1
|
Hans A, Salil, Sawant P, Ajgaonkar B, Jain R, Dandekar P. Cryopreservation of human lung adenocarcinoma spheroids using MMC based cryomixtures. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-22. [PMID: 40372794 DOI: 10.1080/09205063.2025.2502096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/04/2025] [Indexed: 05/17/2025]
Abstract
Cryopreservation remains crucial bottleneck for storing and transporting bioengineered 3D cell models, vital for preclinical drug development and cancer research. Conventional cryoprotectants like fetal bovine serum (FBS) and dimethyl sulfoxide (DMSO) present cytotoxicity challenges and lack efficacy in maintaining structural integrity and viability in complex 3D culture models. This study investigates the efficacy of two carbohydrate-based macromolecular crowders (MMCs), polydextrose III (PD) and resistant maltodextrin (rMD), in cryopreserving human lung adenocarcinoma spheroids as alternatives to FBS. Spheroids were cryopreserved at -80 and -196 °C using MMC-based cryomixtures, with subsequent evaluation of cell viability, structural integrity, and proliferation markers post-thaw. Results indicate that MMC-based cryomixtures, particularly PD, provide superior cryoprotection, preserving the structural and functional integrity of A549 spheroids over a 60-day storage period at -196 °C. Immunocytochemistry of vimentin and Ki67 biomarkers demonstrated that PD-cryopreserved spheroids exhibited consistent structural stability and retained proliferative capacity, contrasting with those stored in conventional FBS-based cryomixtures, which showed marked deterioration in cellular morphology and viability. Apoptosis profiling revealed a lower incidence of cell death in MMC-preserved spheroids, with live cell percentages stabilizing around 50% at -80 °C and approximately 54% at -196 °C over the extended storage period. Further characterization revealed protection of the necrotic core and cellular junctions PD-cryopreserved spheroids. These findings suggest that MMC-based cryomixtures, especially PD, are effective alternatives for cryopreservation of tumor spheroids. The increased cellular viability and structural preservation provided by MMCs could advance their application in 3D culture preservation, addressing limitations of conventional cryopreservation in drug testing, regenerative medicine, and cancer research.
Collapse
Affiliation(s)
- Aakarsh Hans
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Salil
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai, India
| | - Pooja Sawant
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Bhargavi Ajgaonkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Ratnesh Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
2
|
Zhang W, Yang L, Li M, Zhang L, Cheng J, El-Far AH, Xu Y, Fu J. ADAM10 is a key player in the diagnosis, prognosis and metastasis of non-small cell lung cancer (NSCLC). J Cancer 2025; 16:1736-1746. [PMID: 39991567 PMCID: PMC11843235 DOI: 10.7150/jca.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/25/2025] [Indexed: 02/25/2025] Open
Abstract
A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) plays critical roles in various cancer-associated biological events, such as cell multiplication, migration, and metastasis. This study employs both the TCGA database and patient samples to demonstrate that ADAM10 is highly expressed in non-small cell lung cancer (NSCLC) compared with normal tissue at different stages. Increased ADAM10 expression is positively correlated with decreased overall and recurrence-free survival. On the functional front, overexpression of ADAM10 promotes lung cancer cell progression, migration, and invasion, whereas downregulation of ADAM10 inhibits these processes. Mechanically, ADAM10 modulates the expression of Notch1, MMP9 and EMT markers such as Vimentin, N-cadherin, and E-cadherin. Overall, our findings suggest that ADAM10 may be a promising therapeutic and prognostic marker for NSCLC, emphasizing the importance of regulating its expression.
Collapse
Affiliation(s)
- Wenqian Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Liyao Yang
- Department of Oncology, The First People's Hospital of Loudi City, Loudi 417009, Hunan Province, China
| | - Mufan Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Lianmei Zhang
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Department of Pathology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Ali H. El-Far
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China
| | - Junjiang Fu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
3
|
Zimmerman E, Sturrock A, Reilly CA, Burrell-Gerbers KL, Warren K, Mir-Kasimov M, Zhang MA, Pierce MS, Helms MN, Paine R. Aryl Hydrocarbon Receptor Activation in Pulmonary Alveolar Epithelial Cells Limits Inflammation and Preserves Lung Epithelial Cell Integrity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:600-611. [PMID: 39033086 PMCID: PMC11335325 DOI: 10.4049/jimmunol.2300325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
The aryl hydrocarbon receptor (AHR) is a receptor/transcription factor widely expressed in the lung. The physiological roles of AHR expressed in the alveolar epithelium remain unclear. In this study, we tested the hypothesis that alveolar epithelial AHR activity plays an important role in modulating inflammatory responses and maintaining alveolar integrity during lung injury and repair. AHR is expressed in alveolar epithelial cells (AECs) and is active. AHR activation with the endogenous AHR ligand, FICZ (5,11-dihydroindolo[3,2-b] carbazole-6-carboxaldehyde), significantly suppressed inflammatory cytokine expression in response to inflammatory stimuli in primary murine AECs and in the MLE-15 epithelial cell line. In an LPS model of acute lung injury in mice, coadministration of FICZ with LPS suppressed protein leak, reduced neutrophil accumulation in BAL fluid, and suppressed inflammatory cytokine expression in lung tissue and BAL fluid. Relevant to healing following inflammatory injury, AHR activation suppressed TGF-β-induced expression of genes associated with epithelial-mesenchymal transition. Knockdown of AHR in primary AECs with shRNA or in CRISPR-Cas-9-induced MLE-15 cells resulted in upregulation of α-smooth muscle actin (αSma), Col1a1, and Fn1 and reduced expression of epithelial genes Col4a1 and Sdc1. MLE-15 clones lacking AHR demonstrated accelerated wound closure in a scratch model. AHR activation with FICZ enhanced barrier function (transepithelial electrical resistance) in primary murine AECs and limited decline of transepithelial electrical resistance following inflammatory injury. AHR activation in AECs preserves alveolar integrity by modulating inflammatory cytokine expression while enhancing barrier function and limiting stress-induced expression of mesenchymal genes.
Collapse
Affiliation(s)
- Elizabeth Zimmerman
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
| | - Anne Sturrock
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
| | - Christopher A. Reilly
- Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT
| | | | - Kristi Warren
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
| | - Mustafa Mir-Kasimov
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
| | - Mingyang A. Zhang
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
| | - Megan S. Pierce
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
| | - My N. Helms
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
| | - Robert Paine
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
| |
Collapse
|
4
|
Zhang Y, Zhang Y, Hu A, Meng F, Cui P, Li T, Cui G. Mesenchymal stem cells derived from CHIR99021 and TGF‑β induction remained on the colicomentum and improved cardiac function of a rat model of acute myocardium infarction. Exp Ther Med 2024; 27:182. [PMID: 38515646 PMCID: PMC10952379 DOI: 10.3892/etm.2024.12470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/17/2024] [Indexed: 03/23/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have been regarded as a potential stem cell source for cell therapy. However, the production of cells with mesenchymal potential from hiPSCs through spontaneous differentiation is time consuming and laborious. In the present study, the combined use of the GSK-3 inhibitor CHIR99021 and TGF-β was used to obtain mesenchymal stem cell (MSC)-like cells from hiPSCs. During the induction process, the transcription of epithelial-mesenchymal transition (EMT)-related genes N-cadherin and Vimentin in the transformed cells was upregulated, whereas the transcription of E-cadherin and pluripotency-related transcription factors SOX2, OCT4 and NANOG did not change significantly. This indicated that whilst cells were pluripotent, EMT was initiated by the upregulation of transcription of EMT promoting genes. Both SMAD-dependent and independent signalling pathways were significantly activated by the combined induction treatment compared with the single factor induction. The hiPSC-derived MSC-like cells (hiPSC-MSCs) expressed MSC-related markers and acquired osteogenic, chondrogenic and adipogenic differentiation potentials. After being injected into the peritoneal cavity of rats, the hiPSC-MSCs secreted angiogenic and immune-regulatory factors and remained on the colicomentum for 3 weeks. Within an 11-week period, four intraperitoneal hiPSC-MSC injections (1x107 cells/injection) into acute myocardial infarction (AMI) model rats significantly increased the left ventricular ejection fraction, left ventricular fractional shortening and angiogenesis and significantly reduced scar size and the extent of apoptosis in the infarcted area compared with that of the control PBS injection. Symptoms of hiPSC-MSC-induced immune reaction or tumour formation were not observed over the course of the experiment in the hiSPC-MSC treated rats. In conclusion, the CHIR99021 and TGF-β combined induction was a rapid and effective method to obtain MSC-like cells from hiPSCs and multiple high dose intraperitoneal injections of hiPSC-derived MSCs were safe and effective at restoring cardiac function in an AMI rat model.
Collapse
Affiliation(s)
- Yusen Zhang
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yanmin Zhang
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Azhen Hu
- Shenzhen Key Laboratory of Drug Addiction and Safe Medication, Shenzhen PKU-HKUST Medical Centre, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Fanhua Meng
- Reproductive Medical Centre, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Peng Cui
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Tianshi Li
- Department of Plastic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Guanghui Cui
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
5
|
Lai S, Wang P, Gong J, Zhang S. New insights into the role of GSK-3β in the brain: from neurodegenerative disease to tumorigenesis. PeerJ 2023; 11:e16635. [PMID: 38107562 PMCID: PMC10722984 DOI: 10.7717/peerj.16635] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/18/2023] [Indexed: 12/19/2023] Open
Abstract
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine kinase widely expressed in various tissues and organs. Unlike other kinases, GSK-3 is active under resting conditions and is inactivated upon stimulation. In mammals, GSK-3 includes GSK-3 α and GSK-3β isoforms encoded by two homologous genes, namely, GSK3A and GSK3B. GSK-3β is essential for the control of glucose metabolism, signal transduction, and tissue homeostasis. As more than 100 known proteins have been identified as GSK-3β substrates, it is sometimes referred to as a moonlighting kinase. Previous studies have elucidated the regulation modes of GSK-3β. GSK-3β is involved in almost all aspects of brain functions, such as neuronal morphology, synapse formation, neuroinflammation, and neurological disorders. Recently, several comparatively specific small molecules have facilitated the chemical manipulation of this enzyme within cellular systems, leading to the discovery of novel inhibitors for GSK-3β. Despite these advancements, the therapeutic significance of GSK-3β as a drug target is still complicated by uncertainties surrounding the potential of inhibitors to stimulate tumorigenesis. This review provides a comprehensive overview of the intricate mechanisms of this enzyme and evaluates the existing evidence regarding the therapeutic potential of GSK-3β in brain diseases, including Alzheimer's disease, Parkinson's disease, mood disorders, and glioblastoma.
Collapse
Affiliation(s)
- Shenjin Lai
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Peng Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jingru Gong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shuaishuai Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|
6
|
Farooqi AA, Rakhmetova V, Kapanova G, Tanbayeva G, Mussakhanova A, Abdykulova A, Ryskulova AG. Role of Ubiquitination and Epigenetics in the Regulation of AhR Signaling in Carcinogenesis and Metastasis: "Albatross around the Neck" or "Blessing in Disguise". Cells 2023; 12:2382. [PMID: 37830596 PMCID: PMC10571945 DOI: 10.3390/cells12192382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
The molecular mechanisms and signal transduction cascades evoked by the activation of aryl hydrocarbon receptor (AhR) are becoming increasingly understandable. AhR is a ligand-activated transcriptional factor that integrates environmental, dietary and metabolic cues for the pleiotropic regulation of a wide variety of mechanisms. AhR mediates transcriptional programming in a ligand-specific, context-specific and cell-type-specific manner. Pioneering cutting-edge research works have provided fascinating new insights into the mechanistic role of AhR-driven downstream signaling in a wide variety of cancers. AhR ligands derived from food, environmental contaminants and intestinal microbiota strategically activated AhR signaling and regulated multiple stages of cancer. Although AhR has classically been viewed and characterized as a ligand-regulated transcriptional factor, its role as a ubiquitin ligase is fascinating. Accordingly, recent evidence has paradigmatically shifted our understanding and urged researchers to drill down deep into these novel and clinically valuable facets of AhR biology. Our rapidly increasing realization related to AhR-mediated regulation of the ubiquitination and proteasomal degradation of different proteins has started to scratch the surface of intriguing mechanisms. Furthermore, AhR and epigenome dynamics have shown previously unprecedented complexity during multiple stages of cancer progression. AhR not only transcriptionally regulated epigenetic-associated molecules, but also worked with epigenetic-modifying enzymes during cancer progression. In this review, we have summarized the findings obtained not only from cell-culture studies, but also from animal models. Different clinical trials are currently being conducted using AhR inhibitors and PD-1 inhibitors (Pembrolizumab and nivolumab), which confirm the linchpin role of AhR-related mechanistic details in cancer progression. Therefore, further studies are required to develop a better comprehension of the many-sided and "diametrically opposed" roles of AhR in the regulation of carcinogenesis and metastatic spread of cancer cells to the secondary organs.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Venera Rakhmetova
- Department of Internal Diseases, Medical University of Astana, Astana 010000, Kazakhstan
| | - Gulnara Kapanova
- Faculty of Medicine and healthcare, Al-Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty 050040, Kazakhstan (G.T.)
- Scientific Center of Anti-Infectious Drugs, 75 Al-Farabi Ave, Almaty 050040, Kazakhstan
| | - Gulnur Tanbayeva
- Faculty of Medicine and healthcare, Al-Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty 050040, Kazakhstan (G.T.)
| | - Akmaral Mussakhanova
- Department of Public Health and Management, Astana Medical University, Astana 010000, Kazakhstan;
| | - Akmaral Abdykulova
- Department of General Medical Practice, General Medicine Faculty, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan;
| | - Alma-Gul Ryskulova
- Department of Public Health and Social Sciences, Kazakhstan Medical University “KSPH”, Utenos Str. 19A, Almaty 050060, Kazakhstan;
| |
Collapse
|
7
|
Ray R, Goel S, Al Khashali H, Darweesh B, Haddad B, Wozniak C, Ranzenberger R, Khalil J, Guthrie J, Heyl D, Evans HG. Regulation of Soluble E-Cadherin Signaling in Non-Small-Cell Lung Cancer Cells by Nicotine, BDNF, and β-Adrenergic Receptor Ligands. Biomedicines 2023; 11:2555. [PMID: 37760996 PMCID: PMC10526367 DOI: 10.3390/biomedicines11092555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The ectodomain of the transmembrane protein E-cadherin can be cleaved and released in a soluble form referred to as soluble E-cadherin, or sE-cad, accounting for decreased E-cadherin levels at the cell surface. Among the proteases implicated in this cleavage are matrix metalloproteases (MMP), including MMP9. Opposite functions have been reported for full-length E-cadherin and sE-cad. In this study, we found increased MMP9 levels in the media of two non-small cell lung cancer (NSCLC) cell lines, A549 and H1299, treated with BDNF, nicotine, or epinephrine that were decreased upon cell treatment with the β-adrenergic receptor blocker propranolol. Increased MMP9 levels correlated with increased sE-cad levels in A549 cell media, and knockdown of MMP9 in A549 cells led to downregulation of sE-cad levels in the media. Previously, we reported that A549 and H1299 cell viability increased with nicotine and/or BDNF treatment and decreased upon treatment with propranolol. In investigating the function of sE-cad, we found that immunodepletion of sE-cad from the media of A549 cells untreated or treated with BDNF, nicotine, or epinephrine reduced activation of EGFR and IGF-1R, decreased PI3K and ERK1/2 activities, increased p53 activation, decreased cell viability, and increased apoptosis, while no effects were found using H1299 cells under all conditions tested.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hedeel Guy Evans
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI 48197, USA; (R.R.); (S.G.); (H.A.K.); (B.D.); (B.H.); (C.W.); (R.R.); (J.K.); (J.G.); (D.H.)
| |
Collapse
|
8
|
Liu Y, Cui J, Zhang J, Chen Z, Song Z, Bao D, Xiang R, Li D, Yang Y. Excess KLHL24 Impairs Skin Wound Healing through the Degradation of Vimentin. J Invest Dermatol 2023; 143:1289-1298.e15. [PMID: 36716923 DOI: 10.1016/j.jid.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/14/2022] [Accepted: 01/07/2023] [Indexed: 01/30/2023]
Abstract
Start codon variants in ubiquitin ligase KLHL24 lead to a gain-of-function mutant KLHL24-ΔN28, which mediates the excessive degradation of keratin 15, desmin, and keratin 14, resulting in alopecia, cardiopathy, and epidermolysis bullosa syndrome. Patients with alopecia, cardiopathy, and epidermolysis bullosa syndrome normally present atrophic scars after wounds heal, which is rare in KRT14-related epidermolysis bullosa. The mechanisms underlying the formation of atrophic scars in epidermolysis bullosa of patients with alopecia, cardiopathy, and epidermolysis bullosa syndrome remain unclear. This study showed that KLHL24-ΔN28 impaired skin wound healing by excessively degrading vimentin. Heterozygous Klhl24c.3G>T knock-in mice displayed delayed wound healing and decreased wound collagen deposition. We identified vimentin as an unreported substrate of KLHL24. KLHL24-ΔN28 mediated the excessive degradation of vimentin, which failed to maintain efficient fibroblast proliferation and activation during wound healing. Furthermore, by mediating vimentin degradation, KLHL24 can hinder myofibroblast activation, which attenuated bleomycin-induced skin fibrosis. These findings showed the function of KLHL24 in regulating tissue remodeling, atrophic scarring, and fibrosis.
Collapse
Affiliation(s)
- Yihe Liu
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jun Cui
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Jing Zhang
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Zhiming Chen
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zhongya Song
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Dan Bao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Ruiyu Xiang
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Dongqing Li
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yong Yang
- Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
9
|
Yu HX, Feng Z, Lin W, Yang K, Liu RQ, Li JQ, Liu XY, Pei M, Yang HT. Ongoing Clinical Trials in Aging-Related Tissue Fibrosis and New Findings Related to AhR Pathways. Aging Dis 2022; 13:732-752. [PMID: 35656117 PMCID: PMC9116921 DOI: 10.14336/ad.2021.1105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/05/2021] [Indexed: 11/06/2022] Open
Abstract
Fibrosis is a pathological manifestation of wound healing that replaces dead/damaged tissue with collagen-rich scar tissue to maintain homeostasis, and complications from fibrosis contribute to nearly half of all deaths in the industrialized world. Ageing is closely associated with a progressive decline in organ function, and the prevalence of tissue fibrosis dramatically increases with age. Despite the heavy clinical and economic burden of organ fibrosis as the population ages, to date, there is a paucity of therapeutic strategies that are specifically designed to slow fibrosis. Aryl hydrocarbon receptor (AhR) is an environment-sensing transcription factor that exacerbates aging phenotypes in different tissues that has been brought back into the spotlight again with economic development since AhR could interact with persistent organic pollutants derived from incomplete waste combustion. In addition, gut microbiota dysbiosis plays a pivotal role in the pathogenesis of numerous diseases, and microbiota-associated tryptophan metabolites are dedicated contributors to fibrogenesis by acting as AhR ligands. Therefore, a better understanding of the effects of tryptophan metabolites on fibrosis modulation through AhR may facilitate the exploitation of new therapeutic avenues for patients with organ fibrosis. In this review, we primarily focus on how tryptophan-derived metabolites are involved in renal fibrosis, idiopathic pulmonary fibrosis, hepatic fibrosis and cardiac fibrosis. Moreover, a series of ongoing clinical trials are highlighted.
Collapse
Affiliation(s)
- Hang-Xing Yu
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhe Feng
- 3Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wei Lin
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Kang Yang
- 4Kidney Disease Treatment Center, The first affiliated hospital of Henan university of CM, Zhengzhou, Henan, China
| | - Rui-Qi Liu
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jia-Qi Li
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xin-Yue Liu
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ming Pei
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hong-Tao Yang
- 1Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,2National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
10
|
Ke Y, Yang X, Luo D. miR-193a-3p Overexpression Inhibits Proliferation and Enhances Paclitaxel Chemosensitivity in Human Non-Small-Cell Lung Cancer Cells. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.541.548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Hsu HL, Chen HK, Tsai CH, Liao PL, Chan YJ, Lee YC, Lee CC, Li CH. Aryl Hydrocarbon Receptor Defect Attenuates Mitogen-Activated Signaling through Leucine-Rich Repeats and Immunoglobulin-like Domains 1 (LRIG1)-Dependent EGFR Degradation. Int J Mol Sci 2021; 22:9988. [PMID: 34576152 PMCID: PMC8464816 DOI: 10.3390/ijms22189988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/05/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022] Open
Abstract
Aryl hydrocarbon receptor (AHR) genomic pathway has been well-characterized in a number of respiratory diseases. In addition, the cytoplasmic AHR protein may act as an adaptor of E3 ubiquitin ligase. In this study, the physiological functions of AHR that regulate cell proliferation were explored using the CRISPR/Cas9 system. The doubling-time of the AHR-KO clones of A549 and BEAS-2B was observed to be prolonged. The attenuation of proliferation potential was strongly associated with either the induction of p27Kip1 or the impairment in mitogenic signal transduction driven by the epidermal growth factor (EGF) and EGF receptor (EGFR). We found that the leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1), a repressor of EGFR, was induced in the absence of AHR in vitro and in vivo. The LRIG1 tends to degrade via a proteasome dependent manner by interacting with AHR in wild-type cells. Either LRIG1 or a disintegrin and metalloprotease 17 (ADAM17) were accumulated in AHR-defective cells, consequently accelerating the degradation of EGFR, and attenuating the response to mitogenic stimulation. We also affirmed low AHR but high LRIG1 levels in lung tissues of chronic obstructive pulmonary disease (COPD) patients. This might partially elucidate the sluggish tissue repairment and developing inflammation in COPD patients.
Collapse
Affiliation(s)
- Han-Lin Hsu
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Hong-Kai Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Chi-Hao Tsai
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, NC 27517, USA;
| | - Po-Lin Liao
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan;
| | - Yen-Ju Chan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medicine University, Taichung 404, Taiwan;
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| |
Collapse
|
12
|
Huang HJ, Chetyrkina M, Wong CW, Kraevaya OA, Zhilenkov AV, Voronov II, Wang PH, Troshin PA, Hsu SH. Identification of potential descriptors of water-soluble fullerene derivatives responsible for antitumor effects on lung cancer cells via QSAR analysis. Comput Struct Biotechnol J 2021; 19:812-825. [PMID: 33598097 PMCID: PMC7847972 DOI: 10.1016/j.csbj.2021.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/03/2022] Open
Abstract
Water-soluble fullerene derivatives are actively investigated as potential drugs for cancer treatment due to their favorable membranotropic properties. Herein, cytotoxic effects of twenty fullerene derivatives with different solubilizing addends were evaluated in three different types of non-small-cell lung carcinoma (NSCLC). The potential structural descriptors of the solubilizing addends related to the inhibitory activities on each type of lung cancer cell were investigated by the quantitative structure-activity relationship (QSAR) approach. The determination coefficient r2 for the recommended QSAR model were 0.9325, 0.8404, and 0.9011 for A549, H460, and H1299 cell lines, respectively. The results revealed that the chemical features of the fullerene-based compounds including aromatic bonds, sulfur-containing aromatic rings, and oxygen atoms are favored properties and promote the inhibitory effects on H460 and H1299 cells. Particularly, thiophene moiety is the key functional group, which was positively correlated with strong inhibitory effects on the three types of lung cancer cells. The useful information obtained from our regression models may lead to the design of more efficient inhibitors of the three types of NSCLC.
Collapse
Affiliation(s)
- Hung-Jin Huang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | | | - Chui-Wei Wong
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Olga A. Kraevaya
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
- Institute for Problems of Chemical Physics of Russian Academy of Sciences, Chernogolovka, Russian Federation
| | - Alexander V. Zhilenkov
- Institute for Problems of Chemical Physics of Russian Academy of Sciences, Chernogolovka, Russian Federation
| | - Ilya I. Voronov
- Institute for Problems of Chemical Physics of Russian Academy of Sciences, Chernogolovka, Russian Federation
| | - Pei-Hwa Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Pavel A. Troshin
- Institute for Problems of Chemical Physics of Russian Academy of Sciences, Chernogolovka, Russian Federation
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, ROC
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan, ROC
- Research and Development Center for Medical Devices, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
13
|
Hýžďalová M, Procházková J, Strapáčová S, Svržková L, Vacek O, Fedr R, Andrysík Z, Hrubá E, Líbalová H, Kléma J, Topinka J, Mašek J, Souček K, Vondráček J, Machala M. A prolonged exposure of human lung carcinoma epithelial cells to benzo[a]pyrene induces p21-dependent epithelial-to-mesenchymal transition (EMT)-like phenotype. CHEMOSPHERE 2021; 263:128126. [PMID: 33297115 DOI: 10.1016/j.chemosphere.2020.128126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/12/2023]
Abstract
Deciphering the role of the aryl hydrocarbon receptor (AhR) in lung cancer cells may help us to better understand the role of toxic AhR ligands in lung carcinogenesis, including cancer progression. We employed human lung carcinoma A549 cells to investigate their fate after continuous two-week exposure to model AhR agonists, genotoxic benzo[a]pyrene (BaP; 1 μM) and non-genotoxic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 10 nM). While TCDD increased proliferative rate of A549 cells, exposure to BaP decreased cell proliferation and induced epithelial-to-mesenchymal transition (EMT)-like phenotype, which was associated with enhanced cell migration, invasion, and altered cell morphology. Although TCDD also suppressed expression of E-cadherin and activated some genes linked to EMT, it did not induce the EMT-like phenotype. The results of transcriptomic analysis, and the opposite effects of BaP and TCDD on cell proliferation, indicated that a delay in cell cycle progression, together with a slight increase of senescence (when coupled with AhR activation), favors the induction of EMT-like phenotype. The shift towards EMT-like phenotype observed after simultaneous treatment with TCDD and mitomycin C (an inhibitor of cell proliferation) confirmed the hypothesis. Since BaP decreased cell proliferative rate via induction of p21 expression, we generated the A549 cell model with reduced p21 expression and exposed it to BaP for two weeks. The p21 knockdown suppressed the BaP-mediated EMT-like phenotype in A549 cells, thus confirming that a delayed cell cycle progression, together with p21-dependent induction of senescence-related chemokine CCL2, may contribute to induction of EMT-like cell phenotype in lung cells exposed to genotoxic AhR ligands.
Collapse
Affiliation(s)
- Martina Hýžďalová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Simona Strapáčová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Lucie Svržková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Ondřej Vacek
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Zdeněk Andrysík
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA; Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Eva Hrubá
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Helena Líbalová
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Jiří Kléma
- Department of Computer Science, Czech Technical University in Prague, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic.
| |
Collapse
|
14
|
Nothdurft S, Thumser-Henner C, Breitenbücher F, Okimoto RA, Dorsch M, Opitz CA, Sadik A, Esser C, Hölzel M, Asthana S, Forster J, Beisser D, Kalmbach S, Grüner BM, Bivona TG, Schramm A, Schuler M. Functional screening identifies aryl hydrocarbon receptor as suppressor of lung cancer metastasis. Oncogenesis 2020; 9:102. [PMID: 33214553 PMCID: PMC7677369 DOI: 10.1038/s41389-020-00286-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023] Open
Abstract
Lung cancer mortality largely results from metastasis. Despite curative surgery many patients with early-stage non-small cell lung cancer ultimately succumb to metastatic relapse. Current risk reduction strategies based on cytotoxic chemotherapy and radiation have only modest activity. Against this background, we functionally screened for novel metastasis modulators using a barcoded shRNA library and an orthotopic lung cancer model. We identified aryl hydrocarbon receptor (AHR), a sensor of xenobiotic chemicals and transcription factor, as suppressor of lung cancer metastasis. Knockdown of endogenous AHR induces epithelial–mesenchymal transition signatures, increases invasiveness of lung cancer cells in vitro and metastasis formation in vivo. Low intratumoral AHR expression associates with inferior outcome of patients with resected lung adenocarcinomas. Mechanistically, AHR triggers ATF4 signaling and represses matrix metalloproteinase activity, both counteracting metastatic programs. These findings link the xenobiotic defense system with control of lung cancer progression. AHR-regulated pathways are promising targets for innovative anti-metastatic strategies.
Collapse
Affiliation(s)
- Silke Nothdurft
- Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Clotilde Thumser-Henner
- Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Frank Breitenbücher
- Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ross A Okimoto
- Department of Medicine, University of California, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Madeleine Dorsch
- Laboratory of Molecular Tumor Pathology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Christiane A Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| | - Ahmed Sadik
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
| | - Charlotte Esser
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Saurabh Asthana
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Jan Forster
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Beisser
- Department of Biodiversity, University Duisburg-Essen, Essen, Germany
| | - Sophie Kalmbach
- Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Barbara M Grüner
- Laboratory of Molecular Tumor Pathology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Alexander Schramm
- Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Martin Schuler
- Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| |
Collapse
|
15
|
Shi Y, Zeng Z, Yu J, Tang B, Tang R, Xiao R. The aryl hydrocarbon receptor: An environmental effector in the pathogenesis of fibrosis. Pharmacol Res 2020; 160:105180. [PMID: 32877693 DOI: 10.1016/j.phrs.2020.105180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a highly conserved transcription factor that can be activated by small molecules provided by dietary, plant, or microbial metabolites, and environmental pollutants. AhR is expressed in many cell types and engages in crosstalk with other signaling pathways, and therefore provides a molecular pathway that integrates environmental cues and metabolic processes. Fibrosis, which is defined as an aberrant extracellular matrix formation, is a reparative process in the terminal stage of chronic diseases. Both environmental and internal factors have been shown to participate in the pathogenesis of fibrosis; however, the underlying mechanisms still remain elusive. In this review, the potential role of AhR in the process of fibrosis, as well as potential opportunities and challenges in the development of AhR targeting therapeutics, are summarized.
Collapse
Affiliation(s)
- Yaqian Shi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jiangfan Yu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Bingsi Tang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Rui Tang
- Department of Rheumatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
16
|
Che X, Dai W. Aryl Hydrocarbon Receptor: Its Regulation and Roles in Transformation and Tumorigenesis. Curr Drug Targets 2020; 20:625-634. [PMID: 30411679 DOI: 10.2174/1389450120666181109092225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023]
Abstract
AhR is an environmental response gene that mediates cellular responses to a variety of xenobiotic compounds that frequently function as AhR ligands. Many AhR ligands are classified as carcinogens or pro-carcinogens. Thus, AhR itself acts as a major mediator of the carcinogenic effect of many xenobiotics in vivo. In this concise review, mechanisms by which AhR trans-activates downstream target gene expression, modulates immune responses, and mediates malignant transformation and tumor development are discussed. Moreover, activation of AhR by post-translational modifications and crosstalk with other transcription factors or signaling pathways are also summarized.
Collapse
Affiliation(s)
- Xun Che
- Department of Environmental Medicine, New York University Langone Health, New York, NY 10010, United States
| | - Wei Dai
- Department of Environmental Medicine, New York University Langone Health, New York, NY 10010, United States
| |
Collapse
|
17
|
Zhu P, Yu H, Zhou K, Bai Y, Qi R, Zhang S. 3,3'-Diindolylmethane modulates aryl hydrocarbon receptor of esophageal squamous cell carcinoma to reverse epithelial-mesenchymal transition through repressing RhoA/ROCK1-mediated COX2/PGE 2 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:113. [PMID: 32546278 PMCID: PMC7298755 DOI: 10.1186/s13046-020-01618-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/08/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive tumors in the world. Aryl hydrocarbon receptor (AHR) has been reported to promote tumor metastasis and epithelial-mesenchymal transition (EMT) is a vital process of conferring cancer cells capabilities of migration and invasion. However, the mechanism by which modulation of AHR can inhibit tumor metastasis remains unknown. Thus, we aim to investigate the underlying mechanism regarding reversing EMT process of ESCC through modulation of AHR. METHODS We used AHR selective modulator 3,3'-diindolylmethane (DIM) to treat ESCC cell lines TE1 and KYSE150 so as to examine alterations of migration and invasion by wound healing and Transwell assay. Western blotting (WB) and qPCR were performed to detect relative genes and proteins changes regarding EMT process. Cell transfection was utilized for confirming pathways involved in DIM-induced reversal of EMT and in vivo assay was conducted for verification of the underlying mechanism. Co-IP assay was conducted for detecting protein-protein interactions. RESULTS AHR was overexpressed in ESCC and modulation of AHR by DIM could inhibit migration and invasion as well as downregulate mesenchymal cell markers β-Catenin, Vimentin and Slug and upregulate epithelial cell marker Claudin-1. Meanwhile, synergically overexpression of AHR, RhoA and ROCK1 correlated with poor clinical outcomes. DIM could inhibit COX2/PGE2 pathway by targeting AHR, and COX2 selective inhibitor Celecoxib could suppress EMT and metastasis. Results of PGE2 treatment were opposite to that of Celecoxib. Meanwhile, blockade of RhoA/ROCK1 pathway also exerted prohibitive effects on EMT and metastasis. WB results showed COX2/PGE2 pathway could be regulated by RhoA/ROCK1 pathway and DIM could inhibit RhoA/ROCK1 pathway through modulation of AHR. In vivo assay verified the results in vitro. Co-IP results showed DIM could modulate AHR to reverse EMT directly through inhibition of interaction between AHR and EGFR (epidermal growth factor receptor) so as to block RhoA/ROCK1-mediated COX2/PGE2 pathway which was connected by NF-κB. CONCLUSIONS In brief, modulation of AHR by DIM can reverse EMT process and inhibit metastasis of ESCC through repressing RhoA/ROCK1-mediated COX2/PGE2 pathway.
Collapse
Affiliation(s)
- Peiyao Zhu
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Huayun Yu
- Department of Gynecology and Obstetrics, Clinical Medical School, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, China
| | - Kun Zhou
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Yu Bai
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Ruiqun Qi
- Department of Dermatology, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China.
| | - Shuguang Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China.
| |
Collapse
|
18
|
Cai FY, Yao XM, Jing M, Kong L, Liu JJ, Fu M, Liu XZ, Zhang L, He SY, Li XT, Ju RJ. Enhanced antitumour efficacy of functionalized doxorubicin plus schisandrin B co-delivery liposomes via inhibiting epithelial-mesenchymal transition. J Liposome Res 2020; 31:113-129. [PMID: 32200703 DOI: 10.1080/08982104.2020.1745831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a malignant cancer characterized by easy invasion, metastasis and poor prognosis, so that conventional chemotherapy cannot inhibit its invasion and metastasis. Doxorubicin (DOX), as a broad-spectrum antitumour drug, cannot be widely used in clinic because of its poor targeting, short half-life, strong toxicity and side effects. Therefore, the aim of our study is to construct a kind of PFV modified DOX plus schisandrin B liposomes to solve the above problems, and to explore its potential mechanism of inhibiting NSCLC invasion and metastasis. The antitumour efficiency of the targeting liposomes was carried out by cytotoxicity, heating ablation, wound healing, transwell, vasculogenic mimicry channels formation and metastasis-related protein tests in vitro. Pharmacodynamics were evaluated by tumour inhibition rate, HE staining and TUNEL test in vivo. The enhanced anti-metastatic mechanism of the targeting liposomes was attributed to the downregulation of vimentin, vascular endothelial growth factor, matrix metalloproteinase 9 and upregulation of E-cadherin. In conclusion, the PFV modified DOX plus schisandrin B liposomes prepared in this study provided a treatment strategy with high efficiency for NSCLC.
Collapse
Affiliation(s)
- Fu-Yi Cai
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Min Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ming Jing
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Jing-Jing Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Min Fu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xin-Ze Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Lu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Si-Yu He
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Rui-Jun Ju
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| |
Collapse
|
19
|
Miao Y, Lv Q, Qiao S, Yang L, Tao Y, Yan W, Wang P, Cao N, Dai Y, Wei Z. Alpinetin improves intestinal barrier homeostasis via regulating AhR/suv39h1/TSC2/mTORC1/autophagy pathway. Toxicol Appl Pharmacol 2019; 384:114772. [PMID: 31676321 DOI: 10.1016/j.taap.2019.114772] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 02/08/2023]
Abstract
The injury of intestinal epithelial barrier is considered as the key pathophysiological process in response to gastrointestinal infection and inflammation, and plays an important role in the initiation and development of colitis. Alpinetin has been shown to improve intestinal barrier homeostasis under colitis condition, but the mechanism is still unclear. Here, we showed that alpinetin significantly improved transepithelial electrical resistance (TEER) in TNF-α-stimulated Caco-2 cells, which was mainly mediated by inhibiting the apoptosis. Mechanistic studies demonstrated that alpinetin markedly increased the production of autophagosomes, along with obvious regulation of LC3B-II, beclin-1, p62, Atg7 and Atg5 expressions. In addition, it also markedly repressed the activation of mTORC1 signaling pathway, which was ascribed to TSC2 rather than p-AKT, p-ERK, p-AMPKα or PTEN expressions in Caco-2 and NCM460 cells. Furthermore, the enrichment of H3K9me3 at TSC2 promoter region was decreased and ubiquitin proteasome degradation of suv39h1 was increased. Additionally, alpinetin activated aryl hydrocarbon receptor (AhR) and promoted co-localization of AhR with suv39h1 in the cytoplasm. The relationship between alpinetin-regulated AhR/suv39h1/TSC2/mTORC1 signals, autophagy and apoptosis of Caco-2 and NCM460 cells was confirmed by using CH223191, siAhR, siTSC2 and chloroquine. Finally, CH223191 and leucine abolished alpinetin-mediated inhibition of intestinal epithelial cells apoptosis, improvement of intestinal epithelial barrier and amelioration of colitis.
Collapse
Affiliation(s)
- Yumeng Miao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Qi Lv
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Simiao Qiao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ling Yang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yu Tao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Wenxin Yan
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Pengfei Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Na Cao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
20
|
Tsai CH, Li CH, Liao PL, Chang YW, Cheng YW, Kang JJ. Aza-PBHA, a potent histone deacetylase inhibitor, inhibits human gastric-cancer cell migration via PKCα-mediated AHR-HDAC interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118564. [PMID: 31672612 DOI: 10.1016/j.bbamcr.2019.118564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
Recently, histone deacetylase inhibitors (HDACi) have become widely used in anti-cancer treatment; however, due to acquired drug resistance and their relatively low specificity, they are largely ineffective against late-stage cancer. Thus, it is critical to elucidate the molecular mechanisms underlying these issues, so as to identify novel therapeutic targets to prevent late-stage cancer progression and resistance acquisition. The present study investigated the Aryl hydrocarbon receptor (AHR), that has been shown to mediate histone acetylation by regulating histone deacetylase (HDAC) activity during HDACi treatment in human gastric-cancer cell lines (i.e. AGS and NCI-N87 cells). The potent HDACi, Aza-PBHA, was thus shown to upregulate AHR expression in both AGS and NCI-N87 cell lines, and to increase histone acetylation levels by facilitating AHR/HDAC interactions. Conversely, AHR knockdown increased HDAC activity. Aza-PBHA also increased PKCα phosphorylation and membrane translocation; however, interestingly, PKCα inhibition reduced the Aza-PBHA-increased AHR and histone acetylation levels, and inhibited the formation of the AHR/HDAC complex, likely upregulating Aza-PBHA-inhibited cell migration. Thus, our results suggest that Aza-PBHA treatment increased AHR levels to suppress HDAC activity, and inhibited cell migration by activating PKCα activation. These findings support the use of drugs to control AHR-related epigenetic regulation as a promising potential method to prevent acquired resistance to cancer treatments.
Collapse
Affiliation(s)
- Chi-Hao Tsai
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan.
| | - Po-Lin Liao
- Institute of Food Safety and Health Assessment, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Wei Chang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy, Taipei Medical University, Taiwan; Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taiwan.
| | - Jaw-Jou Kang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Faculty of Pharmacy, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
21
|
ILCs in hematologic malignancies: Tumor cell killers and tissue healers. Semin Immunol 2019; 41:101279. [PMID: 31200953 DOI: 10.1016/j.smim.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 11/21/2022]
Abstract
Innate lymphoid cells (ILCs) have attracted considerable attention in the past years. As modulators of epithelial barrier immunology and homeostasis they play important roles in (auto)immunity and inflammation. Here we review the role of ILCs in hematologic malignancies, where ILCs act as efficient killer cells and as tissue healers, in the context of chemotherapy, radiotherapy and after allogeneic hematopoietic stem cell transplantation (HSCT).
Collapse
|
22
|
Nagini S, Sophia J, Mishra R. Glycogen synthase kinases: Moonlighting proteins with theranostic potential in cancer. Semin Cancer Biol 2019; 56:25-36. [DOI: 10.1016/j.semcancer.2017.12.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/23/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022]
|
23
|
Sulforaphane metabolites inhibit migration and invasion via microtubule-mediated Claudins dysfunction or inhibition of autolysosome formation in human non-small cell lung cancer cells. Cell Death Dis 2019; 10:259. [PMID: 30874545 PMCID: PMC6420664 DOI: 10.1038/s41419-019-1489-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022]
Abstract
Both sulforaphane-cysteine (SFN-Cys) and sulforaphane-N-acetyl-l-cysteine (SFN-NAC) inhibited cancer migration and invasion, but the underlying mechanisms were not clear. Here we uncovered via tissue microarray assay that high expression of invasion-associated Claudin-5 was correlated to malignant grades in human non-small cell lung cancer (NSCLC) cells. Further, SFN-Cys (10 µM) induced the accumulated phosphorylation of ERK1/2, leading to downregulation of Claudin-5 and upregulation of Claudin-7, and the decrease of Claudin-1 in SK-1 cells and increase of Claudin-1 in A549 cells; knockdown of Claudin-5 significantly reduced invasion, whereas knockdown of Claudin-7 increased invasion; knockdown of Claudin-1 reduced invasion in SK-1 cells, whereas it increased invasion in A549 cells, indicating that SFN-Cys regulated Claudins and inhibited invasion depending on Claudin isotypes and cell types. Furthermore, immunofluorescence staining showed that SFN-Cys triggered microtubule disruption and knockdown of α-tubulin downregulated Claudin-1, 5, and 7, and inhibited migration and invasion, indicating that microtubule disruption contributed to invasive inhibition. Co-immunoprecipitation and confocal microscopy observation showed that SFN-Cys lowered the interaction between α-tubulin and Claudin-1 or 5, or 7. Meanwhile, Western blotting and immunofluorescence staining showed that SFN-NAC (15 µM) downregulated α-tubulin resulting in microtubule disruption; knockdown of α-tubulin increased SFN-NAC-induced LC3 II accumulation in SK-1 cells. Combined with the inhibitor of autolysosome formation, Bafilomycin A1 (100 nM), SFN-NAC inhibited invasion via accumulating LC3 II and blocking formation of autolysosome. Further, SFN-NAC upregulated microtubule-stabilizing protein Tau; knockdown of Tau reduced LC3 II/LC3 I inhibiting migration and invasion. These results indicated that SFN-Cys inhibited invasion via microtubule-mediated Claudins dysfunction, but SFN-NAC inhibited invasion via microtubule-mediated inhibition of autolysosome formation in human NSCLC cells.
Collapse
|
24
|
Jeschke U, Zhang X, Kuhn C, Jalaguier S, Colinge J, Pfender K, Mayr D, Ditsch N, Harbeck N, Mahner S, Sixou S, Cavaillès V. The Prognostic Impact of the Aryl Hydrocarbon Receptor (AhR) in Primary Breast Cancer Depends on the Lymph Node Status. Int J Mol Sci 2019; 20:ijms20051016. [PMID: 30813617 PMCID: PMC6429124 DOI: 10.3390/ijms20051016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 01/04/2023] Open
Abstract
Increasing evidence implicates the aryl hydrocarbon receptor (AhR) as a possible regulator of mammary carcinogenesis. This study aims to clarify its prognostic impact in breast cancer (BC). Meta-analyses performed at the mRNA level demonstrated that the predictive value of AhR expression in BC depends on the lymph node (LN) status. AhR expression and sub-cellular location were then analyzed by immunohistochemistry in 302 primary BC samples. AhR was expressed in almost 90% of cases with a predominant nuclear location. Nuclear and cytoplasmic AhR levels were significantly correlated and associated with the expression of RIP140 (receptor-interacting protein of 140 kDa), an AhR transcriptional coregulator and target gene. Interestingly, total and nuclear AhR levels were only significantly correlated with short overall survival in node-negative patients. In this sub-group, total and nuclear AhR expression had an even stronger prognostic impact in patients with low RIP140-expressing tumors. Very interestingly, the total AhR prognostic value was also significant in luminal-like BCs and was an independent prognostic marker for LN-negative patients. Altogether, this study suggests that AhR is a marker of poor prognosis for patients with LN-negative luminal-like BCs, which warrants further evaluation.
Collapse
Affiliation(s)
- Udo Jeschke
- LMU Munich, University Hospital, Department of Obstetrics and Gynecology, 81377 Munich, Germany.
| | - Xi Zhang
- LMU Munich, University Hospital, Department of Obstetrics and Gynecology, 81377 Munich, Germany.
- Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China.
| | - Christina Kuhn
- LMU Munich, University Hospital, Department of Obstetrics and Gynecology, 81377 Munich, Germany.
| | - Stéphan Jalaguier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, 34298 Montpellier, France.
- Université de Montpellier, 34000 Montpellier, France.
- Institut régional du Cancer de Montpellier, 34298 Montpellier, France.
| | - Jacques Colinge
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, 34298 Montpellier, France.
- Université de Montpellier, 34000 Montpellier, France.
- Institut régional du Cancer de Montpellier, 34298 Montpellier, France.
| | - Kristina Pfender
- LMU Munich, University Hospital, Department of Obstetrics and Gynecology, 81377 Munich, Germany.
| | - Doris Mayr
- LMU Munich, Department of Pathology, 80337 Munich, Germany.
| | - Nina Ditsch
- LMU Munich, University Hospital, Department of Obstetrics and Gynecology, 81377 Munich, Germany.
| | - Nadia Harbeck
- LMU Munich, University Hospital, Department of Obstetrics and Gynecology, 81377 Munich, Germany.
| | - Sven Mahner
- LMU Munich, University Hospital, Department of Obstetrics and Gynecology, 81377 Munich, Germany.
| | - Sophie Sixou
- LMU Munich, University Hospital, Department of Obstetrics and Gynecology, 81377 Munich, Germany.
- Faculté des Sciences Pharmaceutiques, Université Paul Sabatier Toulouse III, 31062 Toulouse CEDEX 09, France.
- Cholesterol Metabolism and Therapeutic Innovations, Cancer Research Center of Toulouse (CRCT), UMR 1037, Université de Toulouse, CNRS, Inserm, UPS, 31037 Toulouse, France.
| | - Vincent Cavaillès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, 34298 Montpellier, France.
- Université de Montpellier, 34000 Montpellier, France.
- Institut régional du Cancer de Montpellier, 34298 Montpellier, France.
| |
Collapse
|
25
|
Procházková J, Strapáčová S, Svržková L, Andrysík Z, Hýžďalová M, Hrubá E, Pěnčíková K, Líbalová H, Topinka J, Kléma J, Espinosa JM, Vondráček J, Machala M. Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Toxicol Lett 2018; 292:162-174. [PMID: 29704546 DOI: 10.1016/j.toxlet.2018.04.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022]
Abstract
Exposure to persistent ligands of aryl hydrocarbon receptor (AhR) has been found to cause lung cancer in experimental animals, and lung adenocarcinomas are often associated with enhanced AhR expression and aberrant AhR activation. In order to better understand the action of toxic AhR ligands in lung epithelial cells, we performed global gene expression profiling and analyze TCDD-induced changes in A549 transcriptome, both sensitive and non-sensitive to CH223191 co-treatment. Comparison of our data with results from previously reported microarray and ChIP-seq experiments enabled us to identify candidate genes, which expression status reflects exposure of lung cancer cells to TCDD, and to predict processes, pathways (e.g. ER stress, Wnt/β-cat, IFNɣ, EGFR/Erbb1), putative TFs (e.g. STAT, AP1, E2F1, TCF4), which may be implicated in adaptive response of lung cells to TCDD-induced AhR activation. Importantly, TCDD-like expression fingerprint of selected genes was observed also in A549 cells exposed acutely to both toxic (benzo[a]pyrene, benzo[k]fluoranthene) and endogenous AhR ligands (2-(1H-Indol-3-ylcarbonyl)-4-thiazolecarboxylic acid methyl ester and 6-formylindolo[3,2-b]carbazole). Overall, our results suggest novel cellular candidates, which could help to improve monitoring of AhR-dependent transcriptional activity during acute exposure of lung cells to distinct types of environmental pollutants.
Collapse
Affiliation(s)
- Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Simona Strapáčová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Lucie Svržková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Zdeněk Andrysík
- 1 Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Martina Hýžďalová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Eva Hrubá
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Kateřina Pěnčíková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Helena Líbalová
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Kléma
- Department of Computer Science, Czech Technical University in Prague, Czech Republic
| | - Joaquín M Espinosa
- 1 Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic.
| |
Collapse
|
26
|
p23 protects the human aryl hydrocarbon receptor from degradation via a heat shock protein 90-independent mechanism. Biochem Pharmacol 2018; 152:34-44. [PMID: 29555469 DOI: 10.1016/j.bcp.2018.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/14/2018] [Indexed: 01/29/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated signaling molecule which is involved in diverse biological functions ranging from cancer metastasis to immune regulation. This receptor forms a cytoplasmic complex with Hsp90, p23, and XAP2. We have previously reported that down-regulation of p23 triggers degradation of the AHR protein, uncovering a potentially dynamic event which controls the cellular AHR levels without ligand treatment. Here we investigate the underlying mechanisms for this p23 effect using wild-type HeLa and the p23 knockdown HeLa cells. Reduction of the Hsp90 and XAP2 contents, however, did not affect the AHR protein levels, implying that this p23 effect on AHR is more than just alteration of the cytoplasmic complex dynamics. Association of p23 with Hsp90 is not important for the modulation of the AHR levels since exogenous expression of p23 mutants with modest Hsp90-binding affinity effectively restored the AHR message and protein levels. The protein folding property of p23 which resides at the terminal 50-amino acid region is not involved for this p23 effect. Results from our interaction study using the affinity purified thioredoxin fusion proteins and GST fusion proteins showed that p23 directly interacts with AHR and the interaction surface lies within AHR amino acid 1-216 and p23 amino acid 1-110. Down-regulation of the p23 protein content promotes the ubiquitination of AHR, indicating that p23 protects AHR from the ubiquitin-meditated protein degradation.
Collapse
|
27
|
Cai J, Culley MK, Zhao Y, Zhao J. The role of ubiquitination and deubiquitination in the regulation of cell junctions. Protein Cell 2017; 9:754-769. [PMID: 29080116 PMCID: PMC6107491 DOI: 10.1007/s13238-017-0486-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Maintenance of cell junctions plays a crucial role in the regulation of cellular functions including cell proliferation, permeability, and cell death. Disruption of cell junctions is implicated in a variety of human disorders, such as inflammatory diseases and cancers. Understanding molecular regulation of cell junctions is important for development of therapeutic strategies for intervention of human diseases. Ubiquitination is an important type of post-translational modification that primarily regulates endogenous protein stability, receptor internalization, enzyme activity, and protein-protein interactions. Ubiquitination is tightly regulated by ubiquitin E3 ligases and can be reversed by deubiquitinating enzymes. Recent studies have been focusing on investigating the effect of protein stability in the regulation of cell-cell junctions. Ubiquitination and degradation of cadherins, claudins, and their interacting proteins are implicated in epithelial and endothelial barrier disruption. Recent studies have revealed that ubiquitination is involved in regulation of Rho GTPases’ biological activities. Taken together these studies, ubiquitination plays a critical role in modulating cell junctions and motility. In this review, we will discuss the effects of ubiquitination and deubiquitination on protein stability and expression of key proteins in the cell-cell junctions, including junction proteins, their interacting proteins, and small Rho GTPases. We provide an overview of protein stability in modulation of epithelial and endothelial barrier integrity and introduce potential future search directions to better understand the effects of ubiquitination on human disorders caused by dysfunction of cell junctions.
Collapse
Affiliation(s)
- Junting Cai
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Miranda K Culley
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yutong Zhao
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jing Zhao
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
28
|
Cervello M, Augello G, Cusimano A, Emma MR, Balasus D, Azzolina A, McCubrey JA, Montalto G. Pivotal roles of glycogen synthase-3 in hepatocellular carcinoma. Adv Biol Regul 2017; 65:59-76. [PMID: 28619606 DOI: 10.1016/j.jbior.2017.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/24/2017] [Accepted: 06/04/2017] [Indexed: 06/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in the world, and represents the second most frequently cancer and third most common cause of death from cancer worldwide. At advanced stage, HCC is a highly aggressive tumor with a poor prognosis and with very limited response to common therapies. Therefore, there is still the need for new effective and well-tolerated therapeutic strategies. Molecular-targeted therapies hold promise for HCC treatment. One promising molecular target is the multifunctional serine/threonine kinase glycogen synthase kinase 3 (GSK-3). The roles of GSK-3β in HCC remain controversial, several studies suggested a possible role of GSK-3β as a tumor suppressor gene in HCC, whereas, other studies indicate that GSK-3β is a potential therapeutic target for this neoplasia. In this review, we will focus on the different roles that GSK-3 plays in HCC and its interaction with signaling pathways implicated in the pathogenesis of HCC, such as Insulin-like Growth Factor (IGF), Notch, Wnt/β-catenin, Hedgehog (HH), and TGF-β pathways. In addition, the pivotal roles of GSK3 in epithelial-mesenchymal transition (EMT), invasion and metastasis will be also discussed.
Collapse
Affiliation(s)
- Melchiorre Cervello
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy.
| | - Giuseppa Augello
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy
| | - Antonella Cusimano
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy
| | - Maria Rita Emma
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy
| | - Daniele Balasus
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy
| | - Antonina Azzolina
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Giuseppe Montalto
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy; Biomedic Department of Internal Medicine and Specialties (DiBiMIS), University of Palermo, Palermo, Italy
| |
Collapse
|