1
|
Gao X, Li W, Liu Y, Sun H, Wang H, Wang Y. Simultaneous degradation of organoarsenic and immobilization of arsenate by an electroactive CuFe 2O 4-CNT/peroxymonosulfate platform: Insights into the distinct roles of the Cu and Fe sites. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136952. [PMID: 39721474 DOI: 10.1016/j.jhazmat.2024.136952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Phenylarsonic acid (PAA) compounds, widely used in animal husbandry, pose a considerable environmental threat owing to their potential transformation into toxic inorganic arsenic species. To efficiently decontaminate PAA and adsorb secondary As(V), a hybrid CuFe2O4-modified carbon nanotube (CuFe2O4-CNT) filter was developed in this study. The hybrid CuFe2O4-CNT filter functioned as an effective catalyst, convective filtration medium, electrode, and adsorbent. Moreover, it removed 97 % PAA within 80 min in circulation mode under optimal conditions (25 °C, pH0 = 7, peroxymonosulfate [PMS] = 1.5 mM, and voltage = 1.0 V), with a total As removal efficiency of 94 %. Experimental and theoretical studies showed that the (100) and (211) planes of CuFe2O4-CNT contributed to PMS activation and As(V) adsorption, respectively. Quantum chemical calculations and high-performance liquid chromatography-mass spectrometry analysis determined the energy barriers for reactions between the transient state and SO4•- and HO•, based on which potential PAA degradation pathways were proposed. Additionally, the negligible loss of efficiency in practical water samples and acceptable leached metal ion concentrations (Cu < 0.1 mg/L and Fe < 0.15 mg/L) confirmed the reusability and stability of the filter. This study provides a promising strategy for organoarsenic decontamination by combining electrocatalytic PMS oxidation and filtration techniques.
Collapse
Affiliation(s)
- Xin Gao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Wenxiang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hao Sun
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Jilin 130024, China
| | - Haitao Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Yi Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
2
|
Zheng X, Guo C, Lv Z, Li J, Jiang H, Li S, Yu L, Zhang Z. Novel findings from arsenic‑lead combined exposure in mouse testicular TM4 Sertoli cells based on transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169611. [PMID: 38157908 DOI: 10.1016/j.scitotenv.2023.169611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Arsenic (As) and lead (Pb) exist widespread in daily life, and they are common harmful substances in the environment. As and Pb pollute the environment more often in combination than in isolation. The TM4 Sertoli cell line is one of the most common normal mouse testicular Sertoli cell lines. In vitro, we found that the type of combined action of As and Pb on TM4 Sertoli cells was additive action by using the isobologram analysis. To further investigate the combined toxicity of As and Pb, we performed mRNA and miRNA sequencing on TM4 Sertoli cells exposed to As alone (4 μM NaAsO2) and AsPb combined (4 μM NaAsO2 and 150 μM PbAc), respectively. Compared with the control group, 1391 differentially expressed genes (DEGs) and 6 differentially expressed miRNAs (DEMs) were identified in the As group. Compared with the control group, 2384 DEGs and 44 DEMs were identified in the AsPb group. Compared with the As group, 387 DEGs and 4 DEMs were identified in the AsPb group. Through data analysis, we discovered for the first time that As caused the dysfunction of cholesterol synthesis and energy metabolism, and disrupted cyclic adenosine monophosphate signaling pathway and wingless/integrated (Wnt) signaling pathway in TM4 Sertoli cells. In addition to affecting cholesterol synthesis and energy metabolism, AsPb combined exposure also up-regulated the antioxidant reaction level of TM4 Sertoli cells. Meanwhile, the Wnt signaling pathway of TM4 Sertoli cells was relatively normal when exposed to AsPb. In conclusion, at the transcription level, the combined action of AsPb is not merely additive effect, but involves synergistic and antagonistic effects. The new discovery of the joint toxic mechanism of As and Pb breaks the stereotype of the combined action and provides a good theoretical basis and research clue for future study of the combined-exposure of harmful materials.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Changming Guo
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lu Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Ali M, Farhat SM, Haleem A. Metabolic Carcinogenesis. Cancer Treat Res 2024; 191:33-55. [PMID: 39133403 DOI: 10.1007/978-3-031-55622-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Several types of environmental, chemical and metabolic carcinogens exist both exogenously and endogenously. Humans are daily exposed to aforementioned carcinogens through various sources such as through water, air and food or through metabolic and inflammatory products. This chapter will summarize the links between exogenous and endogenous carcinogen exposure and their metabolism with the cancer pathogenesis and associated risks. This chapter will also cover the carcinogens acquired through lifestyle factors like tobacco use and occupational exposures to different chemicals like asbestos, arsenic, chloroform, vinyl chloride, etc. Moreover, environmental carcinogens such as radiation, sunlight, diet, smoke, etc. will also be discussed in this chapter. Furthermore, there are certain carcinogens that require bio-activation and various human enzymes that play a vital role in the metabolic carcinogenesis will also be recapitulated. Necessary preventive measures against carcinogenic exposure from the exogenous environment are significant to be taken into account to reduce the risks associated with the carcinogens.
Collapse
Affiliation(s)
- Mahwish Ali
- National University of Medical Sciences, Rawalpindi, Pakistan.
| | | | | |
Collapse
|
4
|
Domene A, Orozco H, Rodríguez-Viso P, Monedero V, Zúñiga M, Vélez D, Devesa V. Impact of Chronic Exposure to Arsenate through Drinking Water on the Intestinal Barrier. Chem Res Toxicol 2023; 36:1731-1744. [PMID: 37819996 PMCID: PMC10726480 DOI: 10.1021/acs.chemrestox.3c00201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Indexed: 10/13/2023]
Abstract
Chronic exposure to inorganic arsenic (As) [As(III) + As(V)], which affects millions of people, increases the incidence of some kinds of cancer and other noncarcinogenic pathologies. Although the oral pathway is the main source of exposure, in vivo studies conducted to verify the intestinal toxicity of this metalloid are scarce and are mainly focused on evaluating the toxicity of As(III). The aim of this study was to evaluate the effect of chronic exposure (6 months) of BALB/c mice to As(V) (15-60 mg/L) via drinking water on the different components of the intestinal barrier and to determine the possible mechanisms involved. The results show that chronic exposure to As(V) generates a situation of oxidative stress (increased lipid peroxidation and reactive species) and inflammation (increased contents of several proinflammatory cytokines and neutrophil infiltrations) in the intestinal tissues. There is also evidence of an altered expression of constituent proteins of the intercellular junctions (Cldn1, Cldn3, and Ocln) and the mucus layer (Muc2) and changes in the composition of the gut microbiota and the metabolism of short-chain fatty acids. All of these toxic effects eventually may lead to the disruption of the intestinal barrier, which shows an increased paracellular permeability. Moreover, signs of endotoxemia are observed in the serum of As(V)-treated animals (increases in lipopolysaccharide-binding protein LBP and the proinflammatory cytokine IL-1β). The data obtained suggest that chronic exposure to As(V) via drinking water affects the intestinal environment.
Collapse
Affiliation(s)
- Adrián Domene
- Instituto de Agroquímica
y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980 Paterna, Spain
| | - Helena Orozco
- Instituto de Agroquímica
y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980 Paterna, Spain
| | - Pilar Rodríguez-Viso
- Instituto de Agroquímica
y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980 Paterna, Spain
| | - Vicente Monedero
- Instituto de Agroquímica
y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980 Paterna, Spain
| | - Manuel Zúñiga
- Instituto de Agroquímica
y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980 Paterna, Spain
| | - Dinoraz Vélez
- Instituto de Agroquímica
y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980 Paterna, Spain
| | - Vicenta Devesa
- Instituto de Agroquímica
y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980 Paterna, Spain
| |
Collapse
|
5
|
Rao G, Zhong G, Hu T, Wu S, Tan J, Zhang X, Huang R, Tang Z, Hu L. Arsenic Trioxide Triggers Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis via Nrf 2/Caspase 3 Signaling Pathway in Heart of Ducks. Biol Trace Elem Res 2023; 201:1407-1417. [PMID: 35366752 DOI: 10.1007/s12011-022-03219-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Arsenic is a common environmental pollutant and poses a serious threat to human and animal health. In this study, we used the ducks to mimic arsenic trioxide (ATO) exposure and investigated the mechanism of cardiac toxicity. The results indicated that ATO inhibited the body and organ growth of ducks, led to an increase in LDH content, and caused obvious deformity, ischemia infarction. It is found that ATO exacerbated the swell of mitochondrial and the contraction of cell nuclei in the heart of ducks through transmission electron microscopy (TEM). ATO also induced an increase in MDA content; inhibited the activation of the Nrf 2 pathway; downregulated the expression of mRNA and protein of Nrf 2, HO-1, and SOD-1; and upregulated the expression of mRNA and protein of Keap 1. At the same time, ATO induced apoptosis which not only upregulated the expression levels of mRNA and proteins (Caspase 3, Cyt-C, P53, Bax) but also decreased the mRNA and protein expression level of Bcl-2. These results indicated that ATO can lead to oxidative stress and apoptosis in the heart of ducks. In general, our research shows that ATO triggers mitochondrial dysfunction, oxidative stress, and apoptosis via Nrf 2/Caspase 3 signaling pathway in the heart of ducks.
Collapse
Affiliation(s)
- Gan Rao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ting Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shaofeng Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiajia Tan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Li C, Bundschuh J, Gao X, Li Y, Zhang X, Luo W, Pan Z. Occurrence and behavior of arsenic in groundwater-aquifer system of irrigated areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155991. [PMID: 35588806 DOI: 10.1016/j.scitotenv.2022.155991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Groundwater arsenic pollution has received much attention worldwide for decades as a serious threat to public health, but the mechanisms responsible for arsenic mobilization are not fully understood. Groundwater and bore drilling sediment samples from Qiji county, a small geographical agricultural area with endemic arsenicosis, are collected for demonstrating the occurrence and speciation of arsenic in groundwater and sediments, and arsenic release between solid-liquid phase influenced by human activities. Results show that arsenic concentrations in groundwater vary from 5 μg/L to 19.6 μg/L, with 80% exceeding the maximum permissible limits required by WHO (10 μg/L) for drinking water and therefore constituting a health risk for humans. In a weak oxidizing environment (oxidation-reduction potential (ORP): 12.9 mV-151 mV), inorganic As(V) accounts for 85% of total dissolved As, which to some extent alleviates the harm of As pollution on humans. Total As content in the sediments is in the range of 6.98 mg/kg and 14.34 mg/kg (median of 10.71 mg/kg), three times higher than the average value of many countries. Sequential chemical leaching indicates that 11% of arsenic in sediments is labile bound and may be closely related to the arsenic in groundwater. Additionally, irrigation intensity contributes to arsenic release with diverse As3+/As5+ by dissolving weakly bound arsenic rapidly. Subsequently part of As(III) is oxidized to As(V). Competitive and/or alkaline desorption of As(V), which had been adsorbed by FeMn (hydrous)-oxides and carbonates in the unsaturated zone and the aquifer, exerts a significant role in releasing arsenic into the groundwater. Our study indicates that systematic management and regulation of irrigation intensity are required to prevent further deterioration of groundwater resources.
Collapse
Affiliation(s)
- Chengcheng Li
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Xubo Gao
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China.
| | - Yong Li
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| | - Xin Zhang
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| | - Wenting Luo
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| | - Zhendong Pan
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, China
| |
Collapse
|
7
|
Gunasekaran BM, Rayappan JBB, Rajendran GK, Gopalakrishnan G, Nesakumar N, Muthiah S, Sivanesan JR. Electrochemical Sensing of Arsenic Ions Using a Covalently Functionalized Benzotriazole‐Reduced Graphene Oxide‐Modified Screen‐Printed Carbon Electrode. ChemistrySelect 2022. [DOI: 10.1002/slct.202201169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Balu Mahendran Gunasekaran
- PG and Research Department of Chemistry A.V.V.M Sri Pushpam College (Autonomous) Affiliated to Bharathidasan University Tiruchirappalli Poondi Thanjavur 613 503 Tamil Nadu India
| | - John Bosco Balaguru Rayappan
- School of Electrical & Electronics Engineering SASTRA Deemed to be University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed to be University Thanjavur 613 401 Tamil Nadu India
| | - Ganesh Kumar Rajendran
- PG and Research Department of Chemistry Pachaiyappa's College Chennai 600 030 Tamil Nadu India
| | - Gopu Gopalakrishnan
- Department of Industrial Chemistry Alagappa University Karaikudi 630 003 Tamil Nadu India
| | - Noel Nesakumar
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed to be University Thanjavur 613 401 Tamil Nadu India
- School of Chemical & Biotechnology SASTRA Deemed to be University Thanjavur 613 401 Tamil Nadu India
| | - Senthilkumar Muthiah
- Department of Chemistry Alagappa Chettiar Government College of Engineering and Technology Karaikudi 630 003 Tamil Nadu India
| | - Jothi Ramalingam Sivanesan
- PG and Research Department of Chemistry A.V.V.M Sri Pushpam College (Autonomous) Affiliated to Bharathidasan University Tiruchirappalli Poondi Thanjavur 613 503 Tamil Nadu India
| |
Collapse
|
8
|
Abdollahzade N, Majidinia M, Babri S. Melatonin: a pleiotropic hormone as a novel potent therapeutic candidate in arsenic toxicity. Mol Biol Rep 2021; 48:6603-6618. [PMID: 34453671 DOI: 10.1007/s11033-021-06669-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Arsenic is a natural element which exists in the environment in inorganic and organic forms. In humans, the main reason for the toxicity of arsenic is its uptake via water sources. As polluted water and the problems associated with it can be found in many countries. Therefore, considering all these positive effects of melatonin, this review is aimed at melatonin supplementation therapy on arsenic toxicity which seems to be a suitable therapeutic agent to eliminate the adverse effects of arsenic. METHODS AND RESULTS It is seen in previous studies that chronic exposure to arsenic could cause serious dys functions of organs and induce different degrees of toxicities that is one of the first hazardous materials in the classification of substances by the United States Environmental Protection Agency so leads to costly cleanup operations burdening the economy. Arsenic harmfulness degree depends on the bioavailability, chemical form, valence state, detoxification, and metabolism of human body. The oxidative stress has a major role in arsenic-induced toxicity; on the other hand, it was discovered that melatonin is a powerful scavenger for free radical and it's an extensive-spectrum antioxidant. CONCLUSION Due to its highly lipophilic and small size properties, melatonin accesses all intracellular organs by easily passing via the cell membrane and prevents protein, DNA damage, and lipid peroxidation. In particular, melatonin, by protecting and reducing oxidative stress in mitochondria, can normalize homeostasis and mitochondrial function and ultimately prevent apoptosis and cell death.
Collapse
Affiliation(s)
- Naseh Abdollahzade
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Shirin Babri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Yang Y, Chi L, Lai Y, Hsiao YC, Ru H, Lu K. The gut microbiome and arsenic-induced disease-iAs metabolism in mice. Curr Environ Health Rep 2021; 8:89-97. [PMID: 33852125 PMCID: PMC8728881 DOI: 10.1007/s40572-021-00305-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW This review summarizes inorganic arsenic (iAs) metabolism and toxicity in mice and the gut microbiome and how iAs and the gut microbiome interact to induce diseases. RECENT FINDINGS Recently, a variety of studies have started to reveal the interactions between iAs and the gut microbiome. Evidence shows that gut bacteria can influence iAs biotransformation and disease risks. The gut microbiome can directly metabolize iAs, and it can also indirectly be involved in iAs metabolism through the host, such as altering iAs absorption, cofactors, and genes related to iAs metabolism. Many factors, such as iAs metabolism influenced by the gut microbiome, and microbiome metabolites perturbed by iAs can lead to different disease risks. iAs is a widespread toxic metalloid in environment, and iAs toxicity has become a global health issue. iAs is subject to metabolic reactions after entering the host body, including methylation, demethylation, oxidation, reduction, and thiolation. Different arsenic species, including trivalent and pentavalent forms and inorganic and organic forms, determine their toxicity. iAs poisoning is predominately caused by contaminated drinking water and food, and chronic arsenic toxicity can cause various diseases. Therefore, studies of iAs metabolism are important for understanding iAs associated disease risks.
Collapse
Affiliation(s)
- Yifei Yang
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hongyu Ru
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
10
|
Kim C, Ceresa BP. Using In Vitro Models to Dissect the Molecular Effects of Arsenic Exposure in Skin and Lung Cell Lines. APPLIED IN VITRO TOXICOLOGY 2021; 7:71-88. [DOI: 10.1089/aivt.2020.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Christine Kim
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Brian P. Ceresa
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
11
|
Surolia R, Li FJ, Wang Z, Kashyap M, Srivastava RK, Traylor AM, Singh P, Dsouza KG, Kim H, Pittet JF, Zmijewski JW, Agarwal A, Athar M, Ahmad A, Antony VB. NETosis in the pathogenesis of acute lung injury following cutaneous chemical burns. JCI Insight 2021; 6:147564. [PMID: 34027893 PMCID: PMC8262367 DOI: 10.1172/jci.insight.147564] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
Despite the high morbidity and mortality among patients with extensive cutaneous burns in the intensive care unit due to the development of acute respiratory distress syndrome, effective therapeutics remain to be determined. This is primarily because the mechanisms leading to acute lung injury (ALI) in these patients remain unknown. We test the hypothesis that cutaneous chemical burns promote lung injury due to systemic activation of neutrophils, in particular, toxicity mediated by the deployment of neutrophil extracellular traps (NETs). We also demonstrate the potential benefit of a peptidyl arginine deiminase 4 (PAD4) inhibitor to prevent NETosis and to preserve microvascular endothelial barrier function, thus reducing the severity of ALI in mice. Our data demonstrated that phenylarsine oxide (PAO) treatment of neutrophils caused increased intracellular Ca2+-associated PAD4 activity. A dermal chemical burn by lewisite or PAO resulted in PAD4 activation, NETosis, and ALI. NETs disrupted the barrier function of endothelial cells in human lung microvascular endothelial cell spheroids. Citrullinated histone 3 alone caused ALI in mice. Pharmacologic or genetic abrogation of PAD4 inhibited lung injury following cutaneous chemical burns. Cutaneous burns by lewisite and PAO caused ALI by PAD4-mediated NETosis. PAD4 inhibitors may have potential as countermeasures to suppress detrimental lung injury after chemical burns.
Collapse
Affiliation(s)
- Ranu Surolia
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine
| | - Fu Jun Li
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine
| | - Zheng Wang
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine
| | | | | | | | - Pooja Singh
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine
| | - Kevin G Dsouza
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine
| | | | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Anupam Agarwal
- Division of Nephrology, Department of Medicine.,Department of Veterans Affairs, Birmingham, Alabama, USA
| | | | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Veena B Antony
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine
| |
Collapse
|
12
|
Cordier W, Yousaf M, Nell MJ, Steenkamp V. Underlying mechanisms of cytotoxicity in HepG2 hepatocarcinoma cells exposed to arsenic, cadmium and mercury individually and in combination. Toxicol In Vitro 2021; 72:105101. [PMID: 33497711 DOI: 10.1016/j.tiv.2021.105101] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/16/2020] [Accepted: 01/20/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Toxicity data regarding combinational exposure of humans to arsenic, cadmium and mercury is scarce. Although hepatotoxicity has been reported, limited information is available on their mechanistic underpinnings. The cytotoxic mechanisms of these metals were determined in HepG2 hepatocarcinoma cell lines after individual and combinational exposure. METHODS HepG2 cells were exposed to heavy metals (sodium arsenite, cadmium chloride, and mercury chloride) individually or in combination for 24 h, after which cell density, mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS), reduced glutathione (GSH), adenosine triphosphate (ATP) and caspase-3/7 activity was assessed. RESULTS AND DISCUSSION Cadmium (IC50 = 0.43 mg/L) and the combination (0.45 mg/L, arsenic reference) were most cytotoxic, followed by arsenic (6.71 mg/L) and mercury (28.23 mg/L). Depolarisation of the ΔΨm and reductions in ROS, GSH and ATP levels occurred. Arsenic, cadmium and the combination increased caspase-3/7 activity, while mercury reduced it. CONCLUSION The combination produced a greater, albeit mechanistically similar, cytotoxicity compared to individual metals. Cytotoxicity was dependent on altered mitochondrial integrity, redox-status, and bioenergetics. Although the combination's cytotoxicity was associated with caspase-3/7 activity, this was not true for mercury. Heavy metal interactions should be assessed to elucidate molecular underpinnings of cytotoxicity.
Collapse
Affiliation(s)
- W Cordier
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - M Yousaf
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - M J Nell
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - V Steenkamp
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
13
|
Occurrence, speciation analysis and health risk assessment of arsenic in Chinese mitten crabs (Eriocheir sinensis) collected from China. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Abiko Y, Okada M, Aoki H, Mizokawa M, Kumagai Y. A strategy for repression of arsenic toxicity through nuclear factor E2 related factor 2 activation mediated by the (E)-2-alkenals in Coriandrum sativum L. leaf extract. Food Chem Toxicol 2020; 145:111706. [DOI: 10.1016/j.fct.2020.111706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022]
|
15
|
Wang J, Zhang G, Lin Z, Luo Y, Fang H, Yang L, Xie J, Guo L. Determination of arsenicals in mouse tissues after simulated exposure to arsenic from rice for sixteen weeks and the effects on histopathological features. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110742. [PMID: 32470681 DOI: 10.1016/j.ecoenv.2020.110742] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/21/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The accumulation of arsenic in rice has become a worldwide concern. In this study, dose-dependency in tissues (intestine, liver and kidney) and blood distribution of inorganic arsenicals and their methylated metabolites were investigated in male C57BL/6 mice exposed to four arsenic species (arsenite [iAs]III, arsenate [iAs]V, monomethylarsonate [MMA]V, and dimethylarsinate [DMA]V) at four doses (control [C]: 0 μg/g, simulation [S]: 0.91 μg/g, medium [M]: 9.1 μg/g and high [H]: 30 μg/g) according to the arsenical composition in rice for 8 and 16 weeks. No adverse effects were observed, while body weight gain decreased in group H. Increases in total arsenic concentrations (CtAs) and histopathological changes in the tissues occurred in all of the test groups. CtAs presented a tendency of kidney > intestine > liver > blood and were time-/dose-dependent in the liver and kidney in groups M and H. In the intestine and blood, abundant iAs (23%-28% in blood and 36%-49% in intestine) was detected in groups M and H, and CtAs decreased in group H from the 8th week to the 16th week. PMI decreased in the liver and SMI decreased in the kidney. These results indicate that the three tissues are injured through food arsenic. The intestine can also accumulate food arsenic, and the high arsenic dose will cause a deficiency in the absorbing function of the intestine. Thus, long-term exposure to arsenic-contaminated rice should be taken seriously attention.
Collapse
Affiliation(s)
- Jiating Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Guiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen, 518000, China.
| | - Zeheng Lin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Yu Luo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Heng Fang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Linjie Yang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Jinying Xie
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
16
|
Hirano S. Biotransformation of arsenic and toxicological implication of arsenic metabolites. Arch Toxicol 2020; 94:2587-2601. [PMID: 32435915 DOI: 10.1007/s00204-020-02772-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Arsenic is a well-known environmental carcinogen and chronic exposure to arsenic through drinking water has been reported to cause skin, bladder and lung cancers, with arsenic metabolites being implicated in the pathogenesis. In contrast, arsenic trioxide (As2O3) is an effective therapeutic agent for the treatment of acute promyelocytic leukemia, in which the binding of arsenite (iAsIII) to promyelocytic leukemia (PML) protein is the proposed initial step. These findings on the two-edged sword characteristics of arsenic suggest that after entry into cells, arsenic reaches the nucleus and triggers various nuclear events. Arsenic is reduced, conjugated with glutathione, and methylated in the cytosol. These biotransformations, including the production of reactive metabolic intermediates, appear to determine the intracellular dynamics, target organs, and biological functions of arsenic.
Collapse
Affiliation(s)
- Seishiro Hirano
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| |
Collapse
|
17
|
Yoshinaga-Sakurai K, Shinde R, Rodriguez M, Rosen BP, El-Hage N. Comparative Cytotoxicity of Inorganic Arsenite and Methylarsenite in Human Brain Cells. ACS Chem Neurosci 2020; 11:743-751. [PMID: 31991084 DOI: 10.1021/acschemneuro.9b00653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The overall goal of this study is to elucidate the potential effect(s) of arsenic on a variety of human brain cells. Arsenic is the most pervasive Group A human environmental carcinogen. Long-term exposure to arsenic is associated with human diseases including cancer, cardiovascular disease, and diabetes. More immediate are the health effects on neurological development and associated disorders in infants and children exposed to arsenic in utero. Arsenic is metabolized in various organs and tissues into more toxic methylated species, including methylarsenite (MAs(III)), so the question arises whether the methylate species are responsible for the neurological effects of arsenic. Arsenic enters the brain through the blood-brain barrier and produces toxicity in the brain microvascular endothelial cells, glia (astrocytes and microglia), and neurons. In this study, we first assessed the toxicity in different types of brain cells exposed to either inorganic trivalent As(III) or MAs(III) using both morphological and cytotoxicity cell-based analysis. Second, we determined the methylation of arsenicals and the expression levels of the methylation enzyme, As(III) S-adenosylmethionine (SAM) methyltransferase (AS3MT), in several types of brain cells. We showed that the toxicity to neurons of MAs(III) was significantly higher than that of As(III). Interestingly, the differences in cytotoxicity between cell types was not due to expression of AS3MT, as this was expressed in neurons and glia but not in endothelial cells. These results support our hypothesis that MAs(III) is the likely physiological neurotoxin rather than inorganic arsenic species.
Collapse
|
18
|
Tsuji JS, Chang ET, Gentry PR, Clewell HJ, Boffetta P, Cohen SM. Dose-response for assessing the cancer risk of inorganic arsenic in drinking water: the scientific basis for use of a threshold approach. Crit Rev Toxicol 2019; 49:36-84. [DOI: 10.1080/10408444.2019.1573804] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Ellen T. Chang
- Exponent, Inc., Menlo Park, CA and Stanford Cancer Institute, Stanford, CA, USA
| | | | | | - Paolo Boffetta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samuel M. Cohen
- Havlik-Wall Professor of Oncology, Department of Pathology and Microbiology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
19
|
Rasheed H, Kay P, Slack R, Gong YY. The effect of association between inefficient arsenic methylation capacity and demographic characteristics on the risk of skin lesions. Toxicol Appl Pharmacol 2018; 339:42-51. [DOI: 10.1016/j.taap.2017.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 01/17/2023]
|
20
|
Akiyama M, Shinkai Y, Unoki T, Shim I, Ishii I, Kumagai Y. The Capture of Cadmium by Reactive Polysulfides Attenuates Cadmium-Induced Adaptive Responses and Hepatotoxicity. Chem Res Toxicol 2017; 30:2209-2217. [DOI: 10.1021/acs.chemrestox.7b00278] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Masahiro Akiyama
- Environmental
Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuhiro Shinkai
- Environmental
Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takamitsu Unoki
- Environmental
Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ilseob Shim
- Department
of Environmental Health Research, National Institute of Environmental Research (NIER), Environmental Complex, Gyungseodong, Seogu, Incheon 22689, Korea
| | - Isao Ishii
- Laboratory
of Health Chemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Yoshito Kumagai
- Environmental
Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
21
|
Li J, Duan X, Dong D, Zhang Y, Zhao L, Li W, Chen J, Sun G, Li B. Tissue-specific distributions of inorganic arsenic and its methylated metabolites, especially in cerebral cortex, cerebellum and hippocampus of mice after a single oral administration of arsenite. J Trace Elem Med Biol 2017; 43:15-22. [PMID: 27745987 DOI: 10.1016/j.jtemb.2016.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/28/2016] [Accepted: 10/02/2016] [Indexed: 11/26/2022]
Abstract
Groundwater contaminated with inorganic arsenic (iAs) is the main source of human exposure to arsenic and generates a global health issue. In this study, the urinary excretion, as well as the time-course distributions of various arsenic species in murine tissues, especially in different brain regions were determined after a single oral administration of 2.5, 5, 10 and 20mg/kg sodium arsenite (NaAsO2). Our data showed that the peak times of urinary, hepatic and nephritic total arsenic (TAs) were happened at about 1h, then TAs levels decreased gradually and almost could not be observed after 72h. On contrast, the time course of TAs in lung, urinary bladder and different brain regions exhibited an obvious process of accumulation and elimination,and the peak times were nearly at 6h to 9h. TAs levels of 10 and 20mg/kg NaAsO2 groups were significantly higher than 2.5 and 5mg/kg groups, and the amounts of TAs in 5mg/kg groups were in the order of liver>lung>kidney>urinary bladder>hippocampus>cerebral cortex>cerebellum. In addition, iAs was the most abundant species in liver and kidney, while lung and urinary bladder accumulated the highest concentrations of dimethylated arsenicals (DMA). What's more, the distributions of arsenic species were not homogeneous among different brain regions, as DMA was the sole species in cerebral cortex and cerebellum, while extremely high concentrations and percentages of monomethylated arsenicals (MMA) were found in hippocampus. These results demonstrated that distributions of iAs and its methylated metabolites were tissue-specific and even not homogeneous among different brain regions, which must be considered as to the tissue- and region-specific toxicity of iAs exposure. Our results thus provide useful information for clarifying and reducing the uncertainty in the risk assessment for this metalloid.
Collapse
Affiliation(s)
- Jinlong Li
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110013, China
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning, China
| | - Dandan Dong
- Cao County Center for Disease Control and Prevention, Heze City, Shandong Province, 274400, China
| | - Yang Zhang
- Chengde City Center for Disease Prevention and Control, Chengde City, Hebei Province, 069000, China
| | - Lu Zhao
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110013, China
| | - Wei Li
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110013, China
| | - Jinli Chen
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110013, China
| | - Guifan Sun
- Environment and Non-Communicable Diseases Research Center, School of Public Health, China Medical University, Shenyang, 110013, China
| | - Bing Li
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110013, China.
| |
Collapse
|
22
|
Low dose arsenite confers resistance to UV induced apoptosis via p53-MDM2 pathway in ketatinocytes. Oncogenesis 2017; 6:e370. [PMID: 28785074 PMCID: PMC5608918 DOI: 10.1038/oncsis.2017.67] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/17/2017] [Accepted: 06/26/2017] [Indexed: 12/17/2022] Open
Abstract
Chronic arsenite and ultraviolet (UV) exposure are associated with skin tumor. To investigate the details by low concentrations of arsenite and UV induced carcinogenesis in skin, hTERT-immortalized human keratinocytes were used as a cellular model with exposure to low concentrations of sodium arsenite and UV. The effect of NaAsO2 on UV treatment-induced apoptosis was measured by flow cytometry and Hoechst staining. We found that the cell apoptosis induced by UV exposure was significantly attenuated after exposure to low-dose arsenite, and knockdown of p53 could block UV-induced apoptosis indicating that this phenomenon depended on p53. Interestingly, the expression of murine double minute 2 (MDM2), including its protein and transcriptional levels, was remarkably high after exposure to low-dose arsenite. Moreover, low-dose arsenite treatment dramatically decreased the MDM2 gene promoter activity, suggesting that this effect has been mediated through transcription. In addition, treatment of PD98059 reversed low-dose arsenite-induced MDM2 expression, and the inhibition of ERK2 expression could significantly block MDM2 expression as a consequence, and p53 expression automatically was increased. To validate the role of p53 in exposure to low-dose arsenite, the expression of p53 was examined by immunohistochemistry in the skin of Sprague−Dawley rats model by chronic arsenite exposure for 6 months and in patients with arsenic keratosis, and the results showed that the expression of p53 was decreased in those samples. Taken together, our results demonstrated that low-dose arsenite-induced resistance to apoptosis through p53 mediated by MDM2 in keratinocytes.
Collapse
|
23
|
Wei B, Yu J, Wang J, Yang L, Li H, Kong C, Xia Y, Wu K. The relationships between arsenic methylation and both skin lesions and hypertension caused by chronic exposure to arsenic in drinking water. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 53:89-94. [PMID: 28528304 DOI: 10.1016/j.etap.2017.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
The associations between arsenic exposure, arsenic methylation, and the prevalence of skin lesions and hypertension are investigated. The results indicate that the HS (hypertension and skin lesions) group and the S (skin lesions) group have higher urinary concentrations of iAs (inorganic arsenic), MMA (monomethylarsonic acid), DMA (dimethylarsinous acid) and%MMA, and lower SMI (secondary arsenic methylation index) compared to the H (hypertension) and N (without both hypertension and skin lesions) groups. The arsenic content in water which caused H may be lower than that which caused HS and S. In addition, the odds ratios suggest that higher urinary concentrations of iAs and MMA, %iAs, %MMA and PMI elevate the prevalence of only hypertension and skin lesions, and both hypertension and skin lesions. However, higher%DMA and SMI, and lower%MMA increase the prevalence of both hypertension and skin lesions compared to that of only skin lesions. It can be concluded that skin lesions subjects have higher prevalence of hypertension. Hypertension subjects may have higher prevalence of skin lesions. Lower%DMA and SMI, higher%iAs, %MMA and PMI enhance the prevalence of only hypertension and skin lesions, and both hypertension and skin lesions. Moreover, iAs and MMA may have higher toxicity and lead to both hypertension and skin lesions than to only hypertension.
Collapse
Affiliation(s)
- Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China
| | - Jing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China; College of Resources and Environment, University of Chinese Academy of Sciences, China
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China; College of Resources and Environment, University of Chinese Academy of Sciences, China.
| | - Hairong Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China; College of Resources and Environment, University of Chinese Academy of Sciences, China.
| | - Chang Kong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China; College of Resources and Environment, University of Chinese Academy of Sciences, China
| | - Yajuan Xia
- Inner Mongolia Center for Endemic Disease Control and Research, Huhhot, Inner Mongolia, China
| | - Kegong Wu
- Inner Mongolia Center for Endemic Disease Control and Research, Huhhot, Inner Mongolia, China
| |
Collapse
|
24
|
Zheng L, Liu Z, Yan Z, Yi X, Zhang J, Zhang Y, Zheng X, Zhu Y. Deriving water quality criteria for trivalent and pentavalent arsenic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 587-588:68-74. [PMID: 28249751 DOI: 10.1016/j.scitotenv.2017.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/16/2017] [Accepted: 02/01/2017] [Indexed: 05/13/2023]
Abstract
Arsenic (As) is a common trace element whose oxidation states mainly include four types (-3, 0, +3, and +5), and inorganic As(III) and As(V) are regarded as the most commonly existing forms in aqueous environments. Generally, As(III) has a higher toxicity than As(V) due to the different mechanisms in arsenic toxicity. However, there are few studies about the water quality criteria (WQC) of As(III) and As(V) respectively because of the deficiency of arsenic toxicity data coming from diverse taxonomic groups. In this research, eight native Chinese aquatic organisms were adopted to conduct toxicity tests for As(III) and As(V) to supplement the published toxicity data. The species sensitivity distribution (SSD) method on the basis of the Log-normal model which was the most optimal among eight models was applied to derive WQCs of As(III) and As(V). Results showed that crustaceans were the most sensitive to As(III) and As(V) among all tested species, thus they could be a biological indicator, and the influence of pH values on arsenic toxicity was complex and species-specific. Besides, the sensitivity differences between native and non-native species were observed. Finally, a criterion maximum concentration (CMC) of 167 and 384μg/L for As(III) and As(V), and a criterion continuous concentration (CCC) of 42 and 44μg/L for As(III) and As(V) were derived using native species, regardless of pH values. The WQCs were also verified by other two methods of ETX 2.0 and species sensitivity rank.
Collapse
Affiliation(s)
- Lei Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xianliang Yi
- School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Juan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yahui Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Zhu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
25
|
Khairul I, Wang QQ, Jiang YH, Wang C, Naranmandura H. Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget 2017; 8:23905-23926. [PMID: 28108741 PMCID: PMC5410354 DOI: 10.18632/oncotarget.14733] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/11/2017] [Indexed: 01/17/2023] Open
Abstract
A variety of studies indicated that inorganic arsenic and its methylated metabolites have paradoxical effects, namely, carcinogenic and anticancer effects. Epidemiological studies have shown that long term exposure to arsenic can increase the risk of cancers of lung, skin or bladder in man, which is probably associated with the arsenic metabolism. In fact, the enzymatic conversion of inorganic arsenic by Arsenic (+3 oxidation state) methyltransferase (AS3MT) to mono- and dimethylated arsenic species has long been considered as a major route for detoxification. However, several studies have also indicated that biomethylation of inorganic arsenic, particularly the production of trivalent methylated metabolites, is a process that activates arsenic as a toxin and a carcinogen. On the other hand, arsenic trioxide (As2O3) has recently been recognized as one of the most effective drugs for the treatment of APL. However, elaboration of the cytotoxic mechanisms of arsenic and its methylated metabolites in eradicating cancer is sorely lacking. To provide a deeper understanding of the toxicity and carcinogenicity along with them use of arsenic in chemotherapy, caution is required considering the poor understanding of its various mechanisms of exerting toxicity. Thereby, in this review, we have focused on arsenic metabolic pathway, the roles of the methylated arsenic metabolites in toxicity and in the therapeutic efficacy for the treatments of solid tumors, APL and/or non-APL malignancies.
Collapse
Affiliation(s)
- Islam Khairul
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
| | - Qian Qian Wang
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yu Han Jiang
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
- Ocean College, Zhejiang University, Hangzhou, China
| | - Chao Wang
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
| | - Hua Naranmandura
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Ocean College, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Lin J, Lin GF, Li YL, Gao XY, Du H, Jia CG, Lu HC, Golka K, Shen JH. Assessment of usefulness of synchrotron radiation techniques to determine arsenic species in hair and rice grain samples. EXCLI JOURNAL 2017; 16:25-34. [PMID: 28337116 PMCID: PMC5318688 DOI: 10.17179/excli2016-785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/17/2016] [Indexed: 11/29/2022]
Abstract
The arseniasis in Southwest Guizhou, China has been identified as a unique case of endemic arseniasis caused by exposure to indoor combustion of high As-content coal. Present investigation targeted the microdistribution and speciation of the element arsenic in human hair and environmental samples collected in one of the hyper-endemic villages of arseniasis in the area. Analyses were performed by micro-beam X-ray fluorescence (μ-XRF) and X-ray absorption fine structure (XAFS). The total As level in hair samples of diagnosed patients was detected at almost the same level as in their asymptomatic neighbors. Concentrations in the lateral cut of hair samples were high-low-high (from surface to center). XAFS revealed the coexistence of both the As+3 and As+5 states in hair samples. However, the samples from patients displayed a tendency of higher As+3 / As+5 ratio than the asymptomatic fellow villagers. The μ-XRF mapping of rice grains shows that arsenic penetrates the endosperm, the major edible part of the grain, when rice grains were stored over the open fire of high As-content coal. Synchrotron radiation techniques are suitable to determine arsenic species concentrations in different parts of hair and rice grain samples. As arsenic penetrates the endosperm, rinsing the rice grains with water will remain largely ineffective.
Collapse
Affiliation(s)
- Jun Lin
- Shanghai Institutes for Biological Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Guo-fang Lin
- Shanghai Institutes for Biological Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu-lan Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiao-yan Gao
- Shanghai Institutes for Biological Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hui Du
- Prefecture Center of Disease Prevention and Control of Southwest Guizhou Ethnic Bouyei and Hmong Autonomous Prefecture, Xingyi, Guizhou 562400, China
| | - Chao-gang Jia
- County Institute of Public Health Supervision of Xingren, Xingren, Guizhou 562300, China
| | - Hong-chao Lu
- Prefecture Center of Disease Prevention and Control of Southwest Guizhou Ethnic Bouyei and Hmong Autonomous Prefecture, Xingyi, Guizhou 562400, China
| | - Klaus Golka
- Leibniz-Institut für Arbeitsforschung an der TU Dortmund - Leibniz Research Centre for Working Environment and Human Factors, 44139 Dortmund, Germany
| | - Jian-hua Shen
- Shanghai Institutes for Biological Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
27
|
Yang L, Chai Y, Yu J, Wei B, Xia Y, Wu K, Gao J, Guo Z, Cui N. Associations of arsenic metabolites, methylation capacity, and skin lesions caused by chronic exposure to high arsenic in tube well water. ENVIRONMENTAL TOXICOLOGY 2017; 32:28-36. [PMID: 26494561 DOI: 10.1002/tox.22209] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/28/2015] [Accepted: 10/04/2015] [Indexed: 06/05/2023]
Abstract
To investigate the interaction between skin lesion status and arsenic methylation profiles, the concentrations and proportions of arsenic metabolites in urine and arsenic methylation capacities of study subjects were determined. The results showed that the mean urinary concentrations of iAs (inorganic arsenic), MMA (monomethylarsonic acid), DMA (dimethylarsinic acid), and TAs (total arsenic) were 75.65, 68.78, 265.81, and 410.24 μg/L, respectively, in the skin lesions subjects. The highest values were observed in the multiple skin lesions subjects. Higher %iAs and %MMA, and lower %DMA, PMI (primary methylation index), and SMI (secondary methylation index) were found in skin lesions subjects. The multiple skin lesions subjects had highest %iAs and %MMA, and lowest %DMA, PMI, and SMI. The prevalence of skin lesions strongly, positively correlated with arsenic levels in drinking water. The elder persons also had higher frequency of skin lesions compared with younger persons. It can be concluded that arsenic levels in drinking water significantly affected the prevalence of skin lesions. Male subjects usually had higher proportions of skin lesions when compared with female subjects. Moreover, it may be concluded that MMA was significantly related to single skin lesion, whereas DMA and iAs were associated with multiple skin lesions. It seemed that MMA had greater toxicity to hyperkeratosis, whereas DMA and iAs had higher toxicity to depigmentation or pigmentation. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 28-36, 2017.
Collapse
Affiliation(s)
- Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yuanqing Chai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yajuan Xia
- Inner Mongolia Center for Endemic Disease Control and Research, Hohhot, Inner Mongolia, China
| | - Kegong Wu
- Inner Mongolia Center for Endemic Disease Control and Research, Hohhot, Inner Mongolia, China
| | - Jianwei Gao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Zhiwei Guo
- Inner Mongolia Center for Endemic Disease Control and Research, Hohhot, Inner Mongolia, China
| | - Na Cui
- Inner Mongolia Center for Endemic Disease Control and Research, Hohhot, Inner Mongolia, China
| |
Collapse
|
28
|
Moe B, Peng H, Lu X, Chen B, Chen LWL, Gabos S, Li XF, Le XC. Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing. J Environ Sci (China) 2016; 49:113-124. [PMID: 28007166 DOI: 10.1016/j.jes.2016.10.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 05/26/2023]
Abstract
The occurrence of a large number of diverse arsenic species in the environment and in biological systems makes it important to compare their relative toxicity. The toxicity of arsenic species has been examined in various cell lines using different assays, making comparison difficult. We report real-time cell sensing of two human cell lines to examine the cytotoxicity of fourteen arsenic species: arsenite (AsIII), monomethylarsonous acid (MMAIII) originating from the oxide and iodide forms, dimethylarsinous acid (DMAIII), dimethylarsinic glutathione (DMAGIII), phenylarsine oxide (PAOIII), arsenate (AsV), monomethylarsonic acid (MMAV), dimethylarsinic acid (DMAV), monomethyltrithioarsonate (MMTTAV), dimethylmonothioarsinate (DMMTAV), dimethyldithioarsinate (DMDTAV), 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, Rox), and 4-aminobenzenearsenic acid (p-arsanilic acid, p-ASA). Cellular responses were measured in real time for 72hr in human lung (A549) and bladder (T24) cells. IC50 values for the arsenicals were determined continuously over the exposure time, giving rise to IC50 histograms and unique cell response profiles. Arsenic accumulation and speciation were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). On the basis of the 24-hr IC50 values, the relative cytotoxicity of the tested arsenicals was in the following decreasing order: PAOIII≫MMAIII≥DMAIII≥DMAGIII≈DMMTAV≥AsIII≫MMTTAV>AsV>DMDTAV>DMAV>MMAV≥Rox≥p-ASA. Stepwise shapes of cell response profiles for DMAIII, DMAGIII, and DMMTAV coincided with the conversion of these arsenicals to the less toxic pentavalent DMAV. Dynamic monitoring of real-time cellular responses to fourteen arsenicals provided useful information for comparison of their relative cytotoxicity.
Collapse
Affiliation(s)
- Birget Moe
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada; Alberta Centre for Toxicology, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Hanyong Peng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xiufen Lu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Baowei Chen
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada; MOE Key Laboratory of Aquatic Product Safety, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lydia W L Chen
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada; Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Stephan Gabos
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada.
| |
Collapse
|
29
|
Recio-Vega R, Dena-Cazares JA, Ramirez-de la Peña JL, Jacobo-Ávila A, Portales-Castanedo A, Gallegos-Arreola MP, Ocampo-Gomez G, Michel-Ramirez G. MRP1 expression in bronchoalveolar lavage cells in subjects with lung cancer who were chronically exposed to arsenic. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:759-766. [PMID: 26031227 DOI: 10.1002/em.21960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/06/2015] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
Alteration of multidrug resistance-associated protein-1 (MRP1) expression has been associated with certain lung diseases, and this protein may be pivotal in protecting the lungs against endogenous or exogenous toxic compounds. The aim of this study was to evaluate and compare the expression of MRP1 in bronchoalveolar cells from subjects with and without lung cancer who had been chronically exposed to arsenic through drinking water. MRP1 expression was assessed in bronchoalveolar cells in a total of 102 participants. MRP1 expression was significantly decreased in those with arsenic urinary levels >50 μg/L when compared with the controls. In conclusion, chronic arsenic exposure negatively correlates with the expression of MRP1 in BAL cells in patients with lung cancer.
Collapse
Affiliation(s)
- Rogelio Recio-Vega
- Department of Environmental Health, Biomedical Research Center, School of Medicine at Torreón, University of Coahuila, Mexico
| | - Jose Angel Dena-Cazares
- Department of Environmental Health, Biomedical Research Center, School of Medicine at Torreón, University of Coahuila, Mexico
| | - Jorge Luis Ramirez-de la Peña
- Department of Environmental Health, Biomedical Research Center, School of Medicine at Torreón, University of Coahuila, Mexico
| | - Antonio Jacobo-Ávila
- Department of Pneumology, Instituto Mexicano Del Seguro Social, Torreón, Coahuila, México
| | | | - Martha Patricia Gallegos-Arreola
- Division of Molecular Medicine, Molecular Genetics Laboratory, Centro De Investigación Biomédica De Occidente, Guadalajara, Jalisco, Mexico
| | - Guadalupe Ocampo-Gomez
- Department of Environmental Health, Biomedical Research Center, School of Medicine at Torreón, University of Coahuila, Mexico
| | - Gladis Michel-Ramirez
- Department of Environmental Health, Biomedical Research Center, School of Medicine at Torreón, University of Coahuila, Mexico
| |
Collapse
|
30
|
Alamolhodaei NS, Shirani K, Karimi G. Arsenic cardiotoxicity: An overview. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:1005-14. [PMID: 26606645 DOI: 10.1016/j.etap.2015.08.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/25/2015] [Accepted: 08/30/2015] [Indexed: 05/20/2023]
Abstract
Arsenic, a naturally ubiquitous element, is found in foods and environment. Cardiac dysfunction is one of the major causes of morbidity and mortality in the world. Arsenic exposure is associated with various cardiopathologic effects including ischemia, arrhythmia and heart failure. Possible mechanisms of arsenic cardiotoxicity include oxidative stress, DNA fragmentation, apoptosis and functional changes of ion channels. Several evidences have shown that mitochondrial disruption, caspase activation, MAPK signaling and p53 are the pathways for arsenic induced apoptosis. Arsenic trioxide is an effective and potent antitumor agent used in patients with acute promyelocytic leukemia and produces dramatic remissions. As2O3 administration has major limitations such as T wave changes, QT prolongation and sudden death in humans. In this review, we discuss the underlying pathobiology of arsenic cardiotoxicity and provide information about cardiac health effects associated with some medicinal plants in arsenic toxicity.
Collapse
Affiliation(s)
| | - Kobra Shirani
- Department of Pharmacodynamy and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gholamreza Karimi
- Pharmaceutical Research Center and Pharmacy School, Mashhad University of Medical Sciences, Iran.
| |
Collapse
|
31
|
Gülden M, Kähler D, Seibert H. Incipient cytotoxicity: A time-independent measure of cytotoxic potency in vitro. Toxicology 2015; 335:35-45. [DOI: 10.1016/j.tox.2015.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 10/23/2022]
|
32
|
James KA, Byers T, Hokanson JE, Meliker JR, Zerbe GO, Marshall JA. Association between lifetime exposure to inorganic arsenic in drinking water and coronary heart disease in Colorado residents. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:128-34. [PMID: 25350952 PMCID: PMC4314243 DOI: 10.1289/ehp.1307839] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 10/27/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND Chronic diseases, including coronary heart disease (CHD), have been associated with ingestion of drinking water with high levels of inorganic arsenic (> 1,000 μg/L). However, associations have been inconclusive in populations with lower levels (< 100 μg/L) of inorganic arsenic exposure. OBJECTIVES We conducted a case-cohort study based on individual estimates of lifetime arsenic exposure to examine the relationship between chronic low-level arsenic exposure and risk of CHD. METHODS This study included 555 participants with 96 CHD events diagnosed between 1984 and 1998 for which individual lifetime arsenic exposure estimates were determined using data from structured interviews and secondary data sources to determine lifetime residence, which was linked to a geospatial model of arsenic concentrations in drinking water. These lifetime arsenic exposure estimates were correlated with historically collected urinary arsenic concentrations. A Cox proportional-hazards model with time-dependent CHD risk factors was used to assess the association between time-weighted average (TWA) lifetime exposure to low-level inorganic arsenic in drinking water and incident CHD. RESULTS We estimated a positive association between low-level inorganic arsenic exposure and CHD risk [hazard ratio (HR): = 1.38, 95% CI: 1.09, 1.78] per 15 μg/L while adjusting for age, sex, first-degree family history of CHD, and serum low-density lipoprotein levels. The risk of CHD increased monotonically with increasing TWAs for inorganic arsenic exposure in water relative to < 20 μg/L (HR = 1.2, 95% CI: 0.6, 2.2 for 20-30 μg/L; HR = 2.2; 95% CI: 1.2, 4.0 for 30-45 μg/L; and HR = 3, 95% CI: 1.1, 9.1 for 45-88 μg/L). CONCLUSIONS Lifetime exposure to low-level inorganic arsenic in drinking water was associated with increased risk for CHD in this population.
Collapse
Affiliation(s)
- Katherine A James
- Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, USA
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Ghani S, Khan N, Koriyama C, Akiba S, Yamamoto M. N‑acetyl‑L‑cysteine reduces arsenite‑induced cytotoxicity through chelation in U937 monocytes and macrophages. Mol Med Rep 2014; 10:2961-6. [PMID: 25310083 DOI: 10.3892/mmr.2014.2612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/14/2014] [Indexed: 11/06/2022] Open
Abstract
In the present study, in order to clarify the preventive mechanism of N‑acetyl‑L‑cysteine (NAC) on arsenite‑induced apoptosis in U937 cells, which lack functional p53, the cytotoxicity among U937 cells [monocytes and 12‑O‑tetradecanoylphorbol‑13‑acetate (TPA)‑treated macrophages] receiving NAC treatment at different times post arsenite treatment was examined. TPA‑treated macrophages were more resistant to arsenite‑induced apoptosis than monocytes, which may be associated with the induction of Bcl‑2 expression. Pretreatment with 20 mM NAC prior to arsenite exposure suppressed apoptosis up to 75% in the monocytes and 100% in the macrophages. However, 6‑h NAC pretreatment and subsequent washing out of NAC from the culture medium prior to arsenite treatment did not inhibit the arsenite‑induced apoptosis. Post‑treatment by NAC up to 1 h following arsenite exposure almost completely inhibited the cytotoxic effects of arsenite in U937 monocytes and macrophages. The results of the current study indicate that the preventive mechanism of NAC on arsenite‑induced apoptosis in U937 monocytes and macrophages mainly involves chelation of arsenite in culture medium.
Collapse
Affiliation(s)
- Sidra Ghani
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima 890‑8544, Japan
| | - Noureen Khan
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima 890‑8544, Japan
| | - Chihaya Koriyama
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima 890‑8544, Japan
| | - Suminori Akiba
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Kagoshima 890‑8544, Japan
| | - Megumi Yamamoto
- Integrated Physiology Section, Department of Basic Medical Science, National Institute for Minamata Disease, Minamata, Kumamoto 867‑0008, Japan
| |
Collapse
|
35
|
Fan Y, Chen M, Meng J, Yu L, Tu Y, Wan L, Fang K, Zhu W. Arsenic trioxide and resveratrol show synergistic anti-leukemia activity and neutralized cardiotoxicity. PLoS One 2014; 9:e105890. [PMID: 25144547 PMCID: PMC4140836 DOI: 10.1371/journal.pone.0105890] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/25/2014] [Indexed: 12/20/2022] Open
Abstract
Cardiotoxicity is an aggravating side effect of many clinical antineoplastic agents such as arsenic trioxide (As2O3), which is the first-line treatment for acute promyelocytic leukemia (APL). Clinically, drug combination strategies are widely applied for complex disease management. Here, an optimized, cardiac-friendly therapeutic strategy for APL was investigated using a combination of As2O3 and genistein or resveratrol. Potential combinations were explored with respect to their effects on mitochondrial membrane potential, reactive oxygen species, superoxide dismutase activity, autophagy, and apoptosis in both NB4 cells and neonatal rat left ventricular myocytes. All experiments consistently suggested that 5 µM resveratrol remarkably alleviates As2O3-induced cardiotoxicity. To achieve an equivalent effect, a 10-fold dosage of genistein was required, thus highlighting the dose advantage of resveratrol, as poor bioavailability is a common concern for its clinical application. Co-administration of resveratrol substantially amplified the anticancer effect of As2O3 in NB4 cells. Furthermore, resveratrol exacerbated oxidative stress, mitochondrial damage, and apoptosis, thereby reflecting its full range of synergism with As2O3. Addition of 5 µM resveratrol to the single drug formula of As2O3 also further increased the expression of LC3, a marker of cellular autophagy activity, indicating an involvement of autophagy-mediated tumor cell death in the synergistic action. Our results suggest a possible application of an As2O3 and resveratrol combination to treat APL in order to achieve superior therapeutics effects and prevent cardiotoxicity.
Collapse
Affiliation(s)
- Yuhua Fan
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Meng Chen
- Department of Respiratory Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
| | - Jia Meng
- Department of Geriatrics, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Yu
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Yingfeng Tu
- Department of Cardiology, the Fourth Hospital of Harbin Medical University, Harbin, China
| | - Lin Wan
- Radiology Department and Key Laboratory of Molecular Imaging, the Fourth Hospital of Harbin Medical University, Harbin, China
| | - Kun Fang
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Wenliang Zhu
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
- * E-mail:
| |
Collapse
|
36
|
Metabolomic study in plasma, liver and kidney of mice exposed to inorganic arsenic based on mass spectrometry. Anal Bioanal Chem 2014; 406:1455-69. [DOI: 10.1007/s00216-013-7564-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/29/2013] [Accepted: 12/07/2013] [Indexed: 11/25/2022]
|
37
|
Rehman K, Fu YJ, Zhang YF, Wang QQ, Wu B, Wu Y, Zhou XY, Sun WH, Sun TF, Naranmandura H. Trivalent methylated arsenic metabolites induce apoptosis in human myeloid leukemic HL-60 cells through generation of reactive oxygen species. Metallomics 2014; 6:1502-12. [DOI: 10.1039/c4mt00119b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trivalent arsenic metabolites mediate HL-60 cell apoptosis via ROS.
Collapse
Affiliation(s)
- Kanwal Rehman
- Department of Toxicology
- School of Medicine and Public Health
- Zhejiang University
- Hangzhou 310058, China
- College of Pharmaceutical Sciences
| | - Yu Jie Fu
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058, China
| | - Yan Fang Zhang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058, China
| | - Qian Qian Wang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058, China
| | - Bin Wu
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058, China
- Ocean College
- Zhejiang University
| | - Yuan Wu
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058, China
| | - Xin Yi Zhou
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058, China
| | - Wu Hui Sun
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058, China
| | - Tian Fu Sun
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058, China
| | - Hua Naranmandura
- Department of Toxicology
- School of Medicine and Public Health
- Zhejiang University
- Hangzhou 310058, China
- College of Pharmaceutical Sciences
| |
Collapse
|
38
|
Gribble MO, Crainiceanu CM, Howard BV, Umans JG, Francesconi KA, Goessler W, Zhang Y, Silbergeld EK, Guallar E, Navas-Acien A. Body composition and arsenic metabolism: a cross-sectional analysis in the Strong Heart Study. Environ Health 2013; 12:107. [PMID: 24321145 PMCID: PMC3883520 DOI: 10.1186/1476-069x-12-107] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/03/2013] [Indexed: 05/18/2023]
Abstract
OBJECTIVE The objective of this study was to evaluate the association between measures of body composition and patterns of urine arsenic metabolites in the 1989-1991 baseline visit of the Strong Heart Study, a cardiovascular disease cohort of adults recruited from rural communities in Arizona, Oklahoma, North Dakota and South Dakota. METHODS We evaluated 3,663 Strong Heart Study participants with urine arsenic species above the limit of detection and no missing data on body mass index, % body fat and fat free mass measured by bioelectrical impedance, waist circumference and other variables. We summarized urine arsenic species patterns as the relative contribution of inorganic (iAs), methylarsonate (MMA) and dimethylarsinate (DMA) species to their sum. We modeled the associations of % arsenic species biomarkers with body mass index, % body fat, fat free mass, and waist circumference categories in unadjusted regression models and in models including all measures of body composition. We also considered adjustment for arsenic exposure and demographics. RESULTS Increasing body mass index was associated with higher mean % DMA and lower mean % MMA before and after adjustment for sociodemographic variables, arsenic exposure, and for other measures of body composition. In unadjusted linear regression models, % DMA was 2.4 (2.1, 2.6) % higher per increase in body mass index category (< 25, ≥25 & <30, ≥30 & <35, ≥35 kg/m2), and % MMA was 1.6 (1.4, 1.7) % lower. Similar patterns were observed for % body fat, fat free mass, and waist circumference measures in unadjusted models and in models adjusted for potential confounders, but the associations were largely attenuated or disappeared when adjusted for body mass index. CONCLUSION Measures of body size, especially body mass index, are associated with arsenic metabolism biomarkers. The association may be related to adiposity, fat free mass or body size. Future epidemiologic studies of arsenic should consider body mass index as a potential modifier for arsenic-related health effects.
Collapse
Affiliation(s)
- Matthew O Gribble
- Department of Epidemiology and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street Office W7513D, Baltimore MD 21205MD, USA
| | - Ciprian M Crainiceanu
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, MD, USA
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington DC, USA
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, USA
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington DC, USA
| | - Kevin A Francesconi
- Institute of Chemistry – Analytical Chemistry, Karl-Franzens University Graz, Graz, Austria
| | - Walter Goessler
- Institute of Chemistry – Analytical Chemistry, Karl-Franzens University Graz, Graz, Austria
| | - Ying Zhang
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ellen K Silbergeld
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eliseo Guallar
- Department of Epidemiology and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street Office W7513D, Baltimore MD 21205MD, USA
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ana Navas-Acien
- Department of Epidemiology and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street Office W7513D, Baltimore MD 21205MD, USA
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
39
|
Hirano S, Watanabe T, Kobayashi Y. Effects of arsenic on modification of promyelocytic leukemia (PML): PML responds to low levels of arsenite. Toxicol Appl Pharmacol 2013; 273:590-9. [DOI: 10.1016/j.taap.2013.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 11/24/2022]
|
40
|
The Protective Role of Resveratrol against Arsenic Trioxide-Induced Cardiotoxicity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:407839. [PMID: 24327821 PMCID: PMC3847954 DOI: 10.1155/2013/407839] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 08/30/2013] [Accepted: 09/17/2013] [Indexed: 11/23/2022]
Abstract
Arsenic trioxide (As2O3) shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Unfortunately, limiting the application of this effective agent to APL patients is severe cardiotoxicity. Resveratrol, the natural food-derived polyphenolic compound, is well known for its antioxidant properties and protects the cardiovascular system. But the potential role of resveratrol against As2O3 in heart via nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) is unclear. The present study evaluated the effects of pretreatment with resveratrol and As2O3 on oxidative stress and cardiac dysfunction in rat. In the present study, resveratrol decreased As2O3-induced reactive oxygen species generation, oxidative DNA damage, and pathological alterations. In addition, cardiac dysfunction parameters, intracellular calcium and arsenic accumulation, glutathione redox ratio, and cAMP deficiency levels were observed in As2O3-treated rats; these changes were attenuated by resveratrol. Furthermore, resveratrol significantly prohibited the downregulation of both Nrf2 and HO-1 gene expressions that were downregulated by As2O3, whereas resveratrol did not alter As2O3-induced nitric oxide formation. Thus, the protective role of resveratrol against As2O3-induced cardiotoxicity is implemented by the maintenance of redox homeostasis (Nrf2-HO-1 pathway) and facilitating arsenic efflux. Our findings suggest coadministration with resveratrol, and As2O3 might provide a novel therapeutic strategy for APL.
Collapse
|
41
|
Swindell EP, Hankins PL, Chen H, Miodragović ÐU, O'Halloran TV. Anticancer activity of small-molecule and nanoparticulate arsenic(III) complexes. Inorg Chem 2013; 52:12292-304. [PMID: 24147771 PMCID: PMC3893798 DOI: 10.1021/ic401211u] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Starting in ancient China and Greece, arsenic-containing compounds have been used in the treatment of disease for over 3000 years. They were used for a variety of diseases in the 20th century, including parasitic and sexually transmitted illnesses. A resurgence of interest in the therapeutic application of arsenicals has been driven by the discovery that low doses of a 1% aqueous solution of arsenic trioxide (i.e., arsenous acid) lead to complete remission of certain types of leukemia. Since Food and Drug Administration (FDA) approval of arsenic trioxide (As2O3) for treatment of acute promyelocytic leukemia in 2000, it has become a front-line therapy in this indication. There are currently over 100 active clinical trials involving inorganic arsenic or organoarsenic compounds registered with the FDA for the treatment of cancers. New generations of inorganic and organometallic arsenic compounds with enhanced activity or targeted cytotoxicity are being developed to overcome some of the shortcomings of arsenic therapeutics, namely, short plasma half-lives and a narrow therapeutic window.
Collapse
Affiliation(s)
- Elden P. Swindell
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113
| | - Patrick L. Hankins
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113
| | - Haimei Chen
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113
| | - Ðenana U. Miodragović
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113
| | - Thomas V. O'Halloran
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113
| |
Collapse
|
42
|
Abstract
Arsenic has received considerable attention in the world, since it can lead to a multitude of toxic effects and has been recognized as a human carcinogen causing cancers. Here, we focus on the current state of knowledge regarding the proposed mechanisms of arsenic biotransformation, with a little about cellular uptake, toxicity and clinical utilization of arsenicals. Since pentavalent methylated metabolites were found in animal urine after exposure to iAs(III), methylation was considered to be a detoxification process, but the discovery of methylated trivalent intermediates and thioarsenicals in urine has diverted the view and gained much interest regarding arsenic biotransformation. To further investigate the partially understood phenomena relating to arsenic toxicity and the uses of arsenic as a drug, it is important to elucidate the exact pathways involved in metabolism of this metalloid, as the toxicity and the clinical uses of arsenic can be best recognized in context of its biotransformation. Thereby, in this perspective, we have focused on arsenic metabolic pathways including three proposed mechanisms: a classic pathway by Challenger in 1945, followed by a new metabolic pathway proposed by Hayakawa in 2005 involving arsenic-glutathione complexes, while the third is a new reductive methylation pathway that is proposed by our group involving As-protein complexes. According to previous and present in vivo and in vitro experiments, we conclude that the methylation reaction takes place with simultaneous reductive rather than stepwise oxidative methylation. In addition, production of pentavalent methylated arsenic metabolites are suggested to be as the end product of metabolism, rather than intermediates.
Collapse
Affiliation(s)
- Kanwal Rehman
- Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310561, China
| | | |
Collapse
|
43
|
Chitta KR, Landero Figueroa JA, Caruso JA, Merino EJ. Selenium mediated arsenic toxicity modifies cytotoxicity, reactive oxygen species and phosphorylated proteins. Metallomics 2013; 5:673-85. [DOI: 10.1039/c3mt20213e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
García-Sevillano MA, García-Barrera T, Navarro F, Gómez-Ariza JL. Analysis of the biological response of mouse liver (Mus musculus) exposed to As2O3 based on integrated -omics approaches. Metallomics 2013; 5:1644-55. [DOI: 10.1039/c3mt00186e] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Xu S, Zhang YF, Carew MW, Hao WH, Loo JFC, Naranmandura H, Le XC. Multidrug resistance protein 1 (ABCC1) confers resistance to arsenic compounds in human myeloid leukemic HL-60 cells. Arch Toxicol 2012; 87:1013-23. [PMID: 23052202 DOI: 10.1007/s00204-012-0956-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
Arsenic trioxide (As(2)O(3)) is established as one of the most effective drugs for treatment of patients with acute promyelocytic leukemia, as well as other types of malignant tumors. However, HL-60 cells are resistant to As(2)O(3), and little is known about the underlying resistance mechanism for As(2)O(3) and its biomethylation products, namely, monomethylarsonous acid (MMA(III)) on the treatment of tumors. In the present study, we investigated the molecular mechanisms underlying iAs(III) and its intermediate metabolite MMA(III)-induced anticancer effects in the HL-60 cells. Here, we show that the HL-60 cells exhibit resistance to inorganic iAs(III) (IC(50) = 10 μM), but are relatively sensitive to its intermediate MMA(III) (IC(50) = 3.5 μM). Moreover, we found that the multidrug resistance protein 1 (MRP1), but not MRP2, is expressed in HL-60 cells, which reduced the intracellular arsenic accumulation, and conferred resistance to inorganic iAs(III) and MMA(III). Pretreatment of HL-60 with MK571, an inhibitor of MRP1, significantly increased iAs(III) and MMA(III)-induced cytotoxicity and arsenic accumulations, suggesting that the expression of MRP1/4 may lead to HL-60 cells resistance to trivalent arsenic compounds.
Collapse
Affiliation(s)
- Shi Xu
- Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Calatayud M, Vélez D, Devesa V. Metabolism of Inorganic Arsenic in Intestinal Epithelial Cell Lines. Chem Res Toxicol 2012; 25:2402-11. [DOI: 10.1021/tx300385y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- M. Calatayud
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avenida Agustín Escardino
No. 7, 46980 Paterna, Valencia, Spain
| | - D. Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avenida Agustín Escardino
No. 7, 46980 Paterna, Valencia, Spain
| | - V. Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avenida Agustín Escardino
No. 7, 46980 Paterna, Valencia, Spain
| |
Collapse
|
47
|
Watanabe T, Hirano S. Metabolism of arsenic and its toxicological relevance. Arch Toxicol 2012; 87:969-79. [PMID: 22811022 DOI: 10.1007/s00204-012-0904-5] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
Abstract
Arsenic is a worldwide environmental pollutant and a human carcinogen. It is well recognized that the toxicity of arsenicals largely depends on the oxidoreduction states (trivalent or pentavalent) and methylation levels (monomethyl, dimethyl, and trimethyl) that are present during the process of metabolism in mammals. However, presently, the specifics of the metabolic pathway of inorganic arsenicals have yet to be confirmed. In mammals, there are two possible mechanisms that have been proposed for the metabolic pathway of inorganic arsenicals, oxidative methylation, and glutathione conjugation. Oxidative methylation, which was originally proposed in fungi, is based on findings that arsenite (iAs(III)) is sequentially converted to monomethylarsonic acid (MMA(V)) and dimethylarsinic acid (DMA(V)) in both humans and in laboratory animals such as mice and rats. However, recent in vitro observations have demonstrated that arsenic is only methylated in the presence of glutathione (GSH) or other thiol compounds, which strongly suggests that arsenic is methylated in trivalent forms. The glutathione conjugation mechanism is supported by findings that have shown that most intracellular arsenicals are trivalent and excreted from cells as GSH conjugates. Since non-conjugated trivalent arsenicals are highly reactive with thiol compounds and are easily converted to less toxic corresponding pentavalent arsenicals, the arsenic-glutathione conjugate stability may be the most important factor for determining the toxicity of arsenicals. In addition, "being a non-anionic form" also appears to be a determinant of the toxicity of oxo-arsenicals or thioarsenicals. The present review discusses both the metabolism of arsenic and the toxicity of arsenic metabolites.
Collapse
Affiliation(s)
- Takayuki Watanabe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-0856, Japan
| | | |
Collapse
|
48
|
Zhang Y, Ying J, Chen J, Hu C. Assessing the genotoxic potentials of roxarsone in V79 cells using the alkaline Comet assay and micronucleus test. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 741:65-9. [PMID: 22094290 DOI: 10.1016/j.mrgentox.2011.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/16/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
|
49
|
Speciation of arsenic metabolites in the free-living mouse Mus spretus from Doñana National Park used as a bio-indicator for environmental pollution monitoring. CHEMICAL PAPERS 2012. [DOI: 10.2478/s11696-012-0207-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractA speciation approach based on orthogonal chromatographic systems coupled to inductively coupled plasma mass spectrometry (ICP-MS) was used to characterise the biological response of free-living mice Mus spretus to environmental pollution caused by arsenic in different areas of the Doñana National Park (south-west Spain). The relative presence of inorganic and organic forms of arsenic was studied in cytosolic extracts from high metabolic activity organs of Mus spretus mice: kidneys, liver, and brain. An instrumental coupling of size-exclusion chromatography with UV and collision/reaction cell-ICP-MS detectors (SEC-UV-ICP-ORC-MS) both in analytical and preparative scale was used for this purpose. The results showed the presence of low molecular mass (LMM) molecules linked to arsenic in these tissues especially in the kidneys, where the presence of these arsenic metabolites was higher. On the other hand, the presence of these arsenicals varied from one area to the other, which can be related to a different occurrence of contaminants. These low molecular mass fractions were collected by preparative SEC chromatography for later study with ion exchange chromatography and detection by ICP-ORC-MS, using both anionic and cationic columns. The results showed the higher presence of MMA and DMA in kidneys of mice caught in contaminated areas and the existence of small amounts of unidentified arsenicals when cation-exchange chromatography was used, which could be related to the presence of dimethylarsinoylethanol (DMAE), thioarsenic species, or arsenocholine (AsC).
Collapse
|
50
|
Naranmandura H, Carew MW, Xu S, Lee J, Leslie EM, Weinfeld M, Le XC. Comparative Toxicity of Arsenic Metabolites in Human Bladder Cancer EJ-1 Cells. Chem Res Toxicol 2011; 24:1586-96. [DOI: 10.1021/tx200291p] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hua Naranmandura
- Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Michael W. Carew
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Shi Xu
- Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jane Lee
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Elaine M. Leslie
- Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Michael Weinfeld
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - X. Chris Le
- Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|