1
|
Gal A, Raykin E, Giladi S, Lederman D, Kofman O, Golan HM. Temporal dynamics of isolation calls emitted by pups in environmental and genetic mouse models of autism spectrum disorder. Front Neurosci 2023; 17:1274039. [PMID: 37942134 PMCID: PMC10629105 DOI: 10.3389/fnins.2023.1274039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Environmental and genetic factors contribute to the increased risk for neurodevelopmental disorders, including deficits in the development of social communication. In the mouse, ultrasonic vocalizations emitted by the pup stimulate maternal retrieval and potentiate maternal care. Therefore, isolation induced ultrasonic vocalization emitted by pups provides a means to evaluate deficits in communication during early development, before other ways of communication are apparent. Previous studies in our labs showed that gestational exposure to the pesticide chlorpyrifos (CPF) and the Methylenetetrahydrofolate (Mthfr)-knock-out mice are associated with impaired social preference, restricted or repetitive behavior and altered spectral properties of pups' ultrasonic vocalization. In this study, we explore the temporal dynamics of pups' vocalization in these Autism spectrum disorder (ASD) models. Methods We utilized the maternal potentiation protocol and analyzed the time course of pup vocalizations following isolation from the nest. Two models of ASD were studied: gestational exposure to the pesticide CPF and the Mthfr-knock-out mice. Results Vocalization emitted by pups of both ASD models were dynamically modified in quantity and spectral structure within each session and between the two isolation sessions. The first isolation session was characterized by a buildup of call quantity and significant effects of USV spectral structure variables, and the second isolation session was characterized by enhanced calls and vocalization time, but minute effect on USV properties. Moreover, in both models we described an increased usage of harmonic calls with time during the isolation sessions. Discussion Communication between two or more individuals requires an interplay between the two sides and depends on the response and the time since the stimulus. As such, the presence of dynamic changes in vocalization structure in the control pups, and the alteration observed in the pups of the ASD models, suggest impaired regulation of vocalization associated with the environmental and genetic factors. Last, we propose that temporal dynamics of ultrasonic vocalization communication should be considered in future analysis in rodent models of ASD to maximize the sensitivity of the study of vocalizations.
Collapse
Affiliation(s)
- Ayelet Gal
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eynav Raykin
- Psychology Department, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shaked Giladi
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dror Lederman
- Faculty of Engineering, Holon Institute of Technology Holon, Holon, Israel
| | - Ora Kofman
- Psychology Department, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Hava M. Golan
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Center for Autism Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
2
|
Kimura E, Suzuki G, Uramaru N, Kakeyama M, Maekawa F. 2-Chloro-3,7,8-tribromodibenzofuran as a new environmental pollutant inducing atypical ultrasonic vocalization in infant mice. Toxicol Res (Camb) 2023; 12:999-1004. [PMID: 37915473 PMCID: PMC10615804 DOI: 10.1093/toxres/tfad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/22/2023] [Accepted: 08/08/2023] [Indexed: 11/03/2023] Open
Abstract
Epidemiological and experimental studies indicate that maternal exposure to environmental pollutants impairs the cognitive and motor functions of offspring in humans and laboratory animals. Infant ultrasonic vocalizations (USVs), the communicative behavior of pups toward caregivers, are impaired in rodent models of neurodevelopmental disorders, suggesting a useful method to evaluate the developmental neurotoxicity of environmental pollutants. Therefore, we investigated USVs emitted by mouse pups of dams exposed to 2-chloro-3,7,8-tribromodibenzofuran (TeXDF) and 1,2,3,7,8-pentabromodibenzofuran (PeBDF), which are detected in the actual environment. The USV duration and number in the pups born to dams administered with TeXDF 40 μg/kg body weight (b.w.), but not 8 μg/kg b.w., on gestational day (GD) 12.5, were significantly lower than those in the corresponding pups on postnatal days 3-9. Conversely, there was no statistical change in the USVs emitted by the pups of dams administered with PeBDF 35 or 175 μg/kg b.w. on GD 12.5. To examine whether maternal exposure leads to behavioral impairments in adulthood, we analyzed exploratory behaviors in a novel environment using IntelliCage, a fully automated testing apparatus for group-housed mice. Neither TeXDF nor PeBDF exposure induced significant differences in offspring exploration. Considered together, our findings revealed that TeXDF induces atypical USV emission in infant mice, suggesting the importance of further studies on the risk assessment of mixed brominated/chlorinated dibenzo-p-dioxins and dibenzofurans.
Collapse
Affiliation(s)
- Eiki Kimura
- Health and Environmental Risk Research Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
- Department of Environmental Health, University of Fukui School of Medical Sciences, Fukui 910-1193, Japan
| | - Go Suzuki
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Naoto Uramaru
- Division of Pharmaceutical Health Biosciences, Nihon Pharmaceutical University, Saitama 362-0806, Japan
| | - Masaki Kakeyama
- Faculty of Human Sciences, Waseda University, Saitama 359-1192, Japan
| | - Fumihiko Maekawa
- Health and Environmental Risk Research Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| |
Collapse
|
3
|
Kimura E, Suzuki G, Uramaru N, Kakeyama M, Maekawa F. Liver-specific decrease in Tff3 gene expression in infant mice perinatally exposed to 2,3,7,8-tetrabromodibenzofuran or 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Appl Toxicol 2021; 42:305-317. [PMID: 34254344 DOI: 10.1002/jat.4220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/09/2021] [Accepted: 06/28/2021] [Indexed: 11/05/2022]
Abstract
Polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/DFs) are byproducts of brominated flame retardants and can cause adverse health effects. Although exposure to polychlorinated (PC) DD/DFs induces toxic effects, including liver injury and neurobehavioral disorder, little is known about toxicities associated with PBDD/DF exposure. Thus, we examined effects of perinatal exposure to brominated congener on the infant mouse. Gene expression in several organs, such as the liver and brain, was analyzed in mouse offspring born to dams administered 2,3,7,8-tetrabromodibenzofuran (TBDF; 9 or 45 μg/kg body weight) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 3 μg/kg body weight) on gestational day 12.5. An increase in liver size was observed in TBDF- or TCDD-exposed offspring in infancy. Gene microarray analysis revealed that 163 and 36 genes were markedly upregulated and downregulated, respectively, in the liver of TBDF-exposed mice compared with those in vehicle-treated mice on postnatal day (PND) 5. Significant increases in Cyp1a1, Cyp1a2, Fmo3, and Pnliprp1 and decreases in Tff3, Ocstamp, Kcnk16, and Lgals2 mRNA levels in TBDF-exposed offspring on PNDs 5 and 12 were confirmed by quantitative PCR. In particular, a significant reduction in Tff3 mRNA in the liver, but not in the brain, small intestine, colon, and kidney, was observed in offspring perinatally exposed to TBDF or TCDD. Ultrasonic calls of TBDF- or TCDD-exposed offspring on PNDs 3-5 were impaired. Taken together, perinatal exposure to polyhalogenated dioxin/furan congeners disrupts gene expression patterns in the liver and ultrasonic calling during infancy. These results suggest that liver injury may contribute to neurobehavioral disorder.
Collapse
Affiliation(s)
- Eiki Kimura
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Naoto Uramaru
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, Japan
| | - Masaki Kakeyama
- Faculty of Human Sciences, Waseda University, Saitama, Japan
| | - Fumihiko Maekawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| |
Collapse
|
4
|
Premoli M, Memo M, Bonini SA. Ultrasonic vocalizations in mice: relevance for ethologic and neurodevelopmental disorders studies. Neural Regen Res 2021; 16:1158-1167. [PMID: 33269765 PMCID: PMC8224126 DOI: 10.4103/1673-5374.300340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/09/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Mice use ultrasonic vocalizations (USVs) to communicate each other and to convey their emotional state. USVs have been greatly characterized in specific life phases and contexts, such as mother isolation-induced USVs for pups or female-induced USVs for male mice during courtship. USVs can be acquired by means of specific tools and later analyzed on the base of both quantitative and qualitative parameters. Indeed, different ultrasonic call categories exist and have already been defined. The understanding of different calls meaning is still missing, and it will represent an essential step forward in the field of USVs. They have long been studied in the ethological context, but recently they emerged as a precious instrument to study pathologies characterized by deficits in communication, in particular neurodevelopmental disorders (NDDs), such as autism spectrum disorders. This review covers the topics of USVs characteristics in mice, contexts for USVs emission and factors that modulate their expression. A particular focus will be devoted to mouse USVs in the context of NDDs. Indeed, several NDDs murine models exist and an intense study of USVs is currently in progress, with the aim of both performing an early diagnosis and to find a pharmacological/behavioral intervention to improve patients' quality of life.
Collapse
Affiliation(s)
- Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, Italy
| |
Collapse
|
5
|
Kimura E, Kohda M, Maekawa F, Fujii-Kuriyama Y, Tohyama C. Neurons expressing the aryl hydrocarbon receptor in the locus coeruleus and island of Calleja major are novel targets of dioxin in the mouse brain. Histochem Cell Biol 2021; 156:147-163. [PMID: 33963922 PMCID: PMC8397641 DOI: 10.1007/s00418-021-01990-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 12/14/2022]
Abstract
The aryl hydrocarbon receptor (AhR) acts as a receptor that responds to ligands, including dioxin. The AhR-ligand complex translocates from the cytoplasm into the nucleus to induce gene expression. Because dioxin exposure impairs cognitive and neurobehavioral functions, AhR-expressing neurons need to be identified for elucidation of the dioxin neurotoxicity mechanism. Immunohistochemistry was performed to detect AhR-expressing neurons in the mouse brain and confirm the specificity of the anti-AhR antibody using Ahr-/- mice. Intracellular distribution of AhR and expression level of AhR-target genes, Cyp1a1, Cyp1b1, and Ahr repressor (Ahrr), were analyzed by immunohistochemistry and quantitative RT-PCR, respectively, using mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The mouse brains were shown to harbor AhR in neurons of the locus coeruleus (LC) and island of Calleja major (ICjM) during developmental period in Ahr+/+ mice but not in Ahr-/- mice. A significant increase in nuclear AhR of ICjM neurons but not LC neurons was found in 14-day-old mice compared to 5- and 7-day-old mice. AhR was significantly translocated into the nucleus in LC and ICjM neurons of TCDD-exposed adult mice. Additionally, the expression levels of Cyp1a1, Cyp1b1, and Ahrr genes in the brain, a surrogate of TCDD in the tissue, were significantly increased by dioxin exposure, suggesting that dioxin-activated AhR induces gene expression in LC and ICjM neurons. This histochemical study shows the ligand-induced nuclear translocation of AhR at the single-neuron level in vivo. Thus, the neurotoxicological significance of the dioxin-activated AhR in the LC and ICjM warrants further studies.
Collapse
Affiliation(s)
- Eiki Kimura
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan. .,Research Fellow, Japan Society for the Promotion of Science (JSPS), 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan.
| | - Masanobu Kohda
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan
| | - Fumihiko Maekawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan
| | - Yoshiaki Fujii-Kuriyama
- Medical Research Institute, Molecular Epidemiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan. .,Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan.
| |
Collapse
|
6
|
Gileadi TE, Swamy AK, Hore Z, Horswell S, Ellegood J, Mohan C, Mizuno K, Lundebye AK, Giese KP, Stockinger B, Hogstrand C, Lerch JP, Fernandes C, Basson MA. Effects of Low-Dose Gestational TCDD Exposure on Behavior and on Hippocampal Neuron Morphology and Gene Expression in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57002. [PMID: 33956508 PMCID: PMC8101924 DOI: 10.1289/ehp7352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent and toxic environmental pollutant. Gestational exposure to TCDD has been linked to cognitive and motor deficits, and increased incidence of autism spectrum disorder (ASD) traits in children. Most animal studies of these neurodevelopmental effects involve acute TCDD exposure, which does not model typical exposure in humans. OBJECTIVES The aim of the study was to establish a dietary low-dose gestational TCDD exposure protocol and performed an initial characterization of the effects on offspring behavior, neurodevelopmental phenotypes, and gene expression. METHODS Throughout gestation, pregnant C57BL/6J mice were fed a diet containing a low dose of TCDD (9 ng TCDD/kg body weight per day) or a control diet. The offspring were tested in a battery of behavioral tests, and structural brain alterations were investigated by magnetic resonance imaging. The dendritic morphology of pyramidal neurons in the hippocampal Cornu Ammonis (CA)1 area was analyzed. RNA sequencing was performed on hippocampi of postnatal day 14 TCDD-exposed and control offspring. RESULTS TCDD-exposed females displayed subtle deficits in motor coordination and reversal learning. Volumetric difference between diet groups were observed in regions of the hippocampal formation, mammillary bodies, and cerebellum, alongside higher dendritic arborization of pyramidal neurons in the hippocampal CA1 region of TCDD-exposed females. RNA-seq analysis identified 405 differentially expressed genes in the hippocampus, enriched for genes with functions in regulation of microtubules, axon guidance, extracellular matrix, and genes regulated by SMAD3. DISCUSSION Exposure to 9 ng TCDD/kg body weight per day throughout gestation was sufficient to cause specific behavioral and structural brain phenotypes in offspring. Our data suggest that alterations in SMAD3-regulated microtubule polymerization in the developing postnatal hippocampus may lead to an abnormal morphology of neuronal dendrites that persists into adulthood. These findings show that environmental low-dose gestational exposure to TCDD can have significant, long-term impacts on brain development and function. https://doi.org/10.1289/EHP7352.
Collapse
Affiliation(s)
- Talia E. Gileadi
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Abhyuday K. Swamy
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Zoe Hore
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Stuart Horswell
- Department of Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
| | - Conor Mohan
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Keiko Mizuno
- Department of Basic and Clinical Neuroscience, King’s College London, London, UK
| | | | - K. Peter Giese
- Department of Basic and Clinical Neuroscience, King’s College London, London, UK
| | | | | | - Jason P. Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - M. Albert Basson
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| |
Collapse
|
7
|
Sha R, Chen Y, Wang Y, Luo Y, Liu Y, Ma Y, Li Y, Xu L, Xie HQ, Zhao B. Gestational and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice: Neurobehavioral effects on female offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141784. [PMID: 32889265 DOI: 10.1016/j.scitotenv.2020.141784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Emerging evidence suggests that perinatal dioxin exposure affects neurodevelopment and impairs multiple brain functions, including cognitive, language, learning and emotion, in the offspring. However, the impacts of gestational and lactational exposure to dioxin on behavior and related molecular events are still not fully understood. In this study, female C57BL/6J mice were orally administered three doses of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) (0.1 or 10 μg/kg body weight (bw)) during the pregnancy and lactation periods. The locomotion, exploration and anxiety-related behaviors were examined by an open field test of the young adult female offspring at postnatal day 68. We found that the maternal TCDD exposure, particularly at a low dose, increased movement ability, novelty-exploration and certain anxiety-related behaviors in the offspring. Such hyperactivity-like behaviors were accompanied by the upregulation of certain genes associated with cholinergic neurotransmission or synaptogenesis in the offspring brain. In accordance with the potential enhancement of cholinergic neurotransmission due to the gene upregulations, the enzymatic activity of acetylcholinesterase was decreased, which might lead to excess acetylcholine and consequent hyper-excitation at the synapses. Thus, we found that gestational and lactational TCDD exposure at low dose caused hyperactivity-like behaviors in young adult female offspring and speculated the enhancement of cholinergic neurotransmission and synaptogenesis as potential molecular events underlying the neurobehavioral effects.
Collapse
Affiliation(s)
- Rui Sha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yijing Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongchao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Xie HQ, Ma Y, Fu H, Xu T, Luo Y, Liu Y, Chen Y, Xu L, Xia Y, Zhao B. New perspective on the regulation of acetylcholinesterase via the aryl hydrocarbon receptor. J Neurochem 2020; 158:1254-1262. [PMID: 33278027 DOI: 10.1111/jnc.15261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022]
Abstract
Acetylcholinesterase (AChE, EC 3.1.1.7) plays important roles in cholinergic neurotransmission and has been widely recognized as a biomarker for monitoring pollution by organophosphate (OP) and carbamate pesticides. Dioxin is an emerging environmental AChE disruptor and is a typical persistent organic pollutant with multiple toxic effects on the nervous system. Growing evidence has shown that there is a significant link between dioxin exposure and neurodegenerative diseases and neurodevelopmental disorders, most of which involve AChE and cholinergic dysfunctions. Therefore, an in-depth understanding of the effects of dioxin on AChE and the related mechanisms of action might help to shed light on the molecular bases of dioxin impacts on the nervous system. In the past decade, the effects of dioxins on AChE have been revealed in cultured cells of different origins and in rodent animal models. Unlike OP and carbamate pesticides, dioxin-induced AChE disturbance is not due to direct inhibition of enzymatic activity; instead, dioxin causes alterations of AChE expression in certain models. As a widely accepted mechanism for most dioxin effects, the aryl hydrocarbon receptor (AhR)-dependent pathway has become a research focus in studies on the mechanism of action of dioxin-induced AChE dysregulation. In this mini-review, the effects of dioxin on AChE and the diverse roles of the AhR pathway in AChE regulation are summarized. Additionally, the involvement of AhR in AChE regulation during different neurodevelopmental processes is discussed. These AhR-related findings might also provide new insight into AChE regulation triggered by diverse xenobiotics capable of interacting with AhR.
Collapse
Affiliation(s)
- Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yongchao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hualing Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yali Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yingjie Xia
- Division of Life Science and Center for Chinese Medicine, the Hong Kong University of Science and Technology, Hong Kong, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Kimura E, Suzuki G, Uramaru N, Endo T, Maekawa F. Behavioral impairments in infant and adult mouse offspring exposed to 2,3,7,8-tetrabromodibenzofuran in utero and via lactation. ENVIRONMENT INTERNATIONAL 2020; 142:105833. [PMID: 32559560 DOI: 10.1016/j.envint.2020.105833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/19/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/DFs) have been unintentionally produced and emitted from the lifecycle of products containing brominated flame retardants, such as polybrominated diphenyl ether, which is suspected to cause developmental neurotoxicity (DNT). Although it is plausible that PBDD/DFs can also induce DNT, information regarding their neurotoxic potential is currently limited. Hence, in the present study, we examined the effects of in utero and lactational exposure to brominated dibenzofurans on infant and adult offspring behavior to understand the mechanism of PBDD/DFs toxicity and detect effective behavioral endpoints in DNT assessment. We analyzed the behavior of mouse offspring born to dams administered 2,3,7,8-tetrabromodibenzofuran (2,3,7,8-TeBDF; dose of 0, 9, or 45 μg/kg) or 2,3,8-tribromodibenzofuran (2,3,8-TrBDF; dose of 0, 75.6, or 378 μg/kg) on gestational day 12.5. In mouse offspring born to dams exposed to 2,3,7,8-TeBDF, the exploratory behavior in a novel environment in adulthood and ultrasonic vocalization (USV) during infancy were significantly reduced. Additionally, AhR-target genes, such as Cyp1a1, were induced in the liver of 2,3,7,8-TeBDF-exposed offspring in a dose-dependent manner. Conversely, no significant changes in the infant and adult behaviors and expression level of AhR-target genes were observed in the 2,3,8-TrBDF-exposed offspring. These results suggest that 2,3,7,8-TeBDF can induce DNT and that the analysis of exploratory behavior in a novel environment and USV may be useful endpoints to assess DNT of dioxin-related substances.
Collapse
Affiliation(s)
- Eiki Kimura
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Naoto Uramaru
- Nihon Pharmaceutical University, 10281 Komuro Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Toshihiro Endo
- Phenovance Research & Technology, 5-4-19-302A, Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Fumihiko Maekawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan.
| |
Collapse
|
10
|
Hobson L, Bains RS, Greenaway S, Wells S, Nolan PM. Phenotyping in Mice Using Continuous Home Cage Monitoring and Ultrasonic Vocalization Recordings. ACTA ACUST UNITED AC 2020; 10:e80. [PMID: 32813317 DOI: 10.1002/cpmo.80] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the last century, the study of mouse behavior has uncovered insights into brain molecular mechanisms while revealing potential causes of many neurological disorders. To this end, researchers have widely exploited the use of mutant strains, including those generated in mutagenesis screens and those produced using increasingly sophisticated genome engineering technologies. It is now relatively easy to access mouse models carrying alleles that faithfully recapitulate changes found in human patients or bearing variants of genes that provide data on those genes' functions. Concurrent with these developments has been an appreciation of the limitations of some current testing platforms, especially those monitoring complex behaviors. Out-of-cage observational testing is useful in describing overt persistent phenotypes but risks missing sporadic or intermittent events. Furthermore, measuring the progression of a phenotype, potentially over many months, can be difficult while relying on assays that may be susceptible to changes in the testing environment. In recent years, there has also been increasing awareness that measurement of behaviors in isolation can be limiting, given that mice attempt to hide behavioral cues of vulnerability. To overcome these limitations, laboratory animal science is capitalizing on progress in data capture and processing expertise. Moreover, as additional recording modes become commonplace, ultrasonic vocalization recording is an appealing focus, as mice use vocalizations in various social contexts. Using video and audio technologies, we record the voluntary, unprovoked behaviors and vocalizations of mice in social groups. Adoption of these approaches is undoubtedly set to increase, as they capture the round-the-clock behavior of mouse strains. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Continuous recording of home cage activity using the Home Cage Analyzer (HCA) system Support Protocol: Subcutaneous insertion of a radio frequency identification microchip in the inguinal area Basic Protocol 2: Continuous recording of mouse ultrasonic vocalizations in the home cage.
Collapse
Affiliation(s)
- Liane Hobson
- Medical Research Council Harwell Institute, Harwell, Oxfordshire, United Kingdom
| | - Rasneer S Bains
- Medical Research Council Harwell Institute, Harwell, Oxfordshire, United Kingdom
| | - Simon Greenaway
- Medical Research Council Harwell Institute, Harwell, Oxfordshire, United Kingdom
| | - Sara Wells
- Medical Research Council Harwell Institute, Harwell, Oxfordshire, United Kingdom
| | - Patrick M Nolan
- Medical Research Council Harwell Institute, Harwell, Oxfordshire, United Kingdom
| |
Collapse
|
11
|
Klocke C, Lein PJ. Evidence Implicating Non-Dioxin-Like Congeners as the Key Mediators of Polychlorinated Biphenyl (PCB) Developmental Neurotoxicity. Int J Mol Sci 2020; 21:E1013. [PMID: 32033061 PMCID: PMC7037228 DOI: 10.3390/ijms21031013] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Despite being banned from production for decades, polychlorinated biphenyls (PCBs) continue to pose a significant risk to human health. This is due to not only the continued release of legacy PCBs from PCB-containing equipment and materials manufactured prior to the ban on PCB production, but also the inadvertent production of PCBs as byproducts of contemporary pigment and dye production. Evidence from human and animal studies clearly identifies developmental neurotoxicity as a primary endpoint of concern associated with PCB exposures. However, the relative role(s) of specific PCB congeners in mediating the adverse effects of PCBs on the developing nervous system, and the mechanism(s) by which PCBs disrupt typical neurodevelopment remain outstanding questions. New questions are also emerging regarding the potential developmental neurotoxicity of lower chlorinated PCBs that were not present in the legacy commercial PCB mixtures, but constitute a significant proportion of contemporary human PCB exposures. Here, we review behavioral and mechanistic data obtained from experimental models as well as recent epidemiological studies that suggest the non-dioxin-like (NDL) PCBs are primarily responsible for the developmental neurotoxicity associated with PCBs. We also discuss emerging data demonstrating the potential for non-legacy, lower chlorinated PCBs to cause adverse neurodevelopmental outcomes. Molecular targets, the relevance of PCB interactions with these targets to neurodevelopmental disorders, and critical data gaps are addressed as well.
Collapse
Affiliation(s)
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA;
| |
Collapse
|
12
|
Pessah IN, Lein PJ, Seegal RF, Sagiv SK. Neurotoxicity of polychlorinated biphenyls and related organohalogens. Acta Neuropathol 2019; 138:363-387. [PMID: 30976975 PMCID: PMC6708608 DOI: 10.1007/s00401-019-01978-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 01/28/2023]
Abstract
Halogenated organic compounds are pervasive in natural and built environments. Despite restrictions on the production of many of these compounds in most parts of the world through the Stockholm Convention on Persistent Organic Pollutants (POPs), many "legacy" compounds, including polychlorinated biphenyls (PCBs), are routinely detected in human tissues where they continue to pose significant health risks to highly exposed and susceptible populations. A major concern is developmental neurotoxicity, although impacts on neurodegenerative outcomes have also been noted. Here, we review human studies of prenatal and adult exposures to PCBs and describe the state of knowledge regarding outcomes across domains related to cognition (e.g., IQ, language, memory, learning), attention, behavioral regulation and executive function, and social behavior, including traits related to attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). We also review current understanding of molecular mechanisms underpinning these associations, with a focus on dopaminergic neurotransmission, thyroid hormone disruption, calcium dyshomeostasis, and oxidative stress. Finally, we briefly consider contemporary sources of organohalogens that may pose human health risks via mechanisms of neurotoxicity common to those ascribed to PCBs.
Collapse
Affiliation(s)
- Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA
| | - Richard F Seegal
- Professor Emeritus, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - Sharon K Sagiv
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
13
|
Sarma SN, Nagano R, Ohsako S. Tyroxine Hydroxylase-Positive Neuronal Cell Population is Increased by Temporal Dioxin Exposure at Early Stage of Differentiation from Human Embryonic Stem Cells. Int J Mol Sci 2019; 20:ijms20112687. [PMID: 31159217 PMCID: PMC6600215 DOI: 10.3390/ijms20112687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
Background: The neurological effects of short-term dioxin exposure during the fetal period is an important health risk in humans. Here, we investigated the effects of dioxin on neural differentiation using human embryonic stem cells (hESCs) to evaluate human susceptibility to dioxin. Methods: Using an enzymatic bulk passage, neural differentiation from human ESCs was carried out. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) was added to various stages of culture. The expression levels of the neuronal markers microtubule-associated protein 2 (MAP2) and thyroxine hydroxylase (TH) were measured by RT-qPCR and image analysis of immunostaining. Results: Although early-stage neuronal cells are quite resistant to TCDD, the numbers of neural rosettes and increases in mRNA expression levels and the number of cells positive for MAP2 and TH were significant by temporal exposure at embryoid body stage (Day9-exposure group). In contrast, the TCDD exposures against ESCs (Day0-exposure group) and differentiated neural cells (Day35-exposure group) were not affected at all. The increment was similarly observed by continuous exposure of TCDD from Day9 through Day60. Conclusions: These results indicated that dioxin exposure during the early stage of differentiation from hESCs increases the contents of neuronal cells, especially TH-positive neuronal cells. Regulations of aryl hydrocarbon receptor (AHR) signaling in an early stage of embryogenesis should be investigated extensively to understand the mechanism underlying the increase in neuronal cell populations and to apply the knowledge to regenerative medicine.
Collapse
Affiliation(s)
- Sailendra Nath Sarma
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Reiko Nagano
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Seiichiroh Ohsako
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|