaeA and VelA are positive regulators of the penicillin and PR-toxin biosynthesis, whereas VelB acts as antagonist of the effect of LaeA and VelA. Silencing or deletion of the laeA gene has a strong negative effect on penicillin biosynthesis and overexpression of laeA increases penicillin production. Expression of the laeA gene is enhanced by the P. chrysogenum autoinducers 1,3 diaminopropane and spermidine. The PR-toxin gene cluster is very poorly expressed in P. chrysogenum under penicillin-production conditions (i.e. it is a near-silent gene cluster). Interestingly, the downregulation of expression of the PR-toxin gene cluster in the high producing strain P. chrysogenum DS17690 was associated with mutations in both the laeA and velA genes. Analysis of the laeA and velA encoding genes in this high penicillin producing strain revealed that both laeA and velA acquired important mutations during the strain improvement programs thus altering the ratio of different secondary metabolites (e.g. pigments, PR-toxin) synthesized in the high penicillin producing mutants when compared to the parental wild type strain. Cross-talk of different secondary metabolite pathways has also been found in various Penicillium spp.: P. chrysogenum mutants lacking the penicillin gene cluster produce increasing amounts of PR-toxin, and mutants of P. roqueforti silenced in the PR-toxin genes produce large amounts of mycophenolic acid. The LaeA-velvet complex mediated regulation and the pathway cross-talk phenomenon has great relevance for improving the production of novel secondary metabolites, particularly of those secondary metabolites which are produced in trace amounts encoded by silent or near-silent gene clusters.
Collapse
|
12
|
Terfehr D, Dahlmann TA, Kück U. Transcriptome analysis of the two unrelated fungal β-lactam producers Acremonium chrysogenum and Penicillium chrysogenum: Velvet-regulated genes are major targets during conventional strain improvement programs. BMC Genomics 2017; 18:272. [PMID: 28359302 PMCID: PMC5374653 DOI: 10.1186/s12864-017-3663-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/25/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main industrial producers of these antibiotics are Acremonium chrysogenum and Penicillium chrysogenum, two taxonomically unrelated fungi. Both were subjects of long-term strain development programs to reach economically relevant antibiotic titers. It is so far unknown, whether equivalent changes in gene expression lead to elevated antibiotic titers in production strains. RESULTS Using the sequence of PcbC, a key enzyme of β-lactam antibiotic biosynthesis, from eighteen different pro- and eukaryotic microorganisms, we have constructed a phylogenetic tree to demonstrate the distant relationship of both fungal producers. To address the question whether both fungi have undergone similar genetic adaptions, we have performed a comparative gene expression analysis of wild-type and production strains. We found that strain improvement is associated with the remodeling of the transcriptional landscape in both fungi. In P. chrysogenum, 748 genes showed differential expression, while 1572 genes from A. chrysogenum are differentially expressed in the industrial strain. Common in both fungi is the upregulation of genes belonging to primary and secondary metabolism, notably those involved in precursor supply for β-lactam production. Other genes not essential for β-lactam production are downregulated with a preference for those responsible for transport processes or biosynthesis of other secondary metabolites. Transcriptional regulation was shown to be an important parameter during strain improvement in different organisms. We therefore investigated deletion strains of the major transcriptional regulator velvet from both production strains. We identified 567 P. chrysogenum and 412 A. chrysogenum Velvet target genes. In both deletion strains, approximately 50% of all secondary metabolite cluster genes are differentially regulated, including β-lactam biosynthesis genes. Most importantly, 35-57% of Velvet target genes are among those that showed differential expression in both improved industrial strains. CONCLUSIONS The major finding of our comparative transcriptome analysis is that strain improvement programs in two unrelated fungal β-lactam antibiotic producers alter the expression of target genes of Velvet, a global regulator of secondary metabolism. From these results, we conclude that regulatory alterations are crucial contributing factors for improved β-lactam antibiotic titers during strain improvement in both fungi.
Collapse
Affiliation(s)
- Dominik Terfehr
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, Bochum, 44780, Germany
| | - Tim A Dahlmann
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, Bochum, 44780, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, Bochum, 44780, Germany.
| |
Collapse
|
13
|
El Khoury R, Caceres I, Puel O, Bailly S, Atoui A, Oswald IP, El Khoury A, Bailly JD. Identification of the Anti-Aflatoxinogenic Activity of Micromeria graeca and Elucidation of Its Molecular Mechanism in Aspergillus flavus. Toxins (Basel) 2017; 9:toxins9030087. [PMID: 28257049 PMCID: PMC5371842 DOI: 10.3390/toxins9030087] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 01/25/2023] Open
Abstract
Of all the food-contaminating mycotoxins, aflatoxins, and most notably aflatoxin B1 (AFB1), are found to be the most toxic and economically costly. Green farming is striving to replace fungicides and develop natural preventive strategies to minimize crop contamination by these toxic fungal metabolites. In this study, we demonstrated that an aqueous extract of the medicinal plant Micromeria graeca—known as hyssop—completely inhibits aflatoxin production by Aspergillus flavus without reducing fungal growth. The molecular inhibitory mechanism was explored by analyzing the expression of 61 genes, including 27 aflatoxin biosynthesis cluster genes and 34 secondary metabolism regulatory genes. This analysis revealed a three-fold down-regulation of aflR and aflS encoding the two internal cluster co-activators, resulting in a drastic repression of all aflatoxin biosynthesis genes. Hyssop also targeted fifteen regulatory genes, including veA and mtfA, two major global-regulating transcription factors. The effect of this extract is also linked to a transcriptomic variation of several genes required for the response to oxidative stress such as msnA, srrA, catA, cat2, sod1, mnsod, and stuA. In conclusion, hyssop inhibits AFB1 synthesis at the transcriptomic level. This aqueous extract is a promising natural-based solution to control AFB1 contamination.
Collapse
Affiliation(s)
- Rhoda El Khoury
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
- Laboratoire de Mycologie et Sécurité des Aliments (LMSA), Département des sciences de la vie et de la terres - Biochimie, Faculté des Sciences, Université Saint-Joseph, P.O. Box 17-5208, Mar Mikhael Beirut 1104 2020 Lebanon.
| | - Isaura Caceres
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
| | - Olivier Puel
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
| | - Sylviane Bailly
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
| | - Ali Atoui
- Laboratory of Microbiology, Department of Natural Sciences and Earth, Faculty of Sciences I, Lebanese University, Hadath Campus, P.O. Box 5, Beirut, Lebanon.
| | - Isabelle P Oswald
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
| | - André El Khoury
- Laboratoire de Mycologie et Sécurité des Aliments (LMSA), Département des sciences de la vie et de la terres - Biochimie, Faculté des Sciences, Université Saint-Joseph, P.O. Box 17-5208, Mar Mikhael Beirut 1104 2020 Lebanon.
| | - Jean-Denis Bailly
- Toxalim, Université de Toulouse, INRA, ENVT, INP Purpan, UPS, Toulouse F-31027, France.
| |
Collapse
|
14
|
Ziemons S, Koutsantas K, Becker K, Dahlmann T, Kück U. Penicillin production in industrial strain Penicillium chrysogenum P2niaD18 is not dependent on the copy number of biosynthesis genes. BMC Biotechnol 2017; 17:16. [PMID: 28209150 PMCID: PMC5314624 DOI: 10.1186/s12896-017-0335-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/09/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Multi-copy gene integration into microbial genomes is a conventional tool for obtaining improved gene expression. For Penicillium chrysogenum, the fungal producer of the beta-lactam antibiotic penicillin, many production strains carry multiple copies of the penicillin biosynthesis gene cluster. This discovery led to the generally accepted view that high penicillin titers are the result of multiple copies of penicillin genes. Here we investigated strain P2niaD18, a production line that carries only two copies of the penicillin gene cluster. RESULTS We performed pulsed-field gel electrophoresis (PFGE), quantitative qRT-PCR, and penicillin bioassays to investigate production, deletion and overexpression strains generated in the P. chrysogenum P2niaD18 background, in order to determine the copy number of the penicillin biosynthesis gene cluster, and study the expression of one penicillin biosynthesis gene, and the penicillin titer. Analysis of production and recombinant strain showed that the enhanced penicillin titer did not depend on the copy number of the penicillin gene cluster. Our assumption was strengthened by results with a penicillin null strain lacking pcbC encoding isopenicillin N synthase. Reintroduction of one or two copies of the cluster into the pcbC deletion strain restored transcriptional high expression of the pcbC gene, but recombinant strains showed no significantly different penicillin titer compared to parental strains. CONCLUSIONS Here we present a molecular genetic analysis of production and recombinant strains in the P2niaD18 background carrying different copy numbers of the penicillin biosynthesis gene cluster. Our analysis shows that the enhanced penicillin titer does not strictly depend on the copy number of the cluster. Based on these overall findings, we hypothesize that instead, complex regulatory mechanisms are prominently implicated in increased penicillin biosynthesis in production strains.
Collapse
Affiliation(s)
- Sandra Ziemons
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, 44780, Bochum, Germany
| | - Katerina Koutsantas
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, 44780, Bochum, Germany
| | - Kordula Becker
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, 44780, Bochum, Germany
| | - Tim Dahlmann
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, 44780, Bochum, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
15
|
Oakley CE, Ahuja M, Sun WW, Entwistle R, Akashi T, Yaegashi J, Guo CJ, Cerqueira GC, Russo Wortman J, Wang CCC, Chiang YM, Oakley BR. Discovery of McrA, a master regulator of Aspergillus secondary metabolism. Mol Microbiol 2016; 103:347-365. [PMID: 27775185 DOI: 10.1111/mmi.13562] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2016] [Indexed: 01/17/2023]
Abstract
Fungal secondary metabolites (SMs) are extremely important in medicine and agriculture, but regulation of their biosynthesis is incompletely understood. We have developed a genetic screen in Aspergillus nidulans for negative regulators of fungal SM gene clusters and we have used this screen to isolate mutations that upregulate transcription of the non-ribosomal peptide synthetase gene required for nidulanin A biosynthesis. Several of these mutations are allelic and we have identified the mutant gene by genome sequencing. The gene, which we designate mcrA, is conserved but uncharacterized, and it encodes a putative transcription factor. Metabolite profiles of mcrA deletant, mcrA overexpressing, and parental strains reveal that mcrA regulates at least ten SM gene clusters. Deletion of mcrA stimulates SM production even in strains carrying a deletion of the SM regulator laeA, and deletion of mcrA homologs in Aspergillus terreus and Penicillum canescens alters the secondary metabolite profile of these organisms. Deleting mcrA in a genetic dereplication strain has allowed us to discover two novel compounds as well as an antibiotic not known to be produced by A. nidulans. Deletion of mcrA upregulates transcription of hundreds of genes including many that are involved in secondary metabolism, while downregulating a smaller number of genes.
Collapse
Affiliation(s)
- C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, 66045, USA
| | - Manmeet Ahuja
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, 66045, USA
| | - Wei-Wen Sun
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California, 90089, USA
| | - Ruth Entwistle
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, 66045, USA
| | - Tomohiro Akashi
- Division of OMICS analysis, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, Aichi, 466-8550, Japan
| | - Junko Yaegashi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California, 90089, USA
| | - Chun-Jun Guo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California, 90089, USA
| | - Gustavo C Cerqueira
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - Jennifer Russo Wortman
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California, 90089, USA.,Department of Chemistry, Dornsife Colleges of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, 90089, USA
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California, 90089, USA.,Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan, 71710, Republic of China
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, 66045, USA
| |
Collapse
|
16
|
Deciphering the Anti-Aflatoxinogenic Properties of Eugenol Using a Large-Scale q-PCR Approach. Toxins (Basel) 2016; 8:toxins8050123. [PMID: 27128940 PMCID: PMC4885038 DOI: 10.3390/toxins8050123] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 11/16/2022] Open
Abstract
Produced by several species of Aspergillus, Aflatoxin B₁ (AFB₁) is a carcinogenic mycotoxin contaminating many crops worldwide. The utilization of fungicides is currently one of the most common methods; nevertheless, their use is not environmentally or economically sound. Thus, the use of natural compounds able to block aflatoxinogenesis could represent an alternative strategy to limit food and feed contamination. For instance, eugenol, a 4-allyl-2-methoxyphenol present in many essential oils, has been identified as an anti-aflatoxin molecule. However, its precise mechanism of action has yet to be clarified. The production of AFB₁ is associated with the expression of a 70 kB cluster, and not less than 21 enzymatic reactions are necessary for its production. Based on former empirical data, a molecular tool composed of 60 genes targeting 27 genes of aflatoxin B₁ cluster and 33 genes encoding the main regulatory factors potentially involved in its production, was developed. We showed that AFB₁ inhibition in Aspergillus flavus following eugenol addition at 0.5 mM in a Malt Extract Agar (MEA) medium resulted in a complete inhibition of the expression of all but one gene of the AFB₁ biosynthesis cluster. This transcriptomic effect followed a down-regulation of the complex composed by the two internal regulatory factors, AflR and AflS. This phenomenon was also influenced by an over-expression of veA and mtfA, two genes that are directly linked to AFB₁ cluster regulation.
Collapse
|
17
|
Assessing the relevance of light for fungi: Implications and insights into the network of signal transmission. ADVANCES IN APPLIED MICROBIOLOGY 2016; 76:27-78. [PMID: 21924971 DOI: 10.1016/b978-0-12-387048-3.00002-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Light represents an important environmental cue, which provides information enabling fungi to prepare and react to the different ambient conditions between day and night. This adaptation requires both anticipation of the changing conditions, which is accomplished by daily rhythmicity of gene expression brought about by the circadian clock, and reaction to sudden illumination. Besides perception of the light signal, also integration of this signal with other environmental cues, most importantly nutrient availability, necessitates light-dependent regulation of signal transduction pathways and metabolic pathways. An influence of light and/or the circadian clock is known for the cAMP pathway, heterotrimeric G-protein signaling, mitogen-activated protein kinases, two-component phosphorelays, and Ca(2+) signaling. Moreover, also the target of rapamycin signaling pathway and reactive oxygen species as signal transducing elements are assumed to be connected to the light-response pathway. The interplay of the light-response pathway with signaling cascades results in light-dependent regulation of primary and secondary metabolism, morphology, development, biocontrol activity, and virulence. The frequent use of fungi in biotechnology as well as analysis of fungi in the artificial environment of a laboratory therefore requires careful consideration of still operative evolutionary heritage of these organisms. This review summarizes the diverse effects of light on fungi and the mechanisms they apply to deal both with the information content and with the harmful properties of light. Additionally, the implications of the reaction of fungi to light in a laboratory environment for experimental work and industrial applications are discussed.
Collapse
|
18
|
Fanelli F, Geisen R, Schmidt-Heydt M, Logrieco A, Mulè G. Light regulation of mycotoxin biosynthesis: new perspectives for food safety. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2014.1860] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mycotoxins are secondary metabolites produced by toxigenic fungi contaminating foods and feeds in pre-, post-harvest and processing, and represent a great concern worldwide, both for the economic implications and for the health of the consumers. Many environmental conditions are involved in the regulation of mycotoxin biosynthesis. Among these, light represents one of the most important signals for fungi, influencing several physiological responses such as pigmentation, sexual development and asexual conidiation, primary and secondary metabolism, including mycotoxin biosynthesis. In this review we summarise some recent findings on the effect of specific light wavelength and intensity on mycotoxin biosynthesis in the main toxigenic fungal genera. We describe the molecular mechanism underlying light perception and its involvement in the regulation of secondary metabolism, focusing on VeA, global regulator in Aspergillus nidulans, and the White-Collar proteins, key components of light response in Neurospora crassa. Light of specific wavelength and intensity exerts different effects both on growth and on toxin production depending on the fungal genus. In Penicillium spp. red (627 nm) and blue wavelengths (455-470 nm) reduce ochratoxin A (OTA) biosynthesis by modulating the level of expression of the ochratoxin polyketide synthase. Furthermore a mutual regulation between citrinin and OTA production is reported in Penicillium toxigenic species. In Aspergillus spp. the effect of light treatment is strongly dependent on the species and culture conditions. Royal blue wavelength (455 nm) of high intensity (1,700 Lux) is capable of completely inhibit fungal growth and OTA production in Aspergillus stenyii and Penicillum verrucosum. In Fusarium spp. the effect of light exposure is less effective; mycotoxin-producing species, such as Fusarium verticillioides and Fusarium proliferatum, grow better under light conditions, and fumonisin production increased. This review provides a comprehensive picture on light regulation of mycotoxin biosynthesis and discusses possible new applications of this resource in food safety.
Collapse
Affiliation(s)
- F. Fanelli
- Institute of Sciences of Food Production, CNR, via Amendola 122/0, 70126 Bari, Italy
| | - R. Geisen
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany
| | - M. Schmidt-Heydt
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Str. 9, 76131 Karlsruhe, Germany
| | - A.F. Logrieco
- Institute of Sciences of Food Production, CNR, via Amendola 122/0, 70126 Bari, Italy
| | - G. Mulè
- Institute of Sciences of Food Production, CNR, via Amendola 122/0, 70126 Bari, Italy
| |
Collapse
|
19
|
Fuller K, Dunlap J, Loros J. Fungal Light Sensing at the Bench and Beyond. ADVANCES IN GENETICS 2016; 96:1-51. [DOI: 10.1016/bs.adgen.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Liu K, Dong Y, Wang F, Jiang B, Wang M, Fang X. Regulation of cellulase expression, sporulation, and morphogenesis by velvet family proteins in Trichoderma reesei. Appl Microbiol Biotechnol 2015; 100:769-79. [PMID: 26481618 DOI: 10.1007/s00253-015-7059-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 11/24/2022]
Abstract
Homologs of the velvet protein family are encoded by the ve1, vel2, and vel3 genes in Trichoderma reesei. To test their regulatory functions, the velvet protein-coding genes were disrupted, generating Δve1, Δvel2, and Δvel3 strains. The phenotypic features of these strains were examined to identify their functions in morphogenesis, sporulation, and cellulase expression. The three velvet-deficient strains produced more hyphal branches, indicating that velvet family proteins participate in the morphogenesis in T. reesei. Deletion of ve1 and vel3 did not affect biomass accumulation, while deletion of vel2 led to a significantly hampered growth when cellulose was used as the sole carbon source in the medium. The deletion of either ve1 or vel2 led to the sharp decrease of sporulation as well as a global downregulation of cellulase-coding genes. In contrast, although the expression of cellulase-coding genes of the ∆vel3 strain was downregulated in the dark, their expression in light condition was unaffected. Sporulation was hampered in the ∆vel3 strain. These results suggest that Ve1 and Vel2 play major roles, whereas Vel3 plays a minor role in sporulation, morphogenesis, and cellulase expression.
Collapse
Affiliation(s)
- Kuimei Liu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Yanmei Dong
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Fangzhong Wang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Baojie Jiang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, 250100, China.
| |
Collapse
|
21
|
|
22
|
Dhingra S, Lind AL, Lin HC, Tang Y, Rokas A, Calvo AM. The fumagillin gene cluster, an example of hundreds of genes under veA control in Aspergillus fumigatus. PLoS One 2013; 8:e77147. [PMID: 24116213 PMCID: PMC3792039 DOI: 10.1371/journal.pone.0077147] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/25/2013] [Indexed: 01/24/2023] Open
Abstract
Aspergillus fumigatus is the causative agent of invasive aspergillosis, leading to infection-related mortality in immunocompromised patients. We previously showed that the conserved and unique-to-fungi veA gene affects different cell processes such as morphological development, gliotoxin biosynthesis and protease activity, suggesting a global regulatory effect on the genome of this medically relevant fungus. In this study, RNA sequencing analysis revealed that veA controls the expression of hundreds of genes in A. fumigatus, including those comprising more than a dozen known secondary metabolite gene clusters. Chemical analysis confirmed that veA controls the synthesis of other secondary metabolites in this organism in addition to gliotoxin. Among the secondary metabolite gene clusters regulated by veA is the elusive but recently identified gene cluster responsible for the biosynthesis of fumagillin, a meroterpenoid known for its anti-angiogenic activity by binding to human methionine aminopeptidase 2. The fumagillin gene cluster contains a veA-dependent regulatory gene, fumR (Afu8g00420), encoding a putative C6 type transcription factor. Deletion of fumR results in silencing of the gene cluster and elimination of fumagillin biosynthesis. We found expression of fumR to also be dependent on laeA, a gene encoding another component of the fungal velvet complex. The results in this study argue that veA is a global regulator of secondary metabolism in A. fumigatus, and that veA may be a conduit via which chemical development is coupled to morphological development and other cellular processes.
Collapse
Affiliation(s)
- Sourabh Dhingra
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Abigail L. Lind
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Hsiao-Ching Lin
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Antonis Rokas
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
- * E-mail:
| |
Collapse
|
23
|
Ramamoorthy V, Dhingra S, Kincaid A, Shantappa S, Feng X, Calvo AM. The putative C2H2 transcription factor MtfA is a novel regulator of secondary metabolism and morphogenesis in Aspergillus nidulans. PLoS One 2013; 8:e74122. [PMID: 24066102 PMCID: PMC3774644 DOI: 10.1371/journal.pone.0074122] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 07/28/2013] [Indexed: 01/07/2023] Open
Abstract
Secondary metabolism in the model fungus Aspergillus nidulans is controlled by the conserved global regulator VeA, which also governs morphological differentiation. Among the secondary metabolites regulated by VeA is the mycotoxin sterigmatocystin (ST). The presence of VeA is necessary for the biosynthesis of this carcinogenic compound. We identified a revertant mutant able to synthesize ST intermediates in the absence of VeA. The point mutation occurred at the coding region of a gene encoding a novel putative C2H2 zinc finger domain transcription factor that we denominated mtfA. The A. nidulans mtfA gene product localizes at nuclei independently of the illumination regime. Deletion of the mtfA gene restores mycotoxin biosynthesis in the absence of veA, but drastically reduced mycotoxin production when mtfA gene expression was altered, by deletion or overexpression, in A. nidulans strains with a veA wild-type allele. Our study revealed that mtfA regulates ST production by affecting the expression of the specific ST gene cluster activator aflR. Importantly, mtfA is also a regulator of other secondary metabolism gene clusters, such as genes responsible for the synthesis of terrequinone and penicillin. As in the case of ST, deletion or overexpression of mtfA was also detrimental for the expression of terrequinone genes. Deletion of mtfA also decreased the expression of the genes in the penicillin gene cluster, reducing penicillin production. However, in this case, over-expression of mtfA enhanced the transcription of penicillin genes, increasing penicillin production more than 5 fold with respect to the control. Importantly, in addition to its effect on secondary metabolism, mtfA also affects asexual and sexual development in A. nidulans. Deletion of mtfA results in a reduction of conidiation and sexual stage. We found mtfA putative orthologs conserved in other fungal species.
Collapse
Affiliation(s)
- Vellaisamy Ramamoorthy
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Sourabh Dhingra
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Alexander Kincaid
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Sourabha Shantappa
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Xuehuan Feng
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America,* E-mail:
| |
Collapse
|
24
|
Bok JW, Soukup AA, Chadwick E, Chiang YM, Wang CCC, Keller NP. VeA and MvlA repression of the cryptic orsellinic acid gene cluster in Aspergillus nidulans involves histone 3 acetylation. Mol Microbiol 2013; 89:963-74. [PMID: 23841751 DOI: 10.1111/mmi.12326] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 11/30/2022]
Abstract
A perplexing aspect of fungal secondary metabolite gene clusters is that most clusters remain 'silent' under common laboratory growth conditions where activation is obtained through gene manipulation or encounters with environmental signals. Few proteins have been found involved in repression of silent clusters. Through multicopy suppressor mutagenesis, we have identified a novel cluster suppressor in Aspergillus nidulans, MvlA (modulator of veA loss). Genetic assessment of MvlA mutants revealed the role of both itself and VeA (but not the VeA partner LaeA) in the suppression of the cryptic ors gene cluster producing orsellinic acid and its F9775 derivatives. Loss of veA upregulates F9775A and F9775B production and this increase is reduced 4-5-fold when an overexpression mvlA (OE:mvlA) allele is introduced into the ΔveA background. Previous studies have implicated a positive role for GcnE (H3K9 acetyltransferase of the SAGA/ADA complex) in ors cluster expression and here we find expression of gcnE is upregulated in ΔveA and suppressed by OE:mvlA in the ΔveA background. H3K9 acetylation levels of ors cluster genes correlated with gcnE expression and F9775 production in ΔveA and OE:mvlAΔveA strains. Finally, deletion of gcnE in the ΔveA background abolishes ors cluster activation and F9775 production. Together, this work supports a role for VeA and MvlA in modifying SAGA/ADA complex activity.
Collapse
Affiliation(s)
- Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | | | | | | | | | | |
Collapse
|
25
|
Cai M, Fang Z, Niu C, Zhou X, Zhang Y. Light regulation on growth, development, and secondary metabolism of marine-derived filamentous fungi. Folia Microbiol (Praha) 2013; 58:537-46. [DOI: 10.1007/s12223-013-0242-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 03/15/2013] [Indexed: 12/16/2022]
|
26
|
Kopke K, Hoff B, Bloemendal S, Katschorowski A, Kamerewerd J, Kück U. Members of the Penicillium chrysogenum velvet complex play functionally opposing roles in the regulation of penicillin biosynthesis and conidiation. EUKARYOTIC CELL 2013; 12:299-310. [PMID: 23264641 PMCID: PMC3571298 DOI: 10.1128/ec.00272-12] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/12/2012] [Indexed: 02/08/2023]
Abstract
A velvet multisubunit complex was recently detected in the filamentous fungus Penicillium chrysogenum, the major industrial producer of the β-lactam antibiotic penicillin. Core components of this complex are P. chrysogenum VelA (PcVelA) and PcLaeA, which regulate secondary metabolite production, hyphal morphology, conidiation, and pellet formation. Here we describe the characterization of PcVelB, PcVelC, and PcVosA as novel subunits of this velvet complex. Using yeast two-hybrid analysis and bimolecular fluorescence complementation (BiFC), we demonstrate that all velvet proteins are part of an interaction network. Functional analyses using single- and double-knockout strains clearly indicate that velvet subunits have opposing roles in the regulation of penicillin biosynthesis and light-dependent conidiation. PcVelC, together with PcVelA and PcLaeA, activates penicillin biosynthesis, while PcVelB represses this process. In contrast, PcVelB and PcVosA promote conidiation, while PcVelC has an inhibitory effect. Our genetic analyses further show that light-dependent spore formation depends not only on PcVelA but also on PcVelB and PcVosA. The results provided here contribute to our fundamental understanding of the function of velvet subunits as part of a regulatory network mediating signals responsible for morphology and secondary metabolism and will be instrumental in generating mutants with newly derived properties that are relevant to strain improvement programs.
Collapse
Affiliation(s)
- Katarina Kopke
- Christian Doppler Laboratory for Fungal Biotechnology, Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Fungi produce a multitude of low-molecular-mass compounds known as secondary metabolites, which have roles in a range of cellular processes such as transcription, development and intercellular communication. In addition, many of these compounds now have important applications, for instance, as antibiotics or immunosuppressants. Genome mining efforts indicate that the capability of fungi to produce secondary metabolites has been substantially underestimated because many of the fungal secondary metabolite biosynthesis gene clusters are silent under standard cultivation conditions. In this Review, I describe our current understanding of the regulatory elements that modulate the transcription of genes involved in secondary metabolism. I also discuss how an improved knowledge of these regulatory elements will ultimately lead to a better understanding of the physiological and ecological functions of these important compounds and will pave the way for a novel avenue to drug discovery through targeted activation of silent gene clusters.
Collapse
|
28
|
VeA regulates conidiation, gliotoxin production, and protease activity in the opportunistic human pathogen Aspergillus fumigatus. EUKARYOTIC CELL 2012; 11:1531-43. [PMID: 23087369 DOI: 10.1128/ec.00222-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Invasive aspergillosis by Aspergillus fumigatus is a leading cause of infection-related mortality in immunocompromised patients. In this study, we show that veA, a major conserved regulatory gene that is unique to fungi, is necessary for normal morphogenesis in this medically relevant fungus. Although deletion of veA results in a strain with reduced conidiation, overexpression of this gene further reduced conidial production, indicating that veA has a major role as a regulator of development in A. fumigatus and that normal conidiation is only sustained in the presence of wild-type VeA levels. Furthermore, our studies revealed that veA is a positive regulator in the production of gliotoxin, a secondary metabolite known to be a virulent factor in A. fumigatus. Deletion of veA resulted in a reduction of gliotoxin production with respect to that of the wild-type control. This reduction in toxin coincided with a decrease in gliZ and gliP expression, which is necessary for gliotoxin biosynthesis. Interestingly, veA also influences protease activity in this organism. Specifically, deletion of veA resulted in a reduction of protease activity; this is the first report of a veA homolog with a role in controlling fungal hydrolytic activity. Although veA affects several cellular processes in A. fumigatus, pathogenicity studies in a neutropenic mouse infection model indicated that veA is dispensable for virulence.
Collapse
|
29
|
Domínguez-Santos R, Martín JF, Kosalková K, Prieto C, Ullán RV, García-Estrada C. The regulatory factor PcRFX1 controls the expression of the three genes of β-lactam biosynthesis in Penicillium chrysogenum. Fungal Genet Biol 2012; 49:866-81. [PMID: 22960281 DOI: 10.1016/j.fgb.2012.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 08/02/2012] [Accepted: 08/04/2012] [Indexed: 10/27/2022]
Abstract
Penicillin biosynthesis is subjected to a complex regulatory network of signalling molecules that may serve as model for other secondary metabolites. The information provided by the new "omics" era about Penicillium chrysogenum and the advances in the knowledge of molecular mechanisms responsible for improved productivity, make this fungus an excellent model to decipher the mechanisms controlling the penicillin biosynthetic pathway. In this work, we have characterized a novel transcription factor PcRFX1, which is an ortholog of the Acremonium chrysogenum CPCR1 and Penicillium marneffei RfxA regulatory proteins. PcRFX1 DNA binding sequences were found in the promoter region of the pcbAB, pcbC and penDE genes. We show in this article that these motifs control the expression of the β-galactosidase lacZ reporter gene, indicating that they may direct the PcRFX1-mediated regulation of the penicillin biosynthetic genes. By means of Pcrfx1 gene knock-down and overexpression techniques we confirmed that PcRFX1 controls penicillin biosynthesis through the regulation of the pcbAB, pcbC and penDE transcription. Morphology and development seemed not to be controlled by this transcription factor under the conditions studied and only sporulation was slightly reduced after the silencing of the Pcrfx1 gene. A genome-wide analysis of processes putatively regulated by this transcription factor was carried out in P. chrysogenum. Results suggested that PcRFX1, in addition to regulate penicillin biosynthesis, is also involved in the control of several pathways of primary metabolism.
Collapse
Affiliation(s)
- Rebeca Domínguez-Santos
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Veiga T, Nijland JG, Driessen AJM, Bovenberg RAL, Touw H, van den Berg MA, Pronk JT, Daran JM. Impact of velvet complex on transcriptome and penicillin G production in glucose-limited chemostat cultures of a β-lactam high-producing Penicillium chrysogenum strain. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:320-33. [PMID: 22439693 PMCID: PMC3369278 DOI: 10.1089/omi.2011.0153] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The multicomponent global regulator Velvet complex has been identified as a key regulator of secondary metabolite production in Aspergillus and Penicillium species. Previous work indicated a massive impact of PcvelA and PclaeA deletions on penicillin production in prolonged batch cultures of P. chrysogenum, as well as substantial changes in transcriptome. The present study investigated the impact of these mutations on product formation and genome-wide transcript profiles under glucose-limited aerobic conditions, relevant for industrial production of β-lactams. Predicted amino acid sequences of PcVelA and PcLaeA in this strain were identical to those in its ancestor Wisconsin54-1255. Controls were performed to rule out transformation-associated loss of penicillin-biosynthesis clusters. The correct PcvelA and PclaeA deletion strains revealed a small reduction of penicillin G productivity relative to the reference strain, which is a much smaller reduction than previously reported for prolonged batch cultures of similar P. chrysogenum mutants. Chemostat-based transcriptome analysis yielded only 23 genes with a consistent differential response in the PcvelAΔ and PclaeAΔ mutants when grown in the absence of the penicillin G side-chain precursor phenylacetic acid. Eleven of these genes belonged to two small gene clusters, one of which contained a gene with high homology to the aristolochene synthase. These results provide a clear caveat that the impact of the Velvet complex on secondary metabolism in filamentous fungi is strongly context dependent.
Collapse
Affiliation(s)
- Tânia Veiga
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Merhej J, Urban M, Dufresne M, Hammond-Kosack KE, Richard-Forget F, Barreau C. The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2012; 13:363-74. [PMID: 22013911 PMCID: PMC6638759 DOI: 10.1111/j.1364-3703.2011.00755.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Trichothecenes are a group of toxic secondary metabolites produced mainly by Fusarium graminearum (teleomorph: Gibberella zeae) during the infection of crop plants, including wheat, maize, barley, oats, rye and rice. Some fungal genes involved in trichothecene biosynthesis have been shown to encode regulatory proteins. However, the global regulation of toxin biosynthesis is still enigmatic. In addition to the production of secondary metabolites belonging to the trichothecene family, F. graminearum produces the red pigment aurofusarin. The gene regulation underlying the production of aurofusarin is not well understood. The velvet gene (veA) is conserved in various genera of filamentous fungi. Recently, the veA gene from Aspergillus nidulans has been shown to be the key component of the velvet complex regulating development and secondary metabolism. Using blast analyses, we identified the velvet gene from F. graminearum, FgVe1. Disruption of FgVe1 causes several phenotypic effects. However, the complementation of this mutant with the FgVe1 gene restores the wild-type phenotypes. The in vitro phenotypes include hyperbranching of the mycelium, suppression of aerial hyphae formation, reduced hydrophobicity of the mycelium and highly reduced sporulation. Our data also show that FgVe1 modulates the production of the aurofusarin pigment and is essential for the expression of Tri genes and the production of trichothecenes. Pathogenicity studies performed on flowering wheat plants indicate that FgVe1 is a positive regulator of virulence in F. graminearum.
Collapse
Affiliation(s)
- Jawad Merhej
- INRA, UR1264 MycSA, 71, Avenue Edouard Bourleaux, BP81, F-33883 Villenave d'Ornon, France
| | | | | | | | | | | |
Collapse
|
32
|
Weber SS, Bovenberg RAL, Driessen AJM. Biosynthetic concepts for the production of β-lactam antibiotics in Penicillium chrysogenum. Biotechnol J 2011; 7:225-36. [PMID: 22057844 DOI: 10.1002/biot.201100065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/12/2011] [Accepted: 08/24/2011] [Indexed: 11/08/2022]
Abstract
Industrial production of β-lactam antibiotics by the filamentous fungus Penicillium chrysogenum is based on successive classical strain improvement cycles. This review summarizes our current knowledge on the results of this classical strain improvement process, and discusses avenues to improve β-lactam biosynthesis and to exploit P. chrysogenum as an industrial host for the production of other antibiotics and peptide products. Genomic and transcriptional analysis of strain lineages has led to the identification of several important alterations in high-yielding strains, including the amplification of the penicillin biosynthetic gene cluster, elevated transcription of genes involved in biosynthesis of penicillin and amino acid precursors, and genes encoding microbody proliferation factors. In recent years, successful metabolic engineering and synthetic biology approaches have resulted in the redirection of the penicillin pathway towards the production of cephalosporins. This sets a new direction in industrial antibiotics productions towards more sustainable methods for the fermentative production of unnatural antibiotics and related compounds.
Collapse
Affiliation(s)
- Stefan S Weber
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Center for Genomics of Industrial Fermentation, AG Groningen, The Netherlands
| | | | | |
Collapse
|
33
|
Regulation of trichothecene biosynthesis in Fusarium: recent advances and new insights. Appl Microbiol Biotechnol 2011; 91:519-28. [PMID: 21691790 DOI: 10.1007/s00253-011-3397-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 05/23/2011] [Accepted: 05/23/2011] [Indexed: 01/14/2023]
Abstract
Trichothecenes are toxic secondary metabolites produced by filamentous fungi mainly belonging to the Fusarium genus. Production of these mycotoxins occurs during infection of crops and is a threat to human and animal health. Although the pathway for biosynthesis of trichothecenes is well established, the regulation of the Tri genes implicated in the pathway remains poorly understood. Most of the Tri genes are gathered in a cluster which contains two transcriptional regulators controlling the expression of the other Tri genes. The regulation of secondary metabolites biosynthesis in most fungal genera has been recently shown to be controlled by various regulatory systems in response to external environment. The control of the "Tri cluster" by non-cluster regulators in Fusarium was not clearly demonstrated until recently. This review covers the recent advances concerning the regulation of trichothecene biosynthesis in Fusarium and highlights the potential implication of various general regulatory circuits. Further studies on the role of these regulatory systems in the control of trichothecene biosynthesis might be useful in designing new strategies to reduce mycotoxin accumulation.
Collapse
|
34
|
Sigl C, Haas H, Specht T, Pfaller K, Kürnsteiner H, Zadra I. Among developmental regulators, StuA but not BrlA is essential for penicillin V production in Penicillium chrysogenum. Appl Environ Microbiol 2011; 77:972-82. [PMID: 21148688 PMCID: PMC3028705 DOI: 10.1128/aem.01557-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 12/02/2010] [Indexed: 11/20/2022] Open
Abstract
In filamentous fungi, secondary metabolism is often linked with developmental processes such as conidiation. In this study we analyzed the link between secondary metabolism and conidiation in the main industrial producer of the β-lactam antibiotic penicillin, the ascomycete Penicillium chrysogenum. Therefore, we generated mutants defective in two central regulators of conidiation, the transcription factors BrlA and StuA. Inactivation of either brlA or stuA blocked conidiation and altered hyphal morphology during growth on solid media, as shown by light and scanning electron microscopy, but did not affect biomass production during liquid-submerged growth. Genome-wide transcriptional profiling identified a complex StuA- and BrlA-dependent regulatory network, including genes previously shown to be involved in development and secondary metabolism. Remarkably, inactivation of stuA, but not brlA, drastically downregulated expression of the penicillin biosynthetic gene cluster during solid and liquid-submerged growth. In agreement, penicillin V production was wild-type-like in brlA-deficient strains but 99% decreased in stuA-deficient strains during liquid-submerged growth, as shown by high-performance liquid chromatography (HPLC) analysis. Thus, among identified regulators of penicillin V production StuA has the most severe influence. Overexpression of stuA increased the transcript levels of brlA and abaA (another developmental regulator) and derepressed conidiation during liquid-submerged growth but did not affect penicillin V productivity. Taken together, these data demonstrate an intimate but not exclusive link between regulation of development and secondary metabolism in P. chrysogenum.
Collapse
Affiliation(s)
- Claudia Sigl
- Anti Infectives Microbiology, Sandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria, Christian Doppler Laboratory for Fungal Biotechnology, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria, Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Müllerstrasse 59, 6020 Innsbruck, Austria
| | - Hubertus Haas
- Anti Infectives Microbiology, Sandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria, Christian Doppler Laboratory for Fungal Biotechnology, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria, Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Müllerstrasse 59, 6020 Innsbruck, Austria
| | - Thomas Specht
- Anti Infectives Microbiology, Sandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria, Christian Doppler Laboratory for Fungal Biotechnology, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria, Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Müllerstrasse 59, 6020 Innsbruck, Austria
| | - Kristian Pfaller
- Anti Infectives Microbiology, Sandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria, Christian Doppler Laboratory for Fungal Biotechnology, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria, Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Müllerstrasse 59, 6020 Innsbruck, Austria
| | - Hubert Kürnsteiner
- Anti Infectives Microbiology, Sandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria, Christian Doppler Laboratory for Fungal Biotechnology, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria, Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Müllerstrasse 59, 6020 Innsbruck, Austria
| | - Ivo Zadra
- Anti Infectives Microbiology, Sandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria, Christian Doppler Laboratory for Fungal Biotechnology, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria, Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Müllerstrasse 59, 6020 Innsbruck, Austria
| |
Collapse
|
35
|
Spotlight on Aspergillus nidulans photosensory systems. Fungal Genet Biol 2010; 47:900-8. [DOI: 10.1016/j.fgb.2010.05.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/09/2010] [Accepted: 05/19/2010] [Indexed: 12/14/2022]
|
36
|
Etxebeste O, Garzia A, Espeso EA, Ugalde U. Aspergillus nidulans asexual development: making the most of cellular modules. Trends Microbiol 2010; 18:569-76. [PMID: 21035346 DOI: 10.1016/j.tim.2010.09.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/24/2010] [Accepted: 09/28/2010] [Indexed: 11/30/2022]
Abstract
Asexual development in Aspergillus nidulans begins in superficial hyphae as the programmed emergence of successive pseudohyphal modules, collectively known as the conidiophore, and is completed by a layer of specialized cells (phialides) giving rise to chains of aerial spores. A discrete number of regulatory factors present in hyphae play different stage-specific roles in pseudohyphal modules, depending on their cellular localization and protein-protein interactions. Their multiple roles include the timely activation of a sporulation-specific pathway that governs phialide and spore formation. Such functional versatility provides for a new outlook on morphogenetic change and the ways we should study it.
Collapse
Affiliation(s)
- Oier Etxebeste
- Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country, Manuel de Lardizabal, 3, 20018, San Sebastian, Spain
| | | | | | | |
Collapse
|
37
|
Wiemann P, Brown DW, Kleigrewe K, Bok JW, Keller NP, Humpf HU, Tudzynski B. FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Microbiol 2010; 77:972-94. [PMID: 20572938 DOI: 10.1111/j.1365-2958.2010.07263.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Besides industrially produced gibberellins (GAs), Fusarium fujikuroi is able to produce additional secondary metabolites such as the pigments bikaverin and neurosporaxanthin and the mycotoxins fumonisins and fusarin C. The global regulation of these biosynthetic pathways is only poorly understood. Recently, the velvet complex containing VeA and several other regulatory proteins was shown to be involved in global regulation of secondary metabolism and differentiation in Aspergillus nidulans. Here, we report on the characterization of two components of the F. fujikuroi velvet-like complex, FfVel1 and FfLae1. The gene encoding this first reported LaeA orthologue outside the class of Eurotiomycetidae is upregulated in ΔFfvel1 microarray-studies and FfLae1 interacts with FfVel1 in the nucleus. Deletion of Ffvel1 and Fflae1 revealed for the first time that velvet can simultaneously act as positive (GAs, fumonisins and fusarin C) and negative (bikaverin) regulator of secondary metabolism, and that both components affect conidiation and virulence of F. fujikuroi. Furthermore, the velvet-like protein FfVel2 revealed similar functions regarding conidiation, secondary metabolism and virulence as FfVel1. Cross-genus complementation studies of velvet complex component mutants between Fusarium, Aspergillus and Penicillium support an ancient origin for this complex, which has undergone a divergence in specific functions mediating development and secondary metabolism.
Collapse
Affiliation(s)
- Philipp Wiemann
- Institut für Botanik, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, GermanyInstitut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, D-48149 Münster, GermanyBacterial Foodborne Pathogens and Mycology Research, USDA/ARS, 1815 N University St, Peoria, IL 61604, USADepartment of Medical Microbiology and ImmunologyDepartment of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI 53706-1521, USA
| | - Daren W Brown
- Institut für Botanik, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, GermanyInstitut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, D-48149 Münster, GermanyBacterial Foodborne Pathogens and Mycology Research, USDA/ARS, 1815 N University St, Peoria, IL 61604, USADepartment of Medical Microbiology and ImmunologyDepartment of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI 53706-1521, USA
| | - Karin Kleigrewe
- Institut für Botanik, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, GermanyInstitut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, D-48149 Münster, GermanyBacterial Foodborne Pathogens and Mycology Research, USDA/ARS, 1815 N University St, Peoria, IL 61604, USADepartment of Medical Microbiology and ImmunologyDepartment of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI 53706-1521, USA
| | - Jin Woo Bok
- Institut für Botanik, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, GermanyInstitut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, D-48149 Münster, GermanyBacterial Foodborne Pathogens and Mycology Research, USDA/ARS, 1815 N University St, Peoria, IL 61604, USADepartment of Medical Microbiology and ImmunologyDepartment of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI 53706-1521, USA
| | - Nancy P Keller
- Institut für Botanik, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, GermanyInstitut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, D-48149 Münster, GermanyBacterial Foodborne Pathogens and Mycology Research, USDA/ARS, 1815 N University St, Peoria, IL 61604, USADepartment of Medical Microbiology and ImmunologyDepartment of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI 53706-1521, USA
| | - Hans-Ulrich Humpf
- Institut für Botanik, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, GermanyInstitut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, D-48149 Münster, GermanyBacterial Foodborne Pathogens and Mycology Research, USDA/ARS, 1815 N University St, Peoria, IL 61604, USADepartment of Medical Microbiology and ImmunologyDepartment of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI 53706-1521, USA
| | - Bettina Tudzynski
- Institut für Botanik, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, GermanyInstitut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, D-48149 Münster, GermanyBacterial Foodborne Pathogens and Mycology Research, USDA/ARS, 1815 N University St, Peoria, IL 61604, USADepartment of Medical Microbiology and ImmunologyDepartment of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI 53706-1521, USA
| |
Collapse
|
38
|
Two components of a velvet-like complex control hyphal morphogenesis, conidiophore development, and penicillin biosynthesis in Penicillium chrysogenum. EUKARYOTIC CELL 2010; 9:1236-50. [PMID: 20543063 DOI: 10.1128/ec.00077-10] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Penicillium chrysogenum is the industrial producer of the antibiotic penicillin, whose biosynthetic regulation is barely understood. Here, we provide a functional analysis of two major homologues of the velvet complex in P. chrysogenum, which we have named P. chrysogenum velA (PcvelA) and PclaeA. Data from array analysis using a DeltaPcvelA deletion strain indicate a significant role of PcVelA on the expression of biosynthesis and developmental genes, including PclaeA. Northern hybridization and high-performance liquid chromatography quantifications of penicillin titers clearly show that both PcVelA and PcLaeA play a major role in penicillin biosynthesis in a producer strain that underwent several rounds of UV mutagenesis during a strain improvement program. Both regulators are further involved in different developmental processes. While PcvelA deletion leads to light-independent conidial formation, dichotomous branching of hyphae, and pellet formation in shaking cultures, a DeltaPclaeA strain shows a severe impairment in conidiophore formation under both light and dark conditions. Bimolecular fluorescence complementation assays provide evidence for a velvet-like complex in P. chrysogenum, with structurally conserved components that have distinct developmental roles, illustrating the functional plasticity of these regulators in genera other than Aspergillus.
Collapse
|
39
|
Tisch D, Schmoll M. Light regulation of metabolic pathways in fungi. Appl Microbiol Biotechnol 2009; 85:1259-77. [PMID: 19915832 PMCID: PMC2807966 DOI: 10.1007/s00253-009-2320-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 10/14/2009] [Accepted: 10/14/2009] [Indexed: 12/17/2022]
Abstract
Light represents a major carrier of information in nature. The molecular machineries translating its electromagnetic energy (photons) into the chemical language of cells transmit vital signals for adjustment of virtually every living organism to its habitat. Fungi react to illumination in various ways, and we found that they initiate considerable adaptations in their metabolic pathways upon growth in light or after perception of a light pulse. Alterations in response to light have predominantly been observed in carotenoid metabolism, polysaccharide and carbohydrate metabolism, fatty acid metabolism, nucleotide and nucleoside metabolism, and in regulation of production of secondary metabolites. Transcription of genes is initiated within minutes, abundance and activity of metabolic enzymes are adjusted, and subsequently, levels of metabolites are altered to cope with the harmful effects of light or to prepare for reproduction, which is dependent on light in many cases. This review aims to give an overview on metabolic pathways impacted by light and to illustrate the physiological significance of light for fungi. We provide a basis for assessment whether a given metabolic pathway might be subject to regulation by light and how these properties can be exploited for improvement of biotechnological processes.
Collapse
Affiliation(s)
- Doris Tisch
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, 1060 Vienna, Austria.
| | | |
Collapse
|
40
|
Brakhage AA, Thön M, Spröte P, Scharf DH, Al-Abdallah Q, Wolke SM, Hortschansky P. Aspects on evolution of fungal beta-lactam biosynthesis gene clusters and recruitment of trans-acting factors. PHYTOCHEMISTRY 2009; 70:1801-1811. [PMID: 19863978 DOI: 10.1016/j.phytochem.2009.09.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 05/28/2023]
Abstract
Penicillins and cephalosporins are beta-lactam antibiotics. The formation of hydrophobic penicillins has been reported in fungi only, notably Penicillium chrysogenum and Aspergillus (Emericella) nidulans, whereas the hydrophilic cephalosporins are produced by both fungi, e.g., Acremonium chrysogenum (cephalosporin C), and bacteria. The producing bacteria include Gram-negatives and Gram-positives, e.g., Streptomyces clavuligerus (cephamycin C) and Lysobacter lactamgenus (cephabacins), respectively. The evolutionary origin of beta-lactam biosynthesis genes has been the subject of discussion for many years, and two main hypotheses have been proposed: (i) horizontal gene transfer (HGT) from bacteria to fungi or (ii) vertical decent. There are strong arguments in favour of HGT, e.g., unlike most other fungal genes, beta-lactam biosynthesis genes are clustered and some of these genes lack introns. In contrast to S. clavuligerus, all regulators of fungal beta-lactam biosynthesis genes represent wide-domain regulators that are not part of the gene cluster. If bacterial regulators were co-transferred with the gene cluster from bacteria to fungi, most likely they would have been non-functional in eukaryotes and lost during evolution. Recently, the penicillin biosynthesis gene aatB was discovered, which is not part of the penicillin biosynthesis gene cluster and is even located on a different chromosome. The aatB gene is regulated by the same regulators AnCF and AnBH1 as the penicillin biosynthesis gene aatA (penDE). Data suggest that aatA and aatB are paralogues derived by duplication of a common ancestor gene. This data supports a model in which part of the beta-lactam biosynthesis gene cluster was transferred to some fungi, i.e., the acvA and ipnA gene without a regulatory gene. We propose that during the assembly of aatA and acvA-ipnA into a single gene cluster, recruitment of transcriptional regulators occurred along with acquisition of the duplicated aatA ancestor gene and its cis-acting sites.
Collapse
Affiliation(s)
- Axel A Brakhage
- Department of Molecular and Applied Microbiology, University of Jena, Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Kim HY, Han KH, Lee M, Oh M, Kim HS, Zhixiong X, Han DM, Jahng KY, Kim JH, Chae KS. The veA gene is necessary for the negative regulation of the veA expression in Aspergillus nidulans. Curr Genet 2009; 55:391-7. [PMID: 19479257 DOI: 10.1007/s00294-009-0253-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/07/2009] [Accepted: 05/10/2009] [Indexed: 02/04/2023]
Abstract
The veA gene is one of the key genes in regulating sexual development of Aspergillus nidulans. During the study on the veA gene, it was observed that the veA expression level is slightly higher in a veA1 mutant than in a wild type at 37 degrees C, suggesting that the wild type veA gene is necessary for the negative regulation of the veA expression. In the veA1 mutant, the veA expression was higher than in a wild type grown at 42 degrees C but equal at 30 degrees C. Furthermore, in a veA deletion mutant having its own promoter and the N-terminus of the VeA ORF, expression of the N-terminus by the veA promoter was highly up-regulated, supporting the possibility that the veA gene is important for the negative regulation of the veA expression. Analyses of the lacZ transcript and the beta-galactosidase activity from the reporter strains in the veA1 background, which were constructed by transformation of the lacZ reporter plasmids containing the lacZ gene under the control of the intact or the truncated veA promoters from the -943 to +262 bp region, showed that the truncated promoters produced more veA transcript and higher beta-galactosidase activity than the intact one at 30 degrees C, but equal at 42 degrees C. In addition, the serial-deletion analysis of the veA promoter identified a crucial region in the promoter from -943 to -740 bp for this derepression of the veA expression. Taken together, these results indicated that the veA gene is necessary for the negative regulation of the veA expression. Moreover, the veA expression was derepressed in the light-illuminated condition, where the VeA protein is hardly transported into the nucleus.
Collapse
Affiliation(s)
- Hyoun-Young Kim
- Division of Biological Sciences, Basic Science Research Institute, Chonbuk National University, Chonju, 561-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Spröte P, Hynes MJ, Hortschansky P, Shelest E, Scharf DH, Wolke SM, Brakhage AA. Identification of the novel penicillin biosynthesis gene aatB of Aspergillus nidulans and its putative evolutionary relationship to this fungal secondary metabolism gene cluster. Mol Microbiol 2008; 70:445-61. [PMID: 18942174 DOI: 10.1111/j.1365-2958.2008.06422.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The final step of penicillin biosynthesis in the filamentous fungus Aspergillus nidulans is catalysed by isopenicillin N acyltransferase encoded by the aatA gene. Because there is no bacterial homologue, its evolutionary origin remained obscure. As shown here,disruption of aatA still enabled penicillin production. Genome mining led to the discovery of the aatB gene(AN6775.3) which has a similar structure and expression pattern as aatA. Disruption of aatB resulted in a reduced penicillin titre. Surface plasmon resonance analysis and Northern blot analysis indicated that the promoters of both aatA and aatB are bound and regulated by the same transcription factors AnCF and AnBH1f. In contrast to aatA, aatB does not encode a peroxisomal targeting signal (PTS1). Overexpression of a mutated aatB(PTS1) gene in an aatA-disruption strain(leading to peroxisomal localization of AatB)increased the penicillin titre more than overexpression of the wild-type aatB. Homologues of aatA are exclusively part of the penicillin biosynthesis gene cluster,whereas aatB homologues also exist in non-producing fungi. Our findings suggest that aatB is a paralogue of aatA. They extend the model of evolution of the penicillin biosynthesis gene cluster by recruitment of a biosynthesis gene and its cis-regulatory sites upon gene duplication.
Collapse
Affiliation(s)
- Petra Spröte
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Schmoll M. The information highways of a biotechnological workhorse--signal transduction in Hypocrea jecorina. BMC Genomics 2008; 9:430. [PMID: 18803869 PMCID: PMC2566311 DOI: 10.1186/1471-2164-9-430] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 09/20/2008] [Indexed: 11/24/2022] Open
Abstract
Background The ascomycete Hypocrea jecorina (anamorph Trichoderma reesei) is one of the most prolific producers of biomass-degrading enzymes and frequently termed an industrial workhorse. To compete for nutrients in its habitat despite its shortcoming in certain degradative enzymes, efficient perception and interpretation of environmental signals is indispensable. A better understanding of these signals as well as their transmission machinery can provide sources for improvement of biotechnological processes. Results The genome of H. jecorina was analysed for the presence and composition of common signal transduction pathways including heterotrimeric G-protein cascades, cAMP signaling, mitogen activated protein kinases, two component phosphorelay systems, proteins involved in circadian rhythmicity and light response, calcium signaling and the superfamily of Ras small GTPases. The results of this survey are discussed in the context of current knowledge in order to assess putative functions as well as potential impact of alterations of the respective pathways. Conclusion Important findings include an additional, bacterial type phospholipase C protein and an additional 6-4 photolyase. Moreover the presence of 4 RGS-(Regulator of G-protein Signaling) proteins and 3 GprK-type G-protein coupled receptors comprising an RGS-domain suggest a more complex posttranslational regulation of G-protein signaling than in other ascomycetes. Also the finding, that H. jecorina, unlike yeast possesses class I phosducins which are involved in phototransduction in mammals warrants further investigation. An alteration in the regulation of circadian rhythmicity may be deduced from the extension of both the class I and II of casein kinases, homologues of which are implicated in phosphorylation of FRQ in Neurospora crassa. On the other hand, a shortage in the number of the pathogenicity related PTH11-type G-protein coupled receptors (GPCRs) as well as a lack of microbial opsins was detected. Considering its efficient enzyme system for breakdown of cellulosic materials, it came as a surprise that H. jecorina does not possess a carbon sensing GPCR.
Collapse
Affiliation(s)
- Monika Schmoll
- Research Area of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Wien, Austria.
| |
Collapse
|
44
|
Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 2008; 320:1504-6. [PMID: 18556559 DOI: 10.1126/science.1155888] [Citation(s) in RCA: 669] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Differentiation and secondary metabolism are correlated processes in fungi that respond to light. In Aspergillus nidulans, light inhibits sexual reproduction as well as secondary metabolism. We identified the heterotrimeric velvet complex VelB/VeA/LaeA connecting light-responding developmental regulation and control of secondary metabolism. VeA, which is primarily expressed in the dark, physically interacts with VelB, which is expressed during sexual development. VeA bridges VelB to the nuclear master regulator of secondary metabolism, LaeA. Deletion of either velB or veA results in defects in both sexual fruiting-body formation and the production of secondary metabolites.
Collapse
Affiliation(s)
- Ozgür Bayram
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Calvo AM. The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet Biol 2008; 45:1053-61. [PMID: 18457967 DOI: 10.1016/j.fgb.2008.03.014] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/25/2008] [Accepted: 03/25/2008] [Indexed: 12/27/2022]
Abstract
In fungi, the velvet gene, or veA, is involved in the regulation of diverse cellular processes, including control of asexual and sexual development as well as secondary metabolism. This global regulator is conserved in numerous fungal species. Interestingly, in Aspergilli, where most of the studies on veA have been carried out, this gene has been described to mediate development in response to light. In recent years the knowledge of this important regulatory system has expanded through the use of Aspergillus nidulans as a model organism, and through the study of veA orthologs across fungal genera. This review includes information on the current understanding of veA function and its mechanism of action. The fact that veA has only been found in fungi, together with advances in the elucidation of the veA mechanism, might be useful in designing future control strategies to decrease the detrimental effects of fungi while enhancing those qualities that are beneficial.
Collapse
Affiliation(s)
- Ana M Calvo
- Department of Biological Sciences, Northern Illinois University, 1425 W. Lincoln Hwy Montgomery Hall, Dekalb, IL 60115, USA.
| |
Collapse
|
46
|
Han KH, Kim JH, Moon H, Kim S, Lee SS, Han DM, Jahng KY, Chae KS. The Aspergillus nidulans esdC (early sexual development) gene is necessary for sexual development and is controlled by veA and a heterotrimeric G protein. Fungal Genet Biol 2008; 45:310-8. [DOI: 10.1016/j.fgb.2007.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/06/2007] [Accepted: 09/10/2007] [Indexed: 12/29/2022]
|
47
|
Thön M, Al-Abdallah Q, Hortschansky P, Brakhage AA. The thioredoxin system of the filamentous fungus Aspergillus nidulans: impact on development and oxidative stress response. J Biol Chem 2007; 282:27259-27269. [PMID: 17631497 DOI: 10.1074/jbc.m704298200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Redox regulation has been shown to be of increasing importance for many cellular processes. Here, redox homeostasis was addressed in Aspergillus nidulans, an important model organism for fundamental biological questions such as development, gene regulation or the regulation of the production of secondary metabolites. We describe the characterization of a thioredoxin system from the filamentous fungus A. nidulans. The A. nidulans thioredoxin A (AnTrxA) is an 11.6-kDa protein with a characteristic thioredoxin active site motif (WCGPC) encoded by the trxA gene. The corresponding thioredoxin reductase (AnTrxR), encoded by the trxR gene, represents a homodimeric flavoprotein with a native molecular mass of 72.2 kDa. When combined in vitro, the in Escherichia coli overproduced recombinant proteins AnTrxA and AnTrxR were able to reduce insulin and oxidized glutathione in an NADPH-dependent manner indicating that this in vitro redox system is functional. Moreover, we have created a thioredoxin A deletion strain that shows decreased growth, an increased catalase activity, and the inability to form reproductive structures like conidiophores or cleistothecia when cultivated under standard conditions. However, addition of GSH at low concentrations led to the development of sexual cleistothecia, whereas high GSH levels resulted in the formation of asexual conidiophores. Furthermore, by applying the principle of thioredoxin-affinity chromatography we identified several novel putative targets of thioredoxin A, including a hypothetical protein with peroxidase activity and an aldehyde dehydrogenase.
Collapse
Affiliation(s)
- Marcel Thön
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI) and Friedrich-Schiller-University, Beutenbergstrasse 11a, Jena D-07745, Germany
| | - Qusai Al-Abdallah
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI) and Friedrich-Schiller-University, Beutenbergstrasse 11a, Jena D-07745, Germany
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI) and Friedrich-Schiller-University, Beutenbergstrasse 11a, Jena D-07745, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI) and Friedrich-Schiller-University, Beutenbergstrasse 11a, Jena D-07745, Germany.
| |
Collapse
|
48
|
Dreyer J, Eichhorn H, Friedlin E, Kürnsteiner H, Kück U. A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum. Appl Environ Microbiol 2007; 73:3412-22. [PMID: 17400783 PMCID: PMC1907097 DOI: 10.1128/aem.00129-07] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Aspergillus nidulans velvet (veA) gene encodes a global regulator of gene expression controlling sexual development as well as secondary metabolism. We have identified the veA homologue AcveA from Acremonium chrysogenum, the major producer of the beta-lactam antibiotic cephalosporin C. Two different disruption strains as well as the corresponding complements were generated as a prelude to detailed functional analysis. Northern hybridization and quantitative real-time PCR clearly indicate that the nucleus-localized AcVEA polypeptide controls the transcriptional expression of six cephalosporin C biosynthesis genes. The most drastic reduction in expression is seen for cefEF, encoding the deacetoxycephalosporine/deacetylcephalosporine synthetase. After 120 h of growth, the cefEF transcript level is below 15% in both disruption strains compared to the wild type. These transcriptional expression data are consistent with results from a comparative and time-dependent high-performance liquid chromatography analysis of cephalosporin C production. Compared to the recipient, both disruption strains have a cephalosporin C titer that is reduced by 80%. In addition to its role in cephalosporin C biosynthesis, AcveA is involved in the developmentally dependent hyphal fragmentation. In both disruption strains, hyphal fragmentation is already observed after 48 h of growth, whereas in the recipient strain, arthrospores are not even detected before 96 h of growth. Finally, the two mutant strains show hyperbranching of hyphal tips on osmotically nonstabilized media. Our findings will be significant for biotechnical processes that require a defined stage of cellular differentiation for optimal production of secondary metabolites.
Collapse
MESH Headings
- Acremonium/cytology
- Acremonium/genetics
- Acremonium/physiology
- Aspergillus nidulans/genetics
- Blotting, Northern
- Cephalosporins/biosynthesis
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- Gene Deletion
- Gene Expression
- Gene Expression Regulation, Fungal
- Genes, Regulator
- Genetic Complementation Test
- Hyphae/physiology
- Molecular Sequence Data
- Morphogenesis
- Oxygenases/biosynthesis
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Spores, Fungal
Collapse
Affiliation(s)
- Jacqueline Dreyer
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Universitätsstr. 150, D-44780 Bochum, Germany
| | | | | | | | | |
Collapse
|