1
|
Llorens P, Juan-García A, Pardo O, Arjona-Mudarra P, Martí-Quijal FJ, Esteve-Turrillas FA, Barba FJ, Chiacchio MF, Vitaglione P, Moltó JC, Juan C. Bioavailability study of OTA, ZEN, and AFB1 along with bioactive compounds from tiger nut beverage and its by-products. Food Res Int 2025; 200:115458. [PMID: 39779105 DOI: 10.1016/j.foodres.2024.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Mycotoxins pose significant health risks due to their prevalence in food products and severe health implications, including carcinogenicity. This study investigates the bioavailability of mycotoxins aflatoxin B1 (AFB1), ochratoxin A (OTA), and zearalenone (ZEN) individually and combined, in the presence of identified polyphenols from tiger nut beverage (TNB) and tiger nut by-product (TNBP) using the in vitro model Caco-2 cells, which simulates the human intestinal barrier. The objective is to understand how bioactive compounds from TNBP can mitigate the effects of AFB1, OTA and ZEN (and their combination) by bioavailability interference, contributing to safer food products and innovative food safety strategies. In vitro gastrointestinal digestion was simulated using the INFOGEST protocol, followed by a bioavailability assessment through transepithelial transport assays in differentiated Caco-2 cells. OTA bioavailability significantly increased in the presence of TNB and TNBP, suggesting interactions that enhance its intestinal absorption. AFB1 maintained high bioavailability across all conditions (up to 83%), while ZEN showed a general decrease (up to 24%), thus indicating a potential protective effect of TNB and TNBP against ZEN toxicity. Regarding the effect of mycotoxins on the bioavailability of polyphenols from TNB and TNBP, a general enhancement was observed for TNB consistently showing higher bioavailability than for TNBP. Notably, OTA and ZEN significantly increased polyphenols bioavailability, reaching up to 79.2% in TNB. Individual polyphenol generally showed a notable reduction in trans-ferulic acid and an increase in trans-cinnamic acid in the presence of mycotoxins. For TNBP, individual mycotoxins generally enhanced polyphenol bioavailability, with AFB1 showing the most significant increase. In conclusion, tiger nut products show promise as sources of bioactive compounds for mitigating mycotoxin toxicity in food products. However, further studies are necessary to clarify these interactions and optimize the conditions of use for their safe and effective application in the food industry.
Collapse
Affiliation(s)
- P Llorens
- Laboratory of Food Chemistry and Toxicology, Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - A Juan-García
- Laboratory of Food Chemistry and Toxicology, Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain.
| | - O Pardo
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, Burjassot 46100, Spain
| | - P Arjona-Mudarra
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, Burjassot 46100, Spain
| | - F J Martí-Quijal
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain
| | - F A Esteve-Turrillas
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, Burjassot 46100, Spain
| | - F J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain
| | - M F Chiacchio
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - P Vitaglione
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain
| | - J C Moltó
- Laboratory of Food Chemistry and Toxicology, Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - C Juan
- Laboratory of Food Chemistry and Toxicology, Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| |
Collapse
|
2
|
Hu ZY, Yang SJ, Chang YH, Wang XQ, Liu RQ, Jiang FW, Chen MS, Wang JX, Liu S, Zhu HM, Shi YS, Zhao Y, Li JL. AHR activation relieves deoxynivalenol-induced disruption of porcine intestinal epithelial barrier functions. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136095. [PMID: 39395393 DOI: 10.1016/j.jhazmat.2024.136095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Mycotoxins are ubiquitous natural pollutants that pose a serious threat to public health. Deoxynivalenol (DON) as one of the most prominent mycotoxins has a noticeable adverse effect on intestinal barrier function, which depends on the intestinal barrier integrity. However, the potential mechanisms and effective therapeutic strategies remain unclear. Aryl hydrocarbon receptor (AHR) has been implicated in the modulation of intestinal barrier function and inflammation. The study aims to investigate the unique role of AHR in mediating DON-induced intestinal epithelial barrier function. In the current study, we revealed that DON triggered mitochondrial structural damage and functional impairment, leading to oxidative stress and apoptosis in porcine jejunal epithelial cells (IPEC-J2). DON altered the integrity of IPEC-J2 cells by disrupting the distribution and function of tight junction proteins. Additionally, DON activated TNF-α/NF-κB/MLCK signaling pathway, thereby eliciting inflammatory response. Notably, DON inhibited AHR nuclear translocation and attenuated xenobiotic response element promoter activity and its target genes. However, overexpression of AHR mitigated DON-induced disruption of intestinal epithelial barrier functions by suppressing TNF-α/NF-κB/MLCK pathway in IPEC-J2 cells. Our findings indicate that AHR regulates intestinal epithelial barrier function and therefore is a novel therapeutic molecule for intestinal disorders.
Collapse
Affiliation(s)
- Zi-Yan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shang-Jia Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuan-Hang Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Qi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Rui-Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shuo Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hong-Mei Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Sheng Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
3
|
Zhou C, Qin Z, Zhang H, Xiao H, Zhang H. Proinflammatory cytokines interleukin-18 and interleukin-6 mediate anorexia induction by trichothecene deoxynivalenol and its congeners. Front Vet Sci 2024; 11:1521424. [PMID: 39691381 PMCID: PMC11649634 DOI: 10.3389/fvets.2024.1521424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024] Open
Abstract
As the common foodborne mycotoxins with the highest pollution rate, deoxynivalenol (DON, also named "vomitoxin") can harm the health of humans and animals by causing anorectic response. It has four congeners: 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), nivalenol (NIV), and fusarenon X (FX). These five mycotoxins have been associated with the detrimental effect on food intake. However, its underlying mechanism of anorexia remains unclear. The goal of this research was to compare the anorectic responses to these five mycotoxins and relate these effects to proinflammatory cytokines interleukin-18 (IL-18) and interleukin-6 (IL-6) following intraperitoneal (IP) and oral exposure to a common dose at 2.5 mg/kg BW in mice. Plasma IL-18 and IL-6 were elevated within 1-2 h and returned to basal levels at 6 h after exposure to DON, 3-ADON and 15-ADON. FX promoted IL-18 expression at 6 h. Whereas, FX only promoted IL-6 at 6 h. When NIV was injected intraperitoneally, IL-18 started to rise at 1 h and peaked at 6 h. Whereas, NIV only promoted IL-18 at 2 h following oral exposure. IP exposure to NIV induced an increase in IL-6 that occurred only at 2 h. No effect on IL-6 when exposed orally to NIV. In conclusion, the data indicate that IL-18 and IL-6 play critical roles in anorectic response induced by DON and its four congeners 3-ADON, 15-ADON, NIV, FX.
Collapse
Affiliation(s)
- Chuang Zhou
- Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zihui Qin
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- Food Laboratory of Zhongyuan, Luohe, China
| | - Huayue Zhang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- Food Laboratory of Zhongyuan, Luohe, China
| | - Huiping Xiao
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- Food Laboratory of Zhongyuan, Luohe, China
| | - Hua Zhang
- Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| |
Collapse
|
4
|
Beisl J, Jochum K, Chen Y, Varga E, Marko D. Combinatory Effects of Acrylamide and Deoxynivalenol on In Vitro Cell Viability and Cytochrome P450 Enzymes of Human HepaRG Cells. Toxins (Basel) 2024; 16:389. [PMID: 39330847 PMCID: PMC11436166 DOI: 10.3390/toxins16090389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Acrylamide (AA) can be formed during the thermal processing of carbohydrate-rich foods. Deoxynivalenol (DON), a mycotoxin produced by Fusarium spp., contaminates many cereal-based products. In addition to potential co-exposure through a mixed diet, co-occurrence of AA and DON in thermally processed cereal-based products is also likely, posing the question of combinatory toxicological effects. In the present study, the effects of AA (0.001-3 mM) and DON (0.1-30 µM) on the cytotoxicity, gene transcription, and expression of major cytochrome P450 (CYP) enzymes were investigated in differentiated human hepatic HepaRG cells. In the chosen ratios of AA-DON (10:1; 100:1), cytotoxicity was clearly driven by DON and no overadditive effects were observed. Using quantitative real-time PCR, about twofold enhanced transcript levels of CYP1A1 were observed at low DON concentrations (0.3 and 1 µM), reflected by an increase in CYP1A activity in the EROD assay. In contrast, CYP2E1 and CYP3A4 gene transcription decreased in a concentration-dependent manner after incubation with DON (0.01-0.3 µM). Nevertheless, confocal microscopy showed comparably constant protein levels. The present study provided no indication of an induction of CYP2E1 as a critical step in AA bioactivation by co-occurrence with DON. Taken together, the combination of AA and DON showed no clear physiologically relevant interaction in HepaRG cells.
Collapse
Affiliation(s)
- Julia Beisl
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (J.B.); (K.J.); (D.M.)
| | - Kristina Jochum
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (J.B.); (K.J.); (D.M.)
- German Federal Institute of Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China;
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (J.B.); (K.J.); (D.M.)
- Unit Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinarplatz 1, 1210 Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (J.B.); (K.J.); (D.M.)
| |
Collapse
|
5
|
Morelli M, Cabezuelo Rodríguez M, Queiroz K. A high-throughput gut-on-chip platform to study the epithelial responses to enterotoxins. Sci Rep 2024; 14:5797. [PMID: 38461178 PMCID: PMC10925042 DOI: 10.1038/s41598-024-56520-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/07/2024] [Indexed: 03/11/2024] Open
Abstract
Enterotoxins are a type of toxins that primarily affect the intestines. Understanding their harmful effects is essential for food safety and medical research. Current methods lack high-throughput, robust, and translatable models capable of characterizing toxin-specific epithelial damage. Pressing concerns regarding enterotoxin contamination of foods and emerging interest in clinical applications of enterotoxins emphasize the need for new platforms. Here, we demonstrate how Caco-2 tubules can be used to study the effect of enterotoxins on the human intestinal epithelium, reflecting toxins' distinct pathogenic mechanisms. After exposure of the model to toxins nigericin, ochratoxin A, patulin and melittin, we observed dose-dependent reductions in barrier permeability as measured by TEER, which were detected with higher sensitivity than previous studies using conventional models. Combination of LDH release assays and DRAQ7 staining allowed comprehensive evaluation of toxin cytotoxicity, which was only observed after exposure to melittin and ochratoxin A. Furthermore, the study of actin cytoskeleton allowed to assess toxin-induced changes in cell morphology, which were only caused by nigericin. Altogether, our study highlights the potential of our Caco-2 tubular model in becoming a multi-parametric and high-throughput tool to bridge the gap between current enterotoxin research and translatable in vivo models of the human intestinal epithelium.
Collapse
|
6
|
Wang Y, Zhao M, Cui J, Lian H, Hao Z, Lou L, Jia X, Zhao W, Shen H, Xing L, Zhang X. Ochratoxin A-enhanced glycolysis induces inflammatory responses in human gastric epithelium cells through mTOR/HIF-1α signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115868. [PMID: 38142590 DOI: 10.1016/j.ecoenv.2023.115868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin commonly found in several food commodities worldwide with potential nephrotoxic, hepatotoxic and carcinogenic effects. We previously showed for the first time that OTA treatment enhanced glycolysis in human gastric epithelium (GES-1) cells in vitro. Here, we found that OTA exposure activated inflammatory responses, evidenced by increasing of NF-κB signaling pathway-related protein (p-p65 and p-IκBα) expressions and elevating of inflammatory cytokine (IL-1β and IL-6) mRNA expressions in GES-1 cells. To elucidate the role of glycolysis in inflammatory effects triggered by OTA, we pretreated GES-1 cells with glycolysis inhibitor (2-deoxy-D-glucose, 2-DG) before OTA exposure. The result showed that 2-DG reduced the protein expressions of p-p65 and p-IκBα and alleviated the mRNA expressions of inflammatory cytokines in OTA-treated GES-1 cells. Furthermore, OTA activated the mTOR/HIF-1α pathway by increasing the protein expressions of p-mTOR, p-eIF4E and HIF-1α, and inhibition of mTOR with rapamycin or silencing HIF-1α with siRNA significantly attenuated OTA-enhanced glycolysis by reducing glycolysis related genes and thereby decreasing inflammatory effects of GES-1 cells. These results demonstrate that OTA activates inflammatory responses in GES-1 cells and this is controlled by mTOR/HIF-1α pathway-mediated glycolysis enhancement. Our findings provide a novel mechanistic view into OTA-induced gastric cytotoxicity.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Man Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Jinfeng Cui
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Hongguang Lian
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Zengfang Hao
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Lei Lou
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Xin Jia
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Wei Zhao
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Haitao Shen
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Lingxiao Xing
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Xianghong Zhang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China; Department of Pathology, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
7
|
Ayeni KI, Jamnik T, Fareed Y, Flasch M, Braun D, Uhl M, Hartmann C, Warth B. The Austrian children's biomonitoring survey 2020 Part B: Mycotoxins, phytotoxins, phytoestrogens and food processing contaminants. Food Chem Toxicol 2023; 182:114173. [PMID: 37925015 DOI: 10.1016/j.fct.2023.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
This study assessed the levels of environment and food-related exposures in urine of Austrian school children aged six to ten (n = 85) focusing on mycotoxins, phytoestrogens, and food processing by-products using two multi-analyte LC-MS/MS methods. Out of the 55 biomarkers of exposure reported in this study, 22 were quantified in the first void urine samples. Mycotoxins frequently quantified included zearalenone (detection rate 100%; median 0.11 ng/mL), deoxynivalenol (99%; 15 ng/mL), alternariol monomethyl ether (75%; 0.04 ng/mL), and ochratoxin A (19%; 0.03 ng/mL). Several phytoestrogens, including genistein, daidzein, and its metabolite equol, were detected in all samples at median concentrations of 22 ng/mL, 43 ng/mL, and 14 ng/mL, respectively. The food processing by-product 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was detected in 4% of the samples (median 0.016 ng/mL). None of the investigated samples contained the tested phytotoxins that were rarely considered for human biomonitoring previously (pyrrolizidine alkaloids, tropane alkaloids, aristolochic acids). When relating estimated exposure to current health-based guidance values, 22% of the children exceeded the tolerable daily intake for deoxynivalenol, and the estimated MOE for OTA indicates possible health risks for some children. The results clearly demonstrate frequent low-level (co-)exposure and warrant further exposome-scale exposure assessments, especially in susceptible sub-populations and longitudinal settings.
Collapse
Affiliation(s)
- Kolawole I Ayeni
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria; Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Thomas Jamnik
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Yasmin Fareed
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Mira Flasch
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Dominik Braun
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Maria Uhl
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria
| | - Christina Hartmann
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090, Vienna, Austria
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, Austria.
| |
Collapse
|
8
|
Wang J, Bakker W, de Haan L, Bouwmeester H. Deoxynivalenol increases pro-inflammatory cytokine secretion and reduces primary bile acid transport in an inflamed intestinal in vitro co-culture model. Food Res Int 2023; 173:113323. [PMID: 37803634 DOI: 10.1016/j.foodres.2023.113323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 10/08/2023]
Abstract
The fungal secondary metabolite deoxynivalenol (DON) that can contaminate cereal-based food products not only induces inflammation but also reduces bile acid absorption by a healthy human intestine. Bile acid malabsorption is commonly observed in individuals with an inflamed intestine. Here we studied the effects of DON on inflammation and primary bile acid transport using an in vitro model for an inflamed intestine. An inflamed intestinal in vitro model was established by co-culturing a Caco-2 cell-layer and LPS-pre-stimulated THP-1 macrophages in Transwells. We observed a decreased transport of 5 primary bile acids across inflamed co-cultures compared to healthy co-cultures but not of chenodeoxycholic acid. DON exposure further reduced the transport of the affected primary bile acids across the inflamed co-cultures. DON exposure also enhanced the secretion of pro-inflammatory cytokines in the inflamed co-cultures, while it did not increase the pro-inflammatory cytokines secretion from LPS-pre-stimulated THP-1 monocultures. Exposure of Caco-2 cell-layers to pro-inflammatory cytokines or THP-1 conditioned media partly mimicked the DON-induced effects of the co-culture model. Local activation of intestinal immune cells reinforces the direct pro-inflammatory effects of DON on intestinal epithelial cells. This affects the bile acid intestinal kinetics in an inflamed intestine.
Collapse
Affiliation(s)
- Jingxuan Wang
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| | - Wouter Bakker
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Laura de Haan
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
9
|
Zhang C, Zhang KF, Chen FJ, Chen YH, Yang X, Cai ZH, Jiang YB, Wang XB, Zhang GP, Wang FY. Deoxynivalenol triggers porcine intestinal tight junction disorder: Insights from mitochondrial dynamics and mitophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114291. [PMID: 36395652 DOI: 10.1016/j.ecoenv.2022.114291] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Deoxynivalenol (DON) is universally detected trichothecene in most cereal commodities, which is considered as a major hazardous material for human and animal health. Intestine is the most vulnerable organ with higher concentration of DON than other organs, owing to the first defense barrier function to exogenous substances. However, the underling mechanisms about DON-induced intestinal toxicity remain poorly understood. Here, DON poisoning models of IPEC-J2 cells was established to explore adverse effect and the potential mechanism of DON-induced enterotoxicity. Results showed that DON exposure destroyed IPEC-J2 cells morphology. Results showed that DON exposure destroyed IPEC-J2 cells morphology. Intestinal epithelial barrier injury was caused by DON with increasing LDH release, decreasing cell viability as well decreasing tight junction protein expressions (Occludin, N-Cad, ZO-1, Claudin-1 and Claudin-3). Moreover, DON caused mitochondrial dysfunction by opening mitochondrial permeability transition pore and eliminating mitochondrial membrane potential. DON exposure upregulated protein and mRNA expression of mitochondrial fission factors (Drp1, Fis1, MIEF1 and MFF) and mitophagy factors (PINK1, Parkin and LC3), downregulated mitochondrial fusion factors (Mfn1, Mfn2, except OPA1), resulting in mitochondrial dynamics imbalance and mitophagy. Overall, these findings suggested that DON induced tight junction dysfunction in IPEC-J2 cells was related to mitochondrial dynamics-mediated mitophagy.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Ke-Fei Zhang
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Feng-Juan Chen
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Yun-He Chen
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zi-Hui Cai
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Yi-Bao Jiang
- College of Animal Science and Technology, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Xue-Bing Wang
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Gai-Ping Zhang
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Fang-Yu Wang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China.
| |
Collapse
|
10
|
Li F, Duan X, Zhang L, Jiang D, Zhao X, Meng E, Yi R, Liu C, Li Y, Wang JS, Zhao X, Li W, Zhou J. Mycotoxin surveillance on wheats in Shandong province, China, reveals non-negligible probabilistic health risk of chronic gastrointestinal diseases posed by deoxynivalenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71826-71839. [PMID: 35604603 DOI: 10.1007/s11356-022-20812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Abnormal climate changes have resulted in over-precipitation in many regions. The occurrence and contamination levels of mycotoxins in crops and cereals have been elevated largely. From 2017 to 2019, we did investigation targeting 15 mycotoxins shown in the wheat samples collected from Shandong, a region suffering over-precipitation in China. We found that deoxynivalenol (DON) was the dominant mycotoxin contaminating wheats, with detection rates 304/340 in 2017 (89.41%), 303/330 in 2018 (91.82%), and 303/340 in 2019 (89.12%). The ranges of DON levels were < 4 to 580 μg/kg in 2017, < 4 to 3070 μg/kg in 2018, and < 4 to 1540 μg/kg in 2019. The exposure levels were highly correlated with local precipitation. Male exposure levels were generally higher than female's, with significant difference found in 2017 (1.89-fold, p = 0.023). Rural exposure levels were higher than that of cities but not statistically significant (1.41-fold, p = 0.13). Estimated daily intake (EDI) and margin of exposure (MoE) approaches revealed that 8 prefecture cities have probabilistically extra adverse health effects (vomiting or diarrhea) cases > 100 patients in 100,000 residents attributable to DON exposure. As a prominent wheat-growing area, Dezhou city reached ~ 300/100,000 extra cases while being considered as a major regional contributor to DON contamination. Our study suggests that more effort should be given to the prevention and control of DON contamination in major wheat-growing areas, particularly during heavy precipitation year. The mechanistic association between DON and chronic intestinal disorder/diseases should be further investigated.
Collapse
Affiliation(s)
- Fenghua Li
- Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
- Department of Chemistry and Physics, Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Xinglan Duan
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Liwen Zhang
- Department of Toxicology and Nutrition, School of Public Health, Shandong University, Jinan, 250012, China
| | - Dafeng Jiang
- Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
- Department of Chemistry and Physics, Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Xianqi Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - En Meng
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ran Yi
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yirui Li
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Shandong University, Jinan, 250012, China
| | - Wei Li
- Academy of Preventive Medicine, Shandong University, Jinan, 250014, China
- Department of Chemistry and Physics, Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Jun Zhou
- Department of Toxicology and Nutrition, School of Public Health, Shandong University, Jinan, 250012, China.
| |
Collapse
|
11
|
Ayeni KI, Sulyok M, Krska R, Warth B, Ezekiel CN. Mycotoxins in complementary foods consumed by infants and young children within the first 18 months of life. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Groestlinger J, Seidl C, Varga E, Del Favero G, Marko D. Combinatory Exposure to Urolithin A, Alternariol, and Deoxynivalenol Affects Colon Cancer Metabolism and Epithelial Barrier Integrity in vitro. Front Nutr 2022; 9:882222. [PMID: 35811943 PMCID: PMC9263571 DOI: 10.3389/fnut.2022.882222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022] Open
Abstract
The human gastrointestinal tract is an important site of nutrient absorption and a crucial barrier against xenobiotics. It regularly faces “chemical cocktails” composed of food constituents, their human and microbial metabolites, and foodborne contaminants, such as mycotoxins. Hence, the colonic epithelium adapts to dietary molecules tuning its immune response, structural integrity, and metabolism to maintain intestinal homeostasis. While gut microbiota metabolites of berry ellagitannins, such as urolithin A (Uro A) might contribute to physiological epithelial barrier integrity, foodborne co-contaminating mycotoxins like alternariol (AOH) and deoxynivalenol (DON) could hamper epithelial function. Hence, we investigated the response of differentiated Caco-2 cells (clone C2BBe1) in vitro to the three compounds alone or in binary mixtures. In virtue of the possible interactions of Uro A, AOH, and DON with the aryl hydrocarbon receptor (AhR) pathway, potential effects on phase-I-metabolism enzymes and epithelial structural integrity were taken as endpoints for the evaluation. Finally, Liquid chromatography tandem mass spectrometry measurements elucidated the absorption, secretion, and metabolic capacity of the cells under single and combinatory exposure scenarios. Uro A and AOH as single compounds, and as a binary mixture, were capable to induce CYP1A1/1A2/1B1 enzymes triggered by the AhR pathway. In light of its ribosome inhibiting capacity, the trichothecene suppressed the effects of both dibenzo-α-pyrones. In turn, cellular responsiveness to Uro A and AOH could be sustained when co-exposed to DON-3-sulfate, instead of DON. Colonic epithelial structural integrity was rather maintained after incubation with Uro A and AOH: this was reinforced in the combinatory exposure scenario and disrupted by DON, an effect, opposed in combination. Passage through the cells as well as the metabolism of Uro A and AOH were rather influenced by co-exposure to DON, than by interaction with each other. Therefore, we conclude that although single foodborne bioactive substances individually could either support or disrupt the epithelial structure and metabolic capacity of colon cancer, exposure to chemical mixtures changes the experimental outcome and calls for the need of combinatory investigations for proper risk assessment.
Collapse
Affiliation(s)
- Julia Groestlinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Carina Seidl
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
- *Correspondence: Giorgia Del Favero,
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Doris Marko,
| |
Collapse
|
13
|
Cereulide and Deoxynivalenol Increase LC3 Protein Levels in HepG2 Liver Cells. Toxins (Basel) 2022; 14:toxins14020151. [PMID: 35202179 PMCID: PMC8880806 DOI: 10.3390/toxins14020151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
Food contaminants of bacterial or fungal origin frequently contaminate staple foods to various extents. Among others, the bacterial toxin cereulide (CER) and the mycotoxin deoxynivalenol (DON) co-occur in a mixed diet and are absorbed by the human body. Both toxins exert dis-tinctive mitotoxic potential. As damaged mitochondria are removed via autophagy, mitochondrial and lysosomal toxicity were assessed by applying low doses of single and combined toxins (CER 0.1-50 ng/mL; DON 0.01-5 µg/mL) to HepG2 liver cells. In addition to cytotoxicity assays, RT-qPCR was performed to investigate genes involved in lysosomal biogenesis and autophagy. CER and DON caused significant cytotoxicity on HepG2 cells after 5 and 24 h over a broad concentration range. CER, alone and in combination with DON, increased the transcription of the autophagy related genes coding for the microtubule associated protein 1A/1B light chain 3 (LC3) and sequestome 1 (SQSTM1) as well as LC3 protein expression which was determined using immunocytochemistry. DON increased LC3 protein expression without induction of gene transcription, hence it seems plausible that CER and DON act on different pathways. The results support the hypothesis that CER induces autophagy via the LC3 pathway and damaged mitochondria are therefore eliminated.
Collapse
|
14
|
Ganesan AR, Mohan K, Karthick Rajan D, Pillay AA, Palanisami T, Sathishkumar P, Conterno L. Distribution, toxicity, interactive effects, and detection of ochratoxin and deoxynivalenol in food: A review. Food Chem 2021; 378:131978. [PMID: 35033712 DOI: 10.1016/j.foodchem.2021.131978] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/28/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022]
Abstract
Mycotoxins are secondary metabolites of fungi that cause severe damage to agricultural products and food in the food supply chain. These detrimental pollutants have been directly linked with poor socioeconomic patterns and human health issues. Among the natural micropollutants, ochratoxin A (OTA) and deoxynivalenol (DON) are widely distributed in food materials. The primary occurrence of these mycotoxins is reported in almost all cereal grains and fresh agro-products. Both mycotoxins have shown harmful effects, such as nephrotoxic, hepatotoxic, and genotoxic effects, in humans due to their complex structural formation during the degradation/acetylation reaction. In addition, improper preharvest, harvest, and postharvest handling tend to lead to the formation of OTA and DON in various food commodities, which allows different harmful fungicides in practice. Therefore, this review provides more insight into the distribution and toxicity of OTA/DON in the food matrix and human health. Furthermore, the interactive effects of OTA/DON with co-contaminated organic and inorganic compounds are discussed. Finally, international regulation and mitigation strategies for detoxication are critically evaluated to meet food safety and good agriculture practices.
Collapse
Affiliation(s)
- Abirami Ramu Ganesan
- Group of Fermentation and Distillation, Laimburg Research Centre, Ora (BZ), Auer 39040, Italy.
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India
| | - Durairaj Karthick Rajan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu 608502, India
| | - Arti A Pillay
- School of Applied Sciences, College of Engineering Science and Technology, Fiji National University, Nabua Campus- 7222, Fiji Islands
| | - Thavamani Palanisami
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Palanivel Sathishkumar
- Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Lorenza Conterno
- Group of Fermentation and Distillation, Laimburg Research Centre, Ora (BZ), Auer 39040, Italy.
| |
Collapse
|
15
|
Cereulide Exposure Caused Cytopathogenic Damages of Liver and Kidney in Mice. Int J Mol Sci 2021; 22:ijms22179148. [PMID: 34502057 PMCID: PMC8431326 DOI: 10.3390/ijms22179148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022] Open
Abstract
Cereulide is one of the main food-borne toxins for vomiting synthesized by Bacillus cereus, and it widely contaminates meat, eggs, milk, and starchy foods. However, the toxicological effects and mechanisms of the long-time exposure of cereulide in vivo remain unknown. In this study, oral administration of 50 and 200 μg/kg body weight cereulide in the mice for 28 days caused oxidative stress in liver and kidney tissues and induce abnormal expression of inflammatory factors. In pathogenesis, cereulide exposure activated endoplasmic reticulum stress (ER stress) via the pathways of inositol-requiring enzyme 1α (IRE1α)/Xbox binding protein (XBP1) and PRKR-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (eIF2α), and consequently led to the apoptosis and tissue damages in mouse liver and kidney. In vitro, we confirmed that the accumulation of reactive oxygen species (ROS) caused by cereulide is the main factor leading to ER stress in HepaRG and HEK293T cells. Supplementation of sodium butyrate (NaB) inhibited the activations of IRE1α/XBP1 and PERK/eIF2α pathways caused by cereulide exposure in mice, and reduced the cell apoptosis in liver and kidney. In conclusion, this study provides a new insight in understanding the toxicological mechanism and prevention of cereulide exposure.
Collapse
|
16
|
Pomothy JM, Szabó O, Czimmermann ÁE, Babiczky Á, Jerzsele Á, Pászti-Gere E. Investigation of the inflammatory and oxidative stress-inducing effects of deoxynivalenol and T-2 toxin exposure in non-tumorigenic human intestinal cell model. Toxicon 2021; 200:78-86. [PMID: 34252445 DOI: 10.1016/j.toxicon.2021.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022]
Abstract
Fungi in the Fusarium genus produce trichothecene mycotoxins including deoxynivalenol (DON) and T-2 toxin which may elicit their damaging effects on the gastrointestinal tract following the consumption of contaminated cereal-based foods. The aim of our study was to evaluate the effects of these commonly occurring fusarotoxins alone and in combination using the human, non-cancerous intestinal epithelial cell line HIEC-6. Based on our experimental data, 24 h after treatment with fusarotoxins, hydrogen peroxide levels, intracellular oxidative stress and the amounts of inflammatory interleukins IL-6 and IL-8 significantly increased. Cell membrane localization of the tight junction protein claudin-1 decreased, whereas distribution of occludin remained unchanged. Taken together, the HIEC-6 cell line appears to be a suitable experimental model for monitoring the combined effects of mycotoxins at the cellular level including changes in the redox states of cells.
Collapse
Affiliation(s)
- Judit M Pomothy
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Hungary.
| | - Orsolya Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Hungary
| | - Ágnes E Czimmermann
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Hungary
| | - Ákos Babiczky
- Neuronal Networks and Behaviour Research Group, Research Centre for Natural Sciences, Budapest, Hungary; Faculty of Natural Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Hungary
| | - Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Hungary
| |
Collapse
|
17
|
Exploring the dermotoxicity of the mycotoxin deoxynivalenol: combined morphologic and proteomic profiling of human epidermal cells reveals alteration of lipid biosynthesis machinery and membrane structural integrity relevant for skin barrier function. Arch Toxicol 2021; 95:2201-2221. [PMID: 33890134 PMCID: PMC8166681 DOI: 10.1007/s00204-021-03042-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/01/2021] [Indexed: 12/26/2022]
Abstract
Deoxynivalenol (vomitoxin, DON) is a secondary metabolite produced by Fusarium spp. fungi and it is one of the most prevalent mycotoxins worldwide. Crop infestation results not only in food and feed contamination, but also in direct dermal exposure, especially during harvest and food processing. To investigate the potential dermotoxicity of DON, epidermoid squamous cell carcinoma cells A431 were compared to primary human neonatal keratinocytes (HEKn) cells via proteome/phosphoproteome profiling. In A431 cells, 10 µM DON significantly down-regulated ribosomal proteins, as well as mitochondrial respiratory chain elements (OXPHOS regulation) and transport proteins (TOMM22; TOMM40; TOMM70A). Mitochondrial impairment was reflected in altered metabolic competence, apparently combined with interference of the lipid biosynthesis machinery. Functional effects on the cell membrane were confirmed by live cell imaging and membrane fluidity assays (0.1–10 µM DON). Moreover, a common denominator for both A431 and HEKn cells was a significant downregulation of the squalene synthase (FDFT1). In sum, proteome alterations could be traced back to the transcription factor Klf4, a crucial regulator of skin barrier function. Overall, these results describe decisive molecular events sustaining the capability of DON to impair skin barrier function. Proteome data generated in the study are fully accessible via ProteomeXchange with the accession numbers PXD011474 and PXD013613.
Collapse
|
18
|
Assessing Mixture Effects of Cereulide and Deoxynivalenol on Intestinal Barrier Integrity and Uptake in Differentiated Human Caco-2 Cells. Toxins (Basel) 2021; 13:toxins13030189. [PMID: 33806705 PMCID: PMC7998855 DOI: 10.3390/toxins13030189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
The human intestine is regularly exposed to ingested food contaminants, such as fungal and bacterial toxins, which have been described to co-occur in a mixed diet. Thus, it is of utmost importance to understand possible interactions between contaminants of different origin. Hence, we investigated the single and combined effects of one of the most abundant mycotoxins, deoxynivalenol (DON; 0.1 to 10 µg/mL), and the bacterial toxin cereulide (CER; 1 to 100 ng/mL) on differentiated human Caco-2 (C2BBe1) cells cultured in a transwell system. We tested the capacity of the two toxins to alter the intestinal integrity and further investigated the uptake of both compounds and the formation of selected DON metabolites. CER alone (10 and 100 ng/mL) and in combination with DON (10 ng/mL CER with 1 µg/mL DON) was found to alter the barrier function by increasing the transepithelial electrical resistance and the expression of the tight junction protein claudin-4. For the first time, DON-3-sulfate was identified as a metabolite of human intestinal cells in vitro. Moreover, co-incubation of CER and DON led to an altered ratio between DON and DON-3-sulfate. Hence, we conclude that co-exposure to CER and DON may alter the intestinal barrier function and biotransformation of intestinal cells.
Collapse
|
19
|
The Food Poisoning Toxins of Bacillus cereus. Toxins (Basel) 2021; 13:toxins13020098. [PMID: 33525722 PMCID: PMC7911051 DOI: 10.3390/toxins13020098] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic type, a food intoxication, manifests in nausea and vomiting, food infections with enteropathogenic strains cause diarrhea and abdominal pain. Causative toxins are the cyclic dodecadepsipeptide cereulide, and the proteinaceous enterotoxins hemolysin BL (Hbl), nonhemolytic enterotoxin (Nhe) and cytotoxin K (CytK), respectively. This review covers the current knowledge on distribution and genetic organization of the toxin genes, as well as mechanisms of enterotoxin gene regulation and toxin secretion. In this context, the exceptionally high variability of toxin production between single strains is highlighted. In addition, the mode of action of the pore-forming enterotoxins and their effect on target cells is described in detail. The main focus of this review are the two tripartite enterotoxin complexes Hbl and Nhe, but the latest findings on cereulide and CytK are also presented, as well as methods for toxin detection, and the contribution of further putative virulence factors to the diarrheal disease.
Collapse
|
20
|
Tran VN, Viktorová J, Ruml T. Mycotoxins: Biotransformation and Bioavailability Assessment Using Caco-2 Cell Monolayer. Toxins (Basel) 2020; 12:E628. [PMID: 33008111 PMCID: PMC7601793 DOI: 10.3390/toxins12100628] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/24/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
The determination of mycotoxins content in food is not sufficient for the prediction of their potential in vivo cytotoxicity because it does not reflect their bioavailability and mutual interactions within complex matrices, which may significantly alter the toxic effects. Moreover, many mycotoxins undergo biotransformation and metabolization during the intestinal absorption process. Biotransformation is predominantly the conversion of mycotoxins meditated by cytochrome P450 and other enzymes. This should transform the toxins to nontoxic metabolites but it may possibly result in unexpectedly high toxicity. Therefore, the verification of biotransformation and bioavailability provides valuable information to correctly interpret occurrence data and biomonitoring results. Among all of the methods available, the in vitro models using monolayer formed by epithelial cells from the human colon (Caco-2 cell) have been extensively used for evaluating the permeability, bioavailability, intestinal transport, and metabolism of toxic and biologically active compounds. Here, the strengths and limitations of both in vivo and in vitro techniques used to determine bioavailability are reviewed, along with current detailed data about biotransformation of mycotoxins. Furthermore, the molecular mechanism of mycotoxin effects is also discussed regarding the disorder of intestinal barrier integrity induced by mycotoxins.
Collapse
Affiliation(s)
| | | | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague 6, Czech Republic; (V.N.T.); (J.V.)
| |
Collapse
|