1
|
Cabigliera SB, Gaudioso D, Chelazzi D, Conti L, Muzzi B, Cantagalli D, Cincinelli A, Tegli S, Jenkins A, Martellini T. Isolation of a novel microplastic-degrading bacterial strain: a promising agent for low-density polyethylene remediation. CHEMOSPHERE 2025; 379:144400. [PMID: 40252414 DOI: 10.1016/j.chemosphere.2025.144400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
This study investigates the biodegradation capabilities of two bacterial strains, Rhodococcus erythropolis and Paenarthrobacter nitroguajacolicus, identifying P. nitroguajacolicus as a novel candidate for its ability to degrade low-density polyethylene (LDPE), a major contributor to plastic pollution. Both strains were isolated from plastic-contaminated environments and cultivated in laboratory conditions with LDPE as the sole carbon source. Viable cell count measurements revealed that P. nitroguajacolicus achieved a peak bacterial count of approximately 2 × 106 CFU/mL, with intermittent increases observed over the 45-day incubation period. In comparison, R. erythropolis exhibited a more stable trend, with a peak count of 5 × 105 CFU/mL. These findings highlight the superior growth potential of P. nitroguajacolicus on LDPE. ATP measurements indicated significant metabolic activity, with P. nitroguajacolicus showing higher vitality with an RLU value of 135 compared to R. erythropolis, which recorded an RLU of 96. This supports the assertion that Pn is metabolically more active in degrading LDPE. Additionally, structural and chemical changes in LDPE were confirmed using Scanning Electron Microscopy (SEM), Nuclear Magnetic Resonance (NMR), and Fourier-transform infrared (FTIR) spectroscopy. R. erythropolis demonstrated more pronounced surface degradation of LDPE, while P. nitroguajacolicus exhibited higher metabolic activity, emphasizing their complementary roles in biodegradation. This study highlights the potential of these bacteria in sustainable bioremediation strategies for mitigating plastic pollution, with P. nitroguajacolicus emerging as a novel and particularly promising candidate due to its degradative capacity for LDPE.
Collapse
Affiliation(s)
- S B Cabigliera
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence. Via della Lastruccia, 3 - Sesto Fiorentino, 50019, FI, Italy.
| | - D Gaudioso
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Via della Lastruccia, 10 - Sesto Fiorentino, 50019, FI, Italy.
| | - D Chelazzi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence. Via della Lastruccia, 3 - Sesto Fiorentino, 50019, FI, Italy
| | - L Conti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence. Via della Lastruccia, 3 - Sesto Fiorentino, 50019, FI, Italy
| | - B Muzzi
- ICCOM, National Research Council (CNR), Via Madonna del Piano, 10 - Sesto Fiorentino, 50019, Florence, Fi, Italy
| | - D Cantagalli
- ÈCOSÌ Srl, Via Giovanni Giorgi 12 - Forlì, 47122, FC, Italy
| | - A Cincinelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence. Via della Lastruccia, 3 - Sesto Fiorentino, 50019, FI, Italy
| | - S Tegli
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Via della Lastruccia, 10 - Sesto Fiorentino, 50019, FI, Italy
| | - A Jenkins
- Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Bø, Norway
| | - T Martellini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence. Via della Lastruccia, 3 - Sesto Fiorentino, 50019, FI, Italy
| |
Collapse
|
2
|
Huang J, Li H, Hu C, Li J, Li X, Wang D, Ju D. Design of Nd-SrTiO 3/SrCO 3@Ag 2O Z-scheme heterojunction with the dual internal electric field for piezo-photocatalytic removal of pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125211. [PMID: 40239344 DOI: 10.1016/j.jenvman.2025.125211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/15/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
With the increasing severity of environmental pollution problems, developing efficient and low-cost pollution control technologies has become an urgent task. This study designed and prepared a novel Nd-SrTiO3/SrCO3@Ag2O (Nd-SSTO/Ag2O) dual internal electric field material for piezoelectric photocatalytic removal of pollutants from water. Under simulated sunlight irradiation, the material exhibited excellent photocatalytic activity. Among them, under single visible light irradiation and single ultrasound vibration, the degradation rate of RhB by 2.5 % Nd-SSTO/Ag2O-0.2 only reached 22.4 % and 25.6 % in 1 h, respectively. However, when visible light and ultrasound vibration act simultaneously, the degradation rate of RhB by 2.5 % Nd-SSTO/Ag2O-0.2 reached 95.1 % in 1 h with the reaction rate constants being 8.86 times and 1.64 times those of SSTO and Ag2O respectively. Furthermore, after four cyclic experiments, the degradation efficiency of RhB by 2.5 % Nd-SSTO/Ag2O-0.2 remained above 90 %. Additionally, ICP analysis revealed that the amount of catalyst elements released into the solution during the degradation process was extremely low, indicating that the prepared 2.5 % Nd-SSTO/Ag2O-0.2 catalyst possesses good stability. Through Nd doping, the light absorption range of SSTO was extended from the ultraviolet region to the visible region. After inducing Ag2O, a Nd-SSTO/Ag2O Z-scheme heterojunction was formed with the dual internal electric field, which not only expanded the carrier transmission channel but also improved the photo-induced carrier separation, allowing more e- and h+ to participate in the photocatalytic degradation reaction. Additionally, the piezoelectric characteristics of SrTiO3 (STO) further accelerated the migration of e--h+ pairs. This study opens up a new idea for the development and preparation of high-efficiency piezoelectric photocatalytic materials, and also provides a potential technical approach for environmental pollution control.
Collapse
Affiliation(s)
- Jiayi Huang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China; Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, 528437, China
| | - Hongji Li
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, 528437, China; Hainan Engineering Research Center of Tropical Ocean Advanced Opto-electrical Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Chunjiao Hu
- Jilin College of the Arts, Changchun, 130021, China
| | - Jingmei Li
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China; Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, 528437, China.
| | - Xiulong Li
- Changchun College of Electronic Technology, Changchun, 130114, China.
| | - Dandan Wang
- School of Chemistry and Chemical Engineering Hainan University, Haikou, 570228, Hainan, China.
| | - Dianming Ju
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
| |
Collapse
|
3
|
Unimke AA, Okezie O, Mohammed SE, Mmuoegbulam AO, Abdullahi S, Ofon UA, Olim DM, Badamasi H, Galadima AI, Fatunla OK, Abdullahi A, Yahaya SM, Ibrahim MM, Muhammad AB, Iya NID, Ayanda OS. Microbe-plant-nanoparticle interactions: role in bioremediation of petroleum hydrocarbons. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:2870-2893. [PMID: 39612179 DOI: 10.2166/wst.2024.362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/12/2024] [Indexed: 11/30/2024]
Abstract
Petroleum hydrocarbons (PHCs) are organic substances that occur naturally on earth. PHCs have emerged as one of the most prevalent and detrimental contaminants in regions comprising soil and water resources. The limitations of conventional physicochemical and biological remediation solutions could be solved by combining remediation techniques. An effective, affordable, and environmentally benign method of reducing petroleum toxins is provided by the advanced idea of bioremediation, which has evolved into nanobioremediation. Environments contaminated with PHCs have been restored through microbe-plant-nanoparticle (NP)-mediated remediation, this review emphasizes how various metallic NPs interact with microbes and plants changing both their activity and that of enzymes, therefore accelerating the remediation process. This work further examines the challenges and possible uses of nanobioremediation, as well as the application of novel technologies in the interactions between bacteria, plants, and NPs for the bioremediation of PHCs. Furthermore, it has been shown that the use of plant-based, microbe-based, microbe-plant-based, and microbe-plant-NP-based techniques to remediate contaminated soils or water bodies is economical and environmentally beneficial. Microbial consortia have been reported as the treasure houses for the cleaning and recovery of hydrocarbon-contaminated environments, and the development of technologies for bioremediation requires an understanding of hydrocarbon degradation mechanisms.
Collapse
Affiliation(s)
- Augustine A Unimke
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, PMB 1115 Calabar, Nigeria E-mail:
| | - Onyemaechi Okezie
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, PMB 1115 Calabar, Nigeria
| | - Sa'adatu E Mohammed
- Department of Chemistry, Faculty of Science, Federal University Dutse, Dutse, Jigawa, Nigeria
| | - Augusta O Mmuoegbulam
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, PMB 1115 Calabar, Nigeria
| | - Saidu Abdullahi
- Department of Botany, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Utibe A Ofon
- Department of Microbiology, University of Uyo, Uyo, Nigeria
| | - Denis M Olim
- Department of Soil Science, University of Calabar, Calabar, Nigeria
| | - Hamza Badamasi
- Department of Chemistry, Faculty of Science, Federal University Dutse, Dutse, Jigawa, Nigeria
| | - Abdulsalam I Galadima
- Department of Physics, Faculty of Physical Sciences, Ahmadu Bello University Zaria, Zaria, Nigeria
| | | | - Aminu Abdullahi
- Department of Biotechnology, Modibbo Adama University Yola, PMB 2076 Yola, Adamawa State, Nigeria
| | - Sharhabil M Yahaya
- Department of Soil Science, Faculty of Agriculture/Institute for Agricultural Research, Ahmadu Bello University Zaria, Zaria, Nigeria
| | | | - Abba B Muhammad
- Department of Mechanical Engineering, University of Maiduguri, Maiduguri, Nigeria
| | - Naseer I Durumin Iya
- Department of Chemistry, Faculty of Science, Federal University Dutse, Dutse, Jigawa, Nigeria
| | - Olushola S Ayanda
- Department of Industrial Chemistry, Federal University Oye-Ekiti, Ekiti, Nigeria
| |
Collapse
|
4
|
Chen J, Hao M, Hou W, Zhang J, Xin Y, Zhu R, Gu Z, Zhang L, Guo X. Self-Assembly-Activated Engineered Magnetic Biohybrids Loaded with Phosphotriesterase for Sustainable Decontamination and Detection of Organophosphorus Pesticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23173-23182. [PMID: 39387801 DOI: 10.1021/acs.jafc.4c06190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Phosphotriesterase (PTE) biodegradation of organophosphorus pesticides (OPs) is an efficient and environmentally friendly method. However, the instability and nonreusability of free PTE become the key factors restricting its practical application. In this study, a novel cross-linked magnetic hybrid nanoflower (CLMNF) was prepared. Molecular dynamics (MD) simulations were performed to further investigate the enhanced catalytic efficiency of the enzymes. The recovery rate of enzyme activity was 298% due to the large specific surface area and metal ion activation effect. More importantly, the immobilization scheme greatly improved the stability and reuse performance of the catalyst and simplified the recovery operation. CLMNFs retained 90.32% relative activity after 5 consecutive cycles and maintained 84.8% relative activity after 30 days at 25 °C. It has a good practical application prospect in the degradation and detection of OPs. Consequently, the immobilized enzyme as a biocatalyst has the characteristics of high efficiency, stability, safety, and easy separation, establishing the key step in a biodetoxification system to control organophosphorus contamination in food and the environment.
Collapse
Affiliation(s)
- Jianxiong Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- JITRI Future Food Technology Research Institute Co., Ltd, Yixing 214200, China
| | - Mengyao Hao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- JITRI Future Food Technology Research Institute Co., Ltd, Yixing 214200, China
| | - Wenjie Hou
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, China
| | - Jingjing Zhang
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, China
| | - Yu Xin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- JITRI Future Food Technology Research Institute Co., Ltd, Yixing 214200, China
| | - Rui Zhu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- JITRI Future Food Technology Research Institute Co., Ltd, Yixing 214200, China
| | - Zhenghua Gu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- JITRI Future Food Technology Research Institute Co., Ltd, Yixing 214200, China
| | - Liang Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- JITRI Future Food Technology Research Institute Co., Ltd, Yixing 214200, China
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
5
|
Li D, Yang C, Li Y, Chen Y, Huang D, Liu Y. Learning a neural network-based soft sensor with double-errors parallel optimization towards effluent variable prediction in wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121907. [PMID: 39047433 DOI: 10.1016/j.jenvman.2024.121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/14/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
With the development of machine learning and artificial intelligence (ML/AI) models, data-driven soft sensors, especially the neural network-based, have widespread utilization for the prediction of key water quality indicators in wastewater treatment plants (WWTPs). However, recent research indicates that the prediction performance and computational efficiency are greatly compromised due to the time-varying, nonlinear and high-dimensional nature of the wastewater treatment process. This paper proposes a neural network-based soft sensor with double-errors parallel optimization to achieve more accurate prediction for effluent variables timely. Firstly, relying on the Activity Based Classification (ABC) principle, an ensemble variable selection method that combines Pearson correlation coefficient (PCC) and mutual information (MI) is introduced to select the optimal process variables as auxiliary variables, thereby reducing the data dimensionality and simplifying the model complexity. Subsequently, a double-errors parallel optimization methodology with minimizing both point prediction error and distribution error simultaneously is proposed, aiming to enhancing the training efficiency and the fitting quality of neural networks. Finally, the effectiveness is quantitatively assessed in two datasets collected from the Benchmark Simulation Model no. 1 (BMS1) and an actual oxidation ditch WWTP. The experimental results illustrate that the proposed soft sensor achieves precise effluent variable prediction, with RMSE, MAE and R2 values being 0.0606, 0.0486, 0.99930, and 0.06939, 0.05381, 0.98040, respectively. Consequently, this soft sensor can expedite the convergence speed in the neural network training process and enhance the prediction performance, thereby contributing to the effective optimization management of WWTPs.
Collapse
Affiliation(s)
- Dong Li
- The School of Automation, Central South University, Changsha, 410083, China.
| | - Chunhua Yang
- The School of Automation, Central South University, Changsha, 410083, China
| | - Yonggang Li
- The School of Automation, Central South University, Changsha, 410083, China
| | - Yan Chen
- The Key Laboratory of Autonomous Systems and Networked Control, Ministry of Education, School of Automation Science & Engineering, South China University of Technology, Wushan Road, Guang Zhou, 510640, China; The School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Daoping Huang
- The Key Laboratory of Autonomous Systems and Networked Control, Ministry of Education, School of Automation Science & Engineering, South China University of Technology, Wushan Road, Guang Zhou, 510640, China
| | - Yiqi Liu
- The Key Laboratory of Autonomous Systems and Networked Control, Ministry of Education, School of Automation Science & Engineering, South China University of Technology, Wushan Road, Guang Zhou, 510640, China.
| |
Collapse
|
6
|
Radhakrishnan K, Suriyaprakash R, Balamurugan S, Kumar JV, Albeshr MF, Mythili R, Srinivasan P, Nunna GP, Ko TJ. Fluorometric detection of copper and imidacloprid using nitrogen-doped graphitic carbon dots: A promising method for environmental monitoring. LUMINESCENCE 2024; 39:e4849. [PMID: 39099225 DOI: 10.1002/bio.4849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/29/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Pesticides in environmental samples pose significant risks to ecosystems and human health since they require precise and efficient detection methods. Imidacloprid (IMI), a widely used neonicotinoid insecticide, exemplifies these hazards due to its potential toxicity. This study addresses the urgent need for improved monitoring of such contaminants by introducing a novel fluorometric method for detecting IMI using nitrogen-doped graphite carbon dots (N-GCDs). The sensor operates by quenching fluorescence through the interaction of Cu2+ ions with N-GCDs. Subsequently, IMI binds to the imidazole group, chelates with Cu2+, and restores the fluorescence of N-GCDs. This alternating fluorescence behavior allows for the accurate identification of both Cu2+ and IMI. The sensor exhibits linear detection ranges of 20-100 nM for Cu2+ and 10-140 μg/L for IMI, with detection limits of 18 nM and 1.2 μg/L, respectively. The high sensitivity of this sensor enables the detection of real-world samples, which underscores its potential for practical use in environmental monitoring and agricultural safety.
Collapse
Affiliation(s)
- Kothalam Radhakrishnan
- Department of Chemistry, Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore, India
| | - Rajadesingu Suriyaprakash
- Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, India
| | - S Balamurugan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Jothi Vinoth Kumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - R Mythili
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - P Srinivasan
- Department of Biotechnology, PGP College of Arts and Science, Namakkal, India
| | - Guru Prakash Nunna
- School of General Education, Yeungnam University, 280 Daehak-ro, Gyeongbuk, Gyeongsan, Republic of Korea
| | - Tae Jo Ko
- School of Mechanical Engineering, College of Engineering, Yeungnam University, Gyeongbuk, Gyeongsan, Republic of Korea
| |
Collapse
|
7
|
Alidoosti F, Giyahchi M, Moien S, Moghimi H. Unlocking the potential of soil microbial communities for bioremediation of emerging organic contaminants: omics-based approaches. Microb Cell Fact 2024; 23:210. [PMID: 39054471 PMCID: PMC11271216 DOI: 10.1186/s12934-024-02485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
The remediation of emerging contaminants presents a pressing environmental challenge, necessitating innovative approaches for effective mitigation. This review article delves into the untapped potential of soil microbial communities in the bioremediation of emerging contaminants. Bioremediation, while a promising method, often proves time-consuming and requires a deep comprehension of microbial intricacies for enhancement. Given the challenges presented by the inability to culture many of these microorganisms, conventional methods are inadequate for achieving this goal. While omics-based methods provide an innovative approach to understanding the fundamental aspects, processes, and connections among microorganisms that are essential for improving bioremediation strategies. By exploring the latest advancements in omics technologies, this review aims to shed light on how these approaches can unlock the hidden capabilities of soil microbial communities, paving the way for more efficient and sustainable remediation solutions.
Collapse
Affiliation(s)
- Fatemeh Alidoosti
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Minoo Giyahchi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Shabnam Moien
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
8
|
Ali SS, Hassan LHS, El-Sheekh M. Microalgae-mediated bioremediation: current trends and opportunities-a review. Arch Microbiol 2024; 206:343. [PMID: 38967670 DOI: 10.1007/s00203-024-04052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
Environmental pollution poses a critical global challenge, and traditional wastewater treatment methods often prove inadequate in addressing the complexity and scale of this issue. On the other hand, microalgae exhibit diverse metabolic capabilities that enable them to remediate a wide range of pollutants, including heavy metals, organic contaminants, and excess nutrients. By leveraging the unique metabolic pathways of microalgae, innovative strategies can be developed to effectively remediate polluted environments. Therefore, this review paper highlights the potential of microalgae-mediated bioremediation as a sustainable and cost-effective alternative to conventional methods. It also highlights the advantages of utilizing microalgae and algae-bacteria co-cultures for large-scale bioremediation applications, demonstrating impressive biomass production rates and enhanced pollutant removal efficiency. The promising potential of microalgae-mediated bioremediation is emphasized, presenting a viable and innovative alternative to traditional treatment methods in addressing the global challenge of environmental pollution. This review identifies the opportunities and challenges for microalgae-based technology and proposed suggestions for future studies to tackle challenges. The findings of this review advance our understanding of the potential of microalgae-based technology wastewater treatment.
Collapse
Affiliation(s)
- Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Lamiaa H S Hassan
- Faculty of Science, Menoufia University, Shebin El-kom, 32511, Egypt
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
9
|
Indira Priyadharsini C, Marimuthu G, Ravichandran R, Albeshr MF, Suganthi S, Mythili R, Kandasamy B, Lee J, Palanisamy G. Exploring the diverse performance of nickel and cobalt spinel ferrite nanoparticles in hazardous pollutant removal and gas sensing performance. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:261. [PMID: 38916678 DOI: 10.1007/s10653-024-01966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/22/2024] [Indexed: 06/26/2024]
Abstract
A simple sol-gel combustion process was employed for the creation of MFe2O4 (M=Ni, Co) nanoparticles. The synthesized nanoparticles, acting as both photocatalysts and gas sensors, were analyzed using various analytical techniques. MFe2O4 (M=Ni, Co) material improved the degradation of methylene blue (MB) under UV-light irradiation, serving as an enhanced electron transport medium. UV-vis studies demonstrated that NiFe2O4 achieved a 60% degradation, while CoFe2O4 nanostructure exhibited a 76% degradation efficacy in the MB dye removal process. Furthermore, MFe2O4 (M=Ni, Co) demonstrated chemosensitive-type sensor capabilities at ambient temperature. The sensor response and recovery times for CoFe2O4 at a concentration of 100 ppm were 15 and 20, respectively. Overall, the synthesis of MFe2O4 (M=Ni, Co) holds the potential to significantly improve the photocatalytic and gas sensing properties, particularly enhancing the performance of CoFe2O4. The observed enhancements make honey MFe2O4 (M=Ni, Co) a preferable choice for environmental remediation applications.
Collapse
Affiliation(s)
- C Indira Priyadharsini
- Department of Physics, Muthayammal College of Arts and Science (Autonomous), Rasipuram, Namakkal, Tamil Nadu, 637408, India
| | - G Marimuthu
- Department of Physics, Mahendra College of Engineering, Salem, Tamil Nadu, 636106, India.
| | - R Ravichandran
- Department of Physics, Chennai Institute of Technology (Autonomous), Chennai, Tamil Nadu, 600069, India
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O. Box. 2455, 11451, Riyadh, Saudi Arabia
| | - Sanjeevamuthu Suganthi
- Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Salem, Tamil Nadu, 636011, India
| | - R Mythili
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Bhuvaneswari Kandasamy
- Department of Physics, Faculty of Science and Humanities, SRM University Delhi-NCR, Sonipat, Haryana, 131029, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Govindasamy Palanisamy
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
10
|
Ebsa G, Gizaw B, Admassie M, Degu T, Alemu T. The role and mechanisms of microbes in dichlorodiphenyltrichloroethane (DDT) and its residues bioremediation. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00835. [PMID: 38560709 PMCID: PMC10972831 DOI: 10.1016/j.btre.2024.e00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
Environmental contamination with dichlorodiphenyltrichloroethane (DDT) has sever effects on the ecosystem worldwide. DDT is a recalcitrant synthetic chemical with high toxicity and lipophilicity. It is also bioaccumulated in the food chain and causes genotoxic, estrogenic, carcinogenic, and mutagenic effects on aquatic organisms and humans. Microbial remediation mechanism and its enzymes are very important for removing DDT from environment. DDT and its main residues dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD) can biodegrade slowly in soil and water. To enhance this process, a number of strategies are proposed, such as bio-attenuation, biostimulation, bioaugmentation and the manipulation of environmental conditions to enhance the activity of microbial enzymes. The addition of organic matter and flooding of the soil enhance DDT degradation. Microbial candidates for DDT remediation include micro-algae, fungi and bacteria. This review provide brief information and recommendation on microbial DDT remediation and its mechanisms.
Collapse
Affiliation(s)
- Girma Ebsa
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P. O. Box: 1176, Addis Ababa, Ethiopia
| | - Birhanu Gizaw
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P. O. Box: 1176, Addis Ababa, Ethiopia
| | - Mesele Admassie
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P. O. Box: 1176, Addis Ababa, Ethiopia
| | - Tizazu Degu
- Department of Crop Protection, Ethiopian Institute of Agricultural Research, P. O. Box: 2003, Addis Ababa, Ethiopia
| | - Tesfaye Alemu
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P. O. Box: 1176, Addis Ababa, Ethiopia
| |
Collapse
|
11
|
Imam A, Suman SK, Vasavdutta S, Chatterjee S, Vempatapu BP, Ray A, Kanaujia PK. Degradation of multiple PAHs and co-contaminants by microbial consortia and their toxicity assessment. Biodegradation 2024; 35:299-313. [PMID: 37792261 DOI: 10.1007/s10532-023-10055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
The anthropogenic activities toward meeting the energy requirements have resulted in an alarming rise in environmental pollution levels. Among pollutants, polycyclic aromatic hydrocarbons (PAHs) are the most predominant due to their persistent and toxic nature. Amidst the several pollutants depuration methods, bioremediation utilizing biodegradation is the most viable alternative. This study investigated the biodegradation efficacy using developed microbial consortium PBR-21 for 2-4 ringed PAHs named naphthalene (NAP), anthracene (ANT), fluorene (FLU), and pyrene (PYR). The removal efficiency was observed up to 100 ± 0.0%, 70.26 ± 4.2%, 64.23 ± 2.3%, and 61.50 ± 2.6%, respectively, for initial concentrations of 400 mg L-1 for NAP, ANT, FLU, and PYR respectively. Degradation followed first-order kinetics with rate constants of 0.39 d-1, 0.10 d-1, 0.08 d-1, and 0.07 d-1 and half-lifet 1 / 2 of 1.8 h, 7.2 h, 8.5 h, and 10 h, respectively. The microbial consortia were found to be efficient towards the co-contaminants with 1 mM concentration. Toxicity examination indicated that microbial-treated PAHs resulted in lesser toxicity in aquatic crustaceans (Artemia salina) than untreated PAHs. Also, the study suggests that indigenous microbial consortia PBR-21 has the potential to be used in the bioremediation of PAH-contaminated environment.
Collapse
Affiliation(s)
- Arfin Imam
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Sonpal Vasavdutta
- CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Shruti Chatterjee
- CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Bhanu Prasad Vempatapu
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India
| | - Anjan Ray
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pankaj K Kanaujia
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Ly NH, Barceló D, Vasseghian Y, Choo J, Joo SW. Sustainable bioremediation technologies for algal toxins and their ecological significance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122878. [PMID: 37967713 DOI: 10.1016/j.envpol.2023.122878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023]
Abstract
The emergence of algal toxins in water ecosystems poses a significant ecological and human health concern. These toxins, produced by various algal species, can lead to harmful algal blooms, and have far-reaching consequences on biodiversity, food chains, and water quality. This review explores the types and sources of algal toxins, their ecological impacts, and the associated human health risks. Additionally, the review delves into the potential of bioremediation strategies to mitigate the effects of algal toxins. It discusses the role of microorganisms, enzymes, and algal-bacterial interactions in toxin removal, along with engineering approaches such as advanced oxidation processes and adsorbent utilization. Microbes and enzymes have been studied for their environmentally friendly and biocompatible properties, which make them useful for controlling or removing harmful algae and their toxins. The challenges and limitations of bioremediation are examined, along with case studies highlighting successful toxin control efforts. Finally, the review outlines future prospects, emerging technologies, and the need for continued research to effectively address the complex issue of algal toxins and their ecological significance.
Collapse
Affiliation(s)
- Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| | - Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona, 08034, Spain; Sustainability Cluster, School of Engineering, UPES, Dehradun, 248007, India
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea.
| |
Collapse
|
13
|
Navia Mendoza JM, Rivadeneira Mendoza BF, Cevallos Mendoza J, Balu AM, Luque R, Zambrano Intriago LA, Rodríguez-Díaz JM. MIL-53(Al)@HC nanohybrid for bicomponent adsorption of ibuprofen and metsulfuron-methyl: Application of macro- and microscopic models and competition between contaminants. ENVIRONMENTAL RESEARCH 2024; 240:117492. [PMID: 37944690 DOI: 10.1016/j.envres.2023.117492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
In this work, a hybrid was synthesized by hydrothermal treatment, metal-organic framework functionalized with hydrochar (MIL-53(Al)@HC) for the adsorption of two organic molecules Ibuprofen sodium salt and Metsulfuron-methyl, in binary system. The hybrid is composed of 71 wt% biomass and 29 wt% MOF. TGA, BET, FTIR, XRD and XPS characterization techniques were used to verify the hybridization of MIL-53(Al)@HC. The MIL-53(Al)@HC hybrid showed in situ MIL-53(Al) crystal growth capability. Batch adsorption experiments were carried out to study the effect of pH, adsorbent dosage, adsorbate concentration, contact time and temperature effect. The results obtained under extreme conditions demonstrate that MIL-53(Al)@HC is an adsorbent capable of removing >98% of IBU and MTM in mixture at a concentration of 0.3 mM (68 ppm IBU and 115 ppm MTM). The pseudo-second order model adequately described the adsorption kinetics and equilibrium using the Sips and Freundlich models. The physico-statistical microscopic model (2-layer) corroborated the hypothesis of a multilayer adsorption proposed by the macroscopic Freundlich model. In the competition study between IBU and MTM, both antagonistic and synergistic effects were observed. In the thermodynamic study, positive values of (ΔH°) indicate that adsorption is endothermic in nature and that the dominant mechanism is physisorption. A mechanism of adsorption by hydrogen bridging and non-covalent π*-π adsorbate-adsorbate and adsorbate-adsorbate-adsorbate interactions was proposed. The desorption study shows that in 5 washing cycles MIL-53(Al)@HC is a recoverable material.
Collapse
Affiliation(s)
- Jennifer María Navia Mendoza
- Facultad de Posgrado, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador; Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Campus de Rabanales, Ctra. Nnal. IV-A, Km 396, E14014, Córdoba, Spain
| | - Bryan Fernando Rivadeneira Mendoza
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Campus de Rabanales, Ctra. Nnal. IV-A, Km 396, E14014, Córdoba, Spain; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador
| | - Jaime Cevallos Mendoza
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador; Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Alina M Balu
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Campus de Rabanales, Ctra. Nnal. IV-A, Km 396, E14014, Córdoba, Spain
| | - Rafael Luque
- Universidad ECOTEC, Km 13.5 Samborondón, Samborondón, EC092302, Ecuador; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya Str., 117198, Moscow, Russian Federation
| | - Luis Angel Zambrano Intriago
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador
| | - Joan Manuel Rodríguez-Díaz
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador; Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador.
| |
Collapse
|
14
|
Onadeji A, Sani BS, Abubakar UA. Response surface methodology optimization of the effect of pH, contact time, and microbial concentration on chemical oxygen removal potential of vegetable oil industrial effluents. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10963. [PMID: 38200640 DOI: 10.1002/wer.10963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024]
Abstract
The vegetable oil refinery industry generates highly polluted effluents during oil production, necessitating proper treatment before discharge to prevent environmental hazards. Treating such wastewater has become a major environmental concern in developing countries. Chemical oxygen demand (COD) is a key parameter in assessing the wastewater's organic pollutant load. High COD levels can lead to reduced dissolved oxygen in water bodies, negatively affecting aquatic life. Various technologies have been employed to treat oily wastewater, but microbial degradation has gained attention due to its potential to remove organic pollutants efficiently. This study aims to optimize the biodegradation treatment process for vegetable oil industrial effluent using response surface methodology (RSM). The wastewater's physicochemical properties were characterized to achieve this, and COD removal was analyzed. Furthermore, RSM was used to investigate the combined effects of pH, contact duration, and microbial concentration on COD removal efficiency. The result showed that the microbial strain used recorded a maximum COD removal of 92%. Furthermore, a quadratic model was developed to predict COD removal based on the experimental variables. From the analysis of variance (ANOVA) analysis, the model was found to be significant at p < 0.0004 and accurately predicted COD removal rates within the experimental region, with an R2 value of 90.99% and adjusted R2 value of 82.89%. Contour plots and statistical analysis revealed the importance of contact duration and microbial concentration on COD removal. PRACTITIONER POINTS: Response surface methodology (RSM) optimization achieved a significant chemical oxygen demand (COD) removal efficiency of 92% in vegetable oil industrial effluents. The study's success in optimizing COD removal using RSM highlights the potential for efficient and environmentally friendly wastewater treatment. Practitioners can benefit from the identified factors (pH, contact time, and microbial concentration) to enhance the operation of treatment systems. The developed predictive model offers a practical tool for plant operators and engineers to tailor wastewater treatment processes. This research underscores the importance of sustainable practices in wastewater treatment, emphasizing the role of microbial degradation in addressing organic pollutant loads.
Collapse
Affiliation(s)
- Abiodun Onadeji
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Zaria, Nigeria
| | - Badruddeen Saulawa Sani
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Zaria, Nigeria
| | - Umar Alfa Abubakar
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
15
|
Zhao T, Liu Y, Wu Y, Zhao M, Zhao Y. Controllable and biocompatible 3D bioprinting technology for microorganisms: Fundamental, environmental applications and challenges. Biotechnol Adv 2023; 69:108243. [PMID: 37647974 DOI: 10.1016/j.biotechadv.2023.108243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/23/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
3D bioprinting is a new 3D manufacturing technology, that can be used to accurately distribute and load microorganisms to form microbial active materials with multiple complex functions. Based on the 3D printing of human cells in tissue engineering, 3D bioprinting technology has been developed. Although 3D bioprinting technology is still immature, it shows great potential in the environmental field. Due to the precise programming control and multi-printing pathway, 3D bioprinting technology provides a high-throughput method based on micron-level patterning for a wide range of environmental microbiological engineering applications, which makes it an on-demand, multi-functional manufacturing technology. To date, 3D bioprinting technology has been employed in microbial fuel cells, biofilm material preparation, microbial catalysts and 4D bioprinting with time dimension functions. Nevertheless, current 3D bioprinting technology faces technical challenges in improving the mechanical properties of materials, developing specific bioinks to adapt to different strains, and exploring 4D bioprinting for intelligent applications. Hence, this review systematically analyzes the basic technical principles of 3D bioprinting, bioinks materials and their applications in the environmental field, and proposes the challenges and future prospects of 3D bioprinting in the environmental field. Combined with the current development of microbial enhancement technology in the environmental field, 3D bioprinting will be developed into an enabling platform for multifunctional microorganisms and facilitate greater control of in situ directional reactions.
Collapse
Affiliation(s)
- Tianyang Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
16
|
Satapute P, De Britto S, Hadimani S, Abdelrahman M, Alarifi S, Govind SR, Jogaiah S. Bacterial chemotaxis of herbicide atrazine provides an insight into the degradation mechanism through intermediates hydroxyatrazine, N-N-isopropylammelide, and cyanuric acid compounds. ENVIRONMENTAL RESEARCH 2023; 237:117017. [PMID: 37652220 DOI: 10.1016/j.envres.2023.117017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
In recent times, the herbicide atrazine (ATZ) has been commonly used before and after the cultivation of crop plants to manage grassy weeds. Despite its effect, the toxic residues of ATZ affect soil fertility and crop yield. Hence, the current study is focused on providing insight into the degradation mechanism of the herbicide atrazine through bacterial chemotaxis involving intermediates responsive to degradation. A bacterium was isolated from ATZ-contaminated soil and identified as Pseudomonas stutzeri based on its morphology, biochemical and molecular characterization. Upon ultra-performance liquid chromatography analysis, the free cells of isolated bacterium strain was found to utilize 174 μg/L of ATZ after 3-days of incubation on a mineral salt medium containing 200 μg/L of ATZ as a sole carbon source. It was observed that immobilized based degradation of ATZ yielded 198 μg/L and 190 μg/L by the cells entrapped with silica beads and sponge, respectively. Furthermore, the liquid chromatography-mass spectroscopy revealed that the secretion of three significant metabolites, namely, cyanuric acid, hydroxyatrazine and N- N-Isopropylammelide is responsive to the biodegradation of ATZ by the bacterium. Collectively, this research demonstrated that bacterium strains are the most potent agent for removing toxic pollutants from the environment, thereby enhancing crop yield and soil fertility with long-term environmental benefits.
Collapse
Affiliation(s)
- Praveen Satapute
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580003, Karnataka, India
| | - Savitha De Britto
- Division of Biological Sciences, School of Science and Technology, University of Goroka, Goroka, 441, Papua New Guinea
| | - Shiva Hadimani
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580003, Karnataka, India
| | | | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580003, Karnataka, India; Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periye (PO), 671316, Kasaragod (DT), Kerala, India.
| |
Collapse
|
17
|
Bostan N, Ilyas N, Akhtar N, Mehmood S, Saman RU, Sayyed RZ, Shatid AA, Alfaifi MY, Elbehairi SEI, Pandiaraj S. Toxicity assessment of microplastic (MPs); a threat to the ecosystem. ENVIRONMENTAL RESEARCH 2023; 234:116523. [PMID: 37422115 DOI: 10.1016/j.envres.2023.116523] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Plastic is now considered part and parcel of daily life due to its extensive usage. Microplastic (MP) pollution is becoming a growing worry and has been ranked as the second most critical scientific problem in the realm of ecology and the environment. Microplastics are smaller in size than the plastic and are more harmful to biotic and as well as abiotic environments. The toxicity of microplastic depends upon its shape and size and increases with an increase in its adsorption capacity and their toxicity. The reason behind their harmful nature is their small size and their large surface area-to-volume ratio. Microplastic can get inside fruits, vegetables, seeds, roots, culms, and leaves. Hence microplastic enters into the food chain. There are different entry points for microplastic to enter into the food chain. Such sources can include polluted food, beverages, spices, plastic toys, and household (packing, cooking, etc.). The concentration of microplastic in terrestrial environments is increasing day by day. Microplastic causes the destruction of soil structure; destroys soil microbiota, cause depletion of nutrients in the soil, and their absorption by plants decreases plant growth. Apart from other environmental problems caused by microplastic, human health is also badly affected by microplastic pollution present in the terrestrial environment. The presence of microplastics in the human body has been confirmed. Microplastic enters into the body of humans in different possible ways. According to their way of entering the body, microplastics cause different diseases in humans. MPs also cause negative effects on the human endocrine system. At the ecosystem level, the impacts of microplastic are interconnected and can disrupt ecological processes. Although recently different papers have been published on several aspects of the microplastic present in the terrestrial environment but there is no complete overview that focus on the interrelationship of MPs in plants, and soil and their effect on higher animals like a human. This review provides a completely detailed overview of existing knowledge about sources, occurrences, transport, and effects of microplastic on the food chain and soil quality and their ecotoxicological effects on plants and humans.
Collapse
Affiliation(s)
- Nageen Bostan
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, 46300, Pakistan.
| | - Noshin Ilyas
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, 46300, Pakistan.
| | - Nosheen Akhtar
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, 46300, Pakistan.
| | - Sabiha Mehmood
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, 46300, Pakistan.
| | - Rafia Urooj Saman
- Department of Botany University of Agriculture Faisalabad, Pakistan.
| | - R Z Sayyed
- Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia.
| | - Ali A Shatid
- Biology Department, Faculty of Science, King Khalid University, Abha, 9004, Saudi Arabia.
| | - Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, 9004, Saudi Arabia.
| | | | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
18
|
Alshammari GM, Al-Ayed MS, Abdelhalim MA, Al-Harbi LN, Qasem AA, Abdo Yahya M. Fabrication of hierarchical flower-like WO 3 nanoparticles for effective metal ions sensing and catalytic degradation of organic dyes. ENVIRONMENTAL RESEARCH 2023; 233:116468. [PMID: 37343748 DOI: 10.1016/j.envres.2023.116468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
In this work, we report on the synthesis of flower-like tungsten oxide nanoparticles (WO3 NPs) using a simple precipitation method. This paper reports a simple method for synthesizing flower-like WO3 NPs, which can be used for environmentally treating hazardous organic pollutants. The photocatalytic degradation of model artificial Orange II and Congo red was assessed under natural sunlight irradiation. The surface morphologies, crystallinity, and binding energy of the synthesized WO3 NPs were determined. The synthesized WO3 NPs exhibited good photodegradation percentages of approximately Orange II (97.6%) and Congo red dye (98.2%) after 120 min of irradiation. Furthermore, the WO3 NPs maintained their degradation ability for up to three cycles. In addition, WO3 NPs were examined in different metal ions sensing (Hg2+, Fe2+, Cu2+, Ni2+, and Cd2+) in an aqueous solution. The results showed that the WO3 NPs exhibited excellent Cd2+ ion sensing. Based on the investigations, WO3 NPs proved to be an efficient photocatalyst and hold promise as the best material for future applications in preventing water pollution.
Collapse
Affiliation(s)
- Ghedeir M Alshammari
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Mohammed S Al-Ayed
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Anwar Abdelhalim
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Akram A Qasem
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
19
|
Ramasundaram S, Manikandan V, Vijayalakshmi P, Devanesan S, Salah MB, Ramesh Babu AC, Priyadharsan A, Oh TH, Ragupathy S. Synthesis and investigation on synergetic effect of activated carbon loaded silver nanoparticles with enhanced photocatalytic and antibacterial activities. ENVIRONMENTAL RESEARCH 2023; 233:116431. [PMID: 37329946 DOI: 10.1016/j.envres.2023.116431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
In this study, we synthesized silver nanoparticle-loaded cashew nut shell activated carbon (Ag/CNSAC). The synthesized samples were characterized by XRD, XPS, SEM with EDS, FT-IR, and BET analysis. The XRD, XPS, and EDS data provided convincing proof that Ag loaded on CNSAC is formed. The energy dispersive spectrum analysis and X-ray diffraction pattern both supported the face-centered cubic and amorphous structures of Ag/CNSAC. The SEM micrographs showed the inner surface development of Ag NPs and many tiny pores in CNSAC. The photodegradation of methylene blue (MB) dye by the Ag/CNSAC photocatalyst was investigated. This effective degradation of MB dye by Ag/CNSAC is attributed to the cooperative action of Ag as a photocatalyst and CNSAC as a catalytic support and adsorbent. In tests with gram-positive and negative bacteria including Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), the as-synthesized Ag/CNSAC showed outstanding antibacterial efficiency. Additionally, this study demonstrates a workable procedure for creating an affordable and efficient Ag/CNSAC for the photocatalytic eradication of organic contaminants.
Collapse
Affiliation(s)
| | - Velu Manikandan
- Department of Food Science and Technology, Seoul Women's University, 621 Hwarangno, Nowon-gu, Seoul, South Korea; Department of Conservative Density and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamilnadu, 600 077, India.
| | - P Vijayalakshmi
- Department of Artificial Intelligence and Data Science, Koneru Lakshmaiah Education Foundation (Deemed to Be University), Vaddeswaram, Guntur District, 522302, Andhra Pradesh, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammed Bin Salah
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, P.O.BOX 60169, Riyadh, 11545, Saudi Arabia
| | - A C Ramesh Babu
- Centre for Applied Research and Development (CARD), NLC India Limited, Neyveli, 607807, Tamil Nadu, India
| | - A Priyadharsan
- Department of Conservative Density and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamilnadu, 600 077, India
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38436, Republic of Korea
| | - S Ragupathy
- Department of Physics, Government Arts and Science College for Women, Karimangalam, Dharmapuri, 635111, Tamil Nadu, India.
| |
Collapse
|
20
|
Mahesh N, Shyamalagowri S, Pavithra MKS, Alodhayb A, Alarifi N, Aravind J, Kamaraj M, Balakumar S. Viable remediation techniques to cleansing wastewaters comprising endocrine-disrupting compounds. ENVIRONMENTAL RESEARCH 2023; 231:116245. [PMID: 37245568 DOI: 10.1016/j.envres.2023.116245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) have recently gained prominence as emerging pollutants due to their significant negative impacts on diverse living forms in ecosystems, including humans, by altering their endocrine systems. EDCs are a prominent category of emerging contaminants in various aquatic settings. Given the growing population and limited access to freshwater resources, their expulsion from aquatic systems is also a severe issue. EDC removal from wastewater depends on the physicochemical properties of the specific EDCs found in each wastewater type and various aquatic environments. Due to these components' chemical, physical, and physicochemical diversity, various approaches based on physical, biological, electrochemical, and chemical procedures have been developed to eliminate them. The objective of this review is to provide the comprehensive overview by selecting recent approaches that showed significant impact on the best available methods for removing EDCs from various aquatic matrices. It is suggested that adsorption by carbon-based materials or bioresources is effective at higher EDC concentrations. Electrochemical mechanization works, but it requires expensive electrodes, continual energy, and chemicals. Due to the lack of chemicals and hazardous byproducts, adsorption and biodegradation are considered environmentally friendly. When combined with synthetic biology and an AI system, biodegradation can efficiently remove EDCs and replace conventional water treatment technologies in the near future. Hybrid in-house methods may reduce EDCs best, depending on the EDC and resources.
Collapse
Affiliation(s)
- Narayanan Mahesh
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed to Be University, Kumbakonam, 612001, Tamil Nadu, India
| | - S Shyamalagowri
- P.G. and Research Department of Botany, Pachaiyappas College, Chennai, 600030, Tamil Nadu, India
| | - M K S Pavithra
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, Tamil Nadu, India
| | - Abdullah Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nahed Alarifi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - J Aravind
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602105, Tamil Nadu, India
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology -Ramapuram Campus, Chennai, 600089, Tamil Nadu, India.
| | - Srinivasan Balakumar
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed to Be University, Kumbakonam, 612001, Tamil Nadu, India.
| |
Collapse
|
21
|
Kumari S, Das S. Bacterial enzymatic degradation of recalcitrant organic pollutants: catabolic pathways and genetic regulations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79676-79705. [PMID: 37330441 DOI: 10.1007/s11356-023-28130-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
Contamination of soil and natural water bodies driven by increased organic pollutants remains a universal concern. Naturally, organic pollutants contain carcinogenic and toxic properties threatening all known life forms. The conventional physical and chemical methods employed to remove these organic pollutants ironically produce toxic and non-ecofriendly end-products. Whereas microbial-based degradation of organic pollutants provides an edge, they are usually cost-effective and take an eco-friendly approach towards remediation. Bacterial species, including Pseudomonas, Comamonas, Burkholderia, and Xanthomonas, have the unique genetic makeup to metabolically degrade toxic pollutants, conferring their survival in toxic environments. Several catabolic genes, such as alkB, xylE, catA, and nahAc, that encode enzymes and allow bacteria to degrade organic pollutants have been identified, characterized, and even engineered for better efficacy. Aerobic and anaerobic processes are followed by bacteria to metabolize aliphatic saturated and unsaturated hydrocarbons such as alkanes, cycloalkanes, aldehydes, and ethers. Bacteria use a variety of degrading pathways, including catechol, protocatechuate, gentisate, benzoate, and biphenyl, to remove aromatic organic contaminants such as polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and pesticides from the environment. A better understanding of the principle, mechanisms, and genetics would be beneficial for improving the metabolic efficacy of bacteria to such ends. With a focus on comprehending the mechanisms involved in various catabolic pathways and the genetics of the biotransformation of these xenobiotic compounds, the present review offers insight into the various sources and types of known organic pollutants and their toxic effects on health and the environment.
Collapse
Affiliation(s)
- Swetambari Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
22
|
You J, Li J, Wang Z, Devanesan S, Farhat K, Kim W, Sivarasan G, Zhang H. Improving the efficiency of metal ions doped Fe 2O 3 nanoparticles: Photocatalyst for removal of organic dye from aqueous media. CHEMOSPHERE 2023:139229. [PMID: 37354953 DOI: 10.1016/j.chemosphere.2023.139229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
The metal ion-based nanocomposite photocatalysts were accepted to exhibit a wide range of photocatalytic and biological applications. In this paper, we synthesize bare Fe2O3, 1 wt% metal (Ag, Co, and Cu) doped Fe2O3 nanoparticles (NPs) using a simple hydrothermal process and wet impregnation method. The as-prepared nanomaterials crystalline structure, shape, optical characteristics, and elemental composition were determined by using X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Energy-dispersive X-ray (EDS) and Transmission electron microscopy (TEM) techniques. Furthermore, the synthesized nanocomposites were utilized as a photosensitizer for the degradation of reactive red (RR120) and orange II (O-II) dyes under sunlight irradiation. The synthesized 1 wt% Ag-Fe2O3 (AgF) NPs samples exhibit a more exceptional catalytic performance of RR120 and O-II dyes (98.32%) within 120 min than the existing Fe2O3, 1 wt% Co-Fe2O3, and Cu-Fe2O3 NPs. The effect of parameters such as exciton formation under solar irradiation, charge recombination rate, and surface charge availability. The metal oxide-doped nanocomposite economic relevance is revealed by their long-term durability and recyclability in photodegradation reactions. The photocatalytic investigations show that the active species O2∙-, HO∙ and h+ play an important role in the dye degradation process. This research might pave the opportunity for the sustainable development of greater photocatalysts for photodegradation and a wide range of environmental applications.
Collapse
Affiliation(s)
- Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Jingjing Li
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Zhiwei Wang
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Karim Farhat
- Department of Urology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| | - Ganesan Sivarasan
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 41349, Taiwan.
| | - Hangzhou Zhang
- Department of Orthopedics; Joint Surgery and Sports Medicine, First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
23
|
Sivarasan G, Manikandan V, Periyasamy S, AlSalhi MS, Devanesan S, Murphin Kumar PS, Pasupuleti RR, Liu X, Lo HM. Iron-engineered mesoporous biocarbon composite and its adsorption, activation, and regeneration approach for removal of paracetamol in water. ENVIRONMENTAL RESEARCH 2023; 227:115723. [PMID: 37003548 DOI: 10.1016/j.envres.2023.115723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/11/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
Three-dimensional multi-porous Iron Oxide/carbon (Fe2O3/C) composites derived from tamarind shell biomass were synthesized by a single-step co-pyrolysis technique and utilized for Paracetamol (PAC) dismissal in the combined adsorption, and advanced oxidation such as electrochemical regeneration techniques. The Fe2O3/C composites were prepared by different pyrolysis temperatures, and named as TS750 (without Fe2O3at 750 °C), MTS450 BCs (Low-450 °C), MTS600 BCs (Moderate-600 °C) and MTS750 BCs (high-750 °C), respectively. As-prepared Fe2O3/C composite was characterized by FE-SEM, XRD, BET, and XPS analysis. The specific surface area and the spatial interaction between the interlayers of Fe2O3 and C were significantly improved by increasing the pyrolysis temperatures from 450 to 750 °C, which improved the adsorption capacity of Fe2O3/C composites in terms of higher rate constants and chemisorption kinetics. The Pseudo-second-order kinetics model fitted in the adsorption test results of Fe2O3/C composites with the highest correlation co-efficiency. The Langmuir-isotherms model fitted in the adsorption test of the TS750 and MTS450 BCs. The Freundlich isotherms model is more fit with MTS600 and MTS750 BCs. Based on the isotherm results, the MTS750 BCs achieved 46.9 mg/g of maximum PAC adsorption capacity. The optimized MTS750 composites could be completely recovered by using an advanced electrochemical oxidation regeneration approach within 180 min. Also, with the adsorption and recovery process, the TOC removal rate improved to ∼79.4%. After the 6th cycle electrochemical oxidation process, the obtained results of the re-adsorption test showed the stabile adsorption activity of the sorbent material. The data outcomes herein propose that this type of combined adsorption and electrochemical approach will be useful in commercial water treatment plants.
Collapse
Affiliation(s)
- Ganesan Sivarasan
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 41349, Taiwan
| | - Velu Manikandan
- Department of Food Science and Technology, Seoul Women's University, 621, Hwarangro, Nowon-gu, Seoul, 01797, Republic of Korea; Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu, 600 077, India
| | - Selvendiran Periyasamy
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600 036, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Raghavendra Rao Pasupuleti
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Xinghui Liu
- Department of Chemistry, Sungkyunkwan University (SKKU), Jangan-Gu, Suwon, 16419, Republic of Korea; School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China.
| | - Huang-Mu Lo
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 41349, Taiwan.
| |
Collapse
|
24
|
Malathy A, Manikandan V, Devanesan S, Farhat K, Priyadharsan A, Ragavendran C, Ragupathy S, Ranjith R, Sivakumar S. Development of biohybrid Ag 2CrO 4/rGO based nanocomposites with stable flotation properties as enhanced Photocatalyst for sewage treatment and antibiotic-conjugated for antibacterial evaluation. Int J Biol Macromol 2023:125303. [PMID: 37311516 DOI: 10.1016/j.ijbiomac.2023.125303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
The proposed research outlines a facile method to synthesize Silver Chromate/reduced graphene oxide nanocomposites (Ag2CrO4/rGO NCs) with a narrow dissemination size for the ecological treatment of hazardous organic dyes. The photodegradation performance toward the decontamination of model artificial methylene blue dye was assessed under solar light irradiation. The crystallinity, particle size, recombination of photogenerated charge carriers, energy gap and surface morphologies of synthesized nanocomposites were determined. The experiment objective is to use rGO nanocomposites to increase Ag2CrO4 photocatalytic efficiency in the solar spectrum. Tauc plots of ultraviolet-visible (UV-vis) spectrum were used to calculate the optical bandgap energy of the produced nanocomposites ~1.52 eV, which resulted in a good photodegradation percentage of ~92 % after 60 min irradiation of Solar light. At the same time, pure Ag2CrO4 and rGO nanomaterials showed ~46 % and ~ 30 %, respectively. The ideal circumstances were discovered by investigating the effects of several parameters, including catalyst loading and different pH levels, on the degradation of dyes. However, the final composites maintain their ability to degrade for up to five cycles. According to the investigations, Ag2CrO4/rGO NCs are an effective photocatalyst and can be used as the ideal material to prevent water pollution. Furthermore, antibacterial efficacy for the hydrothermally synthesized nanocomposite was tested against gram-positive (+ve) bacteria viz. Staphylococcus aureus and gram-negative (-ve) bacteria viz. Escherichia coli. The maximum zone of inhibition for S. aureus and E. coli were 18.5 and 17 mm, respectively.
Collapse
Affiliation(s)
- A Malathy
- Department of Chemistry, E.R.K Arts and Science College, Erumiyampatti, Dharmapuri, Tamilnadu 636 905, India
| | - Velu Manikandan
- Department of Food Science and Technology, Seoul Women's University, 621 Hwarangno, Nowon-gu, Seoul, South Korea
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Karim Farhat
- Department of Urology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - A Priyadharsan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu 600 077, India.
| | - C Ragavendran
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu 600 077, India
| | - S Ragupathy
- Department of Physics, E.R.K Arts and Science College, Erumiyampatti, Dharmapuri, Tamilnadu 636 905, India
| | - R Ranjith
- Department of Physics, KSR College of Engineering, Thiruchengode 637 215, Tamilnadu, India
| | - S Sivakumar
- Department of Chemistry, E.R.K Arts and Science College, Erumiyampatti, Dharmapuri, Tamilnadu 636 905, India.
| |
Collapse
|
25
|
A P, Palanisamy G, L AP, F Albeshr M, Fahad Alrefaei A, Lee J, Liu X. Photocatalytic degradation of organic pollutants and inactivation of pathogens under visible light via SnO 2/rGO composites. CHEMOSPHERE 2023:139102. [PMID: 37290513 DOI: 10.1016/j.chemosphere.2023.139102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
The domains of environmental cleanup and pathogen inactivation are particularly interesting in nanocomposites (NCs) due to their exceptional physicochemical properties. Tin oxide/reduced graphene oxide nanocomposites (SnO2/rGO NCs) have potential uses in the biological and environmental fields, but little is known about them. This study aimed to investigate the photocatalytic activity and antibacterial efficiency of the nanocomposites. The co-precipitation technique was used to prepare all the samples. XRD, SEM, EDS, TEM, and XPS analyses were employed to characterize the physicochemical properties of SnO2/rGO NCs for structural analysis. The rGO loading sample resulted in a decrease in the crystallite size of SnO2 nanoparticles. TEM and SEM images demonstrate the firm adherence of SnO2 nanoparticles to the rGO sheets. The chemical state and elemental composition of the nanocomposites were validated by the XPS and EDS data. Additionally, the visible-light active photocatalytic and antibacterial capabilities of the synthesized nanocomposites were assessed for the degradation of Orange II and methylene blue, as well as the suppression of the growth of S. aureus and E. coli. As a result, the synthesized SnO2/rGO NCs are improved photocatalysts and antibacterial agents, expanding their potential in the fields of environmental remediation and water disinfection.
Collapse
Affiliation(s)
- Priyadharsan A
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600 077, India
| | - Govindasamy Palanisamy
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| | - Arul Pragasan L
- Department of Environmental Sciences, Bharathiar University, Coimbatore, 641 046, India
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O.Box.2455, Riyadh, 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Sciences, King Saud University, P.O.Box.2455, Riyadh, 11451, Saudi Arabia
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Xinghui Liu
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China.
| |
Collapse
|
26
|
Karuppaiyan J, Jeyalakshmi R, Kiruthika S, Wadaan MA, Khan MF, Kim W. A study on the role of surface functional groups of metakaolin in the removal of methylene blue: Characterization, kinetics, modeling and RSM optimization. ENVIRONMENTAL RESEARCH 2023; 226:115604. [PMID: 36934864 DOI: 10.1016/j.envres.2023.115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In this study, thermally activated kaolinite clay is explored as a suitable material for dye removal applications, which gave rise to highly reactive silica species in a broad range of aluminosilicate clusters. Multinuclear NMR studies described it as a short-range network in which Al sites in IV, V, and VI are coordinated, and Si is present mainly as Si(Q4(1Al)). Critical parameters for methylene blue (MB) were determined by the Placket Burman Design (PBD) as initial dye concentration, contact time, adsorbent dosage, pH and size. The % of MB removal studied after optimizing the parameters by central composite design (CCD), based on Response Surface Methodology, was found to be 90%. The adsorption kinetics and thermodynamics were systematically studied and reported by fitting them into different models. The maximum removal of the dye reached 97.8 mg/g according to the Freundlich isotherm, accomplished through chemisorption, following a pseudo-second-order reaction and the process is thermodynamically spontaneous and endothermic. The line spectrum of X-ray photoelectron spectroscopy (XPS) shows the participation of Si, Al, O, Ca and Na of Metakaolin (AK) and nitrogen of MB in the adsorption process. The appropriate stabilization of the N atom of the chromophore on the Si and Al atom in AK resulting from the ionic interaction on the surface is established from an increase in the binding energy of Al and Si. A single bridging oxygen signal at 532.32eVcorresponding to AK after dye adsorption tends to form siloanol/aluminol, and their interaction is lowered to 531.58eV. Regeneration of adsorbent after thermal treatment without loss of efficiency proved.
Collapse
Affiliation(s)
- Janani Karuppaiyan
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - R Jeyalakshmi
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
| | - S Kiruthika
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - Mohammad Ahmad Wadaan
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Farooq Khan
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Woog Kim
- Department of Environmental Engineering, Kyungpook National University, South Korea
| |
Collapse
|
27
|
Mishra P, Kiran NS, Romanholo Ferreira LF, Yadav KK, Mulla SI. New insights into the bioremediation of petroleum contaminants: A systematic review. CHEMOSPHERE 2023; 326:138391. [PMID: 36933841 DOI: 10.1016/j.chemosphere.2023.138391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/16/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Petroleum product is an essential resource for energy, that has been exploited by wide range of industries and regular life. A carbonaceous contamination of marine and terrestrial environments caused by errant runoffs of consequential petroleum-derived contaminants. Additionally, petroleum hydrocarbons can have adverse effects on human health and global ecosystems and also have negative demographic consequences in petroleum industries. Key contaminants of petroleum products, primarily includes aliphatic hydrocarbons, benzene, toluene, ethylbenzene, and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), resins, and asphaltenes. On environmental interaction, these pollutants result in ecotoxicity as well as human toxicity. Oxidative stress, mitochondrial damage, DNA mutations, and protein dysfunction are a few key causative mechanisms behind the toxic impacts. Henceforth, it becomes very evident to have certain remedial strategies which could help on eliminating these xenobiotics from the environment. This brings the efficacious application of bioremediation to remove or degrade pollutants from the ecosystems. In the recent scenario, extensive research and experimentation have been implemented towards bio-benign remediation of these petroleum-based pollutants, aiming to reduce the load of these toxic molecules in the environment. This review gives a detailed overview of petroleum pollutants, and their toxicity. Methods used for degrading them in the environment using microbes, periphytes, phyto-microbial interactions, genetically modified organisms, and nano-microbial remediation. All of these methods could have a significant impact on environmental management.
Collapse
Affiliation(s)
- Prabhakar Mishra
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, 560064, Karnataka, India.
| | - Neelakanta Sarvashiva Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, 560064, Karnataka, India
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, Aracaju, Sergipe, 49032-490, Brazil
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bengaluru, 560064, Karnataka, India.
| |
Collapse
|
28
|
Bharathi D, Dhanasekaran S, Varshini R, Bhuvaneswari S, Periyasami G, Pandiaraj S, Lee J, Ranjithkumar R. Preparation of gallotannin loaded chitosan/zinc oxide nanocomposite for photocatalytic degradation of organic dye and antibacterial applications. Int J Biol Macromol 2023:125052. [PMID: 37245753 DOI: 10.1016/j.ijbiomac.2023.125052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
Chitosan functionalization is a growing field of interest to enhance the unique characteristics of metal oxide nanoparticles. In this study, a facile synthesis method has been used to develop a gallotannin loaded chitosan/zinc oxide (CS/ZnO) nanocomposite. Initially, white color formation confirmed the formation, and physico-chemical natures of the prepared nanocomposite were examined using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). Crystalline of CS amorphous phase and ZnO patterns were demonstrated by XRD. FTIR revealed the presence of CS and gallotannin bio-active groups in the formed nanocomposite. Electron microscopy study exhibited that the produced nanocomposite had an agglomerated sheets like morphology with an average size of 50-130 nm. Further, the produced nanocomposite was assayed for methylene blue (MB) degradation activity from aqueous solution. After 30 min of irradiation, the efficiency of nanocomposite degradation was found to be 96.64 %. Moreover, prepared nanocomposite showed a potential and concentration-dependent antibacterial activity against S. aureus. In conclusion, our findings revealed that prepared nanocomposite can be used as an excellent photocatalyst as well as a bactericidal agent in industrial and clinical sectors.
Collapse
Affiliation(s)
- Devaraj Bharathi
- School of Chemical engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - S Dhanasekaran
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore 028, Tamilnadu, India
| | - R Varshini
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore 028, Tamilnadu, India
| | - S Bhuvaneswari
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore 028, Tamilnadu, India
| | - Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saravanan Pandiaraj
- Department of Self-Devalopment Skills, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jintae Lee
- School of Chemical engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Rajamani Ranjithkumar
- Viyen Biotech LLP, Coimbatore 034, Tamilnadu, India; Department of Biotechnology, Sri Ramakrishna College of Arts and Science, Nava India, Coimbatore 04, Tamilnadu, India.
| |
Collapse
|
29
|
Rajendran K, Ganesan S, Manikandan V, Sivaselvam S, AlSalhi MS, Asemi NN, Angayarkanni J, Rajendiran N, Lo HM. Facile synthesis of carbon/titanium oxide quantum dots from lignocellulose-rich mandarin orange peel extract via microwave irradiation: Synthesis, characterization and bio-imaging application. Int J Biol Macromol 2023; 241:124546. [PMID: 37086766 DOI: 10.1016/j.ijbiomac.2023.124546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
A nanohybrid prepared from the lignocellulosic residue is a feasible approach to synthesize blue light emitting fluorescent doped TiO2 quantum dot nanocomposite (C-TiO2 QDs) by microwave techniques using Mandarin orange (Citrus reticulata) peel powder with titanium isopropoxide precursors. With a greater orange peel colloidal medium, the structure of the TiO2-NPs changed from a mixture of rutile and anatase phases to exclusively the anatase phase. The optical and morphological properties of as-prepared C-TiO2 QDs were characterized by HR-TEM, XRD, FT-IR, UV-visible, PL spectra, DLS, and Zeta potential techniques. The reaction condition was optimized by changing substrate composition, pH, and reaction time. C-TiO2 QDs exhibit outstanding stability at pH 7 and remain sustained for at least 180 days without aggregation. As prepared C-TiO2 QDs have distinct emission and excitation activities with an average particle size of 2.8 nm. Cell viability was performed on normal L929 cells, where it showed excellent biocompatibility (<90 %) even at the concentration of 200 μg/mL after 24 h treatment. Additionally, the synthesized C-TiO2 QDs were used with L929 cells as a fluorescent probe for bio-imaging applications. The results revealed that neither of the cell lines' morphologies had significantly changed, proving the biocompatibility of the synthetic C-TiO2 QDs.
Collapse
Affiliation(s)
- Kalimuthu Rajendran
- Department of Polymer Science, University of Madras, Guindy Campus, Tamilnadu, India
| | - Sivarasan Ganesan
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, Taiwan
| | - Velu Manikandan
- Department of Food Science and Technology, Seoul Women's University, 621 Hwarangno, Nowon-gu, Seoul, South Korea; Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu, 600 077, India
| | - Subramani Sivaselvam
- Bharathiar Cancer Theranostics Research Centre (BCTRC), Bharathiar University, Coimbatore 641 046, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Nassar N Asemi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Jayaraman Angayarkanni
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Nagappan Rajendiran
- Department of Polymer Science, University of Madras, Guindy Campus, Tamilnadu, India.
| | - Huang-Mu Lo
- Department of Polymer Science, University of Madras, Guindy Campus, Tamilnadu, India.
| |
Collapse
|
30
|
Al-Ansari MM, Al-Humaid L, Aldawsari M, Al-Dahmash ND, Selvankumar T, Mythili R. Synergistic role of metal oxide loading cocatalysts on photocatalytic degradation of organic pollutants and inactive bacteria over template-free ZnFe 2O 4 nanocubes. ENVIRONMENTAL RESEARCH 2023; 223:115459. [PMID: 36764432 DOI: 10.1016/j.envres.2023.115459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
For wastewater treatment, a highly reliable and ecologically friendly oxidation method is always preferred. This work described the production of a new extremely effective visible light-driven Ag2Ox loaded ZnFe2O4 nanocomposties photocatalyst using a wet impregnation technique. Under visible light irradiation, the produced Ag2Ox loaded ZnFe2O4 nanocomposties were used in the photodegradation of rhodamine B (RhB) and Reactive Red 120 (RR120) dyes. Analysis using X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy revealed that Ag2Ox nanoparticles were well dispersed on the surface of ZnFe2O4 NPs and that the Ag2Ox loaded ZnFe2O4 NPs were created. When compared with bare ZnFe2O4 NPs, Ag2Ox-loaded ZnFe2O4 nanocomposites showed better photocatalytic activity for RhB and RR120 degradation under visible light (>420 nm) illumination. The reaction kinetics and degradation methodology, in addition to the photocatalytic degradation functions of Ag2Ox-loaded ZnFe2O4 nanocomposites, were thoroughly investigated. The 3 wt% Ag2Ox loaded ZnFe2O4 nanocomposites have a 99% removal efficiency for RhB and RR120, which is about 2.4 times greater than the ZnFe2O4 NPs and simple combination of 1 wt% and 2 wt% Ag2Ox loaded ZnFe2O4 nanocomposites. Furthermore, the 3 wt% Ag2Ox loaded ZnFe2O4 nanocomposites demonstrated consistent performance without decreasing activity throughout 3 consecutive cycles, indicating a potential approach for the photo-oxidative destruction of organic pollutants as well as outstanding antibacterial capabilities. According to the findings of the experiments, produced new nanoparticles are an environmentally friendly, cost-efficient option for removing dyes, and they were successful in suppressing the development of Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Latifah Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Majdoleen Aldawsari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nora Dahmash Al-Dahmash
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - T Selvankumar
- PG & Research Department of Biotechnology, Mahendra Arts & Science College, Kalippatti, 637501, Tamil Nadu, India
| | - R Mythili
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Chennai, 600077, India
| |
Collapse
|
31
|
Chen J, Guo Z, Xin Y, Gu Z, Zhang L, Guo X. Effective remediation and decontamination of organophosphorus compounds using enzymes: From rational design to potential applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161510. [PMID: 36632903 DOI: 10.1016/j.scitotenv.2023.161510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Organophosphorus compounds (OPs) have been widely used in agriculture for decades because of their high insecticidal efficiency, which maintains and increases crop yields worldwide. More importantly, OPs, as typical chemical warfare agents, are a serious concern and significant danger for military and civilian personnel. The widespread use of OPs, superfluous and unreasonable use, has caused great harm to the environment and food chain. Developing efficient and environmentally friendly solutions for the decontamination of OPs is a long-term challenge. Microbial enzymes show potential application as natural and green biocatalysts. Thus, utilizing OP-degrading enzymes for environmental decontamination presents significant advantages, as these enzymes can rapidly hydrolyze OPs; are environmentally friendly, nonflammable, and noncorrosive; and can be discarded safely and easily. Here, the properties, structure and catalytic mechanism of various typical OP-degrading enzymes are reviewed. The methods and effects utilized to improve the expression level, catalytic performance and stability of OP-degrading enzymes were systematically summarized. In addition, the immobilization of OP-degrading enzymes was explicated emphatically, and the latest progress of cascade reactions based on immobilized enzymes was discussed. Finally, the latest applications of OP-degrading enzymes were summarized, including biosensors, nanozyme mimics and medical detoxification. This review provides guidance for the future development of OP-degrading enzymes and promotes their application in the field of environmental bioremediation and medicine.
Collapse
Affiliation(s)
- Jianxiong Chen
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zitao Guo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Xin
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenghua Gu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Liang Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
32
|
Baldisserotto C, Demaria S, Arcidiacono M, Benà E, Giacò P, Marchesini R, Ferroni L, Benetti L, Zanella M, Benini A, Pancaldi S. Enhancing Urban Wastewater Treatment through Isolated Chlorella Strain-Based Phytoremediation in Centrate Stream: An Analysis of Algae Morpho-Physiology and Nutrients Removal Efficiency. PLANTS (BASEL, SWITZERLAND) 2023; 12:1027. [PMID: 36903888 PMCID: PMC10004828 DOI: 10.3390/plants12051027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The release of inadequately treated urban wastewater is the main cause of environmental pollution of aquatic ecosystems. Among efficient and environmentally friendly technologies to improve the remediation process, those based on microalgae represent an attractive alternative due to the potential of microalgae to remove nitrogen (N) and phosphorus (P) from wastewaters. In this work, microalgae were isolated from the centrate stream of an urban wastewater treatment plant and a native Chlorella-like species was selected for studies on nutrient removal from centrate streams. Comparative experiments were set up using 100% centrate and BG11 synthetic medium, modified with the same N and P as the effluent. Since microalgal growth in 100% effluent was inhibited, cultivation of microalgae was performed by mixing tap-freshwater with centrate at increasing percentages (50%, 60%, 70%, and 80%). While algal biomass and nutrient removal was little affected by the differently diluted effluent, morpho-physiological parameters (FV/FM ratio, carotenoids, chloroplast ultrastructure) showed that cell stress increased with increasing amounts of centrate. However, the production of an algal biomass enriched in carotenoids and P, together with N and P abatement in the effluent, supports promising microalgae applications that combine centrate remediation with the production of compounds of biotechnological interest; for example, for organic agriculture.
Collapse
Affiliation(s)
- Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Sara Demaria
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Michela Arcidiacono
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Elisa Benà
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Pierluigi Giacò
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Roberta Marchesini
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Lorenzo Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Linda Benetti
- HERA SpA—Direzione Acqua, Via C. Diana, 40, Cassana, 44044 Ferrara, Italy
| | - Marcello Zanella
- HERA SpA—Direzione Acqua, Via C. Diana, 40, Cassana, 44044 Ferrara, Italy
| | - Alessio Benini
- HERA SpA—Direzione Acqua, Via C. Diana, 40, Cassana, 44044 Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
- Terra&Acqua Tech Laboratory, Technopole of the University of Ferrara, Via Saragat, 13, 44122 Ferrara, Italy
| |
Collapse
|
33
|
Ghosh S, Rusyn I, Dmytruk OV, Dmytruk KV, Onyeaka H, Gryzenhout M, Gafforov Y. Filamentous fungi for sustainable remediation of pharmaceutical compounds, heavy metal and oil hydrocarbons. Front Bioeng Biotechnol 2023; 11:1106973. [PMID: 36865030 PMCID: PMC9971017 DOI: 10.3389/fbioe.2023.1106973] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
This review presents a comprehensive summary of the latest research in the field of bioremediation with filamentous fungi. The main focus is on the issue of recent progress in remediation of pharmaceutical compounds, heavy metal treatment and oil hydrocarbons mycoremediation that are usually insufficiently represented in other reviews. It encompasses a variety of cellular mechanisms involved in bioremediation used by filamentous fungi, including bio-adsorption, bio-surfactant production, bio-mineralization, bio-precipitation, as well as extracellular and intracellular enzymatic processes. Processes for wastewater treatment accomplished through physical, biological, and chemical processes are briefly described. The species diversity of filamentous fungi used in pollutant removal, including widely studied species of Aspergillus, Penicillium, Fusarium, Verticillium, Phanerochaete and other species of Basidiomycota and Zygomycota are summarized. The removal efficiency of filamentous fungi and time of elimination of a wide variety of pollutant compounds and their easy handling make them excellent tools for the bioremediation of emerging contaminants. Various types of beneficial byproducts made by filamentous fungi, such as raw material for feed and food production, chitosan, ethanol, lignocellulolytic enzymes, organic acids, as well as nanoparticles, are discussed. Finally, challenges faced, future prospects, and how innovative technologies can be used to further exploit and enhance the abilities of fungi in wastewater remediation, are mentioned.
Collapse
Affiliation(s)
- Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa,*Correspondence: Soumya Ghosh, ,
| | - Iryna Rusyn
- Department of Ecology and Sustainaible Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Lviv, Ukraine
| | - Olena V. Dmytruk
- Institute of Cell Biology NAS of Ukraine, Lviv, Ukraine,Institute of Biology and Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Kostyantyn V. Dmytruk
- Institute of Cell Biology NAS of Ukraine, Lviv, Ukraine,Institute of Biology and Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Marieka Gryzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Yusufjon Gafforov
- Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan,AKFA University, Tashkent, Uzbekistan
| |
Collapse
|
34
|
Bolan S, Padhye LP, Mulligan CN, Alonso ER, Saint-Fort R, Jasemizad T, Wang C, Zhang T, Rinklebe J, Wang H, Siddique KHM, Kirkham MB, Bolan N. Surfactant-enhanced mobilization of persistent organic pollutants: Potential for soil and sediment remediation and unintended consequences. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130189. [PMID: 36265382 DOI: 10.1016/j.jhazmat.2022.130189] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
This review aims to provide an overview of the sources and reactions of persistent organic pollutants (POPs) and surfactants in soil and sediments, the surfactant-enhanced solubilisation of POPs, and the unintended consequences of surfactant-induced remediation of soil and sediments contaminated with POPs. POPs include chemical compounds that are recalcitrant to natural degradation through photolytic, chemical, and biological processes in the environment. POPs are potentially toxic compounds mainly used in pesticides, solvents, pharmaceuticals, or industrial applications and pose a significant and persistent risk to the ecosystem and human health. Surfactants can serve as detergents, wetting and foaming compounds, emulsifiers, or dispersants, and have been used extensively to promote the solubilization of POPs and their subsequent removal from environmental matrices, including solid wastes, soil, and sediments. However, improper use of surfactants for remediation of POPs may lead to unintended consequences that include toxicity of surfactants to soil microorganisms and plants, and leaching of POPs, thereby resulting in groundwater contamination.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Catherine N Mulligan
- Department of Bldg, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Emilio Ritore Alonso
- Departamento de Ingeniería Química y Ambiental, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos, s/n, 41092 Sevilla, Spain
| | - Roger Saint-Fort
- Department of Environmental Science, Faculty of Science & Technology, Mount Royal University, Calgary, AB T3E6K6, Canada
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Chensi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - Kadambot H M Siddique
- UWA institute of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; UWA institute of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia.
| |
Collapse
|
35
|
Benatti ALT, Polizeli MDLTDM. Lignocellulolytic Biocatalysts: The Main Players Involved in Multiple Biotechnological Processes for Biomass Valorization. Microorganisms 2023; 11:microorganisms11010162. [PMID: 36677454 PMCID: PMC9864444 DOI: 10.3390/microorganisms11010162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023] Open
Abstract
Human population growth, industrialization, and globalization have caused several pressures on the planet's natural resources, culminating in the severe climate and environmental crisis which we are facing. Aiming to remedy and mitigate the impact of human activities on the environment, the use of lignocellulolytic enzymes for biofuel production, food, bioremediation, and other various industries, is presented as a more sustainable alternative. These enzymes are characterized as a group of enzymes capable of breaking down lignocellulosic biomass into its different monomer units, making it accessible for bioconversion into various products and applications in the most diverse industries. Among all the organisms that produce lignocellulolytic enzymes, microorganisms are seen as the primary sources for obtaining them. Therefore, this review proposes to discuss the fundamental aspects of the enzymes forming lignocellulolytic systems and the main microorganisms used to obtain them. In addition, different possible industrial applications for these enzymes will be discussed, as well as information about their production modes and considerations about recent advances and future perspectives in research in pursuit of expanding lignocellulolytic enzyme uses at an industrial scale.
Collapse
|
36
|
Birolli WG, da Silva BF, Rodrigues Filho E. Biodegradation of the pyrethroid cypermethrin by bacterial consortia collected from orange crops. ENVIRONMENTAL RESEARCH 2022; 215:114388. [PMID: 36152890 DOI: 10.1016/j.envres.2022.114388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Pyrethroids, such as cypermethrin (CYP), are widely employed in agriculture, promoting environmental pollution and the need for efficient decontamination methods. In this study, bacteria from orange crops were explored for CYP biodegradation. Among 40 tested bacterial strains, 20 grew in the presence of CYP and 19 performed statistically significant CYP biodegradation in 5 days (20.5%-97.8%). In addition, 3-phenoxybenzoic acid, the main metabolite from CYP, was quantified ranging from 1.1 mg.L-1 to 32.1 mg.L-1. The five most efficient strains, and consortia composed of 5, 10 and 20 bacteria biodegraded the CYP formulation as sole carbon source in phosphate buffer and in minimum mineral medium. Under optimized conditions determined employing Response Surface Methodology, Bacillus sp. CSA-1 and the consortium composed of 10 strains biodegraded 71.0% and 71.6% CYP in 24 h, respectively. Moreover, metabolite identification enabled the proposal of an extended biodegradation pathway with 29 identified compounds, including different new amide and amine derivatives that expanded the knowledge about the fate of this compound in the environment. Experiments of bioaugmentation in soil using Bacillus sp. CSA-1 and the consortium of 10 bacterial strains resulted in faster CYP biodegradation than natural attenuation, showing that the selection of efficient strains for composing a consortium is an interesting approach for bioremediation of pyrethroids.
Collapse
Affiliation(s)
- Willian Garcia Birolli
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, km 235, 13.565-905, P.O. Box 676, São Carlos, SP, Brazil.
| | - Bianca Ferreira da Silva
- Institute of Chemistry, Department of Analytical Chemistry, São Paulo State University (UNESP), 14800-060, P.O. Box 355, Araraquara, SP, Brazil
| | - Edson Rodrigues Filho
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, km 235, 13.565-905, P.O. Box 676, São Carlos, SP, Brazil.
| |
Collapse
|
37
|
Goveas LC, Selvaraj R, Vinayagam R, Alsaiari AA, Alharthi NS, Sajankila SP. Nitrogen dependence of rhamnolipid mediated degradation of petroleum crude oil by indigenous Pseudomonas sp. WD23 in seawater. CHEMOSPHERE 2022; 304:135235. [PMID: 35675868 DOI: 10.1016/j.chemosphere.2022.135235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/17/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Effect of oil spills on living forms demands for safe, ecofriendly and cost-effective methods to repair the damage. Pseudomonads have exceptional tolerance to xenobiotics and can grow at varied environmental conditions. This study aims at biosurfactant mediated degradation of petroleum crude oil by an indigenous Pseudomonas sp. WD23 in sea water. Pseudomonas sp. WD23 degraded 34% of petroleum crude oil (1.0% v/v) on supplementation of yeast extract (0.05 g/L) with glucose (1.0 g/L) in seawater. The strain produced a biosurfactant which was confirmed as a rhamnolipid (lipid: rhamnose 1:3.35) by FT-IR, LCMS and quantitative analysis. Produced rhamnolipid had low CMC (20.0 mg/L), emulsified petroleum oils (75-80%) and had high tolreance to varied conditions of pH, temperature and ionic strength. OFAT studies were performed to analyse the effect of petroleum crude oil, glucose, inoculum, yeast extract, pH, agitation speed and incubation time on degradation by Pseudomonas sp. WD23. Petroleum crude oil and glucose had significant effect on biodegradation, rhamnolipid production and growth, further optimized by central composite design. At optimum conditions of 3.414% v/v PCO and 6.53 g/L glucose, maximum degradation of 81.8 ± 0.67% was observed at pH 7.5, 100 RPM, 15.0% v/v inoculum in 28 days, with a 3-fold increase in biodegradation. GCMS analysis revealed degradation (86-100%) of all low and high molecular weight hydrocarbons present in petroleum crude oil. Hence, the strain Pseudomonas sp. WD23 can be effectively developed for management of oil spills in seas and oceans due to its excellent degradation abilities.
Collapse
Affiliation(s)
- Louella Concepta Goveas
- Department of Biotechnology Engineering, NMAM Institute of Technology-Affiliated to NITTE (Deemed to be University), Nitte, Karnataka, 574110, India.
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ahad Amer Alsaiari
- College of Applied Medical Science, Clinical Laboratories Science Department, Taif University, Saudi Arabia
| | - Nahed S Alharthi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shyama Prasad Sajankila
- Department of Biotechnology Engineering, NMAM Institute of Technology-Affiliated to NITTE (Deemed to be University), Nitte, Karnataka, 574110, India
| |
Collapse
|
38
|
Venkatesan A, Al-Onazi WA, Elshikh MS, Pham TH, Suganya S, Boobas S, Priyadharsan A. Study of synergistic effect of cobalt and carbon codoped with TiO 2 photocatalyst for visible light induced degradation of phenol. CHEMOSPHERE 2022; 305:135333. [PMID: 35709834 DOI: 10.1016/j.chemosphere.2022.135333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In this work, we reported synthesis of cobalt and carbon codoped TiO2 (Co-C-TiO2) nanoparticles were prepared using co-precipitation technique. The synthesized catalysts are analyzed by various methods. The powder XRD pattern confirmed that all the samples were polycrystalline of anatase phase and particle size of resultant nanoparticle was reduced correlated with bare TiO2 sample. FTIR measurements exhibit the identification of functional groups present at the surface of TiO2. FESEM micrograph showed that the shape of codoped TiO2 nanoparticles are approximately sphere. The attained energy gap of Co doped and C codoping of TiO2 modifies to a level below the energy gap of TiO2 anatase specifying a high capability to absorb visible light. The recombination rate of photo-induced electrons and holes for Co-C codoped TiO2 nanoparticles is significantly reduced. The synthesized samples are assessed in degradation of phenol by the illumination of visible light. The results confirmed that photocatalytic activity enhanced due to doping and codoping of Co and C. As a result, Co-C codoped TiO2 nanoparticles exhibited a higher visible-light photocatalytic activity in compared with Co-TiO2 and bare TiO2 with the maximum degradation efficiency of 98, 75 and 15%, respectively. And also, the reusability of the catalyst was proved when 95% degradation could be achieved after consecutive batches. It is predictable that this work will provide new insights to increase the visible light active photocatalysts for environmental problems.
Collapse
Affiliation(s)
- A Venkatesan
- Department of Physics, Annai College of Arts and Sciences (Affiliated to Bharthidasan University), Trichy, Kovilacheri, Kumbakonam, 612503, Tamilnadu, India
| | - Wedad A Al-Onazi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Thi Huong Pham
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, 13120, South Korea
| | - S Suganya
- Department of Physics, NKR Government Arts College for Women, Namakkal, 637001, Tamilnadu, India
| | - S Boobas
- Department of Physics, Sri Vasavi College, Bhavani, 638301, Tamilnadu, India.
| | - A Priyadharsan
- Department of Physics, E.R.K Arts and Science College, Dharmapuri, 636905, Tamilnadu, India.
| |
Collapse
|
39
|
Balu S, Bhunia S, Gachhui R, Mukherjee J. Polycyclic aromatic hydrocarbon sequestration by intertidal phototrophic biofilms cultivated in hydrophobic and hydrophilic biofilm-promoting culture vessels. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129318. [PMID: 35749894 DOI: 10.1016/j.jhazmat.2022.129318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/24/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Phototrophic biofilms collected from intertidal sediments of the world's largest tidal mangrove forest were cultured in two sets of a biofilm-promoting culture vessel having hydrophilic glass surface and hydrophobic polymethyl methacrylate surface wherein 16 priority polycyclic aromatic hydrocarbons (PAHs) were spiked. Biofilms from three locations of the forest were most active in sequestering 98-100% of the spiked pollutants. PAH challenge did not alter the biofilm phototrophic community composition; rather biofilm biomass production and synthesis of photosynthetic pigments and extracellular polymeric substances (EPS) were enhanced. Photosynthetic pigment and EPS synthesis were sensitive to vessel-surface property. The lowest mean residual amounts of PAHs in the liquid medium as well as inside the biofilm were recorded in the very biofilm cultivated in the hydrophobic flask where highest values of biofilm biomass, total chlorophyll, released polysaccharidic (RPS) carbohydrates, RPS uronic acids, capsular polysaccharidic (CPS) carbohydrates, CPS proteins, CPS uronic acids and EPS hydrophobicity were obtained. Ratios of released RPS proteins: polysaccharides increased during PAH sequestration whereas the ratios of CPS proteins: polysaccharides remained constant. Efficacious PAH removal by the overlying phototrophic biofilm will reduce the entry of these contaminants in the sediments underneath and this strategy could be a model for "monitored natural recovery".
Collapse
Affiliation(s)
- Saranya Balu
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Shantanu Bhunia
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Ratan Gachhui
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India.
| | - Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|