1
|
Ruglioni M, Petrini I, Crucitta S, Sbrana A, Luculli GI, Sadeghi Gol L, Forte C, Chella A, Rolfo C, Danesi R, Del Re M. Clinical characteristics of EGFR-ctDNA shedders in EGFR-mutant NSCLC patients. Transl Oncol 2025; 52:102228. [PMID: 39709717 PMCID: PMC11832947 DOI: 10.1016/j.tranon.2024.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/17/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) revolutionized the molecular diagnostics of lung cancer by enabling non-invasive, sensitive identification of actionable mutations. However, ctDNA analysis may be challenging due to tumor shedding variability, leading to false negative results. This study aims to understand the determinants for ctDNA shedding based on clinical characteristics of lung cancer patients, for a better interpretation of false negative results to be considered when ordering ctDNA analysis for clinical practice. METHODS Blood samples were collected from patients with stage IV EGFR-mutated (mEGFR) NSCLC before treatment and monitored until disease progression. EGFR was assessed on tissue by standard procedures, while EGFR status on ctDNA was tested using dPCR at baseline and at the first reassessment. NGS was used to evaluate patients mutational status at the progression of the disease. RESULTS A total of 40 mEGFR tissue samples were collected. Plasma samples were analyzed for mEGFR before starting the first line, 65 % of patients had detectable mEGFR in ctDNA ("shedders"). Higher ECOG PS (p = 0.04), bilateral localization of primary tumor (p = 0.04), and the presence of intrathoracic/extrathoracic disease (p = 0.05), were associated to mEGFR shedding. Shedders had shorter PFS compared to non-shedders (p = 0.03). Patients with detectable mEGFR in ctDNA at the first radiological assessment exhibited worse PFS compared to patients with ctDNA clearance (p = 0.05). CONCLUSION Our preliminary data demonstrate that specific clinical characteristics predict mEGFR shedding in ctDNA of NSCLC, suggesting a potential clinical applicability for understanding potential false negative results and appropriate reporting in clinical practice.
Collapse
Affiliation(s)
- Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Iacopo Petrini
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Andrea Sbrana
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Leila Sadeghi Gol
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Carola Forte
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Antonio Chella
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Christian Rolfo
- Department of Internal Medicine, Division of Medical Oncology, The Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
| | - Romano Danesi
- Department of Oncology and Hemato-Oncology, University of Milan, Italy.
| | - Marzia Del Re
- Saint Camillus International University of Medical and Health Sciences, Rome, Italy; Direzione Scientifica Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
2
|
Yao X, Mao J, Zhang H, Xiao Y, Wang Y, Liu H. Development of novel N-aryl-2,4-bithiazole-2-amine-based CYP1B1 degraders for reversing drug resistance. Eur J Med Chem 2024; 272:116488. [PMID: 38733885 DOI: 10.1016/j.ejmech.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Extrahepatic cytochrome P450 1B1 (CYP1B1), which is highly expressed in non-small cell lung cancer, is an attractive target for cancer prevention, therapy, and overcoming drug resistance. Historically, CYP1B1 inhibition has been the primary therapeutic approach for treating CYP1B1-related malignancies, but its success has been limited. This study introduced CYP1B1 degradation as an alternative strategy to counter drug resistance and metastasis in CYP1B1-overexpressing non-small cell lung cancer A549/Taxol cells via a PROTAC strategy. Our investigation revealed that the identification of the potent CYP1B1 degrader PV2, achieving DC50 values of 1.0 nM and inducing >90 % CYP1B1 degradation at concentrations as low as 10 nM in A549/Taxol cells. Importantly, PV2 enhanced the sensitivity of the A549/Taxol subline to Taxol, possibly due to its stronger inhibitory effects on P-gp through CYP1B1 degradation. Additionally, compared to the CYP1B1 inhibitor A1, PV2 effectively suppressed the migration and invasion of A549/Taxol cells by inhibiting the FAK/SRC and EMT pathways. These findings hold promise for a novel therapy targeting advanced CYP1B1+ non-small cell lung cancer.
Collapse
Affiliation(s)
- Xiaoxuan Yao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, PR China
| | - Jianping Mao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, PR China
| | - Haoyu Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, PR China
| | - Yi Xiao
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, PR China
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, PR China.
| | - Hongzhuo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, PR China.
| |
Collapse
|
3
|
Diamantopoulou S, Yapijakis C, Papakosta V, Ebeling M, Lazaris AC, Derka S, Vylliotis A, Diamantopoulos P, Vairaktari G, Vassiliou S. EGFR and HER-2 oncogenes expression in an experimental model of two-stage chemically induced carcinogenesis in mouse skin. J Craniomaxillofac Surg 2024; 52:413-419. [PMID: 38443188 DOI: 10.1016/j.jcms.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 03/07/2024] Open
Abstract
The aim of the study was to investigate the expression of EGFR and HER-2 oncogenes using an experimental two stage chemically induced carcinogenesis protocol on the dorsal skin in FVB/N mice. Forty female FVB/N mice 4 weeks old, were grouped into one control (n = 8) and two experimental groups (Group A: n = 16, Group B: n = 16) following a randomization process. Two-stage carcinogenesis protocol, was implicated, including an initial treatment with 97.4 nmol DMBA on their shaved dorsal skin and subsequent treatments of 32.4 nmol TPA applications after 13 weeks for Group A and after 20 weeks for Group B. The control group C, received no treatment. Skin was examined weekly for tumor development. Post-experiment, animals were euthanized for tissue analysis. The histological status of the skin lesions in the experimental groups corresponded well with tumour advancement (from dysplasia to poorly-differentiated carcinoma). Tumour sections were evaluated histologically and immunohistochemically. EGFR expression was found significantly higher in precancerous and malignant tumours (p = 042 and p = 008 respectively), while tended to be higher in benign tumours (p = 079), compared to normal histology. Moreover, mean percentage of EGFR positive expression in malignant tumours was significantly higher than in benign tumours (p < 001). HER-2 expression was found significantly higher in precancerous and malignant tumours (p = 042 and p = 015 respectively), while tended to be higher in benign tumours (p = 085), compared to normal histology. Furthermore, mean percentage of HER-2 positive expression in malignant tumours was significantly higher than in benign tumours (p = 005). The study demonstrated that in FVB/N mice subjected to a two-stage chemically induced carcinogenesis protocol, there was a significant increase in the expression of EGFR and HER-2 oncogenes in precancerous and malignant skin lesions compared to normal tissue. This suggests a potentially early role of these oncogenes in the progression of skin tumours in this model.
Collapse
Affiliation(s)
- Stavroula Diamantopoulou
- Department of Oral & Maxillofacial Surgery, Evaggelismos General Hospital of Athens, National and Kapodistrian University of Athens, Greece.
| | - Christos Yapijakis
- Unit of Orofacial Genetics, University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Veronica Papakosta
- Department of Oral and Maxillofacial Surgery, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marcel Ebeling
- Department of Oral and Plastic Maxillofacial Surgery, Military Hospital Ulm, Academic Hospital of the University of Ulm, Oberer Eselsberg 40, 89081, Ulm, Germany; Department of Oral and Maxillofacial Surgery, University Hospital Ulm, Albert-Einstein-Allee 10, 89081, Ulm, Germany
| | - Andreas C Lazaris
- Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyridoula Derka
- Department of Oral and Maxillofacial Surgery, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonis Vylliotis
- Unit of Orofacial Genetics, University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Diagnostic and Research Laboratory of Molecular Biology, BiocLab, Athens, Greece
| | - Pantelis Diamantopoulos
- Department of Plastic Surgery, St. Savvas Anticancer- Oncologic Hospital of Athens, Athens, Greece
| | - Georgia Vairaktari
- Department of Oral and Maxillofacial Surgery, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavros Vassiliou
- Department of Oral and Maxillofacial Surgery, University General Hospital Attikon, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Zhou C, Jing Z, Liu W, Ma Z, Liu S, Fang Y. Prognosis of recurrence after complete resection in early-stage lung adenocarcinoma based on molecular alterations: a systematic review and meta-analysis. Sci Rep 2023; 13:18710. [PMID: 37907475 PMCID: PMC10618289 DOI: 10.1038/s41598-023-42851-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/15/2023] [Indexed: 11/02/2023] Open
Abstract
Molecular biomarkers have the potential to predict the recurrence risk of early-stage lung adenocarcinoma (LUAD) after complete resection, but the study results are controversial. We aimed to clarify the association of molecular alterations with disease-free survival (DFS) and recurrence-free survival (RFS) in early-stage LUAD with R0 resection. Comprehensive searches were conducted in PubMed/MEDLINE, Web of Science, and Cochrane Library for this systematic review and meta-analysis with date restrictions from 2012 to 2022. In the 18 included studies, data from a total of 7417 participants in 11 studies and 4167 participants in 9 studies were collected for the EGFR and KRAS meta-analyses, respectively. Two studies were assessed as having a moderate risk of bias, and the others were all assessed as having a high individual risk of bias. The molecular alterations in KRAS rather than EGFR, were associated with a high risk of recurrence for early-stage LUAD patients suffering from R0 resection, especially for those in pStage I, the pooled hazard ratios (HRs) of KRAS were 2.71 (95% CI, 1.81-4.06; I2 = 22%; P < 0.00001) and 1.95 (95% CI, 1.25-3.20; I2 = 57%; P = 0.003) with small interstudy heterogeneity in univariate and multivariate analyses, respectively. This finding suggests that molecular alterations in KRAS that could be detected by polymerase chain reaction techniques would provide new insight into stratifying risk and personalizing patient postoperative follow-up.
Collapse
Affiliation(s)
- Chu Zhou
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhongying Jing
- Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, 100176, China
| | - Wei Liu
- Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, 100176, China
| | - Zihuan Ma
- Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, 100176, China
| | - Siyao Liu
- Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, 100176, China
| | - Yueyu Fang
- Department of Medical Oncology, Nanjing PuKou People's Hospital, Nanjing, 211800, China.
| |
Collapse
|
5
|
Bai K, Chen X, Qi X, Zhang Y, Zou Y, Li J, Yu L, Li Y, Jiang J, Yang Y, Liu Y, Feng S, Bu H. Cerebrospinal fluid circulating tumour DNA genotyping and survival analysis in lung adenocarcinoma with leptomeningeal metastases. J Neurooncol 2023; 165:149-160. [PMID: 37897649 PMCID: PMC10638181 DOI: 10.1007/s11060-023-04471-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/30/2023]
Abstract
PURPOSE The prognosis of patients with leptomeningeal metastasis (LM) remains poor. Circulating tumour DNA (ctDNA) has been proven to be abundantly present in cerebrospinal fluid (CSF); hence, its clinical implication as a biomarker needs to be further verified. METHODS We conducted a retrospective study of 35 lung adenocarcinoma (LUAD) patients with LM, and matched CSF and plasma samples were collected from all patients. All paired samples underwent next-generation sequencing (NGS) of 139 lung cancer-associated genes. The clinical characteristics and genetic profiling of LM were analysed in association with survival prognosis. RESULTS LM showed genetic heterogeneity, in which CSF had a higher detection rate of ctDNA (P = 0.003), a higher median mutation count (P < 0.0001), a higher frequency of driver mutations (P < 0.01), and more copy number variation (CNV) alterations (P < 0.001) than plasma. The mutation frequencies of the EGFR, TP53, CDKN2A, MYC and CDKN2B genes were easier to detect in CSF than in LUAD tissue (P < 0.05), possibly reflecting the underlying mechanism of LM metastasis. CSF ctDNA is helpful for analysing the mechanism of EGFR-TKI resistance. In cohort 1, which comprised patients who received 1/2 EGFR-TKIs before the diagnosis of LM, TP53 and CDKN2A were the most common EGFR-independent resistant mutations. In cohort 2, comprising those who progressed after osimertinib and developed LM, 7 patients (43.75%) had EGFR CNV detected in CSF but not plasma. Furthermore, patient characteristics and various genes were included for interactive survival analysis. Patients with EGFR-mutated LUAD (P = 0.042) had a higher median OS, and CSF ctDNA mutation with TERT (P = 0.013) indicated a lower median OS. Last, we reported an LM case in which CSF ctDNA dynamic changes were well correlated with clinical treatment. CONCLUSIONS CSF ctDNA could provide a more comprehensive genetic landscape of LM, indicating the potential metastasis-related and EGFR-TKI resistance mechanisms of LM patients. In addition, genotyping of CSF combined with clinical outcomes can predict the prognosis of LUAD patients with LM.
Collapse
Affiliation(s)
- Kaixuan Bai
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Xin Chen
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- Department of Neurology, Xingtai People's Hospital, Xingtai, China
| | - Xuejiao Qi
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yueli Zou
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Jian Li
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- Department of General Practice, Hengshui People's Hospital, Hengshui, China
| | - Lili Yu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yuanyuan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Jiajia Jiang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yi Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yajing Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Shuanghao Feng
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Hui Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China.
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China.
- Neurological Laboratory of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
6
|
Colomer R, Miranda J, Romero-Laorden N, Hornedo J, González-Cortijo L, Mouron S, Bueno MJ, Mondéjar R, Quintela-Fandino M. Usefulness and real-world outcomes of next generation sequencing testing in patients with cancer: an observational study on the impact of selection based on clinical judgement. EClinicalMedicine 2023; 60:102029. [PMID: 37304496 PMCID: PMC10248077 DOI: 10.1016/j.eclinm.2023.102029] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Background Next Generation Sequencing (NGS) panels are increasingly used in advanced patients with cancer to guide therapy. There is, however, controversy about when should these panels be used, and about their impact on the clinical course. Methods In an observational study of 139 patients with cancer having an NGS test [from January 1st, 2017 to December 30th, 2020, in two hospitals (Hospital Universitario de La Princesa and Hospital Universitario Quironsalud Madrid) from Spain], we evaluated whether the clinical course (progression-free survival, PFS) was influenced by drug-based criteria [druggable alterations, receiving a recommended drug, having a favourable ESCAT category (ESMO Scale for Clinical Actionability of molecular Targets)] or clinical judgement criteria. Findings In 111 of 139 cases that were successfully profiled, PFS was not significantly influenced by either having druggable alterations [median PFS for patients with druggable alterations was 170 (95% C.I.: 139-200) days compared to 299 (95% C.I.: 114-483) for those without; p = 0.37], receiving a proposed matching agent [median PFS for patients receiving a genomics-informed drug was 195 days (95% C.I.: 144-245), compared with 156 days for those that did not (95% C.I.: 85-226); p = 0.50], or having favourable ESCAT categories [median PFS for patients with ESCAT I-III was 183 days (95% C.I.: 104-261), compared with 180 (95% C.I.:144-215) for patients with ESCAT IV-X; p = 0.87]. In contrast, NGS testing performed within clinical judgement showed a significantly improved PFS [median PFS for patients that were profiled under the recommended scenarios was 319 days (95% C.I.: 0-658), compared to 123 days (95% C.I.: 89-156) in the non-recommended categories; p = 0.0020]. Interpretation According to our data, real-world outcomes after NGS testing provide evidence of the benefit of clinical judgement in patients with either advanced cancers that routinely need multiple genetic markers, patients with advanced rare cancers, or patients that are screened for molecular clinical trials. By contrast, NGS does not seem to be valuable when performed in cases with a poor PS, rapidly progressing cancer, short expected lifetime, or cases with no standard therapeutic options. Funding RC, NR-L and MQF are recipients of the PMP22/00032 grant, funded by the ISCIII and co-funded by the European Regional Development Fund (ERDF). The study also received funds from the CRIS Contra el Cancer Foundation.
Collapse
Affiliation(s)
- Ramon Colomer
- Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Chair of Personalised Precision Medicine, Universidad Autonoma de Madrid (UAM – Fundación Instituto Roche), Madrid, Spain
- Medical Oncology Division, Hospital Universitario La Princesa, Madrid, Spain
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
| | - Jesús Miranda
- University Hospital Quironsalud Madrid, Madrid, Spain
| | | | | | | | - Silvana Mouron
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
| | - Maria J. Bueno
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
| | - Rebeca Mondéjar
- Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Chair of Personalised Precision Medicine, Universidad Autonoma de Madrid (UAM – Fundación Instituto Roche), Madrid, Spain
- Medical Oncology Division, Hospital Universitario La Princesa, Madrid, Spain
| | - Miguel Quintela-Fandino
- Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Chair of Personalised Precision Medicine, Universidad Autonoma de Madrid (UAM – Fundación Instituto Roche), Madrid, Spain
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
| |
Collapse
|
7
|
Kaye B, Ali A, Correa Bastianon Santiago RA, Ibrahim B, Isidor J, Awad H, Sabahi M, Obrzut M, Adada B, Ranjan S, Borghei-Razavi H. The Role of EGFR Amplification in Deep Venous Thrombosis Occurrence in IDH Wild-Type Glioblastoma. Curr Oncol 2023; 30:4946-4956. [PMID: 37232831 DOI: 10.3390/curroncol30050373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Glioblastoma (GBM) patients have a 20-30 incidence of venous thromboembolic events. EGFR is a widely used prognostic marker for many cancers. Recent lung cancer studies have described relationships between EGFR amplification and an increased incidence of thromboembolic complications. We aim to explore this relationship in glioblastoma patients. Methods: Two hundred ninety-three consecutive patients with IDH wild-type GBM were included in the analysis. The amplification status of EGFR was measured using fluorescence in situ hybridization (FISH). Centromere 7 (CEP7) expression was recorded to calculate the EGFR-to-CEP7 ratio. All data were collected retrospectively through chart review. Molecular data were obtained through the surgical pathology report at the time of biopsy. Results: There were 112 subjects who were EGFR-amplified (38.2%) and 181 who were non-amplified (61.8%). EGFR amplification status was not significantly correlated with VTE risk overall (p = 0.2001). There was no statistically significant association between VTE and EGFR status after controlling for Bevacizumab therapy (p = 0.1626). EGFR non-amplified status was associated with an increased VTE risk in subjects greater than 60 years of age (p = 0.048). Conclusions: There was no significant difference in occurrence of VTE in patients with glioblastoma, regardless of EGFR amplification status. Patients older than 60 years of age with EGFR amplification experienced a lower rate of VTE, contrary to some reports on non-small-cell lung cancer linking EGFR amplification to VTE risk.
Collapse
Affiliation(s)
- Brandon Kaye
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Assad Ali
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | | | - Bilal Ibrahim
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | - Julio Isidor
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | - Hany Awad
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | | | - Michal Obrzut
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | - Badih Adada
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | - Surabhi Ranjan
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | | |
Collapse
|
8
|
Li Y, Mao T, Wang J, Zheng H, Hu Z, Cao P, Yang S, Zhu L, Guo S, Zhao X, Tian Y, Shen H, Lin F. Toward the next generation EGFR inhibitors: an overview of osimertinib resistance mediated by EGFR mutations in non-small cell lung cancer. Cell Commun Signal 2023; 21:71. [PMID: 37041601 PMCID: PMC10088170 DOI: 10.1186/s12964-023-01082-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 04/13/2023] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is currently the standard first-line therapy for EGFR-mutated advanced non-small cell lung cancer (NSCLC). The life quality and survival of this subgroup of patients were constantly improving owing to the continuous iteration and optimization of EGFR-TKI. Osimertinib, an oral, third-generation, irreversible EGFR-TKI, was initially approved for the treatment of NSCLC patients carrying EGFR T790M mutations, and has currently become the dominant first-line targeted therapy for most EGFR mutant lung cancer. Unfortunately, resistance to osimertinib inevitably develops during the treatment and therefore limits its long-term effectiveness. For both fundamental and clinical researchers, it stands for a major challenge to reveal the mechanism, and a dire need to develop novel therapeutics to overcome the resistance. In this article, we focus on the acquired resistance to osimertinib caused by EGFR mutations which account for approximately 1/3 of all reported resistance mechanisms. We also review the proposed therapeutic strategies for each type of mutation conferring resistance to osimertinib and give an outlook to the development of the next generation EGFR inhibitors. Video Abstract.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
| | - Tianyu Mao
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Wang
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Hongrui Zheng
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Ziyi Hu
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Pingping Cao
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Suisui Yang
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Lingyun Zhu
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Shunyao Guo
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Xinfei Zhao
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Yue Tian
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Hua Shen
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China.
| | - Fan Lin
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
9
|
Association Analysis of Maximum Standardized Uptake Values Based on 18F-FDG PET/CT and EGFR Mutation Status in Lung Adenocarcinoma. J Pers Med 2023; 13:jpm13030396. [PMID: 36983578 PMCID: PMC10058931 DOI: 10.3390/jpm13030396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
(1) Background: To investigate the association between maximum standardized uptake value (SUVmax) based on 18F-FDG PET/CT and EGFR mutation status in lung adenocarcinoma. (2) Methods: A total of 366 patients were retrospectively collected and divided into the EGFR mutation group (n = 228) and EGFR wild-type group (n = 138) according to their EGFR mutation status. The two groups’ general information and PET/CT imaging parameters were compared. A hierarchical binary logistic regression model was used to assess the interaction effect on the relationship between SUVmax and EGFR mutation in different subgroups. Univariate and multivariate logistic regression was used to analyze the association between SUVmax and EGFR mutation. After adjusting for confounding factors, a generalized additive model and smooth curve fitting were applied to address possible non-linearities. (3) Results: Smoking status significantly affected the relationship between SUVmax and EGFR mutation (p for interaction = 0.012), with an interaction effect. After adjusting for age, gender, nodule type, bronchial sign, and CEA grouping, in the smoking subgroup, curve fitting results showed that the relationship between SUVmax and EGFR mutation was approximately linear (df = 1.000, c2 = 3.897, p = 0.048); with the increase in SUVmax, the probability of EGFR mutation gradually decreased, and the OR value was 0.952 (95%CI: 0.908–0.999; p = 0.045). (4) Conclusions: Smoking status can affect the relationship between SUVmax and EGFR mutation status in lung adenocarcinoma, especially in the positive smoking history subgroup. Fully understanding the effect of smoking status will help to improve the accuracy of SUVmax in predicting EGFR mutations.
Collapse
|
10
|
Ding Y, Zhen Z, Nisar MA, Ali F, Din RU, Khan M, Mughal TA, Alam G, Liu L, Saleem MZ. Sesquiterpene Lactones Attenuate Paclitaxel Resistance Via Inhibiting MALAT1/STAT3/ FUT4 Axis and P-Glycoprotein Transporters in Lung Cancer Cells. Front Pharmacol 2022; 13:795613. [PMID: 35281907 PMCID: PMC8909900 DOI: 10.3389/fphar.2022.795613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/03/2022] [Indexed: 01/10/2023] Open
Abstract
Paclitaxel resistance is a challenging factor in chemotherapy resulting in poor prognosis and cancer recurrence. Signal transducer and activator of transcription factor 3 (STAT3), a key transcription factor, performs a critical role in cancer development, cell survival and chemoresistance, while its inactivation overwhelms drug resistance in numerous cancer types including lung cancer. Additionally, the fucosyltransferase 4 (FUT4) is a crucial enzyme in post-translational modification of cell-surface proteins involved in various pathological conditions such as tumor multidrug resistance (MDR). The P-glycoprotein (P-GP) is the well-known ABC transporter member that imparts drug resistance in different cancer types, most notably paclitaxel resistance in lung cancer cells. LncRNA-MALAT1 exerts a functional role in the cancer development as well as the drug resistance and is linked with STAT3 activation and activity of FUT4. Moreover, STAT3-mediated induction of P-GP is well-documented. Natural compounds of Sesquiterpene Lactone (SL) family are well-known for their anticancer properties with particular emphasis over STAT3 inhibitory capabilities. In this study, we explored the positive correlation of MALAT1 with STAT3 and FUT4 activity in paclitaxel resistant A549 (A549/T) lung cancer cells. Additionally, we investigated the anticancer activity of two well-known members of SLs, alantolactone (ALT) and Brevilin A (Brv-A), in A549/T lung cancer cells. ALT and Brv-A induced apoptosis in A549/T cells. Furthermore, these two natural SLs suppressed MALAT1 expression, STAT3 activation, and FUT4 and P-GP expression which are the hallmarks for paclitaxel resistance in A549 lung cancer cells. The inhibition of MALAT1 enhanced the competence of these SLs members significantly, which accounted for the growth inhibition as well as anti-migratory and anti-invasive effects of ALT and Brv-A. These findings suggest SLs to be the promising agents for overcoming paclitaxel resistance in A549 lung cancer cells.
Collapse
Affiliation(s)
- Yaming Ding
- The Second Hospital of Jilin University, Changchun, China
| | - Zhang Zhen
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | | | - Farman Ali
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Riaz Ud Din
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Muhammad Khan
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Tafail Akbar Mughal
- Medical Toxicology Laboratory, Department of Zoology, Women University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Gulzar Alam
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Islamabad, Pakistan
| | - Linlin Liu
- The Second Hospital of Jilin University, Changchun, China
| | - Muhammad Zubair Saleem
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Li M, Xi J, Zhang H, Jin X, Zhang J, Feng M, Zhan C, Wang Q. Pan-Driver-Negatives <i>versus</i> Epidermal Growth Factor Receptor Mutants for C-Stage IA Lung Adenocarcinoma with Ground-Glass Opacity. Ann Thorac Cardiovasc Surg 2022; 28:320-328. [PMID: 35644565 PMCID: PMC9585333 DOI: 10.5761/atcs.oa.22-00058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose: We aimed to verify the prognosis of epidermal growth factor receptor (EGFR) mutation of clinical (c)-stage IA lung adenocarcinoma with the ground-glass opacity (GGO) component. Methods: We evaluated 226 cases of surgically resected c-stage IA lung adenocarcinoma with GGO component. Endpoints were overall survival (OS) and recurrence-free survival (RFS). Kaplan–Meier analysis and the log-rank test were used to estimate the survival differences. Prognostic factors were assessed using the univariable and multivariable Cox proportional hazards model. Results: Among the 226 cases, 177 cases harbored the EGFR-mutant adenocarcinoma with the GGO component. The mean duration of follow-up time was 54.4 ± 1.2 months. The 5-year OS and RFS did not differ significantly between the EGFR-mutant and wild-type groups (5-year OS 100% vs. 94.3%, hazard ratio [HR] 0.276, P = 0.168; 5-year RFS 94.7% vs. 95.7%, HR 0.873, P = 0.864). Multivariable Cox hazard model revealed that radiologically solid component size (P = 0.010) and pathological node-positive (P = 0.036) were significant predictors of an inferior RFS. Conclusion: EGFR-mutant was not a prognostic factor of OS and RFS for c-stage IA lung adenocarcinoma with the GGO component. Radiologically solid component size and pathological lymph node status were independent prognostic factors of worse RFS.
Collapse
Affiliation(s)
- Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Junjie Xi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Huan Zhang
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jianrong Zhang
- Victorian Comprehensive Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Mingxiang Feng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
12
|
Sharma A, Kumar R. Response to Oral Erlotinib Monotherapy in a Patient With EGFR-Negative Status in Histology and Progressive Disease on Conventional Chemotherapy. Clin Nucl Med 2021; 46:e541-e542. [PMID: 34028410 DOI: 10.1097/rlu.0000000000003687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT An 80-year-old woman, presenting with weight loss and dyspnea for 8 months, showed bilateral lung consolidation in baseline 18F-FDG PET/CT and adenocarcinoma in bronchoscopy-guided biopsy. Epidermal growth factor receptor mutational status was negative in immunohistochemistry analysis, as well as in repeat liquid biopsy. When she developed progression on conventional chemotherapy, a trial of T. Erlotinib was given (since patient was a nonsmoker woman). Within a month, patient reported significant improvement in the dyspnea and did not require nebulization. 18F-FDG PET/CT was repeated after ~6 months, which showed significant response to the oral erlotinib monotherapy. Patient was doing well at 1-year follow-up, with only dermatological adverse effects (rashes).
Collapse
Affiliation(s)
- Anshul Sharma
- From the Department of Nuclear Medicine, Vardhman Mahavir Medical College and Safdarjung Hospital
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
13
|
Nakra T, Singh V, Nambirajan A, Malik PS, Mohan A, Jain D. Correlation of TTF-1 immunoexpression and EGFR mutation spectrum in non-small cell lung carcinoma. J Pathol Transl Med 2021; 55:279-288. [PMID: 34233113 PMCID: PMC8353134 DOI: 10.4132/jptm.2021.05.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/10/2021] [Indexed: 01/18/2023] Open
Abstract
Background Thyroid transcription factor (TTF-1) is a diagnostic marker expressed in 75%–85% of primary lung adenocarcinomas (ACs). Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene is the most common targetable driver alteration in lung AC. Previous studies have shown a positive correlation between TTF-1 and EGFR mutation status. We aimed to determine the predictive value of TTF-1 immunoexpression for underlying EGFR mutation status in a large Indian cohort. Methods This retrospective designed study was conducted with medical record data from 2011 to 2020. All cases of primary lung AC and non–small cell lung carcinoma not otherwise specified (NSCLC, NOS) with known TTF-1 expression diagnosed by immunohistochemistry using 8G7G3/1 antibodies and EGFR mutation status diagnosed by quantitative polymerase chain reaction were retrieved, reviewed, and theresults were analyzed. Results Among 909 patient samples diagnosed as lung AC and NSCLC, NOS, TTF-1 was positive in 76.8% cases (698/909) and EGFR mutations were detected in 29.6% (269/909). A strong positive correlation was present between TTF-1 positivity and EGFR mutation status (odds ratio, 3.61; p < .001), with TTF-1 positivity showing high sensitivity (90%) and negative predictive value (87%) for EGFR mutation. TTF-1 immunoexpression did not show significant correlation with uncommon/dual EGFR mutations (odds ratio, 1.69; p = .098). EGFR–tyrosine kinase inhibitor therapy was significantly superior to chemotherapy among EGFR mutant cases irrespective of TTF-1 status; however, no significant differences among survival outcomes were observed. Conclusions Our study confirms a strong positive correlation between TTF-1 expression and common EGFR mutations (exon 19 deletion and exon 21 L858R) in advanced lung AC with significantly high negative predictive value of TTF-1 for EGFR mutations.
Collapse
Affiliation(s)
- Tripti Nakra
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Varsha Singh
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Aruna Nambirajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Dr B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Anant Mohan
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Li S, Xu S, Liang X, Xue Y, Mei J, Ma Y, Liu Y, Liu Y. Nanotechnology: Breaking the Current Treatment Limits of Lung Cancer. Adv Healthc Mater 2021; 10:e2100078. [PMID: 34019739 DOI: 10.1002/adhm.202100078] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/03/2021] [Indexed: 12/24/2022]
Abstract
Lung cancer is one of the most rapidly growing malignancies in terms of morbidity and mortality. Although traditional treatments have been used for more than 50 years, it is still far from solving the problems of postoperative risks and systemic toxicity. Emerging targeting and immunotherapy are developing continuously and are gaining recognition; eventually, they face the inevitable challenge of drug resistance. Nanotechnology has several important effects on lung cancer treatment, owing to its unique properties. Several nanoparticle-based treatments have successfully become cancer treatments. Good biocompatibility with higher specific surface area can carry substantial amounts of lung cancer treatment medications while avoiding medication toxicity; editable and modified characteristics give rise to multifunctional nanomedicines; excellent photoelectric effects make lung cancer a multimodal treatment. This article summarizes the breakthroughs achieved by nanotechnology, targeted therapy, and immunotherapy, reflecting the importance and necessity of nanotechnology in the treatment of lung cancer.
Collapse
Affiliation(s)
- Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shanshan Xu
- Institute for Advanced Study Shenzhen University Shenzhen Guangdong 518060 P. R. China
| | - Xiaoyu Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 P. R. China
- School of Pharmaceutical Sciences of Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Yueguang Xue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 P. R. China
| | - Jie Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yongfu Ma
- Department of Thoracic Surgery Chinese PLA General Hospital Beijing 100853 P. R. China
| | - Yang Liu
- Department of Thoracic Surgery Chinese PLA General Hospital Beijing 100853 P. R. China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 P. R. China
- The GBA National Institute for Nanotechnology Innovation Guangzhou Guangdong 510700 P. R. China
| |
Collapse
|
15
|
Liu C, Zheng S, Wang S, Wang X, Feng X, Sun N, He J. Development and external validation of a composite immune-clinical prognostic model associated with EGFR mutation in East-Asian patients with lung adenocarcinoma. Ther Adv Med Oncol 2021; 13:17588359211006949. [PMID: 33889215 PMCID: PMC8040386 DOI: 10.1177/17588359211006949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/11/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND EGFR mutation is a common oncogene driver in East Asians with lung adenocarcinoma (LUAD), conferring a favorable prognosis with effective targeted therapy. However, the EGFR mutation is a weak predictor of long-term survival. Therefore, a powerful predictive tool is urgently needed to estimate disease prognosis and patient survival for East-Asian patients with LUAD. METHODS In this first systematic analysis of the relationships among EGFR mutation, immunophenotype, and prognosis in LUAD samples from East-Asian patients, we constructed a prognostic signature consisting of EGFR-associated immune-related gene pairs (EIGPs). The predictive performance for overall survival (OS) and the clinical significance of this signature were then comprehensively investigated. RESULTS Based on transcriptome data analysis of a training set, we proposed the EIGP index (EIGPI), represented by five EIGPs, which was significantly associated with the OS of East-Asian patients with LUAD. It was also well validated in a test set. Furthermore, the prognostic performance of the EIGPI was further verified using protein levels in an additional independent set. Stratification analysis and multivariate Cox regression analysis revealed that the EIGPI was an independent prognostic factor. When combined with stage, the composite immune-clinical prognostic model index (ICPMI) showed improved prognostic accuracy in all datasets. CONCLUSION This study was the first to systematically investigate the relationships among EGFR mutation, immunophenotype, and prognosis in East Asians with LUAD and develop a composite clinical and immune model associated with EGFR mutation. This model may be a reliable and promising prognostic tool and help further personalize patient management.
Collapse
Affiliation(s)
- Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sufei Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sihui Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinfeng Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
16
|
Abstract
There has been a drastic increase in the incidence of nonmelanoma (NMSC), including squamous, basal cell, and melanoma skin cancers worldwide. Most cases of skin cancer can be treated effectively with surgery; fewer than 10% of cases are advanced and may require additional therapies. A better understanding of the biology of skin cancer will help contribute to better prognostic information and identification of possible new therapeutic targets. Herein, the authors review the biology and pathogenesis of both NMSC and melanoma, focusing on critical cell signaling pathways mediating the disease and current therapeutic strategies targeted to underlying genetic pathways.
Collapse
|
17
|
Takamori S, Matsubara T, Fujishita T, Ito K, Toyozawa R, Seto T, Yamaguchi M, Okamoto T. Dramatic intracranial response to tepotinib in a patient with lung adenocarcinoma harboring MET exon 14 skipping mutation. Thorac Cancer 2021; 12:978-980. [PMID: 33533182 PMCID: PMC7952779 DOI: 10.1111/1759-7714.13871] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 11/27/2022] Open
Abstract
Mesenchymal‐epithelial transition (MET) pathway activation is associated with the mechanisms that influence properties affecting cancer cell survival and invasiveness. The MET exon 14 skipping mutation (METex14del) is found in 2%–3% of patients with non‐small cell lung cancer (NSCLC). Previous studies reported that NSCLC patients harboring a METex14del responded well to MET‐tyrosine kinase inhibitors (TKIs), including tepotinib. Tepotinib is a highly selective, once‐daily oral MET inhibitor that has shown promising clinical activity in patients with NSCLC with METex14del. The Food and Drug Administration accepted a new drug application for tepotinib as a treatment for patients with metastatic NSCLC harboring METex14del in February 2021 [Correction added on 5 March 2021, after first online publication: the FDA approval date for tepotinib has been corrected from ‘September 2019’ to ‘February 2021’.]. However, in the previous clinical trials involving MET‐TKIs, only patients with stable central nervous system metastases were eligible, and those with untreated symptomatic brain metastases (BMs) were excluded. Therefore, the efficacy and safety of MET‐TKIs in that population remains unknown. We herein report a case of dramatic intracranial response to tepotinib in a patient with symptomatic BMs from lung adenocarcinoma harboring METex14del. In the current report, the symptoms derived from multiple BMs (headache and loss of appetite) rapidly disappeared, and brain magnetic resonance imaging (MRI) examination showed that all the lesions were too small to measure only 23 days after the commencement of tepotinib. For NSCLC patients with multiple BMs, whole‐brain irradiation is a standard‐of‐care therapy, but its adverse effects on neurocognition are concerning. Tepotinib might therefore be a therapeutic option for NSCLC patients with symptomatic multiple BMs harboring METex14del.
Collapse
Affiliation(s)
- Shinkichi Takamori
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Taichi Matsubara
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Takatoshi Fujishita
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Kensaku Ito
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Ryo Toyozawa
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Takashi Seto
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Masafumi Yamaguchi
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| |
Collapse
|
18
|
Chen Y, Deng J, Liu Y, Wang H, Zhao S, He Y, Zhou C. Analysis of metastases in non-small cell lung cancer patients with epidermal growth factor receptor mutation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:206. [PMID: 33708833 PMCID: PMC7940889 DOI: 10.21037/atm-20-2925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background Most lung cancer patients are diagnosed at an advanced stage with metastases. There was no population-based data on metastases in non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation. This study focused on the metastases in NSCLC patients with EGFR mutation. Methods In our research, we retrospectively studied 365 NSCLC patients with EGFR mutation (EGFR positive-mutant group) were not resistant to first-generation EGFR TKIs and 316 NSCLC patients with T790M mutation (T790M-mutant group) who were resistant to first-generation EGFR TKIs. In the study, we also investigated sex, smoking status, age at diagnosis, histology, T, N, and M stage, and mutation status. In addition, we analyzed metastatic sites in stage IV patients. Results Among the EGFR positive-mutant group, 248 (67.95%) patients were stage IV disease. Among them, 41 patients had brain metastases, 86 patients had bone metastases, 16 patients had liver metastases, 168 patients had intrapulmonary metastases, and 39 patients had metastases in other sites. Among the T790M-mutant group, 277 (87.66%) patients were stage IV disease. Among them, 158 patients had brain metastases, 82 patients had bone metastases, 241 patients had liver metastases, 53 patients had intrapulmonary metastases, and 229 patients had metastases in other sites. We also found that lung cancer patients in the T790M-mutant group had higher incidences of the brain (P<0.001), bone (P<0.001), liver (P=0.001), and intrapulmonary metastases (P<0.001). Moreover, wherever the metastatic site was, the metastasis time all centrally distributed in the first two months after diagnosis. Conclusions For patients with metastatic lung cancer, most metastases happened before diagnosis, which indicated that metastases related to driving mutations, such as EGFR positive mutation or T790M mutation, but not to the survival time. Lung cancer patients with T790M mutation were more likely to metastasize before the diagnosis.
Collapse
Affiliation(s)
- Yu Chen
- Department of Orthopedic, Spine Center, Shanghai Changzheng Hospital, Shanghai, China
| | - Juan Deng
- Department of Orthopedic, Spine Center, Shanghai Changzheng Hospital, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Tongji University, Shanghai, China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Zhuang Z, Chen Q, Huang C, Wen J, Huang H, Liu Z. A Comprehensive Network Pharmacology-Based Strategy to Investigate Multiple Mechanisms of HeChan Tablet on Lung Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:7658342. [PMID: 32595734 PMCID: PMC7277035 DOI: 10.1155/2020/7658342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/03/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND HeChan tablet (HCT) is a traditional Chinese medicine preparation extensively prescribed to treat lung cancer in China. However, the pharmacological mechanisms of HCT on lung cancer remain to be elucidated. METHODS A comprehensive network pharmacology-based strategy was conducted to explore underlying mechanisms of HCT on lung cancer. Putative targets and compounds of HCT were retrieved from TCMSP and BATMAN-TCM databases; related genes of lung cancer were retrieved from OMIM and DisGeNET databases; known therapeutic target genes of lung cancer were retrieved from TTD and DrugBank databases; PPI networks among target genes were constructed to filter hub genes by STRING. Furthermore, the pathway and GO enrichment analysis of hub genes was performed by clusterProfiler, and the clinical significance of hub genes was identified by The Cancer Genome Atlas. RESULT A total of 206 compounds and 2,433 target genes of HCT were obtained. 5,317 related genes of lung cancer and 77 known therapeutic target genes of lung cancer were identified. 507 unique target genes were identified among HCT-related genes of lung cancer and 34 unique target genes were identified among HCT-known therapeutic target genes of lung cancer. By PPI networks, 11 target genes AKT1, TP53, MAPK8, JUN, EGFR, TNF, INS, IL-6, MYC, VEGFA, and MAPK1 were identified as major hub genes. IL-6, JUN, EGFR, and MYC were shown to associate with the survival of lung cancer patients. Five compounds of HCT, quercetin, luteolin, kaempferol, beta-sitosterol, and baicalein were recognized as key compounds of HCT on lung cancer. The gene enrichment analysis implied that HCT probably benefitted patients with lung cancer by modulating the MAPK and PI3K-Akt pathways. CONCLUSION This study predicted pharmacological and molecular mechanisms of HCT against lung cancer and could pave the way for further experimental research and clinical application of HCT.
Collapse
Affiliation(s)
- Zhenjie Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianying Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cihui Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junmao Wen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haifu Huang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhanhua Liu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
20
|
Takakuwa K, Mogushi K, Han M, Fujii T, Hosoya M, Yamanami A, Akita T, Yamashita C, Hayashida T, Kato S, Yamaguchi S. A novel diagnostic system to evaluate epidermal growth factor receptor impact as a prognostic and therapeutic indicator for lung adenocarcinoma. Sci Rep 2020; 10:6214. [PMID: 32277151 PMCID: PMC7148318 DOI: 10.1038/s41598-020-63200-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/26/2020] [Indexed: 11/24/2022] Open
Abstract
Many driver pathways for cancer cell proliferation have been reported. Driver pathway activation is often evaluated based on a single hotspot mutation such as EGFR L858R. However, because of complex intratumoral networks, the impact of a driver pathway cannot be predicted based on only a single gene mutation. Here, we developed a novel diagnostic system named the "EGFR impact score" which is based on multiplex mRNA expression profiles, which can predict the impact of the EGFR pathway in lung cancer cells and the effect of EGFR-tyrosine kinase inhibitors on malignancy. The EGFR impact score indicated robust predictive power for the prognosis of early-stage lung cancer because this score can evaluate the impact of the EGFR pathway on the tumor and genomic instability. Additionally, the molecular features of the poor prognostic group resembled those of biomarkers associated with immune checkpoint inhibitors. The EGFR impact score is a novel prognostic and therapeutic indicator for lung adenocarcinoma.
Collapse
Affiliation(s)
- Kazuya Takakuwa
- Department of Clinical Oncology, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kaoru Mogushi
- Department of Clinical Oncology, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Min Han
- Department of Clinical Oncology, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tomoaki Fujii
- Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Kandasurugadai, Chiyoda-ku, Tokyo, Japan
| | - Masaki Hosoya
- Department of Clinical Oncology, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Arina Yamanami
- International School of the Sacred Heart, Shibuya-Ku, Tokyo, Japan
| | - Tomomi Akita
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
| | - Chikamasa Yamashita
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
| | - Tetsu Hayashida
- Department of Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo, Japan
| | - Shunsuke Kato
- Department of Clinical Oncology, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shigeo Yamaguchi
- Department of Clinical Oncology, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
21
|
Lin H, Hu B, He X, Mao J, Wang Y, Wang J, Zhang T, Zheng J, Peng Y, Zhang F. Overcoming Taxol-resistance in A549 cells: A comprehensive strategy of targeting P-gp transporter, AKT/ERK pathways, and cytochrome P450 enzyme CYP1B1 by 4-hydroxyemodin. Biochem Pharmacol 2020; 171:113733. [DOI: 10.1016/j.bcp.2019.113733] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
|
22
|
Hong G, Chen X, Sun X, Zhou M, Liu B, Li Z, Yu Z, Gao W, Liu T. Effect of autologous NK cell immunotherapy on advanced lung adenocarcinoma with EGFR mutations. PRECISION CLINICAL MEDICINE 2019; 2:235-245. [PMID: 35693880 PMCID: PMC8985770 DOI: 10.1093/pcmedi/pbz023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/25/2022] Open
Abstract
This study investigated the efficiency of natural killer (NK) cell immunotherapy on non-small cell lung cancer with and without EGFR mutations in order to evaluate the response rate (RR) and progression-free survival (PFS). Among the 48 patients recruited, 24 were clinically confirmed to be EGFR mutation positive. The study group was treated with autologous NK cell immunotherapy. Comparisons of the lymphocyte number, serum tumour-related biomarkers, circulating tumour cells (CTC), Karnofsky Performance Status (KPS) and survival curves were carried out before and after NK cell immunotherapy. The safety and short-term effects were evaluated, followed by median PFS and RR assessments. The serum CEA and CA125 values were found lower in the NK cell therapy group than that of the non-NK treatment group (p < 0.05). The χ2 test showed a 75% RR of the study group A, significantly higher than that of the control group B (16.7%; p < 0.01). The RR of groups C (58.3%) and D (41.7%) were not statistically significant. The p values of the 4 groups were 0.012, 0.012, 0.166 and 1 from group A to group D, respectively. The median PFS was 9 months in EGFR mutation positive group undergoing NK cell infusion interference. By evaluating the changes in immune function, tumour biomarkers, CTC, KPS and PFS, we demonstrated that NK cell therapy had better clinical therapeutic effects on EGFR mutation-positive lung adenocarcinoma.
Collapse
Affiliation(s)
- Guodai Hong
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Xuemei Chen
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xizhuo Sun
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Meiling Zhou
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
- Public Service Platform for Cell Quality Testing and Evaluation of Shenzhen, Shenzhen 518001, China
| | - Bing Liu
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
- Public Service Platform for Cell Quality Testing and Evaluation of Shenzhen, Shenzhen 518001, China
| | - Zhu Li
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
- Public Service Platform for Cell Quality Testing and Evaluation of Shenzhen, Shenzhen 518001, China
| | - Zhendong Yu
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Wenbin Gao
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Tao Liu
- Department of Biotherapy and Oncology, Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
- Public Service Platform for Cell Quality Testing and Evaluation of Shenzhen, Shenzhen 518001, China
| |
Collapse
|
23
|
Saeed MEM, Boulos JC, Elhaboub G, Rigano D, Saab A, Loizzo MR, Hassan LEA, Sugimoto Y, Piacente S, Tundis R, Yagi S, Khalid H, Efferth T. Cytotoxicity of cucurbitacin E from Citrullus colocynthis against multidrug-resistant cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152945. [PMID: 31132750 DOI: 10.1016/j.phymed.2019.152945] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cucurbitacin E (CuE) is an oxygenated tetracyclic triterpenoid isolated from the fruits of Citrullus colocynthis (L.) Schrad. PURPOSE This study outlines CuE's cytotoxic activity against drug-resistant tumor cell lines. Three members of ABC transporters superfamily, P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and ABCB5 were investigated, whose overexpression in tumors is tightly linked to multidrug resistance. Further factors of drug resistance studied were the tumor suppressor TP53 and the epidermal growth factor receptor (EGFR). METHODS Cytotoxicity assays (resazurin assays) were used to investigate the activity of Citrullus colocynthis and CuE towards multidrug resistant cancer cells. Molecular docking (In silico) has been carried out to explore the CuE's mode of binding to ABC transporters (P-gp, BCRP and ABCB5). The visualization of doxorubicin uptake was done by a Spinning Disc Confocal Microscope. The assessment of proteins expression was done by western blotting analysis. COMPARE and hierarchical cluster analyses were applied to identify, which genes correlate with sensitivity or resistance to cucurbitacins (CuA, CuB, CuE, CuD, CuI, and CuK). RESULTS Multidrug-resistant cells overexpressing P-gp or BCRP were cross-resistant to CuE. By contrast, TP53 knock-out cells were sensitive to CuE. Remarkably, resistant cells transfected with oncogenic ΔEGFR or ABCB5 were hypersensitive (collateral sensitive) to CuE. In silico analyses demonstrated that CuE is a substrate for P-gp and BCRP. Immunoblot analyses highlighted that CuE targeted EGFR and silenced its downstream signaling cascades. The most striking result that emerged from the doxorubicin uptake by ABCB5 overexpressing cells is that CuE is an effective inhibitor for ABCB5 transporter when compared with verapamil. The COMPARE analyses of transcriptome-wide expression profiles of tumor cell lines of the NCI identified common genes involved in cell cycle regulation, cellular adhesion and intracellular communication for different cucurbitacins. CONCLUSION CuE represents a potential therapeutic candidate for the treatment of certain types of refractory tumors. To best of our knowledge, this is the first time to identify CuE and verapamil as inhibitors for ABCB5 transporter.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Cell Line, Tumor
- Citrullus colocynthis/chemistry
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm/drug effects
- ErbB Receptors/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Knockout Techniques
- Humans
- Leukemia/drug therapy
- Leukemia/metabolism
- Leukemia/pathology
- Molecular Docking Simulation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Triterpenes/chemistry
- Triterpenes/metabolism
- Triterpenes/pharmacology
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Mohamed E M Saeed
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Joelle C Boulos
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Gihan Elhaboub
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Daniela Rigano
- Department of Pharmacy, University Federico II of Naples, via Domenico Montesano 49, 80131 Naples, Italy
| | - Antoine Saab
- Department of Biology, Faculty of Science II and Faculty of Agriculture and Veterinary Medicine, Lebanese University, Beirut, Lebanon
| | - Monica R Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (Cosenza), Italy
| | - Loiy E A Hassan
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Sonia Piacente
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II n. 132, 84084 Fisciano, SA, Italy
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (Cosenza), Italy
| | - Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Hassan Khalid
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
24
|
Overcoming acquired resistance of gefitinib in lung cancer cells without T790M by AZD9291 or Twist1 knockdown in vitro and in vivo. Arch Toxicol 2019; 93:1555-1571. [PMID: 30993382 DOI: 10.1007/s00204-019-02453-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
The T790M mutation is recognized as a typical mechanism of acquired resistance to first generation of epithermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) such as gefitinib in non-small cell lung cancer (NSCLC) patients who are commonly treated by third generation of EGFR-TKI AZD9291 (osimertinib). However, the therapeutic strategy for overcoming acquired resistance to EGFR-TKIs in NSCLC patients without T790M remains to be definitively determined. In the present study, gefitinib-resistant H1650 (H1650GR) or AZD9291-resistant H1975 (H1975AR) was generated by exposing NSCLC cell line H1650 or H1975 to progressively increased concentrations of gefitinib or AZD9291 over 11 months. The cytotoxic effects of gefitinib or AZD9291 in vitro were evaluated via the half maximal inhibitory concentrations (IC50s) determined by the MTT assay. IC50 of gefitinib in H1650GR (50.0 ± 3.0 µM) significantly increased compared with H1650 (31.0 ± 1.0 µM) (p < 0.05). Similarly, the IC50 of AZD9291 in H1975AR (10.3 ± 0.9 µM) significantly increased compared with H1975 (5.5 ± 0.6 µM) (p < 0.05). However, IC50 of AZD9291 on H1650GR (8.5 ± 0.5 µM) did not increase compared with H1650 (9.7 ± 0.7 µM). On the other hand, IC50 of AZD9291 on gefitinib-resistant A549 (A549GR established in our previous study) (12.7 ± 0.8 µM) was significantly increased compared with A549 (7.0 ± 1.0 µM) (p < 0.05). AZD9291 induced caspase 3/7 activation in A549, H1650, and H1650GR, but not in A549GR. Western blot analyses showed that p-Akt played a key role in determining the sensitivities of A549, A549GR, H1650, and H1650GR to gefitinib or AZD9291. Additionally, increased expression of Twist1 was observed in all cells with acquired EGFR-TKI resistance and knockdown of Twist1 by shRNA was found to significantly enhance the sensitivity of A549GR to gefitinib or AZD9291 via reversing epithelial-mesenchymal transition and downregulating p-Akt, but not of H1975AR to AZD9291. The enhanced cytotoxic effect of AZD9291 on A549GR by Twist1 knockdown in vitro was further validated by in vivo studies which showed that Twist1 knockdown could lead to significantly delayed tumor growth of A549GR xenograft with increased sensitivity to AZD9291 treatment in nude mice without any observed side toxic effects. In summary, our study demonstrated that the mechanisms of acquired resistance in different NSCLC cell lines treated by even the same EGFR-TKI might be quite different, which provide a rationale for adopting different therapeutic strategies for those NSCLC patients with acquired EGFR-TKI resistance based on different status of heterogeneous mutations.
Collapse
|
25
|
Zhang X, Wu L, Xiao T, Tang L, Jia X, Guo Y, Zhang J, Li J, He Y, Su J, Zhao S, Tao J, Zhou J, Chen X, Peng C. TRAF6 regulates EGF-induced cell transformation and cSCC malignant phenotype through CD147/EGFR. Oncogenesis 2018; 7:17. [PMID: 29463844 PMCID: PMC5833715 DOI: 10.1038/s41389-018-0030-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 12/06/2017] [Accepted: 01/10/2018] [Indexed: 12/26/2022] Open
Abstract
TRAF6, a well-known adapter molecule, plays pivotal role in TLR/IL-1R associated signaling pathway. Although TRAF6 has been shown to have oncogenic activity in various malignant tumors, the details remain unclear. In this study, we demonstrated that TRAF6 facilitates Ras (G12V) and EGF-induced cellular transformation through EGFR. Silencing of TRAF6 expression significantly downregulated AP-1 activity, as well as MMP-2,9 expression after EGF stimulation. Furthermore, we found that TRAF6 plays an essential role in cutaneous squamous cell carcinoma (cSCC) malignant phenotypes, affecting cell growth and migration. CD147/Basigin, a transmembrane glycoprotein belonging to the immunoglobulin superfamily, is over-expressed in tumors and induces tumorigenesis. Our results showed that CD147 formed complex with EGFR and TRAF6. Knockdown of TRAF6 disrupted the CD147-EGFR complex, thereby inducing EGFR endocytosis. Therefore, TRAF6 might be a novel molecular target for cSCC prevention or therapy.
Collapse
Affiliation(s)
- Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lisha Wu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ta Xiao
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Tang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuekun Jia
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yeye Guo
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - JiangLin Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yijing He
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Su
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang Zhao
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Tao
- Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianda Zhou
- Department of Plastic Surgery of Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
26
|
Kerr K, Dafni U, Schulze K, Thunnissen E, Bubendorf L, Hager H, Finn S, Biernat W, Vliegen L, Losa J, Marchetti A, Cheney R, Warth A, Speel EJ, Blackhall F, Monkhorst K, Jantus Lewintre E, Tischler V, Clark C, Bertran-Alamillo J, Meldgaard P, Gately K, Wrona A, Vandenberghe P, Felip E, De Luca G, Savic S, Muley T, Smit E, Dingemans AM, Priest L, Baas P, Camps C, Weder W, Polydoropoulou V, Geiger T, Kammler R, Sumiyoshi T, Molina M, Shames D, Stahel R, Peters S. Prevalence and clinical association of gene mutations through multiplex mutation testing in patients with NSCLC: results from the ETOP Lungscape Project. Ann Oncol 2018; 29:200-208. [DOI: 10.1093/annonc/mdx629] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
27
|
Increased EGFR Phosphorylation Correlates with Higher Programmed Death Ligand-1 Expression: Analysis of TKI-Resistant Lung Cancer Cell Lines. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7694202. [PMID: 29119113 PMCID: PMC5651099 DOI: 10.1155/2017/7694202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/27/2017] [Indexed: 12/26/2022]
Abstract
Despite the recent development of immunotherapies that target programmed death-1 (PD-1) or programmed death ligand-1 (PD-L1) in non-small cell lung cancer (NSCLC) treatment, these therapies are less effective in NSCLC patients with epidermal growth factor receptor (EGFR) mutations. However, the molecular mechanisms underlying this lower efficacy of immunotherapies in EGFR mutant lung cancers are still unclear. In this study, we analyzed PD-L1 protein expression in lung cancer cell lines with EGFR mutations prior to and after acquisition of resistance to EGFR tyrosine kinase inhibitors (TKIs). We found that parental lung cancer cell lines harboring EGFR mutations showed negative (PC9 and H3255 cells) and positive (HCC827 cells) staining for PD-L1 by immunohistochemistry. Comparing PD-L1 expression between EGFR-TKI resistant cell lines and their parental cells, we found that increased phosphorylation of EGFR was related to increased expression of PD-L1. Increased phosphorylation of EGFR was accompanied by the T790M secondary mutation. Acquired resistance cells with MET amplification or EGFR loss both showed decreased phosphorylation of EGFR and decreased PD-L1 expression. Our results indicate that lung cancer cell lines with EGFR mutations (parental cells) do not harbor high PD-L1 protein expression. In addition, EGFR phosphorylation affects PD-L1 expression after acquisition of resistance to EGFR-TKIs.
Collapse
|
28
|
Adawy A. Highlight report: Limits of prognostication of non-small cell lung cancer. EXCLI JOURNAL 2017; 16:808-809. [PMID: 28827997 PMCID: PMC5547383 DOI: 10.17179/excli2017-508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Alshaimaa Adawy
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
29
|
Suda K, Rivard CJ, Mitsudomi T, Hirsch FR. Overcoming resistance to EGFR tyrosine kinase inhibitors in lung cancer, focusing on non-T790M mechanisms. Expert Rev Anticancer Ther 2017; 17:779-786. [PMID: 28701107 DOI: 10.1080/14737140.2017.1355243] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION despite initial dramatic efficacy of EGFR tyrosine kinase inhibitors (TKIs) in EGFR-mutant lung cancer patients, emergence of acquired resistance is almost inevitable. The EGFR T790M secondary mutation that accounts for ~50% of resistance is now treatable with osimertinib. However, for the remaining 50% of patients who develop resistance mechanisms other than T790M mutation, cytotoxic chemotherapies are still the standard of care and novel treatment strategies are urgently needed. Areas covered: In this review, we discuss current experimental and clinical evidence to develop better treatment strategies to overcome or prevent acquired resistance to EGFR-TKIs in lung cancers, focusing on non-T790M mechanisms. Expert commentary: There are numerous non-T790M resistant mechanisms to EGFR-TKIs, and therefore, strategies that can be applied to many of these resistance mechanisms may be reasonable and useful in clinical practice. Although the combination of cytotoxic chemotherapy plus an EGFR-TKI has proved to be detrimental following front-line EGFR-TKI treatment failure, promising experimental and/or early clinical data have been reported for the combination of bevacizumab or anti-EGFR monoclonal antibody plus EGFR-TKIs. Upfront polytherapy, which co-targets potential resistance mechanisms or other important signaling for EGFR-mutant lung cancer cells, is also a promising strategy.
Collapse
Affiliation(s)
- Kenichi Suda
- a Division of Medical Oncology , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Division of Thoracic Surgery, Department of Surgery , Kindai University Faculty of Medicine , Osaka-Sayama , JAPAN
| | - Christopher J Rivard
- a Division of Medical Oncology , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Tetsuya Mitsudomi
- b Division of Thoracic Surgery, Department of Surgery , Kindai University Faculty of Medicine , Osaka-Sayama , JAPAN
| | - Fred R Hirsch
- a Division of Medical Oncology , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
30
|
Takamori S, Toyokawa G, Takada K, Shoji F, Okamoto T, Maehara Y. Combination Therapy of Radiotherapy and Anti-PD-1/PD-L1 Treatment in Non-Small-cell Lung Cancer: A Mini-review. Clin Lung Cancer 2017; 19:12-16. [PMID: 28739315 DOI: 10.1016/j.cllc.2017.06.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 12/27/2022]
Abstract
Immune checkpoint inhibitors against programmed cell death-1 (PD-1) or programmed cell death-ligand 1 (PD-L1) are a standard pharmacologic therapy for patients with non-small-cell lung cancer (NSCLC). Substantial data have accumulated in recent years showing that radiotherapy combined with immunotherapy is more effective than monotherapy alone. Preclinical studies have shown that PD-L1 expression is upregulated on tumor cells after radiotherapy, resulting in the synergistically enhanced antitumor effect of irradiation and PD-L1 blockade. In the clinical setting, patients receiving radiotherapy before anti-PD-1 treatment have had a significantly better prognosis than those who have not undergone radiotherapy. In the present report, we reviewed previous studies of the combination of radiotherapy and anti-PD-1/PD-L1 treatment for NSCLC. In addition, we report our case of a patient whose PD-L1 expression gradually increased in brain metastases from NSCLC after repeated radiotherapy. In the perspectives portion, we focused on the questions of how to integrate radiotherapy into anti-PD-1/PD-L1 agent regimens and described several ongoing clinical trials.
Collapse
Affiliation(s)
- Shinkichi Takamori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Gouji Toyokawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kazuki Takada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiro Shoji
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
31
|
Therapy-induced E-cadherin downregulation alters expression of programmed death ligand-1 in lung cancer cells. Lung Cancer 2017; 109:1-8. [PMID: 28577937 DOI: 10.1016/j.lungcan.2017.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/13/2017] [Accepted: 04/16/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Immunotherapy that targets the programmed death-1/programmed death-ligand 1 (PD-L1) axis has been approved for treatment of non-small cell lung cancer (NSCLC) patients in many countries. However, our current understanding of the role of immunotherapies on NSCLC patients with epidermal growth factor receptor (EGFR) mutation, following acquisition of resistance to EGFR tyrosine kinase inhibitors (TKIs), is so far unclear. Especially, there is little data on if each acquired resistance mechanism to EGFR-TKIs alters PD-L1 expression status which is employed as an important predictive biomarker for PD-1/PD-L1 targeting agents. MATERIALS AND METHODS Lung cancer cell lines (HCC827, HCC4006, PC9, H1975, H358, SW900, and H647) and their daughter cells that acquired resistance to EGFR-TKIs or cytotoxic drugs (cisplatin or vinorelbine) were examined. PD-L1 expression was analyzed by immunohistochemistry, immunoblotting, and/or fluorescent imaging. Published microarray data were also employed to evaluate our findings. RESULTS AND CONCLUSION We found correlations between therapy-induced E-cadherin downregulation and decreased PD-L1 expression using our cell lines and published microarray data. ShRNA mediated E-cadherin knockdown decreased PD-L1 expression in parental cells, and dual immunofluorescent staining of E-cadherin and PD-L1 suggests co-localization of both molecules. We also observed marked downregulation of PD-L1 in cells with E-cadherin downregulation after chronic treatment with vinorelbine. These results indicate a correlation between therapy-induced E-cadherin downregulation and decreased PD-L1 expression, highlighting the importance of re-biopsy after acquisition of resistance to EGFR-TKIs, not only for the evaluation of resistance mechanisms but also for the determination of PD-L1 expression status.
Collapse
|
32
|
Horimasu Y, Ishikawa N, Tanaka S, Hirano C, Iwamoto H, Ohshimo S, Fujitaka K, Hamada H, Hattori N, Kohno N. MUC1 in lung adenocarcinoma: cross-sectional genetic and serological study. BMC Cancer 2017; 17:263. [PMID: 28403862 PMCID: PMC5388999 DOI: 10.1186/s12885-017-3272-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 04/07/2017] [Indexed: 11/25/2022] Open
Abstract
Background Mucin 1 (MUC1) contributes to the growth and metastasis of various cancers, including lung cancer, and MUC1 gene length polymorphisms are associated with susceptibility to lung cancer and its prognosis. In contrast, the association between rs4072037, a single nucleotide polymorphism in MUC1, and lung cancer has not been well studied. Methods In the present study, we determined the rs4072037 genotype and measured serum KL-6 levels to evaluate the association between lung adenocarcinoma (ADC) and rs4072037 or serum KL-6 levels. DNA samples were available for 172 patients and these were included in the genomic analyses. In addition, 304 patients were included in the serum analyses. Furthermore, 276 healthy volunteers were included in both genomic and serum analyses. Results The rs4072037 genotype was not associated with susceptibility to lung ADC or its prognosis. Interestingly, serum KL-6 levels significantly differed according to rs4072037 genotype in those with T1 or T2 (P < 0.001), N0 or N1 (P = 0.002) and M0 (P < 0.001), but not in those with T3 or T4 (P = 0.882), N2 or N3 (P = 0.616) and M1a or M1b (P = 0.501). Serum KL-6 levels were significantly associated with the presence of lung ADC, as well as with its progression and prognosis, indicating the crucial involvement of KL-6/MUC1 in the development of lung cancer and its progression. Conclusion Based on these findings, we conclude that rs4072037 does not have a significant impact on the pathogenesis or prognosis of lung ADC, whereas serum KL-6 levels, which might reflecting the molecular length of MUC1, are significantly associated with lung ADC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3272-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasushi Horimasu
- Department of Molecular and Internal Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Nobuhisa Ishikawa
- Department of Molecular and Internal Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan. .,Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-Kanda, Minami-ku, Hiroshima, 734-8530, Japan.
| | - Sonosuke Tanaka
- Department of Molecular and Internal Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Department of Internal Medicine, Shobara City Saijo Citizens Hospital, 1339 Nakano, Saijo-cho, Shobara, 729-5742, Japan
| | - Chihiro Hirano
- Department of Molecular and Internal Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shinichiro Ohshimo
- Department of Molecular and Internal Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hironobu Hamada
- Physical Analysis and Therapeutic Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Nobuoki Kohno
- Department of Molecular and Internal Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
33
|
Kim SH, Liu CY, Fan PW, Hsieh CH, Lin HY, Lee MC, Fang K. The aqueous extract of Brucea javanica suppresses cell growth and alleviates tumorigenesis of human lung cancer cells by targeting mutated epidermal growth factor receptor. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3599-3609. [PMID: 27843300 PMCID: PMC5098521 DOI: 10.2147/dddt.s117443] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a practical and safe herbal medicine, the seeds of Brucea javanica (L.) Merr., were used to cure patients suffering from infectious diseases such as malaria. Recent advances revealed that the herb could also be a useful cancer therapy agent. The study demonstrated that aqueous B. javanica (BJ) extract attenuated the growth of human non-small-lung cancer cells bearing mutant L858R/T790M epidermal growth factor receptor (EGFR). The reduced cell viability in H1975 cells was attributed to apoptosis. Transfection of EGFR small hairpin RNA reverted the sensitivities. When nude mice were fed BJ extract, the growth of xenograft tumors, as established by H1975 cells, was suppressed. Additional histological examination and fluorescence analysis of the resected tissues proved that the induced apoptosis mitigated tumor growth. The work proved that the BJ extract exerted its effectiveness by targeting lung cancer cells carrying mutated EGFR while alleviating tumorigenesis. Aqueous BJ extract is a good candidate to overcome drug resistance in patients undergoing target therapy.
Collapse
Affiliation(s)
- Seung-Hun Kim
- Department of Life Science, National Taiwan Normal University, Taipei
| | - Chun-Yen Liu
- Department of Life Science, National Taiwan Normal University, Taipei
| | - Po-Wei Fan
- Department of Life Science, National Taiwan Normal University, Taipei
| | - Chang-Heng Hsieh
- Department of Life Science, National Taiwan Normal University, Taipei
| | - Hsuan-Yuan Lin
- Department of Life Science, National Taiwan Normal University, Taipei
| | - Ming-Chung Lee
- Brion Research Institute of Taiwan, New Taipei City, Taiwan
| | - Kang Fang
- Department of Life Science, National Taiwan Normal University, Taipei
| |
Collapse
|
34
|
GDPD5, a choline-generating enzyme and its novel role in tumor cell migration. Arch Toxicol 2016; 90:3143-3144. [DOI: 10.1007/s00204-016-1847-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/19/2022]
|
35
|
Hirsch FR, Suda K, Wiens J, Bunn PA. New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet 2016; 388:1012-24. [PMID: 27598681 DOI: 10.1016/s0140-6736(16)31473-8] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 12/31/2022]
Abstract
Targeted therapies are substantially changing the management of lung cancers. These treatments include drugs that target driver mutations, those that target presumed important molecules in cancer cell proliferation and survival, and those that inhibit immune checkpoint molecules. This area of research progresses day by day, with novel target discoveries, novel drug development, and use of novel combination treatments. Researchers and clinicians have also extensively investigated the predictive biomarkers and the molecular mechanisms underlying inherent or acquired resistance to these targeted therapies. We review recent progress in the development of targeted treatments for patients with advanced non-small-cell lung cancer, especially focusing on data from published clinical trials.
Collapse
Affiliation(s)
- Fred R Hirsch
- Department of Medicine, Division of Medical Oncology and Department of Pathology, University of Colorado Cancer Center, Aurora, CO, USA; International Association for the Study of Lung Cancer, Aurora, CO, USA.
| | - Kenichi Suda
- Department of Medicine, Division of Medical Oncology and Department of Pathology, University of Colorado Cancer Center, Aurora, CO, USA
| | - Jacinta Wiens
- International Association for the Study of Lung Cancer, Aurora, CO, USA
| | - Paul A Bunn
- Department of Medicine, Division of Medical Oncology and Department of Pathology, University of Colorado Cancer Center, Aurora, CO, USA
| |
Collapse
|
36
|
Suda K, Murakami I, Yu H, Ellison K, Shimoji M, Genova C, Rivard CJ, Mitsudomi T, Hirsch FR. Heterogeneity of EGFR Aberrations and Correlation with Histological Structures: Analyses of Therapy-Naive Isogenic Lung Cancer Lesions with EGFR Mutation. J Thorac Oncol 2016; 11:1711-7. [PMID: 27257133 DOI: 10.1016/j.jtho.2016.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 01/15/2023]
Abstract
INTRODUCTION EGFR gene somatic mutation is reportedly homogeneous. However, there are few data regarding the heterogeneity of expression of mutant EGFR protein and EGFR gene copy number, especially in extrathoracic lesions. These types of data may enhance our understanding of the biology of EGFR-mutated lung cancer and our understanding of the heterogeneous response patterns to EGFR TKIs. METHODS An 81-year-old never-smoking female with lung adenocarcinoma could not receive any systemic therapy because of her poor performance status. After her death, 15 tumor specimens from different sites were obtained by autopsy. Expression of mutant EGFR protein and EGFR gene copy numbers were assessed by immunohistochemical analysis and by silver in situ hybridization, respectively. Heterogeneity in these EGFR aberrations was compared between metastatic sites (distant versus lymph node) or histological structures (micropapillary versus nonmicropapillary). RESULTS All lesions showed positive staining for mutant EGFR protein, except for 40% of the papillary component in one of the pulmonary metastases (weak staining below the 1+ threshold). Expression of mutant-specific EGFR protein, evaluated by H-score, was significantly higher in the micropapillary components than in the nonmicropapillary components (Mann-Whitney U test, p = 0.014). EGFR gene copy number was quite different between lesions but not correlated with histological structure or metastatic form. However, EGFR gene copy numbers were similar between histological structures in each lesion. CONCLUSION These data indicate that expression of EGFR mutant protein and EGFR gene copy number do not change as a consequence of tumor progression. This also justifies using the biopsy specimens from metastases as a surrogate for primary tumors.
Collapse
Affiliation(s)
- Kenichi Suda
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Division of Thoracic Surgery, Department of Surgery, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Isao Murakami
- Department of Respiratory Medicine, Higashihiroshima Medical Center, Higashihiroshima, Japan
| | - Hui Yu
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kim Ellison
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Masaki Shimoji
- Division of Thoracic Surgery, Department of Surgery, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Carlo Genova
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Christopher J Rivard
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Tetsuya Mitsudomi
- Division of Thoracic Surgery, Department of Surgery, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
37
|
Sun G, Liu B, He J, Zhao X, Li B. Expression of EGFR Is Closely Related to Reduced 3-Year Survival Rate in Chinese Female NSCLC. Med Sci Monit 2015; 21:2225-31. [PMID: 26230859 PMCID: PMC4554359 DOI: 10.12659/msm.894786] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) accounts for approximately 80% of lung carcinoma cases, which becomes more and more important in the field of lung carcinoma as well as primary lung carcinoma in females. MATERIAL AND METHODS We analyzed the medical history of 62 female NSCLC patients. Immunohistochemistry was used to observe and compare the expression of EGFR. The chi-square test was conducted to analyze associations between EGFR expression and the different variables. The cumulative survival rate was determined by the Kaplan-Meier product-limit method. The prognosis of female patients with NSCLC was examined by using a multivariate Cox proportional hazard regression model. RESULTS The expression proportion of EGFR in Chinese female NSCLC patients was 70.97%, and it was remarkably higher in adenocarcinoma than in squamous cell carcinoma and bronchioloalveolar carcinoma. A positive correlation was observed between EGFR expression and tumor-node metastasis staging or lymph node metastasis. The Cox proportional risk model analysis showed a correlation between postoperative survival time of the patients and pathology of the tumor type and lymph node metastasis. CONCLUSIONS Expression of EGFR was closely related to pathology of the tumor type, tumor-node metastasis staging, and lymph node metastasis, which could be used as a promising indicator of NSCLC in Chinese female patients.
Collapse
Affiliation(s)
- Guangyuan Sun
- Department of Thoracic and Cardiovascular Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China (mainland)
| | - Bing Liu
- Department of Respiratory, Liqun Hospital of Putuo District, Shanghai, China (mainland)
| | - Jin He
- Department of Pathology, Changzheng Hospital, The Second Military Medical University, Shanghai, China (mainland)
| | - Xuewei Zhao
- Department of Thoracic and Cardiovascular Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China (mainland)
| | - Bing Li
- Department of Respiratory, Changzheng Hospital, The Second Military Medical University, Shanghai, China (mainland)
| |
Collapse
|