1
|
Li Y, Xu C, Zhou X, Li J, Xu S, Tu Y, Mu X, Huang J, Huang Q, Kang L, Wang H, Zhang M, Yuan Y, Wu C, Zhang J. DNA adductomics aided rapid screening of genotoxic impurities using nucleosides and 3D bioprinted human liver organoids. Talanta 2024; 273:125902. [PMID: 38508126 DOI: 10.1016/j.talanta.2024.125902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Current genotoxicity assessment methods are mainly employed to verify the genotoxic safety of drugs, but do not allow for rapid screening of specific genotoxic impurities (GTIs). In this study, a new approach for the recognition of GTIs has been proposed. It is to expose the complex samples to an in vitro nucleoside incubation model, and then draw complete DNA adduct profiles to infer the structures of potential genotoxic impurities (PGIs). Subsequently, the genotoxicity is confirmed in human by 3D bioprinted human liver organoids. To verify the feasibility of the approach, lansoprazole chloride compound (Lanchlor), a PGI during the synthesis of lansoprazole, was selected as the model drug. After confirming genotoxicity by Comet assay, it was exposed to different models to map and compare the DNA adduct profiles by LC-MS/MS. The results showed Lanchlor could generate diverse DNA adducts, revealing firstly its genotoxicity at molecular mechanism of action. Furthermore, the largest variety and content of DNA adducts were observed in the nucleoside incubation model, while the human liver organoids exhibited similar results with rats. The results showed that the combination of DNA adductomics and 3D bioprinted organoids were useful for the rapid screening of GTIs.
Collapse
Affiliation(s)
- Ying Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Chen Xu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Xueting Zhou
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Jinhong Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Shiting Xu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanbo Tu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Xue Mu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiajun Huang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Qing Huang
- Devision of Inspection Technology Research, Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, NSW, 2006, Australia
| | - Huaisong Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Mei Zhang
- Devision of Inspection Technology Research, Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China
| | - Yaozuo Yuan
- Devision of Inspection Technology Research, Jiangsu Institute for Food and Drug Control, Nanjing, 210019, China.
| | - Chunyong Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China.
| | - Junying Zhang
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
2
|
Wu J, Gao F, Meng R, Li H, Mao Z, Xiao Y, Pu Q, Du M, Zhang Z, Shao Q, Zheng R, Wang M. Single-cell and multi-omics analyses highlight cancer-associated fibroblasts-induced immune evasion and epithelial mesenchymal transition for smoking bladder cancer. Toxicology 2024; 504:153782. [PMID: 38493947 DOI: 10.1016/j.tox.2024.153782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Tobacco carcinogens are recognized as critical hazard factors for bladder tumorigenesis, affecting the prognosis of patients through aromatic amines components. However, the specific function of tobacco carcinogens and systematic assessment models in the prognosis of bladder cancer remains poorly elucidated. We retrieved bladder cancer specific tobacco carcinogens-related genes from Comparative Toxicogenomic Database, our Nanjing Bladder Cancer cohort and TCGA database. Gene×Gene interaction method was utilized to establish a prognostic signature. Integrative assessment of immunogenomics, tumor microenvironments and single-cell RNA-sequencing were performed to illustrate the internal relations of key events from different levels. Finally, we comprehensively identified 33 essential tobacco carcinogens-related genes to construct a novel prognostic signature, and found that high-risk patients were characterized by significantly worse overall survival (HR=2.25; Plog-rank < 0.01). Single-cell RNA-sequencing and multi-omics analysis demonstrated that cancer-associated fibroblasts mediated the crosstalk between epithelial-mesenchymal transition progression and immune evasion. Moreover, an adverse outcome pathway framework was established to facilitate our understanding to the tobacco carcinogens-triggered bladder tumorigenesis. Our study systematically provided immune microenvironmental alternations for smoking-induced adverse survival outcomes in bladder cancer. These findings facilitated the integrative multi-omics insights into risk assessment and toxic mechanisms of tobacco carcinogens.
Collapse
Affiliation(s)
- Jiajin Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fang Gao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Meng
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Huiqin Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhenguang Mao
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yanping Xiao
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qiuyi Pu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Shao
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Rui Zheng
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Meilin Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
3
|
Dai Z, Wu Y, Xiong Y, Wu J, Wang M, Sun X, Ding X, Yang L, Sun X, Ge G. CYP1A inhibitors: Recent progress, current challenges, and future perspectives. Med Res Rev 2024; 44:169-234. [PMID: 37337403 DOI: 10.1002/med.21982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/28/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Mammalian cytochrome P450 1A (CYP1A) are key phase I xenobiotic-metabolizing enzymes that play a distinctive role in metabolic activation or metabolic clearance of a variety of procarcinogens, drugs, and endogenous substances. Human CYP1A subfamily contains two members (hCYP1A1 and hCYP1A2), which are known to catalyze the oxidative activation of some environmental procarcinogens into carcinogenic species. Increasing evidence has demonstrated that CYP1A inhibitor therapies are promising strategies for cancer chemoprevention or overcoming CYP1A-associated drug toxicity and resistance. Herein, we reviewed recent advances in the discovery and characterization of hCYP1A inhibitors, from the discovery approaches to structural features and biomedical applications of hCYP1A inhibitors. The inhibition potentials, inhibition modes, and inhibition constants of all reported hCYP1A inhibitors are comprehensively summarized. Meanwhile, the structural features and structure-activity relationships of different classes of hCYP1A1 and hCYP1A2 inhibitors are analyzed and discussed in depth. Furthermore, the major challenges and future directions for this field are presented and highlighted. Collectively, the information and knowledge presented here will strongly facilitate the researchers to discover and develop more efficacious CYP1A inhibitors for specific purposes, such as chemo-preventive agents or as tool molecules in hCYP1A-related fundamental studies.
Collapse
Affiliation(s)
- Ziru Dai
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Wu
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Xiong
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Min Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, America
| | - Ling Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Farooqi AA, Venera R, Kapanova G, Tanbayeva G, Akhmetova G, Kudabayev Y, Turgambayeva A. TRAIL-mediated signaling in bladder cancer: realization of clinical efficacy of TRAIL-based therapeutics in medical oncology. Med Oncol 2023; 40:236. [PMID: 37432489 DOI: 10.1007/s12032-023-02078-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023]
Abstract
Bladder cancer is a therapeutically challenging disease and wealth of knowledge has enabled researchers to develop a clear understanding of mechanisms which underlie carcinogenesis and metastasis. Excitingly, research over decades has unveiled wide-ranging mechanisms which serve as central engine in progression of bladder cancer. Loss of apoptosis, drug resistance, and pro-survival signaling are some of the highly studied cellular mechanisms. Therefore, restoration of apoptosis in resistant cancers is a valuable and attractive strategy. Discovery of TRAIL-mediated signaling cascade is an intriguing facet of molecular oncology. In this review, we have provided an overview of the translational and foundational advancements in dissecting the genomic and proteomic cartography of TRAIL signaling exclusively in the context of bladder cancer. We have also summarized how different natural products sensitized drug-resistant bladder cancer cells to TRAIL-mediated apoptosis. Interestingly, different death receptors that activate agonistic antibodies have been tested in various phases of clinical trials against different cancers. Certain clues of scientific evidence have provided encouraging results about efficacy of these agonistic antibodies (lexatumumab and mapatumumab) against bladder cancer cell lines. Therefore, multipronged approaches consisting of natural products, chemotherapeutics, and agonistic antibodies will realistically and mechanistically provide proof-of-concept for the translational potential of these combinatorial strategies in well-designed clinical trials.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | | | - Gulnara Kapanova
- Al-Farabi Kazakh National University, Almaty, 71 al-Farabi Ave, 050040, Almaty, Kazakhstan
- Scientific Center of Anti-infectious Drugs, Kazakhstan, 75 a al-Faraby Ave, 050040, Almaty, Kazakhstan
| | - Gulnur Tanbayeva
- Al-Farabi Kazakh National University, Almaty, 71 al-Farabi Ave, 050040, Almaty, Kazakhstan
| | - Gulshara Akhmetova
- Scientific Center of Anti-infectious Drugs, Kazakhstan, 75 a al-Faraby Ave, 050040, Almaty, Kazakhstan
| | | | - Assiya Turgambayeva
- Department Public Health and Management, NJSC, Astana Medical University, Astana, Kazakhstan
| |
Collapse
|
5
|
Seyler T, Mazumder S, Ahamed R, Zhu W, Blount BC, Apelberg BJ, Wang L. Tobacco Smoke Is a Major Source of Aromatic Amine Exposure in U.S. Adults: 2013-2014 National Health and Nutrition Examination Survey (NHANES). Cancer Epidemiol Biomarkers Prev 2023; 32:OF1-OF9. [PMID: 37195136 PMCID: PMC10654254 DOI: 10.1158/1055-9965.epi-23-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/05/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Cigarette smoking increases the risk of cancer, cardiovascular diseases, and premature death. Aromatic amines (AA) are found in cigarette smoke and are well-established human bladder carcinogens. METHODS We measured and compared total urinary levels of 1-aminonaphthalene (1AMN), 2-aminonaphthalene (2AMN), and 4-aminobiphenyl (4ABP) in adults who smoked cigarettes exclusively and in adult nonusers of tobacco products from a nationally representative sample of non-institutionalized U.S. population in the 2013-2014 National Health and Nutrition Examination Survey. RESULTS Sample-weighted geometric mean concentrations of AAs in adults who smoked cigarettes exclusively compared with adult nonusers were 30 times higher for 1AMN and 4 to 6 times higher for 2AMN and 4ABP. We evaluated the association of tobacco-smoke exposure with urinary AAs using sample-weighted multiple linear regression models to control for age, sex, race/ethnicity, diet, and urinary creatinine. Secondhand smoke exposure status was categorized using serum cotinine (SCOT) among adult nonusers (SCOT ≤ 10 ng/mL). The exposure for adults who smoked cigarettes exclusively (SCOT > 10 ng/mL) was categorized on the basis of the average number of self-reported cigarettes smoked per day (CPD) in the five days prior to urine collection. The regression models show AAs concentration increased with increasing CPD (P < 0.001). Dietary-intake variables derived from the 24-hours recall questionnaire were not consistently significant predictors of urinary AAs. CONCLUSIONS This is the first characterized total urinary AA concentrations of the U.S. adult non-institutionalized population. Our analyses show that smoking status is a major contributor to AA exposures. IMPACT These data provide a crucial baseline for exposure to three AAs in U.S. non-institutionalized adults.
Collapse
Affiliation(s)
- Tiffany Seyler
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Shrila Mazumder
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Rayaj Ahamed
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Wanzhe Zhu
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Benjamin C Blount
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Benjamin J Apelberg
- Center of Tobacco Products, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Lanqing Wang
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
6
|
Cai MT, Zhou Y, Ding WL, Huang YH, Ren YS, Yang ZY, Zhang L, Sun F, Guo HB, Zhou LY, Gong ZH, Piao XH, Wang SM, Ge YW. Identification and localization of morphological feature-specific metabolites in Reynoutria multiflora roots. PHYTOCHEMISTRY 2023; 206:113527. [PMID: 36460140 DOI: 10.1016/j.phytochem.2022.113527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Reynoutria multiflora roots are a classical herbal medicine with unique nourishing therapeutic effects. Anomalous vascular bundle (AVB) forming "cloudy brocade patterns" is a typical morphological feature of R. multiflora roots and has been empirically linked to its quality classification. However, scientific evidence, especially for AVB-specific specialised metabolites, has not been comprehensively revealed thus far. Herein, desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) analysis was applied to carry out an in situ analysis of specialised metabolites distributed specifically at the AVB and cork of R. multiflora roots. To enlarge the scope of compounds by DESI detection, various solvent systems including acetone, acetonitrile, methanol, and water were used to assist in the discoveries of 40 specialised metabolites with determined localization. A series of bioactive constituents including stilbenes, flavonoids, anthraquinones, alkaloids, and naphthalenes were found specifically around the brocade patterns. Notably, phospholipids were detected from R. multiflora roots by in situ analysis for the first time and were found mainly in the phloem of AVB (PAB). This is the first study to use gradient solvent systems in DESI-MSI analysis to locate the specialised metabolites distribution. The discovery of feature-specific compounds will bridge the empirical identification to precision quality control of R. multiflora roots.
Collapse
Affiliation(s)
- Meng-Ting Cai
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yu Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wen-Luan Ding
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yu-Hong Huang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ying-Shan Ren
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhi-You Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Lei Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Fei Sun
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hai-Biao Guo
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou, 510515, China
| | - Liang-Yun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhi-Hong Gong
- Waters Technology (Shanghai) Co. Ltd., Shanghai, 200120, China
| | - Xiu-Hong Piao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Shu-Mei Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Bellamri M, Walmsley SJ, Brown C, Brandt K, Konorev D, Day A, Wu CF, Wu MT, Turesky RJ. DNA Damage and Oxidative Stress of Tobacco Smoke Condensate in Human Bladder Epithelial Cells. Chem Res Toxicol 2022; 35:1863-1880. [PMID: 35877975 PMCID: PMC9665352 DOI: 10.1021/acs.chemrestox.2c00153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Smoking is a major risk factor for bladder cancer (BC), with up to 50% of BC cases being attributed to smoking. There are 70 known carcinogens in tobacco smoke; however, the principal chemicals responsible for BC remain uncertain. The aromatic amines 4-aminobiphenyl (4-ABP) and 2-naphthylamine (2-NA) are implicated in BC pathogenesis of smokers on the basis of the elevated BC risk in factory workers exposed to these chemicals. However, 4-ABP and 2-NA only occur at several nanograms per cigarette and may be insufficient to induce BC. In contrast, other genotoxicants, including acrolein, occur at 1000-fold or higher levels in tobacco smoke. There is limited data on the toxicological effects of tobacco smoke in human bladder cells. We have assessed the cytotoxicity, oxidative stress, and DNA damage of tobacco smoke condensate (TSC) in human RT4 bladder cells. TSC was fractionated by liquid-liquid extraction into an acid-neutral fraction (NF), containing polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, phenols, and aldehydes, and a basic fraction (BF) containing aromatic amines, heterocyclic aromatic amines, and N-nitroso compounds. The TSC and NF induced a time- and concentration-dependent cytotoxicity associated with oxidative stress, lipid peroxide formation, glutathione (GSH) depletion, and apurinic/apyrimidinic (AP) site formation, while the BF showed weak effects. LC/MS-based metabolomic approaches showed that TSC and NF altered GSH biosynthesis pathways and induced more than 40 GSH conjugates. GSH conjugates of several hydroquinones were among the most abundant conjugates. RT4 cell treatment with synthetic hydroquinones and cresol mixtures at levels present in tobacco smoke accounted for most of the TSC-induced cytotoxicity and the AP sites formed. GSH conjugates of acrolein, methyl vinyl ketone, and crotonaldehyde levels also increased owing to TSC-induced oxidative stress. Thus, TSC is a potent toxicant and DNA-damaging agent, inducing deleterious effects in human bladder cells at concentrations of <1% of a cigarette in cell culture media.
Collapse
Affiliation(s)
- Madjda Bellamri
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| | - Scott J. Walmsley
- Masonic Cancer Center, University of Minnesota, MN 55455
- Division of Biostatistics, Institute of Health Informatics, University of Minnesota, MN 55455
| | - Christina Brown
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| | - Kyle Brandt
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| | - Dmitri Konorev
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| | - Abderrahman Day
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| | - Chia-Fang Wu
- Department of Environmental and Occupational Medicine, Kaohsiung Medical University, CS Building, 100 Shih-Chuan 1st Road, Kaohsiung, Taiwan
| | - Ming Tsang Wu
- Department of Environmental and Occupational Medicine, Kaohsiung Medical University, CS Building, 100 Shih-Chuan 1st Road, Kaohsiung, Taiwan
| | - Robert J. Turesky
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| |
Collapse
|
8
|
Wu A, Lu J, Zhong G, Lu L, Qu Y, Zhang C. Xanthotoxin (8-methoxypsoralen): A review of its chemistry, pharmacology, pharmacokinetics, and toxicity. Phytother Res 2022; 36:3805-3832. [PMID: 35913174 DOI: 10.1002/ptr.7577] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 11/11/2022]
Abstract
Xanthotoxin (XAT) is a natural furanocoumarins, a bioactive psoralen isolated from the fruit of the Rutaceae plant Pepper, which has received increasing attention in recent years due to its wide source and low cost. By collecting and compiling literature on XAT, the results show that XAT exhibits significant activity in the treatment of various diseases, including neuroprotection, skin repair, osteoprotection, organ protection, anticancer, antiinflammatory, antioxidative stress and antibacterial. In this paper, we review the pharmacological activity and potential molecular mechanisms of XAT for the treatment of related diseases. The data suggest that XAT can mechanistically induce ROS production and promote apoptosis through mitochondrial or endoplasmic reticulum pathways, regulate NF-κB, MAPK, JAK/STAT, Nrf2/HO-1, MAPK, AKT/mTOR, and ERK1/2 signaling pathways to exert pharmacological effects. In addition, the pharmacokinetics properties and toxicity of XAT are discussed in this paper, further elucidating the relationship between structure and efficacy. It is worth noting that data from clinical studies of XAT are still scarce, limiting the use of XAT in the clinic, and in the future, more in-depth studies are needed to determine the clinical efficacy of XAT.
Collapse
Affiliation(s)
- Anxin Wu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jing Lu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Guofeng Zhong
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ling Lu
- Chengdu University of Technology, Chengdu, PR China
| | - Yan Qu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Chen Zhang
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
9
|
Chen Y, Xi J, Chen ZN, Fu Y. Effect of Different Roasting Conditions and Coreopsis Extract on Heterocyclic Amine Formation in Roast Lamb Products. J Food Prot 2022; 85:1107-1113. [PMID: 35666603 DOI: 10.4315/jfp-21-152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/28/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Heterocyclic amines (HCAs), which are known carcinogens in thermally processed foods, were investigated in roast lamb patties under various time and temperature conditions. HCAs in lamb products roasted at some temperatures increased with roasting time. An exponential model with a time factor fit well for the production of HCAs. The mean pH and cooking loss at various temperatures were also determined. The mean pH decreased as the temperature increased. Coreopsis extract was added to lamb patties roasted at 230°C for 15 min per side. The amount of coreopsis extract added had a significant effect on HCA development. A weak positive relationship was observed between the antioxidant activity of the lamb patty with the coreopsis extract and the inhibitory effect of coreopsis extract on various HCAs, with a correlation coefficient of 0.14 to 0.44 (P > 0.05). Coreopsis extract containing flavonoids can be a beneficial additive for production of barbecue meat. HIGHLIGHTS
Collapse
Affiliation(s)
- Yang Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, People's Republic of China
| | - Jun Xi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, People's Republic of China
| | - Zhen Ni Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, People's Republic of China
| | - Yang Fu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, People's Republic of China
| |
Collapse
|
10
|
Ji H, Jin Z. Analysis of six aromatic amines in the mainstream smoke of tobacco products. Anal Bioanal Chem 2022; 414:4227-4234. [PMID: 35410388 PMCID: PMC9124649 DOI: 10.1007/s00216-022-04075-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/07/2022]
Abstract
Aromatic amines are a class of carcinogenic compounds in tobacco smoke that are listed on the FDA list of harmful and potentially harmful constituents (HPHCs). A method using solid-phase microextraction-coupled to gas chromatography-triple quadrupole mass spectrometry (SPME headspace GC-MS/MS) was developed and validated for the quantitative determination of six aromatic amines, including 1-aminonaphthalene (1-AN), 2-aminonaphthalene (2-AN), 3-aminobiphenyl (3-ABP), 4-aminobiphenyl (4-ABP), o-toluidine (o-TOL), and o-anisidine (o-ANI), in the mainstream smoke of cigarettes, cigars, and heated tobacco products. The method developed here combines high sensitivity with simple sample preparation and has demonstrated satisfactory linearity for all six aromatic amines with correlation coefficients greater than 0.9994. The limits of detection range and the limits of quantitation range were 12-96 pg/mL and 41-320 pg/mL, respectively. Their recoveries and coefficients of variation (CV%) were 90-112% and 2.1-6.6%, respectively. The new SPME headspace GC/MS/MS method has been successfully applied to measure the contents of the six aromatic amines in the mainstream smoke of cigarettes, cigars, and heated tobacco products.
Collapse
Affiliation(s)
- Huihua Ji
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| | - Zhenyu Jin
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| |
Collapse
|
11
|
Tang MS, Lee HW, Weng MW, Wang HT, Hu Y, Chen LC, Park SH, Chan HW, Xu J, Wu XR, Wang H, Yang R, Galdane K, Jackson K, Chu A, Halzack E. DNA damage, DNA repair and carcinogenicity: Tobacco smoke versus electronic cigarette aerosol. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108409. [PMID: 35690412 PMCID: PMC9208310 DOI: 10.1016/j.mrrev.2021.108409] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 01/03/2023]
Abstract
The allure of tobacco smoking is linked to the instant gratification provided by inhaled nicotine. Unfortunately, tobacco curing and burning generates many mutagens including more than 70 carcinogens. There are two types of mutagens and carcinogens in tobacco smoke (TS): direct DNA damaging carcinogens and procarcinogens, which require metabolic activation to become DNA damaging. Recent studies provide three new insights on TS-induced DNA damage. First, two major types of TS DNA damage are induced by direct carcinogen aldehydes, cyclic-1,N2-hydroxy-deoxyguanosine (γ-OH-PdG) and α-methyl-1, N2-γ-OH-PdG, rather than by the procarcinogens, polycyclic aromatic hydrocarbons and aromatic amines. Second, TS reduces DNA repair proteins and activity levels. TS aldehydes also prevent procarcinogen activation. Based on these findings, we propose that aldehydes are major sources of TS induce DNA damage and a driving force for carcinogenesis. E-cigarettes (E-cigs) are designed to deliver nicotine in an aerosol state, without burning tobacco. E-cigarette aerosols (ECAs) contain nicotine, propylene glycol and vegetable glycerin. ECAs induce O6-methyl-deoxyguanosines (O6-medG) and cyclic γ-hydroxy-1,N2--propano-dG (γ-OH-PdG) in mouse lung, heart and bladder tissues and causes a reduction of DNA repair proteins and activity in lungs. Nicotine and nicotine-derived nitrosamine ketone (NNK) induce the same types of DNA adducts and cause DNA repair inhibition in human cells. After long-term exposure, ECAs induce lung adenocarcinoma and bladder urothelial hyperplasia in mice. We propose that E-cig nicotine can be nitrosated in mouse and human cells becoming nitrosamines, thereby causing two carcinogenic effects, induction of DNA damage and inhibition of DNA repair, and that ECA is carcinogenic in mice. Thus, this article reviews the newest literature on DNA adducts and DNA repair inhibition induced by nicotine and ECAs in mice and cultured human cells, and provides insights into ECA carcinogenicity in mice.
Collapse
Affiliation(s)
- Moon-Shong Tang
- Department of Environmental Medicine, Pathology and Medicine, United States.
| | - Hyun-Wook Lee
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Mao-Wen Weng
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Hsiang-Tsui Wang
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Yu Hu
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Lung-Chi Chen
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Sung-Hyun Park
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Huei-Wei Chan
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Jiheng Xu
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Xue-Ru Wu
- Departmemt of Urology, New York University School of Medicine, New York, NY10016, United States
| | - He Wang
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson MedicalSchool, Rutgers University, Piscataway, NJ 08854, United States
| | - Rui Yang
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Karen Galdane
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Kathryn Jackson
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Annie Chu
- Department of Environmental Medicine, Pathology and Medicine, United States
| | - Elizabeth Halzack
- Department of Environmental Medicine, Pathology and Medicine, United States
| |
Collapse
|
12
|
Bellamri M, Brandt K, Brown CV, Wu MT, Turesky RJ. Cytotoxicity and genotoxicity of the carcinogen aristolochic acid I (AA-I) in human bladder RT4 cells. Arch Toxicol 2021; 95:2189-2199. [PMID: 33938965 PMCID: PMC8284306 DOI: 10.1007/s00204-021-03059-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/21/2021] [Indexed: 11/28/2022]
Abstract
Aristolochic acid (AA-I) induces upper urothelial tract cancer (UUTC) and bladder cancer (BC) in humans. AA-I forms the 7-(2'-deoxyadenosin-N6-yl)aristolactam I (dA-AL-I) adduct, which induces multiple A:T-to-T:A transversion mutations in TP53 of AA-I exposed UTUC patients. This mutation is rarely reported in TP53 of other transitional cell carcinomas and thus recognized as an AA-I mutational signature. A:T-to-T:A transversion mutations were recently detected in bladder tumors of patients in Asia with known AA-I-exposure, implying that AA-I contributes to BC. Mechanistic studies on AA-I genotoxicity have not been reported in human bladder. In this study, we examined AA-I DNA adduct formation and mechanisms of toxicity in the human RT4 bladder cell line. The biological potencies of AA-I were compared to 4-aminobiphenyl, a recognized human bladder carcinogen, and several structurally related carcinogenic heterocyclic aromatic amines (HAA), which are present in urine of smokers and omnivores. AA-I (0.05-10 µM) induced a concentration- and time-dependent cytotoxicity. AA-I (100 nM) DNA adduct formation occurred at over a thousand higher levels than the principal DNA adducts formed with 4-ABP or HAAs (1 µM). dA-AL-I adduct formation was detected down to a 1 nM concentration. Studies with selective chemical inhibitors provided evidence that NQO1 is the major enzyme involved in AA-I bio-activation in RT4 cells, whereas CYP1A1, another enzyme implicated in AA-I toxicity, had a lesser role in bio-activation or detoxification of AA-I. AA-I DNA damage also induced genotoxic stress leading to p53-dependent apoptosis. These biochemical data support the human mutation data and a role for AA-I in BC.
Collapse
Affiliation(s)
- Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA
| | - Kyle Brandt
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA
| | - Christina V Brown
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA
| | - Ming-Tsang Wu
- Department of Environmental and Occupational Medicine, Kaohsiung Medical University, CS Building, 100 Shih-Chuan 1st Road, Kaohsiung, Taiwan
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA.
| |
Collapse
|
13
|
Nilsson R, Liu NA. Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part II: Relation between ROS-induced DNA damages and human cancer. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
14
|
Baldauf KJ, Salazar-González RA, Doll MA, Pierce WM, States JC, Hein DW. Role of Human N-Acetyltransferase 2 Genetic Polymorphism on Aromatic Amine Carcinogen-Induced DNA Damage and Mutagenicity in a Chinese Hamster Ovary Cell Mutation Assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:235-245. [PMID: 31490564 PMCID: PMC7017392 DOI: 10.1002/em.22331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 05/10/2023]
Abstract
Carcinogenic aromatic amines such as 4-aminobiphenyl (ABP) and 2-aminofluorene (AF) require metabolic activation to form electrophilic intermediates that mutate DNA leading to carcinogenesis. Bioactivation of these carcinogens includes N-hydroxylation catalyzed by CYP1A2 followed by O-acetylation catalyzed by arylamine N-acetyltransferase 2 (NAT2). To better understand the role of NAT2 genetic polymorphism in ABP- and AF-induced mutagenesis and DNA damage, nucleotide excision repair-deficient (UV5) Chinese hamster ovary (CHO) cells were stably transfected with human CYP1A2 and either NAT2*4 (rapid acetylator) or NAT2*5B (slow acetylator) alleles. ABP and AF both caused significantly (P < 0.001) greater mutagenesis measured at the hypoxanthine phosphoribosyl transferase (hprt) locus in the UV5/CYP1A2/NAT2*4 acetylator cell line compared to the UV5, UV5/CYP1A2, and UV5/CYP1A2/NAT2*5B cell lines. ABP- and AF-induced hprt mutant cDNAs were sequenced and over 80% of the single-base substitutions were at G:C base pairs. DNA damage also was quantified by γH2AX in-cell western assays and by identification and quantification of the two predominant DNA adducts, N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP) and N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF) by liquid chromatography-mass spectrometry. DNA damage and adduct levels were dose-dependent, correlated highly with levels of hprt mutants, and were significantly (P < 0.0001) greater in the UV5/CYP1A2/NAT2*4 rapid acetylator cell line following treatment with ABP or AF as compared to all other cell lines. Our findings provide further clarity on the importance of O-acetylation in CHO mutagenesis assays for aromatic amines. They provide evidence that NAT2 genetic polymorphism modifies aromatic amine-induced DNA damage and mutagenesis that should be considered in human risk assessments following aromatic amine exposures. Environ. Mol. Mutagen. 61:235-245, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | | | | | - David W. Hein
- Correspondence to: David W. Hein, Kosair Charities CTR-Room 303, 505 South Hancock Street, Louisville, Kentucky 40202.
| |
Collapse
|