1
|
Wu P, Chen D, Wang F, Lu K, Sigurdsson EM, Jin C. Formaldehyde induces and promotes Alzheimer's disease pathologies in a 3D human neural cell culture system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640690. [PMID: 40093146 PMCID: PMC11908216 DOI: 10.1101/2025.02.27.640690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Alzheimer's disease (AD) arises from complex multilevel interactions between genetic, epigenetic, and environmental factors. Recent studies suggest that exposure to the environmental and occupational toxicant formaldehyde (FA) may play a significant role in AD development. However, the effects of FA exposure on Aβ and tau pathologies in human neural cell 3D culture systems remain unexplored. To investigate FA's role in AD initiation, we differentiated 3D-cultured immortalized human neural progenitor ReN cells (ReNcell VM) into neurons and glial cells, followed by FA treatment. FA exposure for 12 weeks resulted in a dose-dependent increase in Aβ40, Aβ42, and phosphorylated tau levels. To further examine FA's role in AD progression, we established a 3D human neural cell culture AD model by transfecting ReN cells with AD-related mutant genes, including mutant APP and PSEN1, which recapitulate key AD pathological events. Our findings demonstrate that FA exposure significantly elevated Aβ40, Aβ42, and phosphorylated tau levels in this 3D-cultured AD model. These results suggest that FA exposure contributes to the initiation and progression of AD pathology in 3D-cultured human neural cells.
Collapse
|
2
|
Wolkoff P. Formaldehyde and asthma: a plausibility? Arch Toxicol 2025; 99:865-885. [PMID: 39828805 DOI: 10.1007/s00204-024-03946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Formaldehyde (FA) is a ubiquitous indoor air pollutant emitted from construction, consumer, and combustion-related products, and ozone-initiated reactions with reactive organic volatiles. The derivation of an indoor air quality guideline for FA by World Health Organization in 2010 did not find convincing evidence for bronchoconstriction-related reactions as detrimental lung function. Causal relationship between FA and asthma has since been advocated in meta-analyses of selected observational studies. In this review, findings from controlled human and animal exposure studies of the airways, data of FA retention in the respiratory tract, and observational studies of reported asthma applied in meta-analyses are analyzed together for coherence of direct association between FA and asthma. New information from both human and animal exposure studies are evaluated together with existing literature and assessed across findings from observational studies and associated meta-analyses thereof. Retention of FA in the upper airways is > 90% in agreement with mice exposure studies that only extreme FA concentrations can surpass trachea, travel to the lower airways, and cause mild bronchoconstriction. However, taken together, detrimental lung function effects in controlled human exposure studies have not been observed, even at FA concentrations up 4 ppm (5 mg/m3), and in agreement with controlled mice exposure studies. Typical indoor FA concentrations in public buildings and homes are far below a threshold for sensory irritation in the upper airways, based on controlled human exposure studies, to induce sensory-irritative sensitization nor inflammatory epithelial damage in the airways. Analysis of the observational heterogeneous studies applied in the meta-analyses suffers from several concomitant multifactorial co-exposures, which invalidates a direct association with asthma, thus the outcome of meta-analyses. The evidence of a direct causal relationship between FA and asthma is insufficient from an experimental viewpoint that includes retention data in the upper airways and controlled animal and human exposure studies. Taken together, a coherence of controlled experimental findings with individual observational studies and associated meta-analyses, which suffer from caveats, is absent. Further, lack of identified evidence of FA-IgE sensitization in both experimental studies and observational studies agrees with indoor FA concentrations far below threshold for sensory irritation. The assessment of experimental data with uncontrolled observational studies in meta-analyses is incompatible with a direct causal relationship between FA and asthma or exacerbation thereof due to lack of coherence and plausibility.
Collapse
Affiliation(s)
- Peder Wolkoff
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| |
Collapse
|
3
|
Zhang X, Leng J, Lv L, Song D, Lv X. Advances in the mechanistic understanding, biological consequences, and measurement of DNA adducts induced by tobacco smoke and e-cigarette aerosol: A review. Int J Biol Macromol 2025; 306:141574. [PMID: 40023427 DOI: 10.1016/j.ijbiomac.2025.141574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Components in tobacco smoke and electronic cigarette (e-cigarette) aerosol form adducts with DNA, which can cause DNA mutations and affect repair of DNA damage. Numerous studies have shown a strong association between inhaled smoke and lung cancer. The presence of DNA adducts can indicate chemical components of smoke. Therefore, DNA adducts are significant biomarkers of tobacco exposure that might predict lung disease status and serve as precursors to lung cancer, since they trigger DNA mutations and impair biological processes such as DNA replication and transcription. To date, no systematic review has compared tobacco smoke and e-cigarette aerosol in terms of the fate of DNA adducts. We reviewed recent studies comparing the formation of DNA adducts on exposure to components from conventional cigarette smoke versus e-cigarette aerosol. The aims of the review were threefold: (1) to summarize components of tobacco smoke and e-cigarette aerosol in relation to mechanisms for the formation of DNA adducts; (2) to highlight the biological consequences of exposure to tobacco smoke and e-cigarette aerosol; and (3) to summarize advances in understanding of the primary detection methods of DNA adducts in tobacco exposure studies. The findings of this review should benefit environmental toxicology studies of tobacco exposure.
Collapse
Affiliation(s)
- Xinyun Zhang
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jiapeng Leng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Ling Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Danjun Song
- First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Xiaodong Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
4
|
Sun X, Yang C, Zhang W, Zheng J, Ou J, Ou S. Toxicity of formaldehyde, and its role in the formation of harmful and aromatic compounds during food processing. Food Chem X 2025; 25:102225. [PMID: 39968039 PMCID: PMC11833356 DOI: 10.1016/j.fochx.2025.102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
Formaldehyde is a highly reactive compound known to pose several health risks, including carcinogenic, neurotoxic, reproductive, allergic, immunological, genetic, and respiratory toxicity. While its free concentration in processed foods is typically low even it can be formed through various biochemical and chemical pathways in foods. This study aims to investigate the fate of formaldehyde in food processing from two key perspectives: (1) its role in the formation of other harmful compounds, such as heterocyclic aromatic amines, methylimidazole, advanced glycation end-products, and N-nitrosamines, and (2) its potential to contribute to the generation of aromatic compounds, including oxygen-, sulfur-, and nitrogen-containing heterocyclic aromas. This review provides insights that may help food scientists develop strategies to mitigate formaldehyde's harmful effects while potentially harnessing its role in producing beneficial aromatic compounds.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Engineering Technology Research Center for Health and Nutritional Baked Foods, Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Chunmin Yang
- Engineering Technology Research Center for Health and Nutritional Baked Foods, Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Weiyue Zhang
- Engineering Technology Research Center for Health and Nutritional Baked Foods, Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Jie Zheng
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Jinan University, Guangzhou 510632, China
| | - Juanying Ou
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Jinan University, Guangzhou 510632, China
| | - Shiyi Ou
- Engineering Technology Research Center for Health and Nutritional Baked Foods, Guangzhou College of Technology and Business, Guangzhou 510850, China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Thapa MJ, Chan K. The mutagenic properties of formaldehyde and acetaldehyde: Reflections on half a century of progress. Mutat Res 2024; 830:111886. [PMID: 39549522 DOI: 10.1016/j.mrfmmm.2024.111886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Formaldehyde and acetaldehyde are reactive, small compounds that humans are exposed to routinely, variously from endogenous and exogenous sources. Both small aldehydes are classified as human carcinogens. Investigation of the DNA damaging properties of these two compounds began some 50 years ago. In this review, we summarize progress in this field since its inception over half a century ago, distilling insights gained by the collective efforts of many research groups while highlighting areas for future directions. Over the decades, general consensus about aspects of the mutagenicity of formaldehyde and acetaldehyde has been reached. But other characteristics of formaldehyde and acetaldehyde remain incompletely understood and require additional investigation. These include crucial details about the mutational signature(s) induced and possible mechanistic role(s) during carcinogenesis.
Collapse
Affiliation(s)
- Mahanish Jung Thapa
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa Faculty of Medicine, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Kin Chan
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa Faculty of Medicine, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
6
|
Tian Z, Huang K, Yang W, Chen Y, Lyv W, Zhu B, Yang X, Ma P, Tong Z. Exogenous and endogenous formaldehyde-induced DNA damage in the aging brain: mechanisms and implications for brain diseases. Cell Biol Toxicol 2024; 40:83. [PMID: 39367211 PMCID: PMC11452425 DOI: 10.1007/s10565-024-09926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
Abstract
Exogenous gaseous formaldehyde (FA) is recognized as a significant indoor air pollutant due to its chemical reactivity and documented mutagenic and carcinogenic properties, particularly in its capacity to damage DNA and impact human health. Despite increasing attention on the adverse effects of exogenous FA on human health, the potential detrimental effects of endogenous FA in the brain have been largely neglected in current research. Endogenous FA have been observed to accumulate in the aging brain due to dysregulation in the expression and activity of enzymes involved in FA metabolism. Surprisingly, excessive FA have been implicated in the development of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and brain cancers. Notably, FA has the ability to not only initiate DNA double strand breaks but also induce the formation of crosslinks of DNA-DNA, DNA-RNA, and DNA-protein, which further exacerbate the progression of these brain diseases. However, recent research has identified that FA-resistant gene exonuclease-1 (EXO1) and FA scavengers can potentially mitigate FA toxicity, offering a promising strategy for mitigating or repairing FA-induced DNA damage. The present review offers novel insights into the impact of FA metabolism on brain ageing and the contribution of FA-damaged DNA to the progression of neurological disorders.
Collapse
Affiliation(s)
- Zixi Tian
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Kai Huang
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wanting Yang
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ying Chen
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wanjia Lyv
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Beilei Zhu
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xu Yang
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ping Ma
- Beijing Geriatric Hospital, Beijing, 100049, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Zhiqian Tong
- Beijing Geriatric Hospital, Beijing, 100049, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Mondal I, Groves M, Driver EM, Vittori W, Halden RU. Carcinogenic formaldehyde in U.S. residential buildings: Mass inventories, human health impacts, and associated healthcare costs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173640. [PMID: 38825200 DOI: 10.1016/j.scitotenv.2024.173640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Formaldehyde, a human carcinogen, is formulated into building materials in the U.S. and worldwide. We used literature information and mass balances to obtain order-of-magnitude estimates of formaldehyde inventories in U.S. residential buildings as well as associated exposures, excess morbidity, and healthcare costs along with other economic ramifications. Use of formaldehyde in building materials dates to the 1940s and continues today unabated, despite its international classification in 2004 as a human carcinogen. Global production of formaldehyde was about 32 million metric tons (MMT) in 2006. In the U.S., 5.7 ± 0.05 to 7.4 ± 0.125 MMT of formaldehyde were produced annually from 2006 to 2022, with 65 ± 5 % of this mass (3.7 ± 0.03 to 4.8 ± 0.08 MMT) entering building materials. For a typical U.S. residential building constructed in 2022, we determined an average total mass of formaldehyde containing chemicals of 48.2 ± 10.1 kg, equivalent to 207 ± 40 g of neat formaldehyde per housing unit. When extrapolated to the entire U.S. housing stock, this equates to 29,800 ± 5760 metric tons of neat formaldehyde. If the health threshold in indoor air of 0.1 mg/m3 is never surpassed in a residential building, safe venting of embedded formaldehyde would take years. Using reported indoor air exceedances, up to 645 ± 33 excess cancer cases may occur U.S. nationwide annually generating up to US$65 M in cancer treatment costs alone, not counting ~16,000 ± 1000 disability adjusted life-years. Other documents showed health effects of formaldehyde exist, but could not be quantified reliably, including sick building syndrome outcomes such as headache, asthma, and various respiratory illnesses. Opportunities to improve indoor air exposure assessments are discussed with special emphasis on monitoring of building wastewater. Safer alternatives to formaldehyde in building products exist and are recommended for future use.
Collapse
Affiliation(s)
- Indrayudh Mondal
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, United States of America; School of Sustainable Engineering and the Built Environment, 660 S College Ave, Tempe, AZ 85281, United States of America
| | - Megan Groves
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, United States of America
| | - Erin M Driver
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, United States of America
| | - Wendy Vittori
- Health Product Declaration Collaborative, 401 Edgewater Place, Suite 600, Wakefield, MA 01880, United States of America
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, United States of America.
| |
Collapse
|
8
|
Li X, Zeng H, Zhang L, Zhang J, Guo Y, Leng J. An integrated LC-MS/MS platform for noninvasive urinary nucleus acid adductomics: A pilot study for tobacco exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134780. [PMID: 38861899 DOI: 10.1016/j.jhazmat.2024.134780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
Tobacco smoke exposure significantly increases the level of global nucleoside damage. To evaluate all aspects of nucleic acid (NA) modifications, NA adductomics analyzes DNA, RNA and nucleobase adducts and provides comprehensive data. Liquid chromatography-tandem triple quadrupole mass spectrometry (LC-QQQ-MS/MS) and LC-Zeno-TOF-MS/MS were employed to screen for DNA, RNA and nucleobase adducts, as part of the analytical platform that was designed to combine high sensitivity and high resolution detection. We identified and distinguished urine nucleoside adducts via precursor ion and neutral loss scanning. A total of 245 potential adducts were detected, of which 28 were known adducts. The smoking group had significantly higher concentrations of nucleoside adducts in rat urine than the control group, based on MRM scanning, which was then used to perform relative quantitative analysis of these adducts. Urine nucleoside adducts were further confirmed using LC-Zeno-TOF-MS/MS. This highlights the potential of untargeted detection methods to provide comprehensive data on both known and unknown adducts. These approaches can be used to investigate the interactions among oxidative and alkylation stresses, and epigenetic modifications caused by exposure to tobacco smoke.
Collapse
Affiliation(s)
- Xiaoqing Li
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hui Zeng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Li Zhang
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Jing Zhang
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yinlong Guo
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China.
| | - Jiapeng Leng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
9
|
Benedict B, Kristensen SM, Duxin JP. What are the DNA lesions underlying formaldehyde toxicity? DNA Repair (Amst) 2024; 138:103667. [PMID: 38554505 DOI: 10.1016/j.dnarep.2024.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/01/2024]
Abstract
Formaldehyde is a highly reactive organic compound. Humans can be exposed to exogenous sources of formaldehyde, but formaldehyde is also produced endogenously as a byproduct of cellular metabolism. Because formaldehyde can react with DNA, it is considered a major endogenous source of DNA damage. However, the nature of the lesions underlying formaldehyde toxicity in cells remains vastly unknown. Here, we review the current knowledge of the different types of nucleic acid lesions that are induced by formaldehyde and describe the repair pathways known to counteract formaldehyde toxicity. Taking this knowledge together, we discuss and speculate on the predominant lesions generated by formaldehyde, which underly its natural toxicity.
Collapse
Affiliation(s)
- Bente Benedict
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Stella Munkholm Kristensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Julien P Duxin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark.
| |
Collapse
|
10
|
Cox LA, Thompson WJ, Mundt KA. Interventional probability of causation (IPoC) with epidemiological and partial mechanistic evidence: benzene vs. formaldehyde and acute myeloid leukemia (AML). Crit Rev Toxicol 2024; 54:252-289. [PMID: 38753561 DOI: 10.1080/10408444.2024.2337435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Causal epidemiology for regulatory risk analysis seeks to evaluate how removing or reducing exposures would change disease occurrence rates. We define interventional probability of causation (IPoC) as the change in probability of a disease (or other harm) occurring over a lifetime or other specified time interval that would be caused by a specified change in exposure, as predicted by a fully specified causal model. We define the closely related concept of causal assigned share (CAS) as the predicted fraction of disease risk that would be removed or prevented by a specified reduction in exposure, holding other variables fixed. Traditional approaches used to evaluate the preventable risk implications of epidemiological associations, including population attributable fraction (PAF) and the Bradford Hill considerations, cannot reveal whether removing a risk factor would reduce disease incidence. We argue that modern formal causal models coupled with causal artificial intelligence (CAI) and realistically partial and imperfect knowledge of underlying disease mechanisms, show great promise for determining and quantifying IPoC and CAS for exposures and diseases of practical interest. METHODS We briefly review key CAI concepts and terms and then apply them to define IPoC and CAS. We present steps to quantify IPoC using a fully specified causal Bayesian network (BN) model. Useful bounds for quantitative IPoC and CAS calculations are derived for a two-stage clonal expansion (TSCE) model for carcinogenesis and illustrated by applying them to benzene and formaldehyde based on available epidemiological and partial mechanistic evidence. RESULTS Causal BN models for benzene and risk of acute myeloid leukemia (AML) incorporating mechanistic, toxicological and epidemiological findings show that prolonged high-intensity exposure to benzene can increase risk of AML (IPoC of up to 7e-5, CAS of up to 54%). By contrast, no causal pathway leading from formaldehyde exposure to increased risk of AML was identified, consistent with much previous mechanistic, toxicological and epidemiological evidence; therefore, the IPoC and CAS for formaldehyde-induced AML are likely to be zero. CONCLUSION We conclude that the IPoC approach can differentiate between likely and unlikely causal factors and can provide useful upper bounds for IPoC and CAS for some exposures and diseases of practical importance. For causal factors, IPoC can help to estimate the quantitative impacts on health risks of reducing exposures, even in situations where mechanistic evidence is realistically incomplete and individual-level exposure-response parameters are uncertain. This illustrates the strength that can be gained for causal inference by using causal models to generate testable hypotheses and then obtaining toxicological data to test the hypotheses implied by the models-and, where necessary, refine the models. This virtuous cycle provides additional insight into causal determinations that may not be available from weight-of-evidence considerations alone.
Collapse
Affiliation(s)
- Louis A Cox
- Cox Associates and University of Colorado, Denver, CO, USA
| | | | - Kenneth A Mundt
- Independent Consultants in Epidemiology, Amherst, MA, USA
- Adjunct Professor of Epidemiology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
11
|
Hussain MS, Gupta G, Mishra R, Patel N, Gupta S, Alzarea SI, Kazmi I, Kumbhar P, Disouza J, Dureja H, Kukreti N, Singh SK, Dua K. Unlocking the secrets: Volatile Organic Compounds (VOCs) and their devastating effects on lung cancer. Pathol Res Pract 2024; 255:155157. [PMID: 38320440 DOI: 10.1016/j.prp.2024.155157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Lung cancer (LCs) is still a serious health problem globally, with many incidences attributed to environmental triggers such as Volatile Organic Compounds (VOCs). VOCs are a broad class of compounds that can be released via various sources, including industrial operations, automobile emissions, and indoor air pollution. VOC exposure has been linked to an elevated risk of lung cancer via multiple routes. These chemicals can be chemically converted into hazardous intermediate molecules, resulting in DNA damage and genetic alterations. VOCs can also cause oxidative stress, inflammation, and a breakdown in the cellular protective antioxidant framework, all of which contribute to the growth of lung cancer. Moreover, VOCs have been reported to alter critical biological reactions such as cell growth, apoptosis, and angiogenesis, leading to tumor development and metastasis. Epidemiological investigations have found a link between certain VOCs and a higher probability of LCs. Benzene, formaldehyde, and polycyclic aromatic hydrocarbons (PAHs) are some of the most well-researched VOCs, with comprehensive data confirming their cancer-causing potential. Nevertheless, the possible health concerns linked with many more VOCs and their combined use remain unknown, necessitating further research. Identifying the toxicological consequences of VOCs in LCs is critical for establishing focused preventative tactics and therapeutic strategies. Better legislation and monitoring mechanisms can limit VOC contamination in occupational and environmental contexts, possibly reducing the prevalence of LCs. Developing VOC exposure indicators and analyzing their associations with genetic susceptibility characteristics may also aid in early identification and targeted therapies.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Riya Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Neeraj Patel
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Khandwa Road, Village Umrikheda, Near Toll booth, Indore, Madhya Pradesh 452020, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, 72341, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| | - Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala Dist: Kolhapur, Maharashtra 416113, India
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala Dist: Kolhapur, Maharashtra 416113, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
12
|
Bai C, Zhang F, Yang Z, Zhang Y, Guo D, Zhang Q. Formaldehyde induced the cardiac damage by regulating the NO/cGMP signaling pathway and L-Ca 2+ channels. Toxicol Res (Camb) 2023; 12:1105-1112. [PMID: 38145098 PMCID: PMC10734627 DOI: 10.1093/toxres/tfad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 12/26/2023] Open
Abstract
Background Formaldehyde (FA) is a common environmental pollutant that has been found to cause negative cardiovascular effects, however, the toxicological mechanism is not well understood. In this study, we investigated the molecular effects of the Nitric Oxide (NO)/cyclic Guanosine Monophosphate (cGMP) signaling pathway and L-type calcium (L-Ca2+) channels in rat hearts. Methods We designed the short-term FA exposure on the rat heart in different concentrations (0, 0.5, 3, 18 mg/m3). After 7 days of exposure, the rats were sacrificed and the rat tissues were removed for various experiments. Results Our experimental data showed that FA resulted in the upregulation NO and cGMP, especially at 18 mg/m3. Further, when exposed to high concentrations of FA, Cav1.2 and Cav1.3 expression decreased. We conclude that the NO/cGMP signaling pathway and downstream related channels can be regulated by increasing the production of NO in the low concentration group of FA. High concentration FA directly regulates L-Ca22+ channels. Conclusion This study suggests that FA damages the function of the cardiovascular system by regulating the NO/cGMP signaling pathway and L-Ca2+ channels.
Collapse
Affiliation(s)
- Caixia Bai
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Fu Zhang
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Zhenhua Yang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
- Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan 030006, China
| | - Yuexia Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
- Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan 030006, China
| | - Donggang Guo
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
- Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan 030006, China
| | - Quanxi Zhang
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
- Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
13
|
Jokipii Krueger CC, Moran E, Tessier KM, Tretyakova NY. Isotope Labeling Mass Spectrometry to Quantify Endogenous and Exogenous DNA Adducts and Metabolites of 1,3-Butadiene In Vivo. Chem Res Toxicol 2023; 36:1409-1418. [PMID: 37477250 PMCID: PMC11009968 DOI: 10.1021/acs.chemrestox.3c00141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Human exposure to known carcinogen 1,3-butadiene (BD) is common due to its high concentrations in automobile exhaust, cigarette smoke, and forest fires, as well as its widespread use in the polymer industry. The adverse health effects of BD are mediated by epoxide metabolites such as 3,4-epoxy-1-butene (EB), which reacts with DNA to form 1-hydroxyl-3-buten-1-yl adducts on DNA nucleobases. EB-derived mercapturic acids (1- and 2-(N-acetyl-l-cysteine-S-yl)-1-hydroxybut-3-ene (MHBMA) and N-acetyl-S-(3,4-dihydroxybutyl)-l-cysteine (DHBMA)) and urinary N7-(1-hydroxyl-3-buten-1-yl) guanine DNA adducts (EB-GII) have been used as biomarkers of BD exposure and cancer risk in smokers and occupationally exposed workers. However, low but significant levels of MHBMA, DHBMA, and EB-GII have been reported in unexposed cultured cells, animals, and humans, suggesting that these metabolites and adducts may form endogenously and complicate risk assessment of butadiene exposure. In the present work, stable isotope labeling in combination with high-resolution mass spectrometry was employed to accurately quantify endogenous and exogenous butadiene metabolites and DNA adducts in vivo. Laboratory rats were exposed to 0.3, 0.5, or 3 ppm of BD-d6 by inhalation, and the amounts of endogenous (d0) and exogenous (d6) DNA adducts and metabolites were quantified in tissues and urine by isotope dilution capillary liquid chromatography/high resolution electrospray ionization tandem mass spectrometry (capLC-ESI-HRMS/MS). Our results reveal that EB-GII adducts and MHBMA originate exclusively from exogenous exposure to BD, while substantial amounts of DHBMA are formed endogenously. Urinary EB-GII concentrations were associated with genomic EB-GII levels in tissues of the same animals. Our findings confirm that EB-GII and MHBMA are specific biomarkers of exposure to BD, while endogenous DHBMA predominates at sub-ppm exposures to BD.
Collapse
Affiliation(s)
- Caitlin C. Jokipii Krueger
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Erik Moran
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Katelyn M. Tessier
- Masonic Cancer Center, Biostatistics Core, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Natalia Y. Tretyakova
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| |
Collapse
|
14
|
Conolly RB, Campbell JL, Clewell HJ, Schroeter J, Kimbell JS, Gentry PR. Relative contributions of endogenous and exogenous formaldehyde to formation of deoxyguanosine monoadducts and DNA-protein crosslink adducts of DNA in rat nasal mucosa. Toxicol Sci 2022; 191:15-24. [PMID: 36409013 PMCID: PMC9887723 DOI: 10.1093/toxsci/kfac119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Understanding the dose-response for formaldehyde-induced nasal cancer in rats is complicated by (1) the uneven distribution of inhaled formaldehyde across the interior surface of the nasal cavity and, (2) the presence of endogenous formaldehyde (endoF) in the nasal mucosa. In this work, we used computational fluid dynamics (CFD) modeling to predict flux of inhaled (exogenous) formaldehyde (exogF) from air into tissue at the specific locations where DNA adducts were measured. Experimental work has identified DNA-protein crosslink (DPX) adducts due to exogF and deoxyguanosine (DG) adducts due to both exogF and endoF. These adducts can be considered biomarkers of exposure for effects of endoF and exogF on DNA that may be part of the mechanism of tumor formation. We describe a computational model linking CFD-predicted flux of formaldehyde from air into tissue, and the intracellular production of endoF, with the formation of DPX and DG adducts. We assumed that, like exogF, endoF can produce DPX. The model accurately reproduces exogDPX, exogDG, and endoDG data after inhalation from 0.7 to 15 ppm. The dose-dependent concentrations of exogDPX and exogDG are predicted to exceed the concentrations of their endogenous counterparts at about 2 and 6 ppm exogF, respectively. At all concentrations examined, the concentrations of endoDPX and exogDPX were predicted to be at least 10-fold higher than that of their DG counterparts. The modeled dose-dependent concentrations of these adducts are suitable to be used together with data on the dose-dependence of cell proliferation to conduct quantitative modeling of formaldehyde-induced rat nasal carcinogenicity.
Collapse
Affiliation(s)
- Rory B Conolly
- To whom correspondence should be addressed at Ramboll US Consulting, Inc., 3107 Armand Street, Monroe, LA 71201, USA. E-mail:
| | | | | | - Jeffry Schroeter
- Applied Research Associates, Inc., Raleigh, North Carolina 27615, USA
| | | | | |
Collapse
|
15
|
Yuan C, Pu J, Fu D, Min Y, Wang L, Liu J. UV-vis spectroscopic detection of formaldehyde and its analogs: A convenient and sensitive methodology. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129457. [PMID: 35779400 DOI: 10.1016/j.jhazmat.2022.129457] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Formaldehyde is deemed to be an indispensable industrial product that has been widely applied in manufacture of resins, drugs, building materials, etc. It has been widely accepted that, nevertheless, residual formaldehyde will cause pathogen reactions, even leading to cancers like leukemia. Thus, a facile and efficient approach has been designed to achieve the determination of formaldehyde by ultraviolet and visible (UV-vis) spectrophotometry in liquid media. In detail, O-(carboxymethyl) hydroxylamine (C2H5NO3·0.5HCl) is chosen as the detection reagent for the specific recognition of formaldehyde on account of its unique aminooxy (-O-NH2) which can react with formaldehyde to form oxime bonds (O-NCH2), accompanied with the only by-product of H2O. Likewise, this simple and sensitive detection approach based on the chemical detection reagent C2H5NO3·0.5HCl can also be applied to the determination of other aldehyde homologs with carbonyl groups including acetaldehyde, acetone, benzaldehyde, 1, 4-phthalaldehyde. As a result, all the UV absorbances of analytes display remarkable linear detection relationships. The limits of detection (LOD) and limits of quantitation (LOQ) values are in the range of 0.03-1.16 ppm and 0.03-5.81 ppm respectively, with RSDs of 3.27-3.75 %, evidencing the feasibility of our method to determine formaldehyde and its homologs by UV-vis spectrophotometry and auspicious prospects of practical applications.
Collapse
Affiliation(s)
- Chenyao Yuan
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Jiayan Pu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Donglei Fu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Yuru Min
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Lei Wang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
16
|
Rietjens IMCM, Michael A, Bolt HM, Siméon B, Andrea H, Nils H, Christine K, Angela M, Gloria P, Daniel R, Natalie T, Gerhard E. The role of endogenous versus exogenous sources in the exposome of putative genotoxins and consequences for risk assessment. Arch Toxicol 2022; 96:1297-1352. [PMID: 35249149 PMCID: PMC9013691 DOI: 10.1007/s00204-022-03242-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
Abstract
The "totality" of the human exposure is conceived to encompass life-associated endogenous and exogenous aggregate exposures. Process-related contaminants (PRCs) are not only formed in foods by heat processing, but also occur endogenously in the organism as physiological components of energy metabolism, potentially also generated by the human microbiome. To arrive at a comprehensive risk assessment, it is necessary to understand the contribution of in vivo background occurrence as compared to the ingestion from exogenous sources. Hence, this review provides an overview of the knowledge on the contribution of endogenous exposure to the overall exposure to putative genotoxic food contaminants, namely ethanol, acetaldehyde, formaldehyde, acrylamide, acrolein, α,β-unsaturated alkenals, glycation compounds, N-nitroso compounds, ethylene oxide, furans, 2- and 3-MCPD, and glycidyl esters. The evidence discussed herein allows to conclude that endogenous formation of some contaminants appears to contribute substantially to the exposome. This is of critical importance for risk assessment in the cases where endogenous exposure is suspected to outweigh the exogenous one (e.g. formaldehyde and acrolein).
Collapse
Affiliation(s)
- Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Arand Michael
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Hermann M Bolt
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystr. 67, 44139, Dortmund, Germany
| | | | - Hartwig Andrea
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Hinrichsen Nils
- Food Oils and Fats Research, ADM Hamburg AG, Research, Seehafenstraße 24, 21079, Hamburg, Germany
| | - Kalisch Christine
- Department of Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Wurzburg, Germany
| | - Mally Angela
- Department of Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Wurzburg, Germany
| | - Pellegrino Gloria
- Scientific Affairs and Research, Luigi Lavazza SpA, Strada Settimo, 410, 10156, Turin, Italy
| | - Ribera Daniel
- Regulatory and Scientific Affairs EMEA, Cargill R&D, Havenstraat 84, 1800, Vivoorde, Belgium
| | - Thatcher Natalie
- Food Safety, Mondelez International, Bournville Lane, Birmingham, B30 2LU, UK
| | - Eisenbrand Gerhard
- Department of Toxicology and Food Chemistry, University of Kaiserslautern, Kühler Grund 48/1, 69126, Heidelberg, Germany
| |
Collapse
|
17
|
Li K, Li Z, Wu J, Gong Y, Guo L, Xie J. In Vitro Evaluation of DNA Damage Effect Markers toward Five Nitrogen Mustards Based on Liquid Chromatography-Tandem Mass Spectrometry. Chem Res Toxicol 2021; 35:99-110. [PMID: 34969250 DOI: 10.1021/acs.chemrestox.1c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endogenous DNA lesions frequently occur due to internal effects such as oxidative stress, inflammation, endogenous alkylation, and epigenetic modifications. However, exposure to chemical toxicants from the environment, diet, or drugs can also induce significant endogenous DNA damage. The quantification of endogenous DNA damage effect markers might reflect the actual DNA damage level of chemical toxicants. Herein, we report a liquid chromatography-triple quadrupole tandem mass spectrometry (LC-QqQ MS/MS) method for simultaneous determination of eight representative endogenous DNA damage biomarkers, including five endogenous DNA damage effect markers (oxidative damage, 8-oxo-dG; lipid peroxidation, εdA and N2-Et-dG; inflammation, 5-Cl-dC; and endogenous alkylation, O6-Me-dG), and three epigenetic modifications (5-m-dC, 5-hm-dC, and N6-Me-dA). The method validation was performed, and the linear range was 0.05 pg to 2 ng (on-column), the limit of detection was 0.02 pg (on-column), and the precision, accuracy, matrix effect, and recovery were all between 85 and 115%. We then applied this method to evaluate endogenous DNA damage to human embryonic lung fibroblast cells exposed to five nitrogen mustards [NMs, i.e., HN1, HN2, HN3, chlorambucil (CB), and cyclophosphamide (CTX)], where curcumin exposure was used as a control due to its inability to induce the formation of endogenous DNA adducts. The amounts of eight DNA adducts in the low-, middle-, and high-concentration exposure groups of five NMs were almost all significantly different from those in the blank group (P < 0.05). We obtained a positive correlation between the contents of eight DNA damage biomarkers and the inhibition dose of five NMs, except for N2-Et-dG and 5-Cl-dC. Via further principal component analysis and partial least squares discriminant analysis, we clustered all NMs into three units with different cytotoxicity levels, that is, HN2 and HN1 (highly toxic), HN3 and CB (moderately toxic), and CTX (less toxic). Moreover, for the same concentration of HN1/2/3 exposure groups, as the cytotoxicity increased according to the order of HN3 < HN1 < HN2, the contents of 8-oxo-dG, 5-m-dC, 5-hm-dC, and N6-Me-dA increased, whereas the content of O6-Me-dG decreased. Therefore, the contents of these DNA damage effect markers were somewhat related to the cytotoxicity and concentration of NMs. We hope that this method will provide an alternative evaluation approach for the toxicological effects of NMs and the safety of the medication.
Collapse
Affiliation(s)
- Kexin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850 Beijing, China
| | - Zehua Li
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850 Beijing, China
| | - Jianfeng Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850 Beijing, China
| | - Ying Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850 Beijing, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850 Beijing, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850 Beijing, China
| |
Collapse
|
18
|
Lu K, Hsiao YC, Liu CW, Schoeny R, Gentry R, Starr TB. A Review of Stable Isotope Labeling and Mass Spectrometry Methods to Distinguish Exogenous from Endogenous DNA Adducts and Improve Dose-Response Assessments. Chem Res Toxicol 2021; 35:7-29. [PMID: 34910474 DOI: 10.1021/acs.chemrestox.1c00212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cancer remains the second most frequent cause of death in human populations worldwide, which has been reflected in the emphasis placed on management of risk from environmental chemicals considered to be potential human carcinogens. The formation of DNA adducts has been considered as one of the key events of cancer, and persistence and/or failure of repair of these adducts may lead to mutation, thus initiating cancer. Some chemical carcinogens can produce DNA adducts, and DNA adducts have been used as biomarkers of exposure. However, DNA adducts of various types are also produced endogenously in the course of normal metabolism. Since both endogenous physiological processes and exogenous exposure to xenobiotics can cause DNA adducts, the differentiation of the sources of DNA adducts can be highly informative for cancer risk assessment. This review summarizes a highly applicable methodology, termed stable isotope labeling and mass spectrometry (SILMS), that is superior to previous methods, as it not only provides absolute quantitation of DNA adducts but also differentiates the exogenous and endogenous origins of DNA adducts. SILMS uses stable isotope-labeled substances for exposure, followed by DNA adduct measurement with highly sensitive mass spectrometry. Herein, the utilities and advantage of SILMS have been demonstrated by the rich data sets generated over the last two decades in improving the risk assessment of chemicals with DNA adducts being induced by both endogenous and exogenous sources, such as formaldehyde, vinyl acetate, vinyl chloride, and ethylene oxide.
Collapse
Affiliation(s)
- Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rita Schoeny
- Rita Schoeny LLC, 726 Fifth Street NE, Washington, D.C. 20002, United States
| | - Robinan Gentry
- Ramboll US Consulting, Inc., Monroe, Louisiana 71201, United States
| | - Thomas B Starr
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,TBS Associates, 7500 Rainwater Road, Raleigh, North Carolina 27615, United States
| |
Collapse
|
19
|
Campbell JL, Gentry PR, Clewell Iii HJ, Andersen ME. A Kinetic Analysis of DNA-Deoxy Guanine Adducts in the Nasal Epithelium Produced by Inhaled Formaldehyde in Rats-Assessing Contributions to Adduct Production From Both Endogenous and Exogenous Sources of Formaldehyde. Toxicol Sci 2021; 177:325-333. [PMID: 32735340 PMCID: PMC7548285 DOI: 10.1093/toxsci/kfaa122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although formaldehyde is a normal constituent of tissues, lifetime inhalation exposures at 6 h/day, 5 days/week at concentrations ≥6 ppm caused a nonlinear increase in nasal tumors in rats with incidence reaching close to 50% at 15 ppm. Studies with heavy isotope labeled [13CD2]-formaldehyde permit quantification of both the mass-labeled exogenous and endogenous DNA-formaldehyde reaction products. An existing pharmacokinetic model developed initially to describe 14C-DNA-protein crosslinks (DPX) provided a template for describing the time course of mass-labeled adducts. Published datasets included both DPX and N2-HO13CD2-dG adducts measured after a single 6-h exposure to 0.7, 2, 6, 9, 10, or 15 ppm formaldehyde, after multi-day exposures to 2 ppm for 6 h/day, 7 days/week with interim sacrifices up to 28 days, and after 28-day exposures for 6 h/day, 7 days/week to 0.3, 0.03, or 0.001 ppm. The existing kinetic model overpredicted endogenous adducts in the nasal epithelium after 1-day [13CD2]-formaldehyde exposure, requiring adjustment of parameters for rates of tissue metabolism and background formaldehyde. After refining tissue formaldehyde parameters, we fit the model to both forms of adducts by varying key parameters and optimizing against all 3 studies. Fitting to all these studies required 2 nonlinear pathways—one for high-exposure saturation of clearance in the nasal epithelial tissues and another for extracellular clearance that restricts uptake into the epithelial tissue for inhaled concentrations below 0.7 ppm. This refined pharmacokinetic model for endogenous and exogenous formaldehyde acetal adducts can assist in updating biologically based dose-response models for formaldehyde carcinogenicity.
Collapse
Affiliation(s)
- Jerry L Campbell
- Department of Health and Safety, Ramboll US Corporation, Raleigh, North Carolina 27612
| | - P Robinan Gentry
- Department of Health and Safety, Ramboll US Corporation, Monroe, Louisiana 71201
| | - Harvey J Clewell Iii
- Department of Health and Safety, Ramboll US Corporation, Raleigh, North Carolina 27612
| | | |
Collapse
|
20
|
Zhao Y, Chan W. Quantitation of γ-Glutamylcysteine-Formaldehyde Conjugate in Formaldehyde- and Oxidative Stress-Exposed Cells by Liquid Chromatography-Tandem Mass Spectrometry. Chem Res Toxicol 2021; 34:1782-1789. [PMID: 34196185 DOI: 10.1021/acs.chemrestox.1c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Humans are constantly exposed to formaldehyde (FA) of both exogenous and endogenous sources, and FA exposure is associated with the development of many human diseases, including cancers. Marker molecules that can provide information on exposure history and amounts will assist disease risk assessment and early interventions. To develop marker signatures of FA exposure, we explored in this study the conjugation reaction of FA with γ-glutamylcysteine (GGC), one of the precursors to glutathione biosynthesis, under physiologically relevant conditions. The results showed that the reaction produced a stable metabolite of FA, (S)-1-((((R)-2-amino-2-carboxyethyl)thio)methyl)-5-oxopyrrolidine-2-carboxylic acid (COCA). Using liquid chromatography-tandem mass spectrometry coupled to a stable isotope-dilution method, we then quantitated for the first time the formation of this novel metabolite in FA- and Fe2+-EDTA-exposed human cells. The results revealed the exposure time- and concentration-dependent formation of COCA in FA- or Fe2+-EDTA-exposed cells, suggesting that COCA may serve as a biomarker of FA and oxidative stress exposure. Furthermore, the study sheds light on a previously unknown protective role of GGC against FA and oxidative stress.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
21
|
d'Ettorre G, Caroli A, Mazzotta M. Minimizing formaldehyde exposure in a hospital pathology laboratory. Work 2021; 69:209-213. [PMID: 34024804 DOI: 10.3233/wor-213470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The safety and health of healthcare workers employed in pathology laboratories and exposed to formaldehyde (FA) is a matter of concern worldwide, as several health effects have been observed in workers resulting from exposure to FA, both short and long-term. OBJECTIVE The study was aimed to describe the strategy implemented in a hospital pathology laboratory to minimize workers' exposure to FA through interventions to working environment and workforce. METHODS The NIOSH 2016 method for detecting gaseous FA was adopted to perform personal and area active sampling of FA. The samples were subsequently analyzed by High Performance Liquid Chromatography. The exposure to FA was measured before and after improvement interventions. RESULTS The pre-intervention step showed FA levels exceeding the threshold limit values (TLV) established by ACGIH, both the time-weighted average (TLV-TWA) and short term exposure limit (TLV-STEL); after the improvement interventions, the median concentrations of personal and area FA sampling were respectively of 0.025 ppm (Range = 0.023-0.027) and 0.023 ppm (Range = 0.022-0.028) and significantly lower than pre-intervention step (p < 0.05) and below the TLV-TWA and TLV-STEL established by ACGIH. CONCLUSIONS In our study the workers' involvement in the risk management of FA exposure together with engineering improvements revealed a strategic way to minimize the FA pollution in the studied laboratory. Healthcare companies should consider the need to ensure the workers' participation in the management of occupational hazards, including FA, to reach the goal of healthy workplaces.
Collapse
Affiliation(s)
- Gabriele d'Ettorre
- Local Health Authority of Brindisi, Health Unit of Occupational Prevention and Protection, Brindisi, Italy
| | - Anna Caroli
- Local Health Authority of Brindisi, Health Unit of Occupational Prevention and Protection, Brindisi, Italy
| | - Mauro Mazzotta
- University of Salento, Occupational Medicine, Lecce, Italy
| |
Collapse
|
22
|
Thompson CM, Gentry R, Fitch S, Lu K, Clewell HJ. An updated mode of action and human relevance framework evaluation for Formaldehyde-Related nasal tumors. Crit Rev Toxicol 2021; 50:919-952. [PMID: 33599198 DOI: 10.1080/10408444.2020.1854679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Formaldehyde is a reactive aldehyde naturally present in all plant and animal tissues and a critical component of the one-carbon metabolism pathway. It is also a high production volume chemical used in the manufacture of numerous products. Formaldehyde is also one of the most well-studied chemicals with respect to environmental fate, biology, and toxicology-including carcinogenic potential, and mode of action (MOA). In 2006, a published MOA for formaldehyde-induced nasal tumors in rats concluded that nasal tumors were most likely driven by cytotoxicity and regenerative cell proliferation, with possible contributions from direct genotoxicity. In the past 15 years, new research has better informed the MOA with the publication of in vivo genotoxicity assays, toxicogenomic analyses, and development of ultra-sensitive methods to measure endogenous and exogenous formaldehyde-induced DNA adducts. Herein, we review and update the MOA for nasal tumors, with particular emphasis on the numerous studies published since 2006. These new studies further underscore the involvement of cytotoxicity and regenerative cell proliferation, and further inform the genotoxic potential of inhaled formaldehyde. The data lend additional support for the use of mechanistic data for the derivation of toxicity criteria and/or scientifically supported approaches for low-dose extrapolation for the risk assessment of formaldehyde.
Collapse
Affiliation(s)
| | | | | | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC, USA
| | | |
Collapse
|
23
|
Detection of formaldehyde (HCHO) in solution based on the autocatalytic oxidation reaction of o-phenylenediamine (OPD) induced by silver ions (Ag+). JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02279-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Hasan I, Pervin M, Kobir MA, Sagor SH, Karim MR. Effect of formaldehyde and urea contaminated feed exposure into the liver of young and adult pigeons ( Columba livia). Vet World 2021; 14:769-776. [PMID: 33935426 PMCID: PMC8076463 DOI: 10.14202/vetworld.2021.769-776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/15/2021] [Indexed: 12/03/2022] Open
Abstract
Background and Aim: Nowadays, toxic chemical contaminants in food are a major food safety problem in Bangladesh. Among toxic food contaminants, formalin is used to preserve fruit, vegetables, and fish, where urea is used for the whitening of rice and puffed rice. The purpose of this study was to determine the biochemical and histopathological effects on the liver of young and adult pigeons after exposure to formalin and urea contaminated feed. Materials and Methods: A total of 15 young and 15 adult pigeons were divided into control group, formaldehyde exposed group (2.5 mL formalin/kg feed), and urea exposed (1 g/kg feed) group. Each group consisted of five pigeons. After the experimentation procedures, the blood samples were collected for biochemical study, and the liver tissue was collected for histomorphological study. The statistical analysis was performed using the Student’s t-test, and p<0.05 was considered as statistically significant. Results: The aspartate transaminase serum hepatic enzyme was significantly increased in both formalin and urea exposed young and adult pigeons than the control pigeons. In control pigeons, parenchymal hepatocytes and non-parenchymal cells are regularly arranged. However, histological observation of the liver of formalin and urea exposed young, and adult pigeons showed coagulation necrosis with infiltration of many inflammatory cells around the central and portal veins. The necrotic areas are more extensive with massive infiltration of inflammatory cells in the liver of formalin-treated pigeons than the urea treated pigeons. Conclusion: The present study results show that low concentrations of formalin and urea in feed induced liver lesions in pigeons in different extents and indicate that exposure to toxic chemicals may affect homeostasis of the liver and cause liver injury or act as a co-factor for liver disease.
Collapse
Affiliation(s)
- Imam Hasan
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Munmun Pervin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Md Alamgir Kobir
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Sakib Hossain Sagor
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Mohammad Rabiul Karim
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| |
Collapse
|
25
|
Gentry R, Thompson CM, Franzen A, Salley J, Albertini R, Lu K, Greene T. Using mechanistic information to support evidence integration and synthesis: a case study with inhaled formaldehyde and leukemia. Crit Rev Toxicol 2021; 50:885-918. [PMID: 33538218 DOI: 10.1080/10408444.2020.1854678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Formaldehyde is one of the most comprehensively studied chemicals, with over 30 years of research focused on understanding the development of cancer following inhalation. The causal conclusions regarding the potential for leukemia are largely based on the epidemiological literature, with little consideration of cancer bioassays, dosimetry studies, and mechanistic research, which challenge the biological plausibility of the disease. Recent reanalyzes of the epidemiological literature have also raised significant questions related to the purported associations between formaldehyde and leukemia. Because of this, considerable scientific debate and uncertainty remain on whether there is a causal association between formaldehyde inhalation exposure and leukemia. Further complexity in evaluating this association is related to the endogenous production of formaldehyde. Multiple modes of action (MOA) have been postulated for the development of leukemia following formaldehyde inhalation that includes unsupported hypotheses of direct or indirect toxicity to the target cell population. Herein, the available evidence relevant to evaluating the postulated MOAs for leukemia following formaldehyde inhalation exposure is organized in the IPCS MOA Framework. The integration of all the available evidence clearly highlights the limited amount of data that support any of the postulated MOAs and demonstrates a significant amount of research supporting the null hypothesis that there is no causal association between formaldehyde inhalation exposure and leukemia. These analyses result in a lack of confidence in any of the postulated MOAs, increasing confidence in the conclusion that there is a lack of biological plausibility for a causal association between formaldehyde inhalation exposure and leukemia.
Collapse
Affiliation(s)
| | | | | | | | - Richard Albertini
- Independent Consultant, Emeritus Professor, University of Vermont, Burlington, Vermont, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
26
|
Li M, Li H, Huang H, Li Y, Qin L, Xu X, Zheng Q, Wang D, Zhang M, Sun Y, Yang Q. Identification and structural elucidation of a new cetrorelix methylene dimer impurity in cetrorelix acetate by using LC-MS/MS. J Pharm Biomed Anal 2021; 197:113946. [PMID: 33611089 DOI: 10.1016/j.jpba.2021.113946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/16/2021] [Accepted: 01/30/2021] [Indexed: 01/02/2023]
Abstract
Cetrorelix, a potent third generation of luteinizing hormone releasing hormone (LHRH) antagonist, is a synthetic decapeptide used for treatment of infertility, prostatic hypertrophy and sexual hormone-dependent tumors. The approved drug of cetrorelix (Cetrotide, Asta Medica AG, Frankfurt, Germany.), was used for prevention of premature ovulation in patients undergoing a controlled ovarian stimulation (COS), followed by oocyte pick-up and assisted reproductive techniques, and has been shown safe and effective in controlled ovarian stimulation. Nevertheless, the study of aggregation products of cetrorelix was rarely reported. A simple liquid chromatography mass spectrometry (LC-MS/MS) method was developed for separation, identification and characterization of a new cetrorelix methylene dimer impurity in cetrorelix. The chromatographic separation was achieved on an XSelect Peptide CSH ™C18 column (150 × 4.6 mm, 3.5 μm particle size) using gradient elution with a mobile phase of ammonium formate buffer (pH 3.0, 20 mM), acetonitrile at a flow rate 1.0 mL min-1, and an ultraviolet detection wavelength of 226 nm. The new cetrorelix methylene dimer impurity was characterized by LC-MS/MS and it characteristic fragment ions were summarized. A simple, fast and accurate method was established for the determination of the molecular weight and structure of the new cetrorelix methylene dimer impurity. In this study, the results showed that the cetrorelix was highly unstable in formaldehyde conditions. In addition, it is proposed that the impact of formaldehyde in the environment on the quality of cetrorelix acetate for Injection should be evaluated during the production process.
Collapse
Affiliation(s)
- Mingliang Li
- Shandong Provincial Key Laboratory of New Microparticles Drug Delivery Technology for Injection, Jinan, 250100, PR China
| | - Huapeng Li
- Analysis and Testing Center of Qilu Pharmaceutical, Jinan, 250100, PR China
| | - Heqing Huang
- Shandong Provincial Key Laboratory of New Microparticles Drug Delivery Technology for Injection, Jinan, 250100, PR China
| | - Yanzhi Li
- Shandong Provincial Key Laboratory of New Microparticles Drug Delivery Technology for Injection, Jinan, 250100, PR China
| | - Li Qin
- Shandong Provincial Key Laboratory of New Microparticles Drug Delivery Technology for Injection, Jinan, 250100, PR China
| | - Xuan Xu
- Analysis and Testing Center of Qilu Pharmaceutical, Jinan, 250100, PR China
| | - Qiang Zheng
- Shandong Provincial Key Laboratory of New Microparticles Drug Delivery Technology for Injection, Jinan, 250100, PR China
| | - Donghai Wang
- Shandong Provincial Key Laboratory of New Microparticles Drug Delivery Technology for Injection, Jinan, 250100, PR China
| | - Minghui Zhang
- Shandong Provincial Key Laboratory of New Microparticles Drug Delivery Technology for Injection, Jinan, 250100, PR China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of New Microparticles Drug Delivery Technology for Injection, Jinan, 250100, PR China.
| | - Qingmin Yang
- Shandong Provincial Key Laboratory of New Microparticles Drug Delivery Technology for Injection, Jinan, 250100, PR China.
| |
Collapse
|
27
|
Zhao Y, Magaña LC, Cui H, Huang J, McHale CM, Yang X, Looney MR, Li R, Zhang L. Formaldehyde-induced hematopoietic stem and progenitor cell toxicity in mouse lung and nose. Arch Toxicol 2021; 95:693-701. [PMID: 33084937 PMCID: PMC7878325 DOI: 10.1007/s00204-020-02932-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022]
Abstract
Formaldehyde (FA), an economically important and ubiquitous chemical, has been classified as a human carcinogen and myeloid leukemogen. However, the underlying mechanisms of leukemogenesis remain unclear. Unlike many classical leukemogens that damage hematopoietic stem/progenitor cells (HSC/HPC) directly in the bone marrow, FA-as the smallest, most reactive aldehyde-is thought to be incapable of reaching the bone marrow through inhalation exposure. A recent breakthrough study discovered that mouse lung contains functional HSC/HPC that can produce blood cells and travel bi-directionally between the lung and bone marrow, while another early study reported the presence of HSC/HPC in rat nose. Based on these findings, we hypothesized that FA inhalation could induce toxicity in HSC/HPC present in mouse lung and/or nose rather than in the bone marrow. To test this hypothesis, we adapted a commercially available protocol for culturing burst-forming unit-erythroid (BFU-E) and colony-forming unit-granulocyte, macrophage (CFU-GM) colonies from bone marrow and spleen to also enable culture of these colonies from mouse lung and nose, a novel application of this assay. We reported that in vivo exposure to FA at 3 mg/m3 or ex vivo exposure up to 400 µM FA decreased the formation of both colony types from mouse lung and nose as well as from bone marrow and spleen. These findings, to the best of our knowledge, are the first empirically to show that FA exposure can damage mouse pulmonary and olfactory HSC/HPC and provide potential biological plausibility for the induction of leukemia at the sites of entry rather than the bone marrow.
Collapse
Affiliation(s)
- Yun Zhao
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Laura C Magaña
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Haiyan Cui
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Jiawei Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Cliona M McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Xu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Mark R Looney
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China.
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|
28
|
Liu CW, Hsiao YC, Hoffman G, Lu K. LC-MS/MS Analysis of the Formation and Loss of DNA Adducts in Rats Exposed to Vinyl Acetate Monomer through Inhalation. Chem Res Toxicol 2021; 34:793-803. [PMID: 33486946 DOI: 10.1021/acs.chemrestox.0c00404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Formation of DNA adducts is a key event during carcinogenesis. DNA adducts, if not repaired properly, can lead to mutations and cancer. DNA adducts have been frequently used as biomarkers to evaluate chemical exposure. Vinyl acetate monomer (VAM) is widely used in the manufacture of various industrial polymers. Previous studies have documented that VAM induced nasal tumors in rodents exposed to high exposure levels of VAM. VAM is metabolized by carboxylesterase to acetaldehyde (AA), which subsequently results in DNA adducts. However, AA is also an endogenous metabolite in living cells, which impedes accurate assessment of the contribution of VAM exposure under the substantial endogenous background. To address this challenge, we exposed rats to stable isotope labeled [13C2]-VAM at 50, 200, and 400 ppm through inhalation for 6 h, followed by DNA adduct analysis in nasal respiratory and olfactory epithelia with highly sensitive mass spectrometry. Our results show that exogenous N2-ethyl-dG adducts were present in all rats exposed to [13C2]-VAM, with over 2-fold higher DNA adducts in nasal respiratory epithelium than olfactory epithelium. Our data also show that N2-ethyl-dG is a more sensitive biomarker to assess VAM exposure than 1,N2-propano-dG adducts. Moreover, a very low amount of exogenous N2-ethyl-dG adducts were detected in peripheral blood mononuclear cell samples of exposed rats, suggesting that only an extremely small percentage of [13C2]-VAM or its metabolite may enter into systemic circulation to potentially damage tissues beyond nasal epithelium. Furthermore, exogenous N2-ethyl-dG DNA adducts undergo rapid repair or spontaneous loss in nasal epithelium of exposed rats. Taken together, the results presented herein provide novel quantitative data and lay the foundation for future studies to improve risk assessment of VAM.
Collapse
Affiliation(s)
- Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gary Hoffman
- Covance CRS, LLC, 100 Mettlers Road, Somerset, New Jersey 08873, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
29
|
Ge P, Zhang X, Yang YQ, Lv MQ, Zhou DX. Long-term exposure to formaldehyde induced down-regulation of SPO11 in rats. Inhal Toxicol 2020; 33:8-17. [PMID: 33322957 DOI: 10.1080/08958378.2020.1859652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective: Formaldehyde, a ubiquitous environmental contaminant, has long been suspected of causing male reproductive injury, but the underlying molecular mechanism remains largely unknown. SPO11 is a meiosis-related gene, whose absence can cause spermatogenesis arrest. Materials and methods: The present study aimed to explore the role of SPO11 in male reproductive injury induced by long-term formaldehyde exposure, so as to further understand the molecular mechanism of formaldehyde-induced male reproductive toxicity. Adult male Sprague-Dawley rats (n = 24, 245 ± 22 g) were randomly divided into four groups of six (n = 6) and were exposed to formaldehyde gas at doses of 0 (control), 0.5, 2.46 and 5 mg/m3, respectively, via inhalation for 8 consecutive weeks. Results and dissussion: The expression levels of SPO11 were detected in testicular tissues by real-time quantitative polymerase chain reaction, immunofluorescence, and Western blot. The results indicated that the expression of SPO11 was inhibited by formaldehyde exposure in a dose-dependent manner. Furthermore, the histopathological results showed that testicular seminiferous tubules were atrophied, spermatogenic cells were decreased and the lumina were oligozoospermic in the 2.46 and 5 mg/m3 formaldehyde exposure groups. Combined with the morphometric results, we found that the downregulated expression levels of SPO11 were consistent with the changes of testicular seminiferous tubule diameter and seminiferous epithelium height in testicular tissue, suggesting that SPO11 might be one of the main targets of formaldehyde reproductive toxicity. Conclusions: In conclusion, our findings indicated that SPO11 might be related to male reproductive injuries induced by long-term formaldehyde exposure.
Collapse
Affiliation(s)
- Pan Ge
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Research Center of Reproductive Medicine, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Xiang Zhang
- Department of Science and Education, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan-Qi Yang
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Research Center of Reproductive Medicine, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Mo-Qi Lv
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Research Center of Reproductive Medicine, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Dang-Xia Zhou
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Research Center of Reproductive Medicine, Medical School, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
30
|
Hsiao YC, Liu CW, Chi L, Yang Y, Lu K. Effects of Gut Microbiome on Carcinogenic DNA Damage. Chem Res Toxicol 2020; 33:2130-2138. [PMID: 32677427 DOI: 10.1021/acs.chemrestox.0c00142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The human intestine is host to a vast microbial community: the gut microbiome (GM). The GM has been considered as a key modulator of human health in the past decade. In particular, several studies have supported that altered GM is associated with cancer, such as colorectal cancer, adenocarcinoma, and pancreatic cancer. The formation of a DNA adduct is one of the key events in carcinogenesis, and whether GM can influence DNA adducts has yet to be examined. This study analyzed 10 DNA adducts (N2-Me-dG, N6-Me-dA, N2-Et-dG, OH-Me-dG, OH-Me-dA, N2-EtD-dG, O6-Me-dG, 1,N2-ε-dG, 8-oxo-dG, and 5-Cl-dC), attributed to various endogenous processes and physiological stressors, using highly sensitive LC-MS/MS in germ-free (GF) and conventionally raised (CONV-R) mice. Our results showed that significant differences in specific DNA adducts appeared in liver, colon, and small intestine samples between GF and CONV-R mice. The differences in adduct levels may indicate that GM can locally or systemically regulate endogenous processes including neutrophil bactericidal activity (represented by 5-Cl-dC), lipid peroxidation (1,N2-ε-dG), oxidative stress generation (8-oxo-dG), and endogenous aldehyde metabolism (OH-Me-dA). Further studies are warranted to elucidate how the GM influences endogenous process, DNA damage, and the risks of developing cancer.
Collapse
Affiliation(s)
- Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yifei Yang
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
31
|
Bernardini L, Barbosa E, Charão MF, Brucker N. Formaldehyde toxicity reports from in vitro and in vivo studies: a review and updated data. Drug Chem Toxicol 2020; 45:972-984. [PMID: 32686516 DOI: 10.1080/01480545.2020.1795190] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Formaldehyde (FA) is a xenobiotic air pollutant and its universal distribution causes a widespread exposure to humans. This review aimed to bring updated information concerning FA toxicity in humans and animals based on in vitro and in vivo studies from 2013 to 2019. Researches were carried out in Pubmed, Scopus, and Science Direct databases to determine the effects of FA exposure on inflammation, oxidative stress and genotoxicity in experimental studies with animals (rats and mice) and humans. Besides, in vitro studies assessing FA cytotoxicity focusing on cell viability and apoptosis in different cell line cultures were reviewed. Studies with humans gave evidence regarding significant deleterious effects on health associated to chronic FA occupational exposure. Evaluations carried out in experimental studies showed toxic effects on different organs as lung, upper respiratory tract, bone marrow and brain as well as in cells. In summary, this study demonstrates that knowing the mechanisms underlying FA toxicity is essential to understand the deleterious effects that this xenobiotic causes on biological systems.
Collapse
Affiliation(s)
- Letícia Bernardini
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Eduardo Barbosa
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, Brazil
| | - Mariele Feiffer Charão
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, Brazil
| | - Natália Brucker
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil.,Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
32
|
Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A, Martus HJ, Monien B, Rietjens IMCM, Schmitz-Spanke S, Schriever-Schwemmer G, Steinberg P, Eisenbrand G. Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol 2020; 94:1787-1877. [PMID: 32542409 PMCID: PMC7303094 DOI: 10.1007/s00204-020-02733-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as "omics" approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs.
Collapse
Affiliation(s)
- Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany.
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zurich, Switzerland
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, 55099, Mainz, Germany
| | - Sabine Guth
- Department of Toxicology, IfADo-Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Gunnar Jahnke
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Hans-Jörg Martus
- Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Bernhard Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054, Erlangen, Germany
| | - Gerlinde Schriever-Schwemmer
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Gerhard Eisenbrand
- Retired Senior Professor for Food Chemistry and Toxicology, Kühler Grund 48/1, 69126, Heidelberg, Germany.
| |
Collapse
|
33
|
Hernandez-Castillo C, Termini J, Shuck S. DNA Adducts as Biomarkers To Predict, Prevent, and Diagnose Disease-Application of Analytical Chemistry to Clinical Investigations. Chem Res Toxicol 2020; 33:286-307. [PMID: 31638384 DOI: 10.1021/acs.chemrestox.9b00295] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Characterization of the chemistry, structure, formation, and metabolism of DNA adducts has been one of the most significant contributions to the field of chemical toxicology. This work provides the foundation to develop analytical methods to measure DNA adducts, define their relationship to disease, and establish clinical tests. Monitoring exposure to environmental and endogenous toxicants can predict, diagnose, and track disease as well as guide therapeutic treatment. DNA adducts are one of the most promising biomarkers of toxicant exposure owing to their stability, appearance in numerous biological matrices, and characteristic analytical properties. In addition, DNA adducts can induce mutations to drive disease onset and progression and can serve as surrogate markers of chemical exposure. In this perspective, we highlight significant advances made within the past decade regarding DNA adduct quantitation using mass spectrometry. We hope to expose a broader audience to this field and encourage analytical chemistry laboratories to explore how specific adducts may be related to various pathologies. One of the limiting factors in developing clinical tests to measure DNA adducts is cohort size; ideally, the cohort would allow for model development and then testing of the model to the remaining cohort. The goals of this perspective article are to (1) provide a summary of analyte levels measured using state-of-the-art analytical methods, (2) foster collaboration, and (3) highlight areas in need of further investigation.
Collapse
Affiliation(s)
- Carlos Hernandez-Castillo
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| | - John Termini
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| | - Sarah Shuck
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| |
Collapse
|
34
|
Nakamura J, Nakamura M. DNA-protein crosslink formation by endogenous aldehydes and AP sites. DNA Repair (Amst) 2020; 88:102806. [PMID: 32070903 DOI: 10.1016/j.dnarep.2020.102806] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
Covalent binding between proteins and a DNA strand produces DNA-protein crosslinks (DPC). DPC are one of the most deleterious types of DNA damage, leading to the blockage of DNA replication and transcription. Both DNA lesions and endogenous products with carbonyl functional groups can produce DPC in genomic DNA under normal physiological conditions. For example, formaldehyde, the most abundant endogenous human carcinogen, and apurinic/apyrimidinic (AP) sites, the most common type of endogenous DNA lesions, has been shown to crosslink proteins and/or DNA through their carbonyl functional groups. Unfortunately, compared to other types of DNA damage, DPC have been less studied and understood. However, a recent advancement has allowed researchers to determine accurate yields of various DNA lesions including formaldehyde-derived DPC with high sensitivity and specificity, paving the way for new developments in this field of research. Here, we review the current literature and remaining unanswered questions on DPC formation by endogenous formaldehyde and various aldehydic 2-deoxyribose lesions.
Collapse
Affiliation(s)
- Jun Nakamura
- Laboratory of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumisano, Osaka, Japan.
| | - Mai Nakamura
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
35
|
Wolkoff P. Comments to "Assessment of formaldehyde levels in relation to respiratory and allergic symptoms in children from Alba County schools, Romania" by Neamtiu et al. (2019). ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:682. [PMID: 31659491 DOI: 10.1007/s10661-019-7897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Peder Wolkoff
- National Research Centre for the Working Environment, NRCWE, Lersø Parkallé 105, 2920, Copenhagen Ø, Denmark.
| |
Collapse
|
36
|
Gelbke HP, Buist H, Eisert R, Leibold E, Sherman JH. Derivation of safe exposure levels for potential migration of formaldehyde into food. Food Chem Toxicol 2019; 132:110598. [PMID: 31228601 DOI: 10.1016/j.fct.2019.110598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 01/16/2023]
Abstract
Polyoxymethylene (POM) is a polymer of formaldehyde used inter alia for kitchenware and food processing machines. By migration into food, consumers may be exposed to small additional amounts of formaldehyde in food. In order to address such potential exposures, Specific Migration Limits are derived using all studies with oral exposure in mammals and birds. The assessment is not only based on local irritation observed in a 2-year rat study that has previously served to calculate acceptable exposure levels, but also on systemic effects, namely on effects on the kidney in adult rats and testes in birds before sexual maturity. At the relatively high oral exposure levels (up to 2000 ppm in drinking water) long-term effects caused by formic acid, the first step metabolite of formaldehyde, such as acidosis, cannot be excluded. The lowest Specific Migration Limit of 2.74 mg/dm2, corresponding to 16.5 mg formaldehyde/kg food, is based upon kidney effects in rats, leading to potential exposures that range between 2900 and 4400 times below the endogenous turnover of formaldehyde. Lastly, a recent migration study with POM showed that migration of formaldehyde into food simulants is over an order of magnitude below the lowest Specific Migration Limit derived herein.
Collapse
Affiliation(s)
| | - Harrie Buist
- TNO Innovation for Life, PO Box 360, 3700, AJ Zeist, Netherlands
| | - Ralf Eisert
- BASF SE, Product Safety, D-67056, Ludwigshafen, Germany
| | - Edgar Leibold
- BASF SE, Product Safety, D-67056, Ludwigshafen, Germany
| | - James H Sherman
- Celanese Corporation, 222 W. Las Colinas Blvd, Irving, TX, USA
| |
Collapse
|