1
|
Hemavarshini S, Kalyaan VLV, Gopinath S, Kamaraj M, Aravind J, Pandiaraj S, Wong LS. Bacterial bioremediation as a sustainable strategy for the mitigation of Bisphenol-A. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:386. [PMID: 39167247 DOI: 10.1007/s10653-024-02154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
In the era dominated by plastic, the widespread use of plastic in our daily lives has led to a growing accumulation of its degraded byproducts, such as microplastics and plastic additives like Bisphenol A (BPA). BPA is recognized as one of the earliest man-made substances that exhibit endocrine-disrupting properties. It is frequently employed in the manufacturing of epoxy resins, polycarbonates, dental fillings, food storage containers, infant bottles, and water containers. BPA is linked to a range of health issues including obesity, diabetes, chronic respiratory illnesses, cardiovascular diseases, and reproductive abnormalities. This study examines the bacterial bioremediation of the BPA, which is found in many sources and is known for its hazardous effects on the environment. The metabolic pathways for the breakdown of BPA in important bacterial strains were hypothesized based on the observed altered intermediate metabolites during the degradation of BPA. This review discusses the enzymes and genes involved in the bacterial degradation of BPA. The utilization of naturally occurring microorganisms is the most efficient and cost-effective method due to their selectivity of strains, ensuring sustainability.
Collapse
Affiliation(s)
- S Hemavarshini
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Ramapuram, Chennai, Tamil Nadu, 600089, India
| | - V L Vibash Kalyaan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Ramapuram, Chennai, Tamil Nadu, 600089, India
| | - S Gopinath
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Ramapuram, Chennai, Tamil Nadu, 600089, India
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Ramapuram, Chennai, Tamil Nadu, 600089, India.
- Life Science Division, Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Malaysia.
| | - J Aravind
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
| | - Saravanan Pandiaraj
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Ling Shing Wong
- Life Science Division, Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Malaysia
| |
Collapse
|
2
|
Rawat M, Chauhan M, Pandey A. Extremophiles and their expanding biotechnological applications. Arch Microbiol 2024; 206:247. [PMID: 38713374 DOI: 10.1007/s00203-024-03981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
Microbial life is not restricted to any particular setting. Over the past several decades, it has been evident that microbial populations can exist in a wide range of environments, including those with extremes in temperature, pressure, salinity, and pH. Bacteria and Archaea are the two most reported types of microbes that can sustain in extreme environments, such as hot springs, ice caves, acid drainage, and salt marshes. Some can even grow in toxic waste, organic solvents, and heavy metals. These microbes are called extremophiles. There exist certain microorganisms that are found capable of thriving in two or more extreme physiological conditions simultaneously, and are regarded as polyextremophiles. Extremophiles possess several physiological and molecular adaptations including production of extremolytes, ice nucleating proteins, pigments, extremozymes and exopolysaccharides. These metabolites are used in many biotechnological industries for making biofuels, developing new medicines, food additives, cryoprotective agents etc. Further, the study of extremophiles holds great significance in astrobiology. The current review summarizes the diversity of microorganisms inhabiting challenging environments and the biotechnological and therapeutic applications of the active metabolites obtained as a response to stress conditions. Bioprospection of extremophiles provides a progressive direction with significant enhancement in economy. Moreover, the introduction to omics approach including whole genome sequencing, single cell genomics, proteomics, metagenomics etc., has made it possible to find many unique microbial communities that could be otherwise difficult to cultivate using traditional methods. These findings might be capable enough to state that discovery of extremophiles can bring evolution to biotechnology.
Collapse
Affiliation(s)
- Manvi Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Mansi Chauhan
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Anita Pandey
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
3
|
Arora J, Ranjan A, Chauhan A, Rajput VD, Sushkova S, Prazdnova EV, Minkina T, Biswas R, Joshi S, Jindal T, Prasad R. A Novel Study on Anionic Surfactant Degradation Potential of Psychrophillic and Psychrotolerant Pseudomonas spp. Identified from Surfactant-contaminated River Water. Appl Biochem Biotechnol 2024; 196:2612-2629. [PMID: 37466886 DOI: 10.1007/s12010-023-04647-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/20/2023]
Abstract
The Yamuna River, a tributary of the holy Ganga, is heavily polluted in the Delhi-NCR region, India and has been gaining attention due to the excessive foaming of the river over the past few years. This can be directly or indirectly related to the overuse of surfactants and the discharge of untreated domestic and textile wastewater into the river. To determine the surfactant load and investigate potential surfactant-degrading bacteria in the region, 96 water samples from four sites in the Okhla Barrage stretch of the river were collected and analysed. The results showed that the selected sites have surfactant concentrations more than the permissible limit (1.00 mgL-1). Also, at most of the sites, the concentration crossed the desirable limit of BIS (0.2 mgL-1) during the period of analysis. The concentration of anionic surfactant reported in the region was found in the range of 0.29 mgL-1 and 2.83 mgL-1. A total of 38 different bacteria were isolated using selective media from the same water samples, out of which 7 bacterial isolates were screened for sodium dodecyl sulphate (SDS) tolerance activity. Based on 16S rRNA gene sequencing, 2 species, namely Pseudomonas koreensis YRW-02 and Pseudomonas songnenensis YRW-05 have been identified and their degradation potential was assessed at different SDS concentrations. The results showed that our strains YRW-02 and YRW-05 degraded 78.29 and 69.24% of SDS respectively. Growth optimization was also performed at different substrate concentrations, pH, and temperature to investigate optimum degradation conditions. This study plays a significant role in assessing the surfactant load and also gives a promising background for future use in in-situ bioremediation experiments.
Collapse
Affiliation(s)
- Jayati Arora
- Amity Institute of Environmental Science, Amity University, Noida, Uttar Pradesh, India
| | - Anuj Ranjan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, Uttar Pradesh, India.
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia.
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Evgeniya V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Rima Biswas
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Sanket Joshi
- Oil & Gas Research Centre, Central Analytical and Applied Research Unit, Sultan Qaboos University, Muscat, Oman
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845401, Bihar, India.
| |
Collapse
|
4
|
Zaborowska M, Wyszkowska J, Borowik A, Kucharski J. Bisphenols-A Threat to the Natural Environment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6500. [PMID: 37834637 PMCID: PMC10573430 DOI: 10.3390/ma16196500] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Negative public sentiment built up around bisphenol A (BPA) follows growing awareness of the frequency of this chemical compound in the environment. The increase in air, water, and soil contamination by BPA has also generated the need to replace it with less toxic analogs, such as Bisphenol F (BPF) and Bisphenol S (BPS). However, due to the structural similarity of BPF and BPS to BPA, questions arise about the safety of their usage. The toxicity of BPA, BPF, and BPS towards humans and animals has been fairly well understood. The biodegradability potential of microorganisms towards each of these bisphenols is also widely recognized. However, the scale of their inhibitory pressure on soil microbiomes and soil enzyme activity has not been estimated. These parameters are extremely important in determining soil health, which in turn also influences plant growth and development. Therefore, in this manuscript, knowledge has been expanded and systematized regarding the differences in toxicity between BPA and its two analogs. In the context of the synthetic characterization of the effects of bisphenol permeation into the environment, the toxic impact of BPA, BPF, and BPS on the microbiological and biochemical parameters of soils was traced. The response of cultivated plants to their influence was also analyzed.
Collapse
Affiliation(s)
- Magdalena Zaborowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Agata Borowik
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jan Kucharski
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
5
|
Chauhan M, Kimothi A, Sharma A, Pandey A. Cold adapted Pseudomonas: ecology to biotechnology. Front Microbiol 2023; 14:1218708. [PMID: 37529326 PMCID: PMC10388556 DOI: 10.3389/fmicb.2023.1218708] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
The cold adapted microorganisms, psychrophiles/psychrotolerants, go through several modifications at cellular and biochemical levels to alleviate the influence of low temperature stress conditions. The low temperature environments depend on these cold adapted microorganisms for various ecological processes. The ability of the microorganisms to function in cold environments depends on the strategies directly associated with cell metabolism, physicochemical constrains, and stress factors. Pseudomonas is one among such group of microorganisms which is predominant in cold environments with a wide range of ecological and biotechnological applications. Bioformulations of Pseudomonas spp., possessing plant growth promotion and biocontrol abilities for application under low temperature environments, are well documented. Further, recent advances in high throughput sequencing provide essential information regarding the prevalence of Pseudomonas in rhizospheres and their role in plant health. Cold adapted species of Pseudomonas are also getting recognition for their potential in biodegradation and bioremediation of environmental contaminants. Production of enzymes and bioactive compounds (primarily as an adaptation mechanism) gives way to their applications in various industries. Exopolysaccharides and various biotechnologically important enzymes, produced by cold adapted species of Pseudomonas, are making their way in food, textiles, and pharmaceuticals. The present review, therefore, aims to summarize the functional versatility of Pseudomonas with particular reference to its peculiarities along with the ecological and biotechnological applications.
Collapse
Affiliation(s)
- Mansi Chauhan
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Ayushi Kimothi
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Avinash Sharma
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Anita Pandey
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| |
Collapse
|
6
|
de Morais Farias J, Krepsky N. Bacterial degradation of bisphenol analogues: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76543-76564. [PMID: 36166118 DOI: 10.1007/s11356-022-23035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is one of the most produced synthetic monomers in the world and is widespread in the environment. BPA was replaced by bisphenol analogues (BP) because of its adverse effects on life. Bacteria can degrade BPA and other bisphenol analogues (BP), diminishing their environmental concentrations. This study aimed to summarize the knowledge and contribute to future studies. In this review, we surveyed papers on bacterial degradation of twelve different bisphenol analogues published between 1987 and June 2022. A total of 102 original papers from PubMed and Google Scholar were selected for this review. Most of the studies (94.1%, n = 96) on bacterial degradation of bisphenol analogues focused on BPA, and then on bisphenol F (BPF), and bisphenol S (BPS). The number of studies on bacterial degradation of bisphenol analogues increased more than six times from 2000 (n = 2) to 2021 (n = 13). Indigenous microorganisms and the genera Sphingomonas, Sphingobium, and Cupriavidus could degrade several BP. However, few studies focussed on Cupriavidus. The acknowledgement of various aspects of BP bacterial biodegradation is vital for choosing the most suitable microorganisms for the bioremediation of a single BP or a mixture of BP.
Collapse
Affiliation(s)
- Julia de Morais Farias
- Laboratory of Water Microbiology (LACQUA), Department of Environmental Science, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, CEP 22290‑240, Rio de Janeiro, RJ, Brazil
| | - Natascha Krepsky
- Laboratory of Water Microbiology (LACQUA), Department of Environmental Science, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, CEP 22290‑240, Rio de Janeiro, RJ, Brazil.
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458. Urca, CEP: 22.290-255, Rio de Janeiro, RJ, Brazil.
- Institute of Biosciences (IBIO), Graduate Program in Ecotourism and Conservation, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458. Urca, CEP: 22.290-255, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|