1
|
Mamidi N, Delgadillo RMV, Sustaita AO, Lozano K, Yallapu MM. Current nanocomposite advances for biomedical and environmental application diversity. Med Res Rev 2025; 45:576-628. [PMID: 39287199 DOI: 10.1002/med.22082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/29/2023] [Accepted: 08/25/2024] [Indexed: 09/19/2024]
Abstract
Nanocomposite materials are emerging as key players in addressing critical challenges in healthcare, energy storage, and environmental remediation. These innovative systems hold great promise in engineering effective solutions for complex problems. Nanocomposites have demonstrated various advantages such as simplicity, versatility, lightweight, and potential cost-effectiveness. By reinforcing synthetic and natural polymers with nanomaterials, a range of nanocomposites have exhibited unique physicochemical properties, biocompatibility, and biodegradability. Current research on nanocomposites has demonstrated promising clinical and translational applications. Over the past decade, the production of nanocomposites has emerged as a critical nano-structuring methodology due to their adaptability and controllable surface structure. This comprehensive review article systematically addresses two principal domains. A comprehensive survey of metallic and nonmetallic nanomaterials (nanofillers), elucidating their efficacy as reinforcing agents in polymeric matrices. Emphasis is placed on the methodical design and engineering principles governing the development of functional nanocomposites. Additionally, the review provides an exhaustive examination of recent noteworthy advancements in industrial, environmental, biomedical, and clinical applications within the realms of nanocomposite materials. Finally, the review concludes by highlighting the ongoing challenges facing nanocomposites in a wide range of applications.
Collapse
Affiliation(s)
- Narsimha Mamidi
- School of Pharmacy, Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Ramiro M V Delgadillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Alan O Sustaita
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Karen Lozano
- Mechanical Engineering Department, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| |
Collapse
|
2
|
Landsiedel R, Honarvar N, Seiffert SB, Oesch B, Oesch F. Genotoxicity testing of nanomaterials. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1833. [DOI: 10.1002/wnan.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
- Pharmacy, Pharmacology and Toxicology Free University of Berlin Berlin Germany
| | - Naveed Honarvar
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
| | | | - Barbara Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
| | - Franz Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
- Institute of Toxicology Johannes Gutenberg University Mainz Germany
| |
Collapse
|
3
|
Demir E, Demir FT, Marcos R. Drosophila as a Suitable In Vivo Model in the Safety Assessment of Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:275-301. [DOI: 10.1007/978-3-030-88071-2_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
4
|
Li L, Deng Y, Meng X, Chang H, Ling C, Li D, Wang Q, Lu T, Yang Y, Song G, Hu Y. Genotoxicity evaluation of silica nanoparticles in murine: a systematic review and meta-analysis. Toxicol Mech Methods 2021; 32:1-17. [PMID: 34350812 DOI: 10.1080/15376516.2021.1965277] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Silica nanoparticles (SiNPs) have been widely used in nanotechnology, and more attention has been paid to their safety evaluation. However, there are still inconsistent conclusions about the genotoxicity of SiNPs. A systematic review was conducted to explore whether SiNPs have genotoxicity followed by a meta-analysis of in vivo and in vitro murine genotoxicity tests. A total of 26 eligible studies were identified in this meta-analysis through a detailed process of inclusion and exclusion, which included 9 in vivo studies, 15 in vitro studies, and 2 in both. The results of in vitro studies showed that SiNPs exposure significantly increased the indicators of the comet assay, such as tail DNA content (T DNA%), tail length (TL), and olive tail moment (OTM). Indicators of mutagenicity had not been affected in vitro studies, such as mutation frequency (MF) and micronucleus (MN) frequency. There was a significant increase in MN frequency, but there was no influence on T DNA% in vivo. Results of subgroup analysis indicated that size and treatment time of SiNPs were the associated factors in vitro genotoxicity. The size of SiNPs, <21 nm, induced more DNA damage than larger sized SiNPs. It could induce MN formation when the treatment time of SiNPs was <12 h, and even more DNA damage when the exposure time over 12 h. SiNPs can induce genotoxicity both in vivo and in vitro. Comet assay may be more sensitive to detect in vitro genotoxicity, and MN frequency may be more suitable to detect in vivo genotoxicity.
Collapse
Affiliation(s)
- Li Li
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, China
| | - Yaxin Deng
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, China
| | - XiaoJia Meng
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, China
| | - Hongmei Chang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, China
| | - Chunmei Ling
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, China
| | - Danni Li
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, China
| | - Qian Wang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, China
| | - Tianjiao Lu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, China
| | - Yaqian Yang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, China
| | - Guanling Song
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, China
| | - Yunhua Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
5
|
Koedrith P, Rahman MM, Jang YJ, Shin DY, Seo YR. Nanoparticles: Weighing the Pros and Cons from an Eco-genotoxicological Perspective. J Cancer Prev 2021; 26:83-97. [PMID: 34258247 PMCID: PMC8249203 DOI: 10.15430/jcp.2021.26.2.83] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 12/06/2022] Open
Abstract
The exponential growth of nanotechnology and the industrial production have raised concerns over its impact on human and environmental health and safety (EHS). Although there has been substantial progress in the assessment of pristine nanoparticle toxicities, their EHS impacts require greater clarification. In this review, we discuss studies that have assessed nanoparticle eco-genotoxicity in different test systems and their fate in the environment as well as the considerable confounding factors that may complicate the results. We highlight key mechanisms of nanoparticle-mediated genotoxicity. Then we discuss the reliability of endpoint assays, such as the comet assay, the most favored assessment technique because of its versatility to measure low levels of DNA strand breakage, and the micronucleus assay, which is complementary to the former because of its greater ability to detect chromosomal DNA fragmentation. We also address the current recommendations on experimental design, including environmentally relevant concentrations and suitable exposure duration to avoid false-positive or -negative results. The genotoxicity of nanoparticles depends on their physicochemical features and the presence of co-pollutants. Thus, the effect of environmental processes (e.g., aggregation and agglomeration, adsorption, and transformation of nanoparticles) would account for when determining the actual genotoxicity relevant to environmental systems, and assay procedures must be standardized. Indeed, the engineered nanoparticles offer potential applications in different fields including biomedicine, environment, agriculture, and industry. Toxicological pathways and the potential risk factors related to genotoxic responses in biological organisms and environments need to be clarified before appropriate and sustainable applications of nanoparticles can be established.
Collapse
Affiliation(s)
- Preeyaporn Koedrith
- Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
| | - Md. Mujibur Rahman
- Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Yu Jin Jang
- Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| | - Dong Yeop Shin
- Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| | - Young Rok Seo
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
- Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| |
Collapse
|
6
|
Khan AA, Allemailem KS, Almatroudi A, Almatroodi SA, Mahzari A, Alsahli MA, Rahmani AH. Endoplasmic Reticulum Stress Provocation by Different Nanoparticles: An Innovative Approach to Manage the Cancer and Other Common Diseases. Molecules 2020; 25:5336. [PMID: 33207628 PMCID: PMC7697255 DOI: 10.3390/molecules25225336] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 02/06/2023] Open
Abstract
A proper execution of basic cellular functions requires well-controlled homeostasis including correct protein folding. Endoplasmic reticulum (ER) implements such functions by protein reshaping and post-translational modifications. Different insults imposed on cells could lead to ER stress-mediated signaling pathways, collectively called the unfolded protein response (UPR). ER stress is also closely linked with oxidative stress, which is a common feature of diseases such as stroke, neurodegeneration, inflammation, metabolic diseases, and cancer. The level of ER stress is higher in cancer cells, indicating that such cells are already struggling to survive. Prolonged ER stress in cancer cells is like an Achilles' heel, if aggravated by different agents including nanoparticles (NPs) may be exhausted off the pro-survival features and can be easily subjected to proapoptotic mode. Different types of NPs including silver, gold, silica, graphene, etc. have been used to augment the cytotoxicity by promoting ER stress-mediated cell death. The diverse physico-chemical properties of NPs play a great role in their biomedical applications. Some special NPs have been effectively used to address different types of cancers as these particles can be used as both toxicological or therapeutic agents. Several types of NPs, and anticancer drug nano-formulations have been engineered to target tumor cells to enhance their ER stress to promote their death. Therefore, mitigating ER stress in cancer cells in favor of cell death by ER-specific NPs is extremely important in future therapeutics and understanding the underlying mechanism of how cancer cells can respond to NP induced ER stress is a good choice for the development of novel therapeutics. Thus, in depth focus on NP-mediated ER stress will be helpful to boost up developing novel pro-drug candidates for triggering pro-death pathways in different cancers.
Collapse
Affiliation(s)
- Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Ali Mahzari
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65527, Saudi Arabia;
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia; (A.A.); (S.A.A.); (M.A.A.); (A.H.R.)
| |
Collapse
|
7
|
Demir E. A review on nanotoxicity and nanogenotoxicity of different shapes of nanomaterials. J Appl Toxicol 2020; 41:118-147. [PMID: 33111384 DOI: 10.1002/jat.4061] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Nanomaterials (NMs) generally display fascinating physical and chemical properties that are not always present in bulk materials; therefore, any modification to their size, shape, or coating tends to cause significant changes in their chemical/physical and biological characteristics. The dramatic increase in efforts to use NMs renders the risk assessment of their toxicity highly crucial due to the possible health perils of this relatively uncharted territory. The different sizes and shapes of the nanoparticles are known to have an impact on organisms and an important place in clinical applications. The shape of nanoparticles, namely, whether they are rods, wires, or spheres, is a particularly critical parameter to affect cell uptake and site-specific drug delivery, representing a significant factor in determining the potency and magnitude of the effect. This review, therefore, intends to offer a picture of research into the toxicity of different shapes (nanorods, nanowires, and nanospheres) of NMs to in vitro and in vivo models, presenting an in-depth analysis of health risks associated with exposure to such nanostructures and benefits achieved by using certain model organisms in genotoxicity testing. Nanotoxicity experiments use various models and tests, such as cell cultures, cores, shells, and coating materials. This review article also attempts to raise awareness about practical applications of NMs in different shapes in biology, to evaluate their potential genotoxicity, and to suggest approaches to explain underlying mechanisms of their toxicity and genotoxicity depending on nanoparticle shape.
Collapse
Affiliation(s)
- Eşref Demir
- Vocational School of Health Services, Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University, Dosemealti, Antalya, Turkey
| |
Collapse
|
8
|
Toxicologic Evaluation for Amorphous Silica Nanoparticles: Genotoxic and Non-Genotoxic Tumor-Promoting Potential. Pharmaceutics 2020; 12:pharmaceutics12090826. [PMID: 32872498 PMCID: PMC7559769 DOI: 10.3390/pharmaceutics12090826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 11/17/2022] Open
Abstract
Amorphous silica nanoparticles (SiO2NPs) have been widely used in medicine including targeted drug/DNA delivery, cancer therapy, and enzyme immobilization. Nevertheless, SiO2NPs should be used with caution due to safety concerns associated with unique physical and chemical characteristics. The objective of this study was to determine the effects of SiO2NPs on genotoxic and non-genotoxic mechanisms associated with abnormal gap junctional intercellular communication (GJIC) in multistage carcinogenesis. The SiO2NPs exhibited negative responses in standard genotoxicity tests including the Ames test, chromosome aberration assay, and micronucleus assay. In contrast, the SiO2NPs significantly induced DNA breakage in comet assay. Meanwhile, SiO2NPs inhibited GJIC based on the results of scrape/loading dye transfer assay for the identification of non-genotoxic tumor-promoting potential. The reduction in expression and plasma membrane localization of Cx43 was detected following SiO2NP treatment. Particularly, SiO2NP treatment increased Cx43 phosphorylation state, which was significantly attenuated by inhibitors of extracellular signal-regulated kinases 1/2 (ERK1/2) and threonine and tyrosine kinase (MEK), but not by protein kinase C (PKC) inhibitor. Taken together, in addition to a significant increase in DNA breakage, SiO2NP treatment resulted in GJIC dysregulation involved in Cx43 phosphorylation through the activation of mitogen-activated protein kinase (MAPK) signaling. Overall findings of the genotoxic and non-genotoxic carcinogenic potential of SiO2NPs provide useful toxicological information for clinical application at an appropriate dose.
Collapse
|
9
|
Demir E. An in vivo study of nanorod, nanosphere, and nanowire forms of titanium dioxide using Drosophila melanogaster: toxicity, cellular uptake, oxidative stress, and DNA damage. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:456-469. [PMID: 32515692 DOI: 10.1080/15287394.2020.1777236] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The biological impact of nanomaterials (NMs) is determined by several factors such as size and shape, which need to be taken into consideration in any type of analysis. While investigators often prefer to conduct in vitro studies for detection of any possible adverse effects of NMs, in vivo approaches yield more relevant data for risk assessment. For this reason, Drosophila melanogaster was selected as a suitable in vivo model to characterize the potential risks associated with exposure nanorods (NRs), nanospheres (NSs), nanowires (NWs) forms of titanium dioxide (TiO2), and their microparticulated (or bulk) form, as TiO2. Third instar larvae (72 hr old larvae) were fed with TiO2 (NRs, NSs, or NWs) and TiO2 at concentrations ranging from 0.01 to 10 mM. Viability (toxicity), internalization (cellular uptake), intracellular reactive oxygen species (ROS) production, and genotoxicity (Comet assay) were the end-points evaluated in hemocyte D. melanogaster larvae. Significant intracellular oxidative stress and genotoxicity were noted at the highest exposure concentration (10 mM) of TiO2 (NRs, NSs, or NWs), as determined by the Comet assay and ROS analysis, respectively. A concentration-effect relationship was observed in hemocytes exposed to the NMs. Data demonstrated that selected forms of TiO2.-induced genotoxicity in D. melanogaster larvae hemocytes indicating this organism is susceptible for use as a model to examine in vivo NMs-mediated effects.
Collapse
Affiliation(s)
- Eşref Demir
- Vocational School, Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University , Antalya, Turkey
| |
Collapse
|
10
|
Ferraro SA, Domingo MG, Etcheverrito A, Olmedo DG, Tasat DR. Neurotoxicity mediated by oxidative stress caused by titanium dioxide nanoparticles in human neuroblastoma (SH-SY5Y) cells. J Trace Elem Med Biol 2020; 57:126413. [PMID: 31606305 DOI: 10.1016/j.jtemb.2019.126413] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Titanium is widely used in biomedicine. Due to biotribocorrosion, titanium dioxide (TiO2) nanoparticles (NPs) can be released from the titanium implant surface, enter the systemic circulation, and migrate to various organs and tissues including the brain. A previous study showed that 5 nm TiO2 NPs reached the highest concentration in the brain. Even though TiO2 NPs are believed to possess low toxicity, little is known about their neurotoxic effects. The aim of the study was to evaluate in vitro the effects of 5 nm TiO2 NPs on a human neuroblastoma (SH-SY5Y) cell line. METHODS Cell cultures were divided into non-exposed and exposed to TiO2 NPs for 24 h. The following were evaluated: reactive oxygen species (ROS) generation, apoptosis, cellular antioxidant response, endoplasmic reticulum stress and autophagy. RESULTS Exposure to TiO2 NPs induced ROS generation in a dose dependent manner, with values reaching up to 10 fold those of controls (p < 0.001). Nrf2 nuclear localization and autophagy, also increased in a dose dependent manner. Apoptosis increased by 4- to 10-fold compared to the control group, depending on the dose employed. CONCLUSIONS Our results show that TiO2 NPs cause ROS increase, induction of ER stress, Nrf2 cytoplasmic translocation to the nucleus and apoptosis. Thus, neuroblastoma cell response to TiO2 NPs may be associated with an imbalance of the oxidative metabolism where endoplasmic reticulum-mediated signal pathway seems to be the main neurotoxic mechanism.
Collapse
Affiliation(s)
- Sebastián Ariel Ferraro
- Center of Studies in Health and Environment, School of Science and Technology, National University of San Martín, San Martín, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina.
| | - Mariela Gisele Domingo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Buenos Aires, Argentina; Research Fellow of the University of Buenos Aires, Buenos Aires, Argentina.
| | - Analía Etcheverrito
- Center of Studies in Health and Environment, School of Science and Technology, National University of San Martín, San Martín, Buenos Aires, Argentina.
| | - Daniel Gustavo Olmedo
- National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Buenos Aires, Argentina.
| | - Deborah Ruth Tasat
- Center of Studies in Health and Environment, School of Science and Technology, National University of San Martín, San Martín, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Histología y Embriología, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Elespuru R, Pfuhler S, Aardema MJ, Chen T, Doak SH, Doherty A, Farabaugh CS, Kenny J, Manjanatha M, Mahadevan B, Moore MM, Ouédraogo G, Stankowski LF, Tanir JY. Genotoxicity Assessment of Nanomaterials: Recommendations on Best Practices, Assays, and Methods. Toxicol Sci 2019; 164:391-416. [PMID: 29701824 DOI: 10.1093/toxsci/kfy100] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanomaterials (NMs) present unique challenges in safety evaluation. An international working group, the Genetic Toxicology Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, has addressed issues related to the genotoxicity assessment of NMs. A critical review of published data has been followed by recommendations on methods alterations and best practices for the standard genotoxicity assays: bacterial reverse mutation (Ames); in vitro mammalian assays for mutations, chromosomal aberrations, micronucleus induction, or DNA strand breaks (comet); and in vivo assays for genetic damage (micronucleus, comet and transgenic mutation assays). The analysis found a great diversity of tests and systems used for in vitro assays; many did not meet criteria for a valid test, and/or did not use validated cells and methods in the Organization for Economic Co-operation and Development Test Guidelines, and so these results could not be interpreted. In vivo assays were less common but better performed. It was not possible to develop conclusions on test system agreement, NM activity, or mechanism of action. However, the limited responses observed for most NMs were consistent with indirect genotoxic effects, rather than direct interaction of NMs with DNA. We propose a revised genotoxicity test battery for NMs that includes in vitro mammalian cell mutagenicity and clastogenicity assessments; in vivo assessments would be added only if warranted by information on specific organ exposure or sequestration of NMs. The bacterial assays are generally uninformative for NMs due to limited particle uptake and possible lack of mechanistic relevance, and are thus omitted in our recommended test battery for NM assessment. Recommendations include NM characterization in the test medium, verification of uptake into target cells, and limited assay-specific methods alterations to avoid interference with uptake or endpoint analysis. These recommendations are summarized in a Roadmap guideline for testing.
Collapse
Affiliation(s)
- Rosalie Elespuru
- Division of Biology, Chemistry and Materials Science, US Food and Drug Administration, CDRH/OSEL, Silver Spring, Maryland 20993
| | - Stefan Pfuhler
- The Procter & Gamble Company, Mason Business Centre, Mason, Ohio 45040
| | | | - Tao Chen
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, NCTR, Jefferson, Arkansas 72079
| | - Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Ann Doherty
- Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca Genetic Toxicology, AstraZeneca, Cambridge CB4 0WG, UK
| | | | - Julia Kenny
- Genetic Toxicology & Photosafety, David Jack Centre for Research & Development, GlaxoSmithKline, Ware, Hertfordshire SG12 0DP, UK
| | - Mugimane Manjanatha
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, NCTR, Jefferson, Arkansas 72079
| | - Brinda Mahadevan
- Global Pre-clinical Development Innovation & Development, Established Pharmaceuticals, Abbott, Mumbai 400072, India
| | | | | | | | - Jennifer Y Tanir
- ILSI Health and Environmental Sciences Institute (HESI), Washington, District of Columbia 20005
| |
Collapse
|
12
|
Dusinska M, Mariussen E, Rundén-Pran E, Hudecova AM, Elje E, Kazimirova A, El Yamani N, Dommershausen N, Tharmann J, Fieblinger D, Herzberg F, Luch A, Haase A. In Vitro Approaches for Assessing the Genotoxicity of Nanomaterials. Methods Mol Biol 2019; 1894:83-122. [PMID: 30547457 DOI: 10.1007/978-1-4939-8916-4_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Genotoxicity is associated with serious health effects and includes different types of DNA lesions, gene mutations, structural chromosome aberrations involving breakage and/or rearrangements of chromosomes (referred to as clastogenicity) and numerical chromosome aberrations (referred to as aneuploidy). Assessing the potential genotoxic properties of chemicals, including nanomaterials (NMs), is a key element in regulatory safety assessment. State-of-the-art genotoxicity testing includes a battery of assays covering gene mutations, structural and numerical chromosome aberrations. Typically various in vitro assays are performed in the first tier. It is not very likely that NMs may induce as yet unknown types of genotoxic damage beyond what is already known for chemicals. Thus, principles of genotoxicity testing as established for chemicals should be applicable to NMs as well. However, established test guidelines (i.e., OECD TG) may require adaptations for NM testing, as currently under discussion at the OECD. This chapter gives an overview of genotoxicity testing of NMs in vitro based on experiences from various research projects. We recommend a combination of a mammalian gene mutation assay (at either Tk or HPRT locus), the in vitro comet assay, and the cytokinesis-block micronucleus assay, which are discussed in detail here. In addition we also include the Cell Transformation Assay (CTA) as a promising novel test for predicting NM-induced cell transformation in vitro.
Collapse
Affiliation(s)
- Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway.
| | - Espen Mariussen
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway
| | - Alexandra Misci Hudecova
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway
| | - Elisabeth Elje
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway
| | - Alena Kazimirova
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway
| | - Naouale El Yamani
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway
| | - Nils Dommershausen
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Julian Tharmann
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Dagmar Fieblinger
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Frank Herzberg
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| |
Collapse
|
13
|
Nakatani H, Hamachi R, Fukui K, Motokucho S. Synthesis and activity characteristics of visible light responsive polymer photocatalyst system with a styrene block copolymer containing TiO2 gel. J Colloid Interface Sci 2018; 532:210-217. [DOI: 10.1016/j.jcis.2018.07.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/21/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
|
14
|
Abstract
The aim of this study was to evaluate the global scientific output of neurotoxicity of nanoparticles (NPs) and explore their hot spots and research trends. Articles about the neurotoxicity of NPs between 2008 and 2017 were taken from the Web of Science Core Collection database. The VOSviewer was used to analyze annual publications, countries/institutions, funding agencies, research objects, major journals, and international cooperation. The reference co-citation map and keywords were used to analyze the mechanisms of neurotoxicity of NPs. Six hundred and forty-one eligible studies were included for analysis, and the annual publications increased with time in the past decade. Based on the bibliometric analysis, China and the United States were the main countries in this field. Metals and metal oxides were the main types of NPs. Cell, rat, and mouse were the primary research objects of NPs. The main research hot spots might focus on the pathogenesis of NPs, such as oxidative stress and apoptosis. This study will help researchers understand the research status, hot spots, and trends of neurotoxicity of NPs.
Collapse
Affiliation(s)
- Benyu Su
- School of Public Health, Shandong University, Jinan, Shandong, People's Republic of China
| | - Qiangdong Guan
- School of Public Health, Shandong University, Jinan, Shandong, People's Republic of China
| | - Sufang Yu
- School of Public Health, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
15
|
Gajewicz A, Puzyn T, Odziomek K, Urbaszek P, Haase A, Riebeling C, Luch A, Irfan MA, Landsiedel R, van der Zande M, Bouwmeester H. Decision tree models to classify nanomaterials according to the DF4nanoGrouping scheme. Nanotoxicology 2017; 12:1-17. [DOI: 10.1080/17435390.2017.1415388] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Agnieszka Gajewicz
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Tomasz Puzyn
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Katarzyna Odziomek
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Piotr Urbaszek
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Christian Riebeling
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Muhammad A. Irfan
- Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Robert Landsiedel
- Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | | - Hans Bouwmeester
- RIKILT – Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
16
|
Aligning nanotoxicology with the 3Rs: What is needed to realise the short, medium and long-term opportunities? Regul Toxicol Pharmacol 2017; 91:257-266. [DOI: 10.1016/j.yrtph.2017.10.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/24/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022]
|
17
|
Gabbert S, Leontaridou M, Landsiedel R. A Critical Review of Adverse Outcome Pathway-Based Concepts and Tools for Integrating Information from Nonanimal Testing Methods: The Case of Skin Sensitization. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2017.0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Silke Gabbert
- Environmental Economics and Natural Resources Group, Wageningen University, Wageningen, The Netherlands
| | - Maria Leontaridou
- Environmental Economics and Natural Resources Group, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
18
|
Haase A, Dommershausen N, Schulz M, Landsiedel R, Reichardt P, Krause BC, Tentschert J, Luch A. Genotoxicity testing of different surface-functionalized SiO 2, ZrO 2 and silver nanomaterials in 3D human bronchial models. Arch Toxicol 2017. [PMID: 28643002 DOI: 10.1007/s00204-017-2015-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inhalation is considered a critical uptake route for NMs, demanding for sound toxicity testing using relevant test systems. This study investigates cytotoxicity and genotoxicity in EpiAirway™ 3D human bronchial models using 16 well-characterized NMs, including surface-functionalized 15 nm SiO2 (4 variants), 10 nm ZrO2 (4), and nanosilver (3), ZnO NM-110, TiO2 NM-105, BaSO4 NM-220, and two AlOOH NMs. Cytotoxicity was assessed by LDH and ATP assays and genotoxicity by the alkaline comet assay. For 9 NMs, uptake was investigated using inductively coupled plasma-mass spectrometry (ICP-MS). Most NMs were neither cytotoxic nor genotoxic in vitro. ZnO displayed a dose-dependent genotoxicity between 10 and 25 µg/cm2. Ag.50.citrate was genotoxic at 50 µg/cm2. A marginal but still significant genotoxic response was observed for SiO2.unmodified, SiO2.phosphate and ZrO2.TODS at 50 µg/cm2. For all NMs for which uptake in the 3D models could be assessed, the amount taken up was below 5% of the applied mass doses and was furthermore dose dependent. For in vivo comparison, published in vivo genotoxicity data were used and in addition, at the beginning of this study, two NMs were randomly selected for short-term (5-day) rat inhalation studies with subsequent comet and micronucleus assays in lung and bone marrow cells, respectively, i.e., ZrO2.acrylate and SiO2.amino. Both substances were not genotoxic neither in vivo nor in vitro. EpiAirway™ 3D models appear useful for NM in vitro testing. Using 16 different NMs, this study confirms that genotoxicity is mainly determined by chemical composition of the core material.
Collapse
Affiliation(s)
- Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| | - Nils Dommershausen
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Markus Schulz
- Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Robert Landsiedel
- Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Philipp Reichardt
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Benjamin-Christoph Krause
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jutta Tentschert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
19
|
Mahaye N, Thwala M, Cowan DA, Musee N. Genotoxicity of metal based engineered nanoparticles in aquatic organisms: A review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:134-160. [PMID: 28927524 DOI: 10.1016/j.mrrev.2017.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Engineered nanoparticles (ENPs) are an emerging class of environmental contaminants, but are generally found in very low concentrations and are therefore likely to exert sub-lethal effects on aquatic organisms. In this review, we: (i) highlight key mechanisms of metal-based ENP-induced genotoxicity, (ii) identify key nanoparticle and environmental factors which influence the observed genotoxic effects, and (iii) highlight the challenges involved in interpreting reported data and provide recommendations on how these challenges might be addressed. We review the application of eight different genotoxicity assays, where the Comet Assay is generally preferred due to its capacity to detect low levels of DNA damage. Most ENPs have been shown to cause genotoxic responses; e.g., DNA or/and chromosomal fragmentation, or DNA strand breakage, but at unrealistic high concentrations. The genotoxicity of the ENPs was dependent on the inherent physico-chemical properties (e.g. size, coating, surface chemistry, e.tc.), and the presence of co-pollutants. To enhance the value of published genotoxicity data, the role of environmental processes; e.g., dissolution, aggregation and agglomeration, and adsorption of ENPs when released in aquatic systems, should be included, and assay protocols must be standardized. Such data could be used to model ENP genotoxicity processes in open environmental systems.
Collapse
Affiliation(s)
- N Mahaye
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa; Water Resources Competence Area, Natural Resources and the Environment, CSIR, Pretoria, South Africa
| | - M Thwala
- Water Resources Competence Area, Natural Resources and the Environment, CSIR, Pretoria, South Africa
| | - D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - N Musee
- Department of Chemical Engineering, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
20
|
Simon M, Saez G, Muggiolu G, Lavenas M, Le Trequesser Q, Michelet C, Devès G, Barberet P, Chevet E, Dupuy D, Delville MH, Seznec H. In situ quantification of diverse titanium dioxide nanoparticles unveils selective endoplasmic reticulum stress-dependent toxicity. Nanotoxicology 2017; 11:134-145. [DOI: 10.1080/17435390.2017.1278803] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Marina Simon
- Centre d’Etudes Nucléaires Bordeaux Gradignan (CENBG), Université de Bordeaux, Gradignan, France
- CNRS, UMR5797, Centre d’Etudes Nucléaires Bordeaux Gradignan (CENBG), Gradignan, France
| | - Gladys Saez
- Centre d’Etudes Nucléaires Bordeaux Gradignan (CENBG), Université de Bordeaux, Gradignan, France
- CNRS, UMR5797, Centre d’Etudes Nucléaires Bordeaux Gradignan (CENBG), Gradignan, France
| | - Giovanna Muggiolu
- Centre d’Etudes Nucléaires Bordeaux Gradignan (CENBG), Université de Bordeaux, Gradignan, France
- CNRS, UMR5797, Centre d’Etudes Nucléaires Bordeaux Gradignan (CENBG), Gradignan, France
| | - Magali Lavenas
- CNRS, UPR9048, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Pessac, France
- Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux, Pessac, France
| | - Quentin Le Trequesser
- Centre d’Etudes Nucléaires Bordeaux Gradignan (CENBG), Université de Bordeaux, Gradignan, France
- CNRS, UMR5797, Centre d’Etudes Nucléaires Bordeaux Gradignan (CENBG), Gradignan, France
- CNRS, UPR9048, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Pessac, France
- Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux, Pessac, France
| | - Claire Michelet
- Centre d’Etudes Nucléaires Bordeaux Gradignan (CENBG), Université de Bordeaux, Gradignan, France
- CNRS, UMR5797, Centre d’Etudes Nucléaires Bordeaux Gradignan (CENBG), Gradignan, France
| | - Guillaume Devès
- Centre d’Etudes Nucléaires Bordeaux Gradignan (CENBG), Université de Bordeaux, Gradignan, France
- CNRS, UMR5797, Centre d’Etudes Nucléaires Bordeaux Gradignan (CENBG), Gradignan, France
| | - Philippe Barberet
- Centre d’Etudes Nucléaires Bordeaux Gradignan (CENBG), Université de Bordeaux, Gradignan, France
- CNRS, UMR5797, Centre d’Etudes Nucléaires Bordeaux Gradignan (CENBG), Gradignan, France
| | - Eric Chevet
- INSERM, ERL440, "Oncogenesis Stress Signaling", Université Rennes 1, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Denis Dupuy
- INSERM, U869, IECB, Laboratoire ARNA, Bordeaux, France
- Université de Bordeaux, U869, IECB, Laboratoire ARNA, Bordeaux, France
| | - Marie-Hélène Delville
- CNRS, UPR9048, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Pessac, France
- Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux, Pessac, France
| | - Hervé Seznec
- Centre d’Etudes Nucléaires Bordeaux Gradignan (CENBG), Université de Bordeaux, Gradignan, France
- CNRS, UMR5797, Centre d’Etudes Nucléaires Bordeaux Gradignan (CENBG), Gradignan, France
| |
Collapse
|
21
|
Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, Sauer UG. Safety assessment of nanomaterials using an advanced decision-making framework, the DF4nanoGrouping. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2017; 19:171. [PMID: 28553159 PMCID: PMC5423989 DOI: 10.1007/s11051-017-3850-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 04/10/2017] [Indexed: 05/14/2023]
Abstract
As presented at the 2016 TechConnect World Innovation Conference on 22-25 May 2016 in Washington DC, USA, the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) 'Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) consisting of three tiers to assign nanomaterials to four main groups with possible further subgrouping to refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways: intrinsic material properties and system-dependent properties (that depend upon the nanomaterial's respective surroundings), biopersistence, uptake and biodistribution, and cellular and apical toxic effects. Use, release, and exposure route may be applied as 'qualifiers' to determine if, e.g., nanomaterials cannot be released from products, which may justify waiving of testing. The four main groups encompass (1) soluble, (2) biopersistent high aspect ratio, (3) passive, and (4) active nanomaterials. The DF4nanoGrouping foresees a stepwise evaluation of nanomaterial properties and effects with increasing biological complexity. In case studies covering carbonaceous nanomaterials, metal oxide, and metal sulfate nanomaterials, amorphous silica and organic pigments (all nanomaterials having primary particle sizes below 100 nm), the usefulness of the DF4nanoGrouping for nanomaterial hazard assessment was confirmed. The DF4nanoGrouping facilitates grouping and targeted testing of nanomaterials. It ensures that sufficient data for the risk assessment of a nanomaterial are available, and it fosters the use of non-animal methods. No studies are performed that do not provide crucial data. Thereby, the DF4nanoGrouping serves to save both animals and resources.
Collapse
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| | - Lan Ma-Hock
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
| | - Karin Wiench
- Regulatory Toxicology, BASF SE, 67056 Ludwigshafen, Germany
| | - Wendel Wohlleben
- Experimental Toxicology and Ecology, BASF SE, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany
- Advanced Materials Research, BASF SE, 67056 Ludwigshafen, Germany
| | - Ursula G. Sauer
- Scientific Consultancy—Animal Welfare, Hallstattfeld 16, 85579 Neubiberg, Germany
| |
Collapse
|
22
|
Haase A, Luch A. Genotoxicity of nanomaterials in vitro: treasure or trash? Arch Toxicol 2016; 90:2827-2830. [PMID: 27743112 DOI: 10.1007/s00204-016-1825-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 08/22/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Andrea Haase
- Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Andreas Luch
- Department Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany.
| |
Collapse
|
23
|
Li Y, Doak SH, Yan J, Chen DH, Zhou M, Mittelstaedt RA, Chen Y, Li C, Chen T. Factors affecting the in vitro micronucleus assay for evaluation of nanomaterials. Mutagenesis 2016; 32:151-159. [PMID: 27567283 DOI: 10.1093/mutage/gew040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A number of in vitro methodologies have been used to assess the genotoxicity of different nanomaterials, including titanium dioxide nanoparticles (TiO2 NPs) and silver nanoparticles (AgNPs). The in vitro micronucleus assay is one of the most commonly used test methods for genotoxicity evaluation of nanomaterials. However, due to the novel features of nanomaterials, such as high adsorption capacity and fluorescence properties, there are unexpected interactions with experimental components and detection systems. In this study, we evaluate the interference by two nanoparticles, AgNPs and TiO2 NPs, with the in vitro micronucleus assay system and possible confounding factors affecting cytotoxicity and genotoxicity assessment of the nanomaterials including cell lines with different p53 status, nanoparticle coatings and fluorescence, cytochalasin B, fetal bovine serum in cell treatment medium and different measurement methodologies for detecting micronuclei. Our results showed that micronucleus induction by AgNPs was similar when evaluated using flow cytometry or microscope, whereas the induction by TiO2 NPs was different using the two methods due to TiO2's fluorescence interference with the cytometry equipment. Cells with the mutated p53 gene were more sensitive to micronucleus induction by AgNPs than the p53 wild-type cells. The presence of serum during treatment increased the toxicity of AgNPs. The coatings of nanoparticles played an important role in the genotoxicity of AgNPs. These collective data highlight the importance of considering the unique properties of nanoparticles in assessing their genotoxicity using the in vitro micronucleus assay.
Collapse
Affiliation(s)
- Yan Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR 72079, USA.,Covance Laboratories Inc. 671 S. Meridian Rd., Greenfield, IN 46140, USA
| | - Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR 72079, USA
| | - David H Chen
- Columbia College, Columbia University in the City of New York, 2960 Broadway, New York, NY 10027, USA and
| | - Min Zhou
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054, USA
| | - Roberta A Mittelstaedt
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR 72079, USA
| | - Ying Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR 72079, USA
| | - Chun Li
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR 72079, USA,
| |
Collapse
|
24
|
A Review on the Respiratory System Toxicity of Carbon Nanoparticles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13030325. [PMID: 26999172 PMCID: PMC4808988 DOI: 10.3390/ijerph13030325] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 02/13/2016] [Accepted: 02/18/2016] [Indexed: 12/05/2022]
Abstract
The respiratory system represents the main gateway for nanoparticles’ entry into the human body. Although there is a myriad of engineered nanoparticles, carbon nanoparticles/nanotubes (CNPs/CNTs) have received much attention mainly due to their light weight, very high surface area, durability, and their diverse applications. Since their discovery and manufacture over two decades ago, much has been learned about nanoparticles’ interactions with diverse biological system models. In particular, the respiratory system has been of great interest because various natural and man-made fibrous particles are known to be responsible for chronic and debilitating lung diseases. In this review, we present up-to-date the literature regarding the effects of CNTs or carbon nanofibers (CNFs) on the human respiratory system with respect to respiratory toxicity pathways and associated pathologies. This article is intended to emphasize the potentially dangerous effects to the human respiratory system if inadequate measures are used in the manufacture, handling, and preparation and applications of CNP or CNP-based products.
Collapse
|
25
|
Silge A, Bräutigam K, Bocklitz T, Rösch P, Vennemann A, Schmitz I, Popp J, Wiemann M. ZrO2 nanoparticles labeled via a native protein corona: detection by fluorescence microscopy and Raman microspectroscopy in rat lungs. Analyst 2016; 140:5120-8. [PMID: 26087290 DOI: 10.1039/c5an00942a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ZrO2 nanoparticles are frequently used in composite materials such as dental fillers from where they may be released and inhaled upon polishing and grinding. Since the overall distribution of ZrO2 NP inside the lung parenchyma can hardly be observed by routine histology, here a labeling with a fluorphore was used secondary to the adsorption of serum proteins. Particles were then intratracheally instilled into rat lungs. After 3 h fluorescent structures consisted of agglomerates scattered throughout the lung parenchyma, which were mainly concentrated in alveolar macrophages after 3 d. A detection method based on Raman microspectroscopy was established to investigate the chemical composition of those fluorescent structures in detail. Raman measurements were arranged such that no spectral interference with the protein-bound fluorescence label was evident. Applying chemometrical methods, Raman signals of the ZrO2 nanomaterial were co-localized with the fluorescence label, indicating the stability of the nanomaterial-protein-dye complex inside the rat lung. The combination of Raman microspectroscopy and adsorptive fluorescence labeling may, therefore, become a useful tool for studying the localization of protein-coated nanomaterials in cells and tissues.
Collapse
Affiliation(s)
- Anja Silge
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, D-07743 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Alaraby M, Annangi B, Marcos R, Hernández A. Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: A review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2016; 19:65-104. [PMID: 27128498 DOI: 10.1080/10937404.2016.1166466] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Despite being a relatively new field, nanoscience has been in the forefront among many scientific areas. Nanoparticle materials (NM) present interesting physicochemical characteristics not necessarily found in their bulky forms, and alterations in their size or coating markedly modify their physical, chemical, and biological properties. Due to these novel properties there is a general trend to exploit these NM in several fields of science, particularly in medicine and industry. The increased presence of NM in the environment warrants evaluation of potential harmful effects in order to protect both environment and human exposed populations. Although in vitro approaches are commonly used to determine potential adverse effects of NM, in vivo studies generate data expected to be more relevant for risk assessment. As an in vivo model Drosophila melanogaster was previously found to possess reliable utility in determining the biological effects of NM, and thus its usage increased markedly over the last few years. The aims of this review are to present a comprehensive overview of all apparent studies carried out with NM and Drosophila, to attain a clear and comprehensive picture of the potential risk of NM exposure to health, and to demonstrate the advantages of using Drosophila in nanotoxicological investigations.
Collapse
Affiliation(s)
- Mohamed Alaraby
- a Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències , Universitat Autònoma de Barcelona , Campus de Bellaterra , Cerdanyola del Vallès , Spain
- b Zoology Department, Faculty of Sciences , Sohag University , Sohag , Egypt
| | - Balasubramanyam Annangi
- a Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències , Universitat Autònoma de Barcelona , Campus de Bellaterra , Cerdanyola del Vallès , Spain
| | - Ricard Marcos
- a Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències , Universitat Autònoma de Barcelona , Campus de Bellaterra , Cerdanyola del Vallès , Spain
- c CIBER Epidemiología y Salud Pública , ISCIII , Madrid , Spain
| | - Alba Hernández
- a Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències , Universitat Autònoma de Barcelona , Campus de Bellaterra , Cerdanyola del Vallès , Spain
- c CIBER Epidemiología y Salud Pública , ISCIII , Madrid , Spain
| |
Collapse
|
27
|
Inhalation of titanium dioxide induces endoplasmic reticulum stress-mediated autophagy and inflammation in mice. Food Chem Toxicol 2015; 85:106-13. [DOI: 10.1016/j.fct.2015.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/01/2015] [Indexed: 12/27/2022]
|
28
|
Difference in polystyrene oxo-biodegradation behavior between copper phthalocyanine modified TiO2 and ZnO paint photocatalyst systems. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Yu KN, Chang SH, Park SJ, Lim J, Lee J, Yoon TJ, Kim JS, Cho MH. Titanium Dioxide Nanoparticles Induce Endoplasmic Reticulum Stress-Mediated Autophagic Cell Death via Mitochondria-Associated Endoplasmic Reticulum Membrane Disruption in Normal Lung Cells. PLoS One 2015; 10:e0131208. [PMID: 26121477 PMCID: PMC4485469 DOI: 10.1371/journal.pone.0131208] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/30/2015] [Indexed: 01/08/2023] Open
Abstract
Nanomaterials are used in diverse fields including food, cosmetic, and medical industries. Titanium dioxide nanoparticles (TiO2-NP) are widely used, but their effects on biological systems and mechanism of toxicity have not been elucidated fully. Here, we report the toxicological mechanism of TiO2-NP in cell organelles. Human bronchial epithelial cells (16HBE14o-) were exposed to 50 and 100 μg/mL TiO2-NP for 24 and 48 h. Our results showed that TiO2-NP induced endoplasmic reticulum (ER) stress in the cells and disrupted the mitochondria-associated endoplasmic reticulum membranes (MAMs) and calcium ion balance, thereby increasing autophagy. In contrast, an inhibitor of ER stress, tauroursodeoxycholic acid (TUDCA), mitigated the cellular toxic response, suggesting that TiO2-NP promoted toxicity via ER stress. This novel mechanism of TiO2-NP toxicity in human bronchial epithelial cells suggests that further exhaustive research on the harmful effects of these nanoparticles in relevant organisms is needed for their safe application.
Collapse
Affiliation(s)
- Kyeong-Nam Yu
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Seung-Hee Chang
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Soo Jin Park
- R&D Center, Biterials Co., Siksa-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea, Korea
| | - Joohyun Lim
- Department of Chemistry, College of Natural Sciences, Gwanak-gu, Seoul National University, Seoul, Korea
| | - Jinkyu Lee
- Department of Chemistry, College of Natural Sciences, Gwanak-gu, Seoul National University, Seoul, Korea
| | - Tae-Jong Yoon
- Department of Applied Bioscience, College of Life Science, CHA University, Pocheon-shi, Gyeonggi-do, Korea
| | - Jun-Sung Kim
- R&D Center, Biterials Co., Siksa-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea, Korea
- * E-mail: (JSK); (MHC)
| | - Myung-Haing Cho
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-gu, Seoul, Korea
- Graduate Group of Tumor Biology, Seoul National University, Gwanak-gu, Seoul, Korea
- Graduate School of Convergence Science and Technology, Seoul National University, Yeongtong-Gu, Suwon, Gyeonggi-Do, Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-Do, Korea
- * E-mail: (JSK); (MHC)
| |
Collapse
|
30
|
Orta-García ST, Plascencia-Villa G, Ochoa-Martínez AC, Ruiz-Vera T, Pérez-Vázquez FJ, Velázquez-Salazar JJ, Yacamán MJ, Navarro-Contreras HR, Pérez-Maldonado IN. Analysis of cytotoxic effects of silver nanoclusters on human peripheral blood mononuclear cells 'in vitro'. J Appl Toxicol 2015; 35:1189-99. [PMID: 26281020 DOI: 10.1002/jat.3190] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 12/19/2022]
Abstract
The antimicrobial properties of silver nanoparticles (AgNPs) have made these particles one of the most used nanomaterials in consumer products. Therefore, an understanding of the interactions (unwanted toxicity) between nanoparticles and human cells is of significant interest. The aim of this study was to assess the in vitro cytotoxicity effects of silver nanoclusters (AgNC, < 2 nm diameter) on peripheral blood mononuclear cells (PBMC). Using flow cytometry and comet assay methods, we demonstrate that exposure of PBMC to AgNC induced intracellular reactive oxygen species (ROS) generation, DNA damage and apoptosis at 3, 6 and 12 h, with a dose-dependent response (0.1, 1, 3, 5 and 30 µg ml(-1)). Advanced electron microscopy imaging of complete and ultrathin-sections of PBMC confirmed the cytotoxic effects and cell damage caused by AgNC. The present study showed that AgNC produced without coating agents induced significant cytotoxic effects on PBMC owing to their high aspect ratio and active surface area, even at much lower concentrations (<1 µg ml(-1)) than those applied in previous studies, resembling what would occur under real exposure conditions to nanosilver-functionalized consumer products.
Collapse
Affiliation(s)
- Sandra Teresa Orta-García
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí. San Luis Potosí, México.,Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Germán Plascencia-Villa
- Department of Physics & Astronomy, The University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| | - Angeles Catalina Ochoa-Martínez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí. San Luis Potosí, México.,Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Tania Ruiz-Vera
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí. San Luis Potosí, México.,Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Francisco Javier Pérez-Vázquez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí. San Luis Potosí, México.,Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - J Jesús Velázquez-Salazar
- Department of Physics & Astronomy, The University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| | - Miguel José Yacamán
- Department of Physics & Astronomy, The University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| | - Hugo Ricardo Navarro-Contreras
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí. San Luis Potosí, México
| | - Iván N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí. San Luis Potosí, México.,Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.,Unidad Académica Multidisciplinaria Zona Media, Universidad Autónoma de San Luis Potosí San Luis Potosí, México
| |
Collapse
|
31
|
Golbamaki N, Rasulev B, Cassano A, Marchese Robinson RL, Benfenati E, Leszczynski J, Cronin MTD. Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. NANOSCALE 2015; 7:2154-98. [PMID: 25580680 DOI: 10.1039/c4nr06670g] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanotechnology has rapidly entered into human society, revolutionized many areas, including technology, medicine and cosmetics. This progress is due to the many valuable and unique properties that nanomaterials possess. In turn, these properties might become an issue of concern when considering potentially uncontrolled release to the environment. The rapid development of new nanomaterials thus raises questions about their impact on the environment and human health. This review focuses on the potential of nanomaterials to cause genotoxicity and summarizes recent genotoxicity studies on metal oxide/silica nanomaterials. Though the number of genotoxicity studies on metal oxide/silica nanomaterials is still limited, this endpoint has recently received more attention for nanomaterials, and the number of related publications has increased. An analysis of these peer reviewed publications over nearly two decades shows that the test most employed to evaluate the genotoxicity of these nanomaterials is the comet assay, followed by micronucleus, Ames and chromosome aberration tests. Based on the data studied, we concluded that in the majority of the publications analysed in this review, the metal oxide (or silica) nanoparticles of the same core chemical composition did not show different genotoxicity study calls (i.e. positive or negative) in the same test, although some results are inconsistent and need to be confirmed by additional experiments. Where the results are conflicting, it may be due to the following reasons: (1) variation in size of the nanoparticles; (2) variations in size distribution; (3) various purities of nanomaterials; (4) variation in surface areas for nanomaterials with the same average size; (5) differences in coatings; (6) differences in crystal structures of the same types of nanomaterials; (7) differences in size of aggregates in solution/media; (8) differences in assays; (9) different concentrations of nanomaterials in assay tests. Indeed, due to the observed inconsistencies in the recent literature and the lack of adherence to appropriate, standardized test methods, reliable genotoxicity assessment of nanomaterials is still challenging.
Collapse
Affiliation(s)
- Nazanin Golbamaki
- Laboratory of Environmental Chemistry and Toxicology at the Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
32
|
Guérard M, Baum M, Bitsch A, Eisenbrand G, Elhajouji A, Epe B, Habermeyer M, Kaina B, Martus H, Pfuhler S, Schmitz C, Sutter A, Thomas A, Ziemann C, Froetschl R. Assessment of mechanisms driving non-linear dose–response relationships in genotoxicity testing. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 763:181-201. [DOI: 10.1016/j.mrrev.2014.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/31/2014] [Accepted: 11/01/2014] [Indexed: 01/15/2023]
|
33
|
Wang J, Fan Y. Lung injury induced by TiO2 nanoparticles depends on their structural features: size, shape, crystal phases, and surface coating. Int J Mol Sci 2014; 15:22258-78. [PMID: 25479073 PMCID: PMC4284706 DOI: 10.3390/ijms151222258] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/31/2014] [Accepted: 11/24/2014] [Indexed: 11/16/2022] Open
Abstract
With the rapid development of nanotechnology, a variety of engineered nanoparticles (NPs) are being produced. Nanotoxicology has become a hot topic in many fields, as researchers attempt to elucidate the potential adverse health effects of NPs. The biological activity of NPs strongly depends on physicochemical parameters but these are not routinely considered in toxicity screening, such as dose metrics. In this work, nanoscale titanium dioxide (TiO2), one of the most commonly produced and widely used NPs, is put forth as a representative. The correlation between the lung toxicity and pulmonary cell impairment related to TiO2 NPs and its unusual structural features, including size, shape, crystal phases, and surface coating, is reviewed in detail. The reactive oxygen species (ROS) production in pulmonary inflammation in response to the properties of TiO2 NPs is also briefly described. To fully understand the potential biological effects of NPs in toxicity screening, we highly recommend that the size, crystal phase, dispersion and agglomeration status, surface coating, and chemical composition should be most appropriately characterized.
Collapse
Affiliation(s)
- Jiangxue Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
34
|
Landsiedel R, Sauer UG, Ma-Hock L, Schnekenburger J, Wiemann M. Pulmonary toxicity of nanomaterials: a critical comparison of published in vitro assays and in vivo inhalation or instillation studies. Nanomedicine (Lond) 2014; 9:2557-85. [DOI: 10.2217/nnm.14.149] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To date, guidance on how to incorporate in vitro assays into integrated approaches for testing and assessment of nanomaterials is unavailable. In addressing this shortage, this review compares data from in vitro studies to results from in vivo inhalation or intratracheal instillation studies. Globular nanomaterials (ion-shedding silver and zinc oxide, poorly soluble titanium dioxide and cerium dioxide, and partly soluble amorphous silicon dioxide) and nanomaterials with higher aspect ratios (multiwalled carbon nanotubes) were assessed focusing on the Organisation for Economic Co-Operation and Development (OECD) reference nanomaterials for these substances. If in vitro assays are performed with dosages that reflect effective in vivo dosages, the mechanisms of nanomaterial toxicity can be assessed. In early tiers of integrated approaches for testing and assessment, knowledge on mechanisms of toxicity serves to group nanomaterials thereby reducing the need for animal testing.
Collapse
Affiliation(s)
| | - Ursula G Sauer
- Scientific Consultancy – Animal Welfare, Neubiberg, Germany
| | | | - Jürgen Schnekenburger
- Biomedical Technology Centre of the Medical Faculty of Westphalian Wilhelms University Münster, Münster, Germany
| | - Martin Wiemann
- IBE R&D gGmbH Institute for Lung Health, Münster, Germany
| |
Collapse
|
35
|
Manufactured nanomaterials: categorization and approaches to hazard assessment. Arch Toxicol 2014; 88:2191-211. [PMID: 25326817 DOI: 10.1007/s00204-014-1383-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
Nanotechnology offers enormous potential for technological progress. Fortunately, early and intensive efforts have been invested in investigating toxicology and safety aspects of this new technology. However, despite there being more than 6,000 publications on nanotoxicology, some key questions still have to be answered and paradigms need to be challenged. Here, we present a view on the field of nanotoxicology to stimulate the discussion on major knowledge gaps and the critical appraisal of concepts or dogma. First, in the ongoing debate as to whether nanoparticles may harbour a specific toxicity due to their size, we support the view that there is at present no evidence of 'nanospecific' mechanisms of action; no step-change in hazard was observed so far for particles below 100 nm in one dimension. Therefore, it seems unjustified to consider all consumer products containing nanoparticles a priori as hazardous. Second, there is no evidence so far that fundamentally different biokinetics of nanoparticles would trigger toxicity. However, data are sparse whether nanoparticles may accumulate to an extent high enough to cause chronic adverse effects. To facilitate hazard assessment, we propose to group nanomaterials into three categories according to the route of exposure and mode of action, respectively: Category 1 comprises nanomaterials for which toxicity is mediated by the specific chemical properties of its components, such as released ions or functional groups on the surface. Nanomaterials belonging to this category have to be evaluated on a case-by-case basis, depending on their chemical identity. Category 2 focuses on rigid biopersistent respirable fibrous nanomaterials with a specific geometry and high aspect ratio (so-called WHO fibres). For these fibres, hazard assessment can be based on the experiences with asbestos. Category 3 focuses on respirable granular biodurable particles (GBP) which, after inhalation, may cause inflammation and secondary mutagenicity that may finally lead to lung cancer. After intravenous, oral or dermal exposure, nanoscaled GBPs investigated apparently did not show 'nanospecific' effects so far. Hazard assessment of GBPs may be based on the knowledge available for granular particles. In conclusion, we believe the proposed categorization system will facilitate future hazard assessments.
Collapse
|
36
|
Keller J, Wohlleben W, Ma-Hock L, Strauss V, Gröters S, Küttler K, Wiench K, Herden C, Oberdörster G, van Ravenzwaay B, Landsiedel R. Time course of lung retention and toxicity of inhaled particles: short-term exposure to nano-Ceria. Arch Toxicol 2014; 88:2033-59. [PMID: 25273020 PMCID: PMC4555363 DOI: 10.1007/s00204-014-1349-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/25/2014] [Indexed: 11/30/2022]
Abstract
Two Ceria nanomaterials (NM-211 and NM-212) were tested for inhalation toxicity and organ burdens in order to design a chronic and carcinogenicity inhalation study (OECD TG No. 453). Rats inhaled aerosol concentrations of 0.5, 5, and 25 mg/m3 by whole-body exposure for 6 h/day on 5 consecutive days for 1 or 4 weeks with a post-exposure period of 24 or 129 days, respectively. Lungs were examined by bronchoalveolar lavage and histopathology. Inhaled Ceria is deposited in the lung and cleared with a half-time of 40 days; at aerosol concentrations higher than 0.5 mg/m3, this clearance was impaired resulting in a half-time above 200 days (25 mg/m3). After 5 days, Ceria (>0.5 mg/m3) induced an early inflammatory reaction by increases of neutrophils in the lung which decreased with time, with sustained exposure, and also after the exposure was terminated (during the post-exposure period). The neutrophil number observed in bronchoalveolar lavage fluid (BALF) was decreasing and supplemented by mononuclear cells, especially macrophages which were visible in histopathology but not in BALF. Further progression to granulomatous inflammation was observed 4 weeks post-exposure. The surface area of the particles provided a dose metrics with the best correlation of the two Ceria’s inflammatory responses; hence, the inflammation appears to be directed by the particle surface rather than mass or volume in the lung. Observing the time course of lung burden and inflammation, it appears that the dose rate of particle deposition drove an initial inflammatory reaction by neutrophils. The later phase (after 4 weeks) was dominated by mononuclear cells, especially macrophages. The progression toward the subsequent granulomatous reaction was driven by the duration and amount of the particles in the lung. The further progression of the biological response will be determined in the ongoing long-term study.
Collapse
Affiliation(s)
- Jana Keller
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes. Toxicol In Vitro 2014; 28:60-9. [DOI: 10.1016/j.tiv.2013.06.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 05/15/2013] [Accepted: 06/18/2013] [Indexed: 11/24/2022]
|
38
|
Li Y, Bhalli JA, Ding W, Yan J, Pearce MG, Sadiq R, Cunningham CK, Jones MY, Monroe WA, Howard PC, Zhou T, Chen T. Cytotoxicity and genotoxicity assessment of silver nanoparticles in mouse. Nanotoxicology 2013; 8 Suppl 1:36-45. [DOI: 10.3109/17435390.2013.855827] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yan Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| | - Javed A. Bhalli
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| | - Wei Ding
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| | - Mason G. Pearce
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| | - Rakhshinda Sadiq
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan,
| | - Candice K. Cunningham
- Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA, and
| | - M. Yvonne Jones
- Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA, and
| | - William A. Monroe
- Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA, and
| | - Paul C. Howard
- Nanotechnology Core Facility, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA, and
| | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA,
| |
Collapse
|
39
|
|
40
|
Bulcão RP, de Freitas FA, Dallegrave E, Venturini CG, Baierle M, Durgante J, Sauer E, Cassini C, Cerski CT, Zielinsky P, Salvador M, Pohlmann AR, Guterres SS, Garcia SC. In vivo toxicological evaluation of polymeric nanocapsules after intradermal administration. Eur J Pharm Biopharm 2013; 86:167-77. [PMID: 23643792 DOI: 10.1016/j.ejpb.2013.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 03/14/2013] [Accepted: 04/05/2013] [Indexed: 12/11/2022]
Abstract
Polymeric nanocarriers have shown great promise as delivery systems. An alternative strategy has been to explore new delivery routes, such as intradermal (i.d.), that can be used for vaccines and patch-based drug delivery. Despite their many advantages, there are few toxicity studies, especially in vivo. We report a safety assessment of biodegradable poly(ɛ-caprolactone) lipid-core nanocapsules (LNC) with a mean size of 245±10nm following single and repeated intradermal injections to Wistar rats. Suspensions were prepared by interfacial deposition of polymer. The animals (n=6/group) received a single-dose of saline solution (1.2ml/kg) or LNC (7.2×10(12)LNC/kg), or repeated-doses of two controls, saline solution or Tween 80 (0.9ml/kg), or three different concentrations of LNC (1.8, 3.6, and 5.4×10(12)LNC/kg) for 28 consecutive days. Clinical and physiological signs and mortality were observed. Samples of urine, blood, and tissue were used to perform toxicological evaluation. There were no clinical signs of toxicity or mortality, but there was a slight decrease in the relative body weights in the Tween 80-treated group (p<0.01) after repeated administration. No histopathological alterations were observed in tissues or significant changes in blood and urinary biomarkers for tissue damage. Mild alterations in white blood cells count with increases in granulocytes in the Tween-80 group (p<0.05) were found. Genotoxicity was evaluated through the comet assay, and no statistical difference was observed among the groups. Therefore, we conclude that, under the conditions of these experiments, biodegradable LNC did not present appreciable toxicity after 28 consecutive days of intradermal administration and is promising for its future application in vaccines and patch-based devices for enhancing the delivery of drugs.
Collapse
Affiliation(s)
- Rachel P Bulcão
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Brazil; Laboratório de Toxicologia (LATOX), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando A de Freitas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Brazil; Laboratório de Toxicologia (LATOX), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eliane Dallegrave
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Cristina G Venturini
- Departamento de Produção e Controle de Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marília Baierle
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Brazil; Laboratório de Toxicologia (LATOX), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliano Durgante
- Laboratório de Toxicologia (LATOX), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Elisa Sauer
- Laboratório de Toxicologia (LATOX), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Instituto de Cardiologia, Fundação Universitária de Cardiologia, Porto Alegre, Brazil
| | - Carina Cassini
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, Brazil
| | - Carlos T Cerski
- Departamento de Patologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paulo Zielinsky
- Instituto de Cardiologia, Fundação Universitária de Cardiologia, Porto Alegre, Brazil
| | - Mirian Salvador
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, Brazil
| | - Adriana R Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Sílvia S Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Brazil; Departamento de Produção e Controle de Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Solange C Garcia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Brazil; Laboratório de Toxicologia (LATOX), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
41
|
Qiao Y, An J, Ma L. Single Cell Array Based Assay for in Vitro Genotoxicity Study of Nanomaterials. Anal Chem 2013; 85:4107-12. [DOI: 10.1021/ac400242w] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yong Qiao
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Jincui An
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Liyuan Ma
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| |
Collapse
|
42
|
Kim HR, Park YJ, Shin DY, Oh SM, Chung KH. Appropriate in vitro methods for genotoxicity testing of silver nanoparticles. ENVIRONMENTAL HEALTH AND TOXICOLOGY 2013; 28:e2013003. [PMID: 23440978 PMCID: PMC3577117 DOI: 10.5620/eht.2013.28.e2013003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/06/2012] [Indexed: 05/28/2023]
Abstract
OBJECTIVES We investigated the genotoxic effects of 40-59 nm silver nanoparticles (Ag-NPs) by bacterial reverse mutation assay (Ames test), in vitro comet assay and micronucleus (MN) assay. In particular, we directly compared the effect of cytochalasin B (cytoB) and rat liver homogenate (S9 mix) in the formation of MN by Ag-NPs. METHODS Before testing, we confirmed that Ag-NPs were completely dispersed in the experimental medium by sonication (three times in 1 minute) and filtration (0.2 µm pore size filter), and then we measured their size in a zeta potential analyzer. After that the genotoxicity were measured and especially, S9 mix and with and without cytoB were compared one another in MN assay. RESULTS Ames test using Salmonella typhimurium TA98, TA100, TA1535 and TA1537 strains revealed that Ag-NPs with or without S9 mix did not display a mutagenic effect. The genotoxicity of Ag-NPs was also evaluated in a mammalian cell system using Chinese hamster ovary cells. The results revealed that Ag-NPs stimulated DNA breakage and MN formation with or without S9 mix in a dose-dependent manner (from 0.01 µg/mL to 10 µg/mL). In particular, MN induction was affected by cytoB. CONCLUSIONS All of our findings, with the exception of the Ames test results, indicate that Ag-NPs show genotoxic effects in mammalian cell system. In addition, present study suggests the potential error due to use of cytoB in genotoxic test of nanoparticles.
Collapse
Affiliation(s)
- Ha Ryong Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Yong Joo Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Da Young Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Seung Min Oh
- Fusion Technology Laboratory, Hoseo University, Asan, Korea
| | | |
Collapse
|