1
|
Behrendt U, Burghard V, Wende S, Ulrich K, Wolf J, Neumann-Schaal M, Ulrich A. Schauerella fraxinea gen. nov., sp. nov., a bacterial species that colonises ash trees tolerant to dieback caused by Hymenoscyphus fraxineus. Syst Appl Microbiol 2024; 47:126516. [PMID: 38772267 DOI: 10.1016/j.syapm.2024.126516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
The tolerance of ash trees against the pathogen Hymenoscyphus fraxineus seems to be associated with the occurrence of specific microbial taxa on leaves. A group of bacterial isolates, primarily identified on tolerant trees, was investigated with regard to their taxonomic classification and their potential to suppress the ash dieback pathogen. Examination of OGRI values revealed a separate species position. A phylogenomic analysis, based on orthologous and marker genes, indicated a separate genus position along with the species Achromobacter aestuarii. Furthermore, analysis of the ratio of average nucleotide identities and genome alignment fractions demonstrated genomic dissimilarities typically observed for inter-genera comparisons within this family. As a result of these investigations, the strains are considered to represent a separate species within a new genus, for which the name Schauerella fraxinea gen. nov., sp. nov. is proposed, with the type strain B3P038T (=LMG 33092 T = DSM 115926 T). Additionally, a reclassification of the species Achromobacter aestuarii as Schauerella aestuarii comb. nov. is proposed. In a co-cultivation assay, the strains were able to inhibit the growth of a H. fraxineus strain. Accordingly, a functional analysis of the genome of S. fraxinea B3P038T revealed genes mediating the production of antifungal substances. This potential, combined with the prevalent presence in the phyllosphere of tolerant ash trees, makes this group interesting for an inoculation experiment with the aim of controlling the pathogen in an integrative approach. For future field trials, a strain-specific qPCR system was developed to establish an efficient method for monitoring the inoculation success.
Collapse
Affiliation(s)
- Undine Behrendt
- Leibniz Center for Agricultural Landscape Research (ZALF), Microbial Biogeochemistry, Eberswalder Str. 84, D-15374 Müncheberg, Germany.
| | - Valentin Burghard
- Leibniz Center for Agricultural Landscape Research (ZALF), Microbial Biogeochemistry, Eberswalder Str. 84, D-15374 Müncheberg, Germany.
| | - Sonja Wende
- Leibniz Center for Agricultural Landscape Research (ZALF), Microbial Biogeochemistry, Eberswalder Str. 84, D-15374 Müncheberg, Germany.
| | - Kristina Ulrich
- Johann Heinrich Von Thünen Institute, Institute of Forest Genetics, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany.
| | - Jacqueline Wolf
- Research Group Bacterial Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany.
| | - Meina Neumann-Schaal
- Research Group Bacterial Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany.
| | - Andreas Ulrich
- Leibniz Center for Agricultural Landscape Research (ZALF), Microbial Biogeochemistry, Eberswalder Str. 84, D-15374 Müncheberg, Germany.
| |
Collapse
|
2
|
Deng TH, Zhang Y, Zhang WW, Su Y, Gao JW, Ying JJ, Xu L, Xia XM, Sun C. Marinobacter albus sp. nov., Isolated from Sand Sediment in a Coastal Intertidal Zone. Curr Microbiol 2024; 81:138. [PMID: 38609554 DOI: 10.1007/s00284-024-03676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
A Gram-stain-negative bacterium with a rod-to-ovoid shape, named strain M216T, was isolated from sand sediment from the coastal intertidal zone of Huludao, Liaoning Province, China. Growth was observed at 8-40 °C (optimal, 30 °C), pH 5.5-9.5 (optimal, pH 6.5) and 0.5-14.0% (w/v) NaCl (optimal, 6%). Strain M216T possessed ubiquinone-9 as its sole respiratory quinone and phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, one unidentified aminophosphoglycolipid, one unidentified aminophospholipid, two unidentified phosphoglycolipids, three unidentified phospholipids and three unidentified glycolipids as the main polar lipids. C12:0, C16:0, C12:0 3-OH, C16:1 ω9c, C18:1 ω9c and summed features 3 (C16:1 ω7c and/or C16:1 ω6c) were the major fatty acids (> 5%). The 16S rRNA gene sequence of strain M216T exhibited high similarity to those of 'Marinobacter arenosus' CAU 1620T and Marinobacter adhaerens HP15T (99.3% and 98.5%, respectively) and less than 98.5% similarity to those of the other type strains. The ANI and dDDH values between the strain M216T and 'Marinobacter arenosus' CAU 1620T were 87.4% and 33.3%, respectively; these values were the highest among the other type strains but lower than the species threshold. The G+C content of strain M216T was 58.3%. Genomic analysis revealed that strain M216T harbors the major CAZymes of GH13, GH23, GH73, and PL5, which are responsible for polysaccharide degradation and the potential ability to reduce nitrate to ammonia. Through phenotypic, genotypic, and chemotaxonomic analyses, we proposed the name Marinobacter albus sp. nov., a novel species in the genus Marinobacter, with its type strain M216T (= MCCC 1K08600T = KCTC 82894T).
Collapse
Affiliation(s)
- Tai-Hang Deng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing, 312369, People's Republic of China
| | - Yu Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing, 312369, People's Republic of China
| | - Wen-Wu Zhang
- Trend Biotech Co., Ltd., Hangzhou, 311121, People's Republic of China
| | - Yue Su
- Trend Biotech Co., Ltd., Hangzhou, 311121, People's Republic of China
| | - Jia-Wei Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing, 312369, People's Republic of China
| | - Jun-Jie Ying
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing, 312369, People's Republic of China
| | - Lin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing, 312369, People's Republic of China
| | - Xiao-Ming Xia
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, People's Republic of China
| | - Cong Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing, 312369, People's Republic of China.
| |
Collapse
|
3
|
Espinales C, Baldeón M, Bravo C, Toledo H, Carballo J, Romero-Peña M, Cáceres PJ. Strategies for Healthier Meat Foods: An Overview. Prev Nutr Food Sci 2024; 29:18-30. [PMID: 38576885 PMCID: PMC10987382 DOI: 10.3746/pnf.2024.29.1.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 04/06/2024] Open
Abstract
Functional food products remain the focus of current market trends toward healthier nutrition. The consumption of meat-based functional foods has been a topic of interest in food innovation since some of these products generate controversy due to their possible adverse effects on health. However, studies have demonstrated that meat-based functional products are considered an opportunity to improve the nutritional profile of meat products through the addition of biologically valuable components and to meet the specific needs of consumers. In this sense, some strategies and techniques are applied for processing and developing functional meat products, such as modifying carcass composition through feeding, reformulating meat products, and processing conditions. This review focuses on presenting developed and evaluated strategies that allow the production of healthy and functional meat foods, which application has successfully achieved the sensory, nutritional, and technological parameters mainly affected by such application.
Collapse
Affiliation(s)
- Cindy Espinales
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| | - María Baldeón
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| | - Cinthya Bravo
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| | - Howard Toledo
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| | - José Carballo
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid 28040, Spain
| | - María Romero-Peña
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
- Saskatchewan Food Industry Development Centre (SFIDC), Saskatoon S7M 5V1, Canada
| | - Patricio J. Cáceres
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil EC090112, Ecuador
| |
Collapse
|
4
|
Sun Y, Liu D, Yang X, Li W, Lin S. Kerstersia gyiorum isolated for the first time from two patients with neurodegenerative disease: report of two unusual cases and a review of the literature. J Int Med Res 2023; 51:3000605231171009. [PMID: 37161265 DOI: 10.1177/03000605231171009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
With the development of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and 16S ribosomal RNA (rRNA) gene sequencing, increasing numbers of new microorganisms are being discovered. In this report, Kerstersia gyiorum was isolated for the first time from the sputum of two elderly patients with neurodegenerative disease, and integrated traditional Chinese and Western medicine was used for treatment. The bacteria's growth characteristics, biochemical reaction characteristics, sensitivity to antibiotics, and the patients' treatment are described, with a review of previous reports.
Collapse
Affiliation(s)
- Yanwen Sun
- Department of Medical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Danqing Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xuejing Yang
- Department of Medical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Wenjie Li
- Department of Medical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Shaohua Lin
- Department of Medical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang Province, China
| |
Collapse
|
5
|
Hahn MW, Pitt A, Schmidt J, Koll U, Wolf J, Whitman WB, Bodelier PLE, Neumann-Schaal M. Zwartia hollandica gen. nov., sp. nov., Jezberella montanilacus gen. nov., sp. nov. and Sheuella amnicola gen. nov., comb. nov., representing the environmental GKS98 (betIII) cluster. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present two strains affiliated with the GKS98 cluster. This phylogenetically defined cluster is representing abundant, mainly uncultured freshwater bacteria, which were observed by many cultivation-independent studies on the diversity of bacteria in various freshwater lakes and streams. Bacteria affiliated with the GKS98 cluster were detected by cultivation-independent methods in freshwater systems located in Europe, Asia, Africa and the Americas. The two strains, LF4-65T (=CCUG 56422T=DSM 107630T) and MWH-P2sevCIIIbT (=CCUG 56420T=DSM 107629T), are aerobic chemoorganotrophs, both with genome sizes of 3.2 Mbp and G+C values of 52.4 and 51.0 mol%, respectively. Phylogenomic analyses based on concatenated amino acid sequences of 120 proteins suggest an affiliation of the two strains with the family
Alcaligenaceae
and revealed
Orrella amnicola
and
Orrella marina
(=
Algicoccus marinus
) as being the closest related, previously described species. However, the calculated phylogenomic trees clearly suggest that the current genus
Orrella
represents a polyphyletic taxon. Based on the branching order in the phylogenomic trees, as well as the revealed phylogenetic distances and chemotaxonomic traits, we propose to establish the new genus Zwartia gen. nov. and the new species Z. hollandica sp. nov. to harbour strain LF4-65T and the new genus Jezberella gen. nov. and the new species J. montanilacus sp. nov. to harbour strain MWH-P2sevCIIIbT. Furthermore, we propose the reclassification of the species
Orrella amnicola
in the new genus Sheuella gen. nov. The new genera Zwartia, Jezberella and Sheuella together represent taxonomically the GKS98 cluster.
Collapse
Affiliation(s)
- Martin W. Hahn
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Alexandra Pitt
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Johanna Schmidt
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Ulrike Koll
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Jacqueline Wolf
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - William B. Whitman
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA
| | - Paul L. E. Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Meina Neumann-Schaal
- Junior Research Group Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
6
|
Jiang K, Yuan B, Cao C, Zhang C, Liu Y, Hai X, Li R, Qian K, Yang H. Orrella daihaiensis sp. nov., a bacterium isolated from Daihai Lake in Inner Mongolia. Arch Microbiol 2022; 204:427. [PMID: 35751751 DOI: 10.1007/s00203-022-03056-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/05/2022] [Indexed: 11/02/2022]
Abstract
A novel aerobic, Gram-staining-negative, non-motile, short-rod-shaped strain, designated f23T, was obtained from Daihai Lake, Inner Mongolia, Republic of China. 16S rRNA gene sequences analysis showed that f23T belongs to the genus Orrella and is most closely related to Orrella marina H-Z20T with 98.35% sequence similarity. The strain was oxidase positive, catalase positive and had well growth at pH 6.5-8.5, at temperature 28-40 °C and at 0-4.5% (w/v) NaCl. Colonies incubated at 37 °C on marine 2216 agar for 3 days were white, smooth, transparent, circular and less than 1.0 mm in diameter. The total genome size of f23T was 2,803,849 bp with a G + C content of 52.79%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain f23T and O. marina H-Z20T were 69.62% and 20.5%, which both below the species delineation threshold. Chemotaxonomic analysis showed that C16:0, cyclo-C17:0, C18:0, Sum Feature 3 (C16:1ω7c and/or C16:1ω6c) and Sum Feature 8 (C18:1ω6c and C18:1ω7c) as the major fatty acids, ubiquinone-8 as the major isoprenoid quinone, phosphatidylethanolamine as the major cellular polar lipids. Based on the polyphasic analysis, f23T represents a novel species within the genus Orrella, for which the name Orrella daihaiensis sp. nov. is proposed. The type strain is f23T (= CGMCC 1.18761 T = KCTC 82425 T).
Collapse
Affiliation(s)
- Kai Jiang
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, Inner Mongolia, China. .,Key Laboratory of Biodiversity Conservation and Sustainable Utilization for College and University of Inner Mongolia Autonomous Region, Hohhot, 010022, China.
| | - Bo Yuan
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, Inner Mongolia, China.,Key Laboratory of Biodiversity Conservation and Sustainable Utilization for College and University of Inner Mongolia Autonomous Region, Hohhot, 010022, China
| | - ChunLing Cao
- Agriculture and Animal Husbandry Technology Popularization Center of Inner Mongolia Autonomous Region, Hohhot, 010010, Inner Mongolia, China
| | - ChenYing Zhang
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, Inner Mongolia, China
| | - Yang Liu
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, Inner Mongolia, China
| | - XiaoHu Hai
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, Inner Mongolia, China
| | - RuoXuan Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, Inner Mongolia, China
| | - KangYuan Qian
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, Inner Mongolia, China
| | - HongZhen Yang
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, Inner Mongolia, China
| |
Collapse
|
7
|
Sheu SY, Chen LC, Yang CC, Carlier A, Chen WM. Orrella amnicola sp. nov., isolated from a freshwater river, reclassification of Algicoccus marinus as Orrella marina comb. nov., and emended description of the genus Orrella. Int J Syst Evol Microbiol 2020; 70:6381-6389. [PMID: 33112223 DOI: 10.1099/ijsem.0.004538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-negative, aerobic, non-motile, ovoid to rod-shaped bacterium, designated NBD-18T, was isolated from a freshwater river in Taiwan. Optimal growth occurred at 30 °C, at pH 6 and in the absence of NaCl. The predominant fatty acids of strain NBD-18T were C16 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C17 : 0 cyclo and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidyldimethylethanolamine. The major polyamine was putrescine. The major isoprenoid quinone was Q-8. The genomic DNA G+C content of strain NBD-18T was 50.9 %. Strain NBD-18T was most closely related to Orrella dioscoreae LMG 29303T and Algicoccus marinus HZ20T at a 16S rRNA gene sequence similarity of 97.7 %. 16S rRNA gene sequence similarity between O. dioscoreae LMG 29303T and A. marinus HZ20T was 97.7 %. Phylogenetic analyses based on 16S rRNA gene sequences and an up-to-date bacterial core gene set indicated that strain NBD-18T, O. dioscoreae LMG 29303T and A. marinus HZ20T are affiliated with the same genus. Digital DNA-DNA hybridization, average nucleotide identity and average amino acid identity values among these three strains supported that they belong to the same genus and that strain NBD-18T represents a novel species. Thus, A. marinus HZ20T should be reclassified as Orrella marina comb. nov. based on the rules for priority of publication and validation. On the basis of the genotypic, chemotaxonomic and phenotypic data, strain NBD-18T represents a novel species in the genus Orrella, for which the name Orrella amnicola sp. nov. is proposed. The type strain is NBD-18T (=BCRC 81197T=LMG 31338T).
Collapse
Affiliation(s)
- Shih-Yi Sheu
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan, ROC
| | - Li-Chu Chen
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan, ROC
| | - Che-Chia Yang
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan, ROC
| | - Aurelien Carlier
- LIPM, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.,Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Wen-Ming Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 811, Taiwan, TOC
| |
Collapse
|
8
|
Oren A, Garrity G. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2019; 69:3313-3314. [DOI: 10.1099/ijsem.0.003740] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|