1
|
Yao J, Shou Y, Sheng N, Ma Y, Pan Y, Zhao F, Fang M, Dai J. Predicting Bioconcentration Factors of Per- and Polyfluoroalkyl Substances Using a Directed Message Passing Neural Network with Multimodal Feature Fusion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40391855 DOI: 10.1021/acs.est.4c13813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Amid growing concerns regarding the ecological risks posed by emerging contaminants, per- and polyfluoroalkyl substances (PFASs) present significant challenges for risk assessment due to their structural diversity and the paucity of experimental data on their bioaccumulation. This study investigated the bioconcentration factors (BCFs) of 18 emerging and legacy PFASs using zebrafish in a flow-through exposure system and constructed a robust BCF prediction model to address the data gaps associated with numerous novel PFASs. Experimental results indicated that perfluoro(3,5,7,9,11-pentaoxadodecanoic) acid (PFO5DoDA) and perfluoro-2,5-dimethyl-3,6-dioxanonanoic acid (C9 HFPO-TA) exhibited higher bioaccumulation potential than perfluorooctanoic acid (PFOA). A multimodal feature-fused directed message passing neural network (FF-DMPNN) model was constructed, integrating molecular graph representations, physicochemical descriptors, and bioassay data reflecting absorption, distribution, metabolism, and excretion characteristics. The FF-DMPNN model demonstrated superior predictive performance compared to conventional machine learning approaches by providing a more complete representation of molecular structures and physicochemical properties, achieving higher accuracy (R2 = 0.742) and robustness in predicting BCF values for PFASs. Application of the model to a comprehensive PFAS database identified 2.45% of chemicals as bioaccumulative, highlighting the need for regulatory attention. Overall, this study provides critical insights into the bioconcentration risks associated with PFASs and offers a reliable framework for prioritizing regulatory actions for these emerging contaminants, addressing a pressing need for their effective environmental management.
Collapse
Affiliation(s)
- Jingzhi Yao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yingqing Shou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Ma
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Fang T, Liu Q, Huangfu X, Zhu H, Sun H, Chen L. New insights into the mechanism of triphenyl phosphate and its metabolite diphenyl phosphate in diabetic kidney disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117877. [PMID: 39933236 DOI: 10.1016/j.ecoenv.2025.117877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Diabetic kidney disease is a significant complication of diabetes mellitus, and exposure to certain chemicals may play a role in its development. Triphenyl phosphate (TPHP) is commonly used in plastics and flame retardants. This study aims to investigate the potential impact of TPHP and its metabolite diphenyl phosphate (DPHP) on diabetic kidney disease using various methods, including network toxicology, molecular docking, and cell experiments like CCK8 assay and real-time-PCR. The research examined the relationship between urinary DPHP levels and kidney function in American adults using data from the National Health and Nutrition Examination Survey (NHANES) from 2017 to March 2020. Additionally, the study explored the targets of action for TPHP and DPHP using network toxicity analysis, conducted protein interaction analysis, and explored the functional aspects of action through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Furthermore, the study identified key proteins involved in the action and conducted experimental verification by treating cells with TPHP and DPHP. Toxicity analysis showed that TPHP could cause dose-dependent toxicity in mouse podocyte clone 5 (MPC5) and mouse mesangial cells (MES13). The study also detected mRNA expression of core targets molecularly docked with TPHP and DPHP using real-time-PCR. The results indicated statistically significant regulation of most core targets by TPHP and DPHP in MPC5, MES13, and human kidney-2 cells.
Collapse
Affiliation(s)
- Ting Fang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Qiaoyan Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xinxin Huangfu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
3
|
Liu X, Sun L, Lin Y, Du J, Yang H, Li C. Cresyl diphenyl phosphate (a novel organophosphate ester) induces hepatic steatosis by directly binding to liver X receptor α: From molecule action to risk assessment. ENVIRONMENT INTERNATIONAL 2024; 194:109168. [PMID: 39612745 DOI: 10.1016/j.envint.2024.109168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Cresyl diphenyl phosphate (CDP), a novel organophosphate ester (OPE), has been increasingly detected in various environmental and human samples. However, its toxicity, mechanisms, and health risks remain largely unknown. In this work, we investigated CDP-induced hepatic steatosis through Liver X Receptor α (LXRα) pathway across the molecular interactions, signaling pathways, cell functions, animal effects, and population risks, and compared them to triphenyl phosphate (TPHP) and tricresyl phosphate (TCRP). Receptor binding results showed that all three OPEs bound to LXRα directly in the order of TCRP > CDP > TPHP. Docking results suggested that the three aryl groups played an essential role in the binding of these chemicals to LXRα. They also activated LXRα-mediated lipogenesis pathway and promoted lipid accumulation in HepG2 cells. The intracellular concentration and LXRα-bound concentration of the chemicals in HepG2 cells followed a consistent order of CDP > TCRP > TPHP. In mice, exposure to CDP activated LXRα-mediated de novo lipogenesis pathway, leading to hepatic steatosis. Risk assessment results suggested that few populations (5.38 %) face a LXRα-mediated hepatic steatosis risk from CDP exposure. Collectively, our results demonstrate that CDP could bind to LXRα, activate the subsequent de novo lipogenesis pathway, inducing hepatic steatosis, and increasing adverse health risks.
Collapse
Affiliation(s)
- Xinya Liu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lanchao Sun
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yongfeng Lin
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jingyue Du
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Huizi Yang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Chuanhai Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
4
|
Liu Y, Ma X, Le Y, Feng J, Xu M, Wang W, Wang C. Organophosphorus Flame Retardants and Metabolic Disruption: An in Silico, in Vitro, and in Vivo Study Focusing on Adiponectin Receptors. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:117003. [PMID: 39514743 PMCID: PMC11548883 DOI: 10.1289/ehp14634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Environmental chemical exposures have been associated with metabolic outcomes, and typically, their binding to nuclear hormone receptors is considered the molecular initiating event (MIE) for a number of outcomes. However, more studies are needed to understand the influence of such exposures on cell membrane-bound adiponectin receptors (AdipoRs), which are critical metabolic regulators. OBJECTIVE We aimed to clarify the potential interactions between AdipoRs and environmental chemicals, specifically organophosphorus flame retardants (OPFRs), and the resultant effects. METHODS Employing in silico simulation, cell thermal shift, and noncompetitive binding assays, we screened eight OPFRs for interactions with AdipoR1 and AdipoR2. We tested two key events underlying AdipoR modulation upon OPFR exposure in a liver cell model. The Toxicological Prioritization Index (ToxPi)scoring scheme was used to rank OPFRs according to their potential to disrupt AdipoR-associated metabolism. We further examined the inhibitory effect of OPFRs on AdipoR signaling activation in mouse models. RESULTS Analyses identified pi-pi stacking and pi-sulfur interactions between the aryl-OPFRs 2-ethylhexyl diphenyl phosphate (EHDPP), triphenyl phosphate (TPhP), and tricresyl phosphate (TCP) and the transmembrane cavities of AdipoR1 and AdipoR2. Cell thermal shift assays showed a > 3 ° C rightward shift in the AdipoR proteins' melting curves upon exposure to these three compounds. Although the binding sites differed from adiponectin, results suggest that aryl-OPFRs noncompetitively inhibited the binding of the endogenous peptide ligand ADP355 to the receptors. Analyses of key events underlying AdipoR modulation revealed that glucose uptake was notably lower, whereas lipid content was higher in cells exposed to aryl-OPFRs. EHDPP, TCP, and TPhP were ranked as the top three disruptors according to the ToxPi scores. A noncompetitive binding between these aryl-OPFRs and AdipoRs was also observed in wild-type (WT) mice. In db/db mice, the finding of lower blood glucose levels after ADP355 injection was diminished in the presence of a typical aryl-OPFR (TCP). WT mice exposed to TCP demonstrated lower AdipoR1 signaling, which was marked by lower phosphorylated AMP-activated protein kinase (pAMPK) and a higher expression of gluconeogenesis-related genes. Moreover, WT mice exposed to ADP355 demonstrated higher levels of pAMPK protein and peroxisome proliferator-activated receptor-α messenger RNA. This was accompanied by higher glucose disposal and by lower levels of long-chain fatty acids and hepatic triglycerides; these metabolic improvements were negated upon TCP co-treatment. CONCLUSIONS In silico, in vitro, and in vivo assays suggest that aryl-OPFRs act as noncompetitive inhibitors of AdipoRs, preventing their activation by adiponectin, and thus function as antagonists to these receptors. Our study describes a novel MIE for chemical-induced metabolic disturbances and highlights a new pathway for environmental impact on metabolic health. https://doi.org/10.1289/EHP14634.
Collapse
Affiliation(s)
- Ying Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaochun Ma
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiafan Feng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Mengting Xu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wanyue Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Cui Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
5
|
Sun L, Liu X, Du J, Yang H, Lin Y, Yu D, Li C, Zheng Y. Adipogenic Effects of Cresyl Diphenyl Phosphate (Triphenyl Phosphate Alternative) through Peroxisome Proliferator-Activated Receptor Gamma Pathway: A Comprehensive Study Integrating In Vitro, In Vivo, and In Silico from Molecule to Health Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18631-18641. [PMID: 39382118 DOI: 10.1021/acs.est.4c07215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cresyl diphenyl phosphate (CDP), a novel organophosphate ester (OPE), has been detected in various environmental and human samples. However, there is very limited knowledge regarding its toxicity, mechanisms of action, and potential health risks. Using new alternative methods (NAMs), across the molecular interactions, signaling pathways, cell functions, animal effects, and population risks, we investigated the potential adipogenic effects and associated risks of CDP and legacy OPE triphenyl phosphate (TPHP) by acting on peroxisome proliferator-activated receptor gamma (PPARγ). Among the 19 screened OPEs, CDP bound to PPARγ with the highest binding potency, followed by TPHP. CDP activated PPARγ through fitting into the binding pocket with strong hydrophobicity and hydrogen bond interactions; CDP exhibited higher potency compared to TPHP. In 3T3-L1 cells, CDP enhanced the PPARγ-mediated adipogenesis activity, exhibiting greater potency than TPHP. The intracellular concentration and receptor-bound concentrations (RBC) of CDP were also higher than those of TPHP in both HEK293 cells and 3T3-L1 cells. In mice, exposure to CDP activated the PPARγ-mediated adipogenic pathway, leading to an increased white adipose tissue weight gain. Overall, CDP could bind to and activate PPARγ, thereby promoting preadipocyte differentiation and the development of white adipose tissue. Its potential obesogenic risks should be of high concern.
Collapse
Affiliation(s)
- Lanchao Sun
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinya Liu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jingyue Du
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Huizi Yang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yongfeng Lin
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Dianke Yu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
6
|
Liu Q, Jiang M, Lu X, Hong J, Sun Y, Yang C, Chen Y, Chai X, Tang H, Liu X. Prenatal triphenyl phosphate exposure impairs placentation and induces preeclampsia-like symptoms in mice. ENVIRONMENTAL RESEARCH 2024; 257:119159. [PMID: 38754605 DOI: 10.1016/j.envres.2024.119159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Triphenyl phosphate (TPhP) is an organophosphate flame retardant that is widely used in many commercial products. The United States Environmental Protection Agency has listed TPhP as a priority compound that requires health risk assessment. We previously found that TPhP could accumulate in the placentae of mice and impair birth outcomes by activating peroxisome proliferator-activated receptor gamma (PPARγ) in the placental trophoblast. However, the underlying mechanism remains unknown. In this study, we used a mouse intrauterine exposure model and found that TPhP induced preeclampsia (PE)-like symptoms, including new on-set gestational hypertension and proteinuria. Immunofluorescence analysis showed that during placentation, PPARγ was mainly expressed in the labyrinth layer and decidua of the placenta. TPhP significantly decreased placental implantation depth and impeded uterine spiral artery remodeling by activating PPARγ. The results of the in vitro experiments confirmed that TPhP inhibited extravillous trophoblast (EVT) cell migration and invasion by activating PPARγ and inhibiting the PI3K-AKT signaling pathway. Overall, our data demonstrated that TPhP could activate PPARγ in EVT cells, inhibit cell migration and invasion, impede placental implantation and uterine spiral artery remodeling, then induce PE-like symptom and impair birth outcomes. Although the exposure doses used in this study was several orders of magnitude higher than human daily intake, our study highlights the placenta as a potential target organ of TPhP worthy of further research.
Collapse
Affiliation(s)
- Qian Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong, China; School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Mengzhu Jiang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong, China; School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Xiaoxun Lu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Jiabin Hong
- The Third People's Hospital of Zhuhai, Zhuhai, 519000, Guangdong, China
| | - Yanqin Sun
- Department of Pathology, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Chun Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yuting Chen
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Xingxing Chai
- Dongguan Key Laboratory for Development and Application of Experimental Animal Resources in Biomedical Industry, Laboratory Animal Center, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Huanwen Tang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Xiaoshan Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong, China; School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
7
|
Beausoleil C, Thébault A, Andersson P, Cabaton NJ, Ermler S, Fromenty B, Garoche C, Griffin JL, Hoffmann S, Kamstra JH, Kubickova B, Lenters V, Kos VM, Poupin N, Remy S, Sapounidou M, Zalko D, Legler J, Jacobs MN, Rousselle C. Weight of evidence evaluation of the metabolism disrupting effects of triphenyl phosphate using an expert knowledge elicitation approach. Toxicol Appl Pharmacol 2024; 489:116995. [PMID: 38862081 DOI: 10.1016/j.taap.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Identification of Endocrine-Disrupting Chemicals (EDCs) in a regulatory context requires a high level of evidence. However, lines of evidence (e.g. human, in vivo, in vitro or in silico) are heterogeneous and incomplete for quantifying evidence of the adverse effects and mechanisms involved. To date, for the regulatory appraisal of metabolism-disrupting chemicals (MDCs), no harmonised guidance to assess the weight of evidence has been developed at the EU or international level. To explore how to develop this, we applied a formal Expert Knowledge Elicitation (EKE) approach within the European GOLIATH project. EKE captures expert judgment in a quantitative manner and provides an estimate of uncertainty of the final opinion. As a proof of principle, we selected one suspected MDC -triphenyl phosphate (TPP) - based on its related adverse endpoints (obesity/adipogenicity) relevant to metabolic disruption and a putative Molecular Initiating Event (MIE): activation of peroxisome proliferator activated receptor gamma (PPARγ). We conducted a systematic literature review and assessed the quality of the lines of evidence with two independent groups of experts within GOLIATH, with the objective of categorising the metabolic disruption properties of TPP, by applying an EKE approach. Having followed the entire process separately, both groups arrived at the same conclusion, designating TPP as a "suspected MDC" with an overall quantitative agreement exceeding 85%, indicating robust reproducibility. The EKE method provides to be an important way to bring together scientists with diverse expertise and is recommended for future work in this area.
Collapse
Affiliation(s)
- Claire Beausoleil
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), 94701 Maisons-Alfort, France.
| | - Anne Thébault
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), 94701 Maisons-Alfort, France
| | | | - Nicolas J Cabaton
- INRAE. UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, 31027 Toulouse, France
| | - Sibylle Ermler
- Department of Life Sciences, Centre of Genome Engineering and Maintenance, College of Health, Medicine and Life Sciences, Brunel University London, UB8 3PH Uxbridge, United Kingdom
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, F-35000 Rennes, France
| | - Clémentine Garoche
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Julian L Griffin
- The Rowett Institute, Foresterhill Health Campus, University of Aberdeen, Aberdeen, UK
| | | | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Barbara Kubickova
- Radiation, Chemical and Environmental Hazards (RCE), Department of Toxicology, UK Health Security Agency (UKHSA), Harwell Science and Innovation Campus, Chilton OX11 0RQ, Oxon, United Kingdom
| | - Virissa Lenters
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nathalie Poupin
- INRAE. UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, 31027 Toulouse, France
| | - Sylvie Remy
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | | | - Daniel Zalko
- INRAE. UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, 31027 Toulouse, France
| | - Juliette Legler
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Miriam N Jacobs
- Radiation, Chemical and Environmental Hazards (RCE), Department of Toxicology, UK Health Security Agency (UKHSA), Harwell Science and Innovation Campus, Chilton OX11 0RQ, Oxon, United Kingdom
| | - Christophe Rousselle
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), 94701 Maisons-Alfort, France
| |
Collapse
|
8
|
Boychenko S, Egorova VS, Brovin A, Egorov AD. White-to-Beige and Back: Adipocyte Conversion and Transcriptional Reprogramming. Pharmaceuticals (Basel) 2024; 17:790. [PMID: 38931457 PMCID: PMC11206576 DOI: 10.3390/ph17060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity has become a pandemic, as currently more than half a billion people worldwide are obese. The etiology of obesity is multifactorial, and combines a contribution of hereditary and behavioral factors, such as nutritional inadequacy, along with the influences of environment and reduced physical activity. Two types of adipose tissue widely known are white and brown. While white adipose tissue functions predominantly as a key energy storage, brown adipose tissue has a greater mass of mitochondria and expresses the uncoupling protein 1 (UCP1) gene, which allows thermogenesis and rapid catabolism. Even though white and brown adipocytes are of different origin, activation of the brown adipocyte differentiation program in white adipose tissue cells forces them to transdifferentiate into "beige" adipocytes, characterized by thermogenesis and intensive lipolysis. Nowadays, researchers in the field of small molecule medicinal chemistry and gene therapy are making efforts to develop new drugs that effectively overcome insulin resistance and counteract obesity. Here, we discuss various aspects of white-to-beige conversion, adipose tissue catabolic re-activation, and non-shivering thermogenesis.
Collapse
Affiliation(s)
- Stanislav Boychenko
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Vera S. Egorova
- Biotechnology Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia
| | - Andrew Brovin
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Alexander D. Egorov
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| |
Collapse
|
9
|
Chen Y, Liu Q, Wang Y, Jiang M, Zhang J, Liu Y, Lu X, Tang H, Liu X. Triphenyl phosphate interferes with the synthesis of steroid hormones through the PPARγ/CD36 pathway in human trophoblast JEG-3 cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:3400-3409. [PMID: 38450882 DOI: 10.1002/tox.24186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/02/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Triphenyl phosphate (TPhP), a chemical commonly found in human placenta and breast milk, has been shown to disturb the endocrine system. Our previous study confirmed that TPhP could accumulate in the placenta and interference with placental lipid metabolism and steroid hormone synthesis, as well as induce endoplasmic reticulum (ER) stress through PPARγ in human placental trophoblast JEG-3 cells. However, the molecular mechanism underlying this disruption remains unknown. Our study aimed to identify the role of the PPARγ/CD36 pathway in TPhP-induced steroid hormone disruption. We found that TPhP increased lipid accumulation, total cholesterol, low- and high-density protein cholesterol, progesterone, estradiol, glucocorticoid, and aldosterone levels, and genes related to steroid hormones synthesis, including 3βHSD1, 17βHSD1, CYP11A, CYP19, and CYP21. These effects were largely blocked by co-exposure with either a PPARγ antagonist GW9662 or knockdown of CD36 using siRNA (siCD36). Furthermore, an ER stress inhibitor 4-PBA attenuated the effect of TPhP on progesterone and glucocorticoid levels, and siCD36 reduced ER stress-related protein levels induced by TPhP, including BiP, PERK, and CHOP. These findings suggest that ER stress may also play a role in the disruption of steroid hormone synthesis by TPhP. As our study has shed light on the PPARγ/CD36 pathway's involvement in the disturbance of steroid hormone biosynthesis by TPhP in the JEG-3 cells, further investigations of the potential impacts on the placental function and following birth outcome are warranted.
Collapse
Affiliation(s)
- Yuting Chen
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Qian Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yao Wang
- Dazhou Center Hospital, Dazhou, China
| | - Mengzhu Jiang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jing Zhang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuguo Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xiaoxun Lu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xiaoshan Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
10
|
An J, Jiang J, Tang W, Zhong Y, Ren G, Shang Y, Yu Z. Lipid metabolic disturbance induced by triphenyl phosphate and hydroxy metabolite in HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115160. [PMID: 37356402 DOI: 10.1016/j.ecoenv.2023.115160] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Triphenyl phosphate (TPHP) has been widely used as flame retardants and been detected with increasing frequency in environment. TPHP can transform into mono-hydroxylated phosphate (OH-TPHP) and diester diphenyl phosphate (DPHP) through biotransformation. So far, information on the cytotoxicity and molecular regulatory mechanisms of TPHP metabolites are still limit. This study investigated the adverse effects of TPHP, OH-TPHP, and DPHP in HepG2 cells in terms of cell proliferation, lactate dehydrogenase release, reactive oxygen species generation, and mitochondrial membrane potential. The transcriptomic changes were measured using RNA sequencing, and bioinformatics characteristics including biological functions, signal pathways and protein-protein interaction were analyzed to explore the potential molecular mechanisms. Results displayed that the order of cytotoxicity was OH-TPHP> TPHP> DPHP. The prioritized biological functions changes induced by TPHP and OH-TPHP were correlated with lipid metabolism. Significant lipid accumulation was observed as confirmed by increased total cholesterol and triglycerides contents, and enhanced oil red O staining. Enrichment of PPARα/γ and down-stream genes suggested the participation of PPARs signal pathway in lipid metabolism disorder. In addition, TPHP and OH-TPHP induced endoplasmic reticulum stress (ERS), which was further confirmed by the ERS inhibitor experiment. In general, TPHP and OH-TPHP had obvious cytotoxic effects in HepG2 cells. PPARs signal pathway and endoplasmic reticulum stress may be involved in the lipid metabolism disorder induced by TPHP and OH-TPHP.
Collapse
Affiliation(s)
- Jing An
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jingjing Jiang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Waner Tang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yufang Zhong
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Guofa Ren
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yu Shang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| |
Collapse
|
11
|
Effect of Pesticides on Peroxisome Proliferator-Activated Receptors (PPARs) and Their Association with Obesity and Diabetes. PPAR Res 2023; 2023:1743289. [PMID: 36875280 PMCID: PMC9984265 DOI: 10.1155/2023/1743289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023] Open
Abstract
Obesity and diabetes mellitus are considered the most important diseases of the XXI century. Recently, many epidemiological studies have linked exposure to pesticides to the development of obesity and type 2 diabetes mellitus. The role of pesticides and their possible influence on the development of these diseases was investigated by examining the relationship between these compounds and one of the major nuclear receptor families controlling lipid and carbohydrate metabolism: the peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ; this was possible through in silico, in vitro, and in vivo assays. The present review aims to show the effect of pesticides on PPARs and their contribution to the changes in energy metabolism that enable the development of obesity and type 2 diabetes mellitus.
Collapse
|
12
|
Zhang W, Song G. A comprehensive analysis-based study of triphenyl phosphate-environmental explanation of glioma progression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114346. [PMID: 36455348 DOI: 10.1016/j.ecoenv.2022.114346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
As BFRs have gradually been banned recently, organophosphorus flame retardants (OPFRs) have been manufactured and used in their place. Although OPFRs are considered the better alternatives to BFRs, many studies have discovered that OPFRs may be associated with various cancers, including prostate cancer, bladder cancer, hepatocellular carcinoma, and colorectal cancer. However, few studies have examined the relationship between OPFRs and gliomas. This study investigated the relationship between triphenyl phosphate (TPP) and glioma using bioinformatics analysis approaches. The comparative toxicogenomics database (CTD) and The Cancer Genome Atlas (TCGA) databases were accessed for TPP-related genes and gene expression data from glioma patients. The Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses show that TPP might be closely related to many pathways. Further, the analysis of protein-protein interactions revealed strong intrinsic relationships between TPP-related genes. In addition, the TPP-based prognostic prediction model demonstrated promising results in predicting the prognosis of patients with gliomas. Several TPP-related genes were closely related to glioma patients' overall survival rates. The proliferation and migration abilities of glioma cells were further demonstrated to be significantly enhanced by TPP. In a bioinformatics analysis, we also discovered that melatonin is highly correlated with the presence of TPP and gliomas. According to the cell proliferation and migration assays, exposure to melatonin and TPP inhibited the ability of glioma cells to invade compared with the TPP group.
Collapse
Affiliation(s)
- Wanyun Zhang
- Guihang Guiyang Hospital, Guiyang 550000, Guizhou Province, China
| | - Guoping Song
- The Fourth People's Hospital of Guiyang, Guiyang 550000, Guizhou Province, China.
| |
Collapse
|
13
|
The Potential Roles of Post-Translational Modifications of PPARγ in Treating Diabetes. Biomolecules 2022; 12:biom12121832. [PMID: 36551260 PMCID: PMC9775095 DOI: 10.3390/biom12121832] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The number of patients with type 2 diabetes mellitus (T2DM), which is mainly characterized by insulin resistance and insulin secretion deficiency, has been soaring in recent years. Accompanied by many other metabolic syndromes, such as cardiovascular diseases, T2DM represents a big challenge to public health and economic development. Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated nuclear receptor that is critical in regulating glucose and lipid metabolism, has been developed as a powerful drug target for T2DM, such as thiazolidinediones (TZDs). Despite thiazolidinediones (TZDs), a class of PPARγ agonists, having been proven to be potent insulin sensitizers, their use is restricted in the treatment of diabetes for their adverse effects. Post-translational modifications (PTMs) have shed light on the selective activation of PPARγ, which shows great potential to circumvent TZDs' side effects while maintaining insulin sensitization. In this review, we will focus on the potential effects of PTMs of PPARγ on treating T2DM in terms of phosphorylation, acetylation, ubiquitination, SUMOylation, O-GlcNAcylation, and S-nitrosylation. A better understanding of PTMs of PPARγ will help to design a new generation of safer compounds targeting PPARγ to treat type 2 diabetes.
Collapse
|
14
|
Jannuzzi AT, Yilmaz Goler AM, Alpertunga B. Ubiquitin proteasomal system is a potential target of the toxic effects of organophosphorus flame retardant triphenyl phosphate. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104005. [PMID: 36367495 DOI: 10.1016/j.etap.2022.104005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The consumption of the widely used flame retardant Triphenyl phosphate (TPP) is increasing. It is now frequently detected in the environment and also domestically. Although the possibility of dermal exposure to TPP is quite high, little is known about its potential molecular toxicity mechanisms. In this study, we found that TPP caused cytotoxicity on human skin keratinocytes (HaCaT) and significantly inhibited the proliferation and cell migration in a concentration-dependent manner. Additionally, HaCaT cells were sensitive to TPP-induced apoptosis. Reactive oxygen species production was induced with TPP, which increased the protein carbonylation and lipid peroxidation levels. Moreover, TPP inhibited proteasome activity and increased the accumulation of ubiquitinated proteins. Exposure to TPP significantly increased the HSP90, HSP70, GRP94 and GRP78 protein levels. Overall, our findings indicate that TPP may pose a risk to human health and contribute to the current understanding of the risks of TPP at the molecular level.
Collapse
Affiliation(s)
- Ayse Tarbin Jannuzzi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| | - Ayse Mine Yilmaz Goler
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Buket Alpertunga
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey; Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Turkey.
| |
Collapse
|
15
|
Valero-Muñoz M, Saw EL, Hekman RM, Blum BC, Hourani Z, Granzier H, Emili A, Sam F. Proteomic and phosphoproteomic profiling in heart failure with preserved ejection fraction (HFpEF). Front Cardiovasc Med 2022; 9:966968. [PMID: 36093146 PMCID: PMC9452734 DOI: 10.3389/fcvm.2022.966968] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Although the prevalence of heart failure with preserved ejection fraction (HFpEF) is increasing, evidence-based therapies for HFpEF remain limited, likely due to an incomplete understanding of this disease. This study sought to identify the cardiac-specific features of protein and phosphoprotein changes in a murine model of HFpEF using mass spectrometry. HFpEF mice demonstrated moderate hypertension, left ventricle (LV) hypertrophy, lung congestion and diastolic dysfunction. Proteomics analysis of the LV tissue showed that 897 proteins were differentially expressed between HFpEF and Sham mice. We observed abundant changes in sarcomeric proteins, mitochondrial-related proteins, and NAD-dependent protein deacetylase sirtuin-3 (SIRT3). Upregulated pathways by GSEA analysis were related to immune modulation and muscle contraction, while downregulated pathways were predominantly related to mitochondrial metabolism. Western blot analysis validated SIRT3 downregulated cardiac expression in HFpEF vs. Sham (0.8 ± 0.0 vs. 1.0 ± 0.0; P < 0.001). Phosphoproteomics analysis showed that 72 phosphosites were differentially regulated between HFpEF and Sham LV. Aberrant phosphorylation patterns mostly occurred in sarcomere proteins and nuclear-localized proteins associated with contractile dysfunction and cardiac hypertrophy. Seven aberrant phosphosites were observed at the z-disk binding region of titin. Additional agarose gel analysis showed that while total titin cardiac expression remained unaltered, its stiffer N2B isoform was significantly increased in HFpEF vs. Sham (0.144 ± 0.01 vs. 0.127 ± 0.01; P < 0.05). In summary, this study demonstrates marked changes in proteins related to mitochondrial metabolism and the cardiac contractile apparatus in HFpEF. We propose that SIRT3 may play a role in perpetuating these changes and may be a target for drug development in HFpEF.
Collapse
Affiliation(s)
- María Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Eng Leng Saw
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Ryan M. Hekman
- Department of Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Cell Biology and Genomics, Boston University, Boston, MA, United States
| | - Benjamin C. Blum
- Department of Biochemistry, Cell Biology and Genomics, Boston University, Boston, MA, United States
- Center for Network Systems Biology, Boston University, Boston, MA, United States
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, United States
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, United States
| | - Andrew Emili
- Department of Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Cell Biology and Genomics, Boston University, Boston, MA, United States
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
16
|
Liu Y, Le Y, Xu M, Wang W, Chen H, Zhang Q, Wang C. Remodeling on adipocytic physiology of organophosphorus esters in mature adipocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119287. [PMID: 35421551 DOI: 10.1016/j.envpol.2022.119287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/16/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The emerging endocrine disruption chemicals organophosphate esters (OPEs) pose high risk of metabolic disruption. However, limited information is available on physiological disturbance of OPEs on adipose, a major endocrine and metabolic organ. In this study, physiological change was investigated after exposing 3T3-L1fully differentiated adipocytes to six OPEs at non-cytotoxic concentrations. We found two chlorinated-OPEs (tris-(2-chloro-1-(chloromethyl) ethyl) phosphate (TDCPP) and tris(2-chloroisopropyl) phosphate (TCPP)) and two alkyl-OPEs (tributyl phosphate (TBP) and tris (2-butoxyethyl) phosphate (TBEP)) induced inflammation-like adipokines (chemoattractant protein 1 and interleukin-6), respectively. Increment of insulin-resistance-related hormones (resistin and leptin) were observed under TDCPP, TCPP, and TBP exposure. Functional and mechanistic investigation revealed that all of the compounds inhibited lipolysis at basal level through dephosphorylated HSLser563, the rate limiting enzyme of lipolysis. Triphenyl phosphate (TPhP), tricresyl phosphate (TCP), TDCPP, TBP and TBEP enhanced glucose uptake at both basal and insulin-stimulated status. We evidenced that impact was independent of the classical pIRSser639/pAKTser473 nor the insulin-independent AMPK pathway. The elevated mRNA of slc2a4 and its transcriptional factor LXRα may, at least partially, explain for the increase of glucose uptake. Given the focus within the endocrine disruption on glands, it would be prudent not to ignore endocrinal impact on adipocytes.
Collapse
Affiliation(s)
- Ying Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Mengting Xu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Wanyue Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Hang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
17
|
Ren Q, Xie X, Zhao C, Wen Q, Pan R, Du Y. 2,2',4,4'-Tetrabromodiphenyl Ether (PBDE 47) Selectively Stimulates Proatherogenic PPARγ Signatures in Human THP-1 Macrophages to Contribute to Foam Cell Formation. Chem Res Toxicol 2022; 35:1023-1035. [PMID: 35575305 DOI: 10.1021/acs.chemrestox.2c00043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (PBDE 47) is one of the most prominent PBDE congeners detected in the human body, suggesting that the potential health risks of PBDE 47 should be thoroughly considered. However, the cardiovascular toxicity of PBDE 47 remains poorly understood. Here, toxic outcomes of PBDE 47 in human THP-1 macrophages concerning foam cell formation, which play crucial roles in the occurrence and development of atherosclerosis, were elucidated. First, our results indicated that PBDE 47 affected the PPARγ pathway most efficiently in THP-1 macrophages by transcriptomic analysis. Second, the PPARγ target genes CD36 and FABP4, responsible for lipid uptake and accumulation in macrophages, were consistently upregulated both at transcriptional and translational levels in THP-1 macrophages upon PBDE 47. Unexpectedly, PBDE 47 failed to activate the PPARγ target gene LXRα and PPARγ-LXRα-ABCA1/G1 cascade, which is activated by the PPARγ full agonist rosiglitazone and enables cholesterol efflux in macrophages. Thus, coincident with the selective upregulation of the PPARγ target genes CD36 and FABP4, PBDE 47, distinct from rosiglitazone, functionally resulted in more lipid accumulation and oxLDL uptake in THP-1 macrophages through high-content analysis (HCA). Moreover, these effects were markedly abrogated by the addition of the PPARγ antagonist T0070907. Mechanistically, the structural basis of selective activation of PPARγ by PBDE 47 was explored by molecular docking and dynamics simulation, which indicated that PBDE 47 interacted with the PPARγ ligand binding domain (PPARγ-LBD) distinctively from that of rosiglitazone. PBDE 47 was revealed to interact with helix 3 and helix 5 but not helix 12 in the PPARγ-LBD. Collectively, these results unraveled the potential cardiovascular toxicity of PBDE 47 by selective activation of PPARγ to facilitate foam cell formation for the first time.
Collapse
Affiliation(s)
- Qidong Ren
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinni Xie
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chuanfang Zhao
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qing Wen
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiying Pan
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
19
|
Völker J, Ashcroft F, Vedøy Å, Zimmermann L, Wagner M. Adipogenic Activity of Chemicals Used in Plastic Consumer Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022. [PMID: 35080176 DOI: 10.1101/2021.07.29.454199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bisphenols and phthalates, chemicals frequently used in plastic products, promote obesity in cell and animal models. However, these well-known metabolism-disrupting chemicals (MDCs) represent only a minute fraction of all compounds found in plastics. To gain a comprehensive understanding of plastics as a source of exposure to MDCs, we characterized the chemicals present in 34 everyday products using nontarget high-resolution mass spectrometry and analyzed their joint adipogenic activities by high-content imaging. We detected 55,300 chemical features and tentatively identified 629 unique compounds, including 11 known MDCs. Importantly, the chemicals extracted from one-third of the products caused murine 3T3-L1 preadipocytes to proliferate, and differentiate into adipocytes, which were larger and contained more triglycerides than those treated with the reference compound rosiglitazone. Because the majority of plastic extracts did not activate the peroxisome proliferator-activated receptor γ and the glucocorticoid receptor, the adipogenic effects are mediated via other mechanisms and, thus, likely to be caused by unknown MDCs. Our study demonstrates that daily-use plastics contain potent mixtures of MDCs and can, therefore, be a relevant yet underestimated environmental factor contributing to obesity.
Collapse
Affiliation(s)
- Johannes Völker
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Felicity Ashcroft
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Åsa Vedøy
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Lisa Zimmermann
- Department of Aquatic Ecotoxicology, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
20
|
The cyclin dependent kinase inhibitor Roscovitine prevents diet-induced metabolic disruption in obese mice. Sci Rep 2021; 11:20365. [PMID: 34645915 PMCID: PMC8514475 DOI: 10.1038/s41598-021-99871-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Most strategies to treat obesity-related disorders have involved prevention of diet-induced weight gain in lean mice. Treatment of obese individuals will require therapies that reverse the detrimental effects of excess body weight. Cyclin-dependent kinases have been shown to contribute to obesity and its adverse complications. Here, we show that roscovitine; a an orally available cyclin-dependent kinase inhibitor; given to male mice during the last six weeks of a 19-week high fat diet, reduced weight gain and prevented accompanying insulin resistance, hepatic steatosis, visceral adipose tissue (eWAT) inflammation/fibrosis as well as restored insulin secretion and enhanced whole body energy expenditure. Proteomics and phosphoproteomics analysis of eWAT demonstrated that roscovitine suppressed expression of peptides and phosphopeptides linked to inflammation and extracellular matrix proteins. It also identified 17 putative protein kinases perturbed by roscovitine, including CMGC kinases, AGC kinases and CAMK kinases. Pathway enrichment analysis showed that lipid metabolism, TCA cycle, fatty acid beta oxidation and creatine biosynthesis are enriched following roscovitine treatment. For brown adipose tissue (BAT), analysis of upstream kinases controlling the phosphoproteome revealed two major kinase groups, AGC and CMGC kinases. Among the top enriched pathways were insulin signaling, regulation of lipolysis in adipocytes, thyroid hormone signaling, thermogenesis and cAMP-PKG signaling. We conclude that roscovitine is effective at preventing prolonged diet-induced metabolic disruption and restoring mitochondrial activity in BAT and eWAT.
Collapse
|
21
|
Kim S, Reed E, Monti S, Schlezinger JJ. A Data-Driven Transcriptional Taxonomy of Adipogenic Chemicals to Identify White and Brite Adipogens. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:77006. [PMID: 34323617 PMCID: PMC8320370 DOI: 10.1289/ehp6886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Chemicals in disparate structural classes activate specific subsets of the transcriptional programs of peroxisome proliferator-activated receptor-γ (PPARγ) to generate adipocytes with distinct phenotypes. OBJECTIVES Our objectives were to a) establish a novel classification method to predict PPARγ ligands and modifying chemicals; and b) create a taxonomy to group chemicals on the basis of their effects on PPARγ's transcriptome and downstream metabolic functions. We tested the hypothesis that environmental adipogens highly ranked by the taxonomy, but segregated from therapeutic PPARγ ligands, would induce white but not brite adipogenesis. METHODS 3T3-L1 cells were differentiated in the presence of 76 chemicals (negative controls, nuclear receptor ligands known to influence adipocyte biology, potential environmental PPARγ ligands). Differentiation was assessed by measuring lipid accumulation. mRNA expression was determined by RNA-sequencing (RNA-Seq) and validated by reverse transcription-quantitative polymerase chain reaction. A novel classification model was developed using an amended random forest procedure. A subset of environmental contaminants identified as strong PPARγ agonists were analyzed by their effects on lipid handling, mitochondrial biogenesis, and cellular respiration in 3T3-L1 cells and human preadipocytes. RESULTS We used lipid accumulation and RNA-Seq data to develop a classification system that a) identified PPARγ agonists; and b) sorted chemicals into likely white or brite adipogens. Expression of Cidec was the most efficacious indicator of strong PPARγ activation. 3T3-L1 cells treated with two known environmental PPARγ ligands, tetrabromobisphenol A and triphenyl phosphate, which sorted distinctly from therapeutic ligands, had higher expression of white adipocyte genes but no difference in Pgc1a and Ucp1 expression, and higher fatty acid uptake but not mitochondrial biogenesis. Moreover, cells treated with two chemicals identified as highly ranked PPARγ agonists, tonalide and quinoxyfen, induced white adipogenesis without the concomitant health-promoting characteristics of brite adipocytes in mouse and human preadipocytes. DISCUSSION A novel classification procedure accurately identified environmental chemicals as PPARγ ligands distinct from known PPARγ-activating therapeutics. CONCLUSION The computational and experimental framework has general applicability to the classification of as-yet uncharacterized chemicals. https://doi.org/10.1289/EHP6886.
Collapse
Affiliation(s)
- Stephanie Kim
- Boston University Superfund Research Program, Boston University, Massachusetts, USA
- Department of Environmental Health, Boston University School of Public Health, Massachusetts, USA
| | - Eric Reed
- Boston University Superfund Research Program, Boston University, Massachusetts, USA
- Section of Computational Biomedicine, Boston University School of Medicine, Massachusetts, USA
- Boston University Bioinformatics Program, Boston University, Massachusetts, USA
| | - Stefano Monti
- Boston University Superfund Research Program, Boston University, Massachusetts, USA
- Section of Computational Biomedicine, Boston University School of Medicine, Massachusetts, USA
- Boston University Bioinformatics Program, Boston University, Massachusetts, USA
| | - Jennifer J. Schlezinger
- Boston University Superfund Research Program, Boston University, Massachusetts, USA
- Department of Environmental Health, Boston University School of Public Health, Massachusetts, USA
| |
Collapse
|
22
|
Wang Y, Hong J, Shi M, Guo L, Liu L, Tang H, Liu X. Triphenyl phosphate disturbs the lipidome and induces endoplasmic reticulum stress and apoptosis in JEG-3 cells. CHEMOSPHERE 2021; 275:129978. [PMID: 33662732 DOI: 10.1016/j.chemosphere.2021.129978] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/31/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Triphenyl phosphate (TPP) is a frequently used aryl organophosphate flame retardant. Epidemiological studies have shown that TPP and its metabolite diphenyl phosphate (DPP) can accumulate in the placenta, and positively correlated with abnormal birth outcomes. TPP can disturb placental hormone secretion through the peroxisome proliferator-activated receptor γ (PPARγ) pathway. However, the extent and mechanism of placental toxicity mediation by TPP remains unknown. In this study, we used JEG-3 cells to investigate the role of PPARγ-regulated lipid metabolism in TPP-mediated placental toxicity. The results of lipidomic analysis showed that TPP increased the production of triglycerides (TG), fatty acids (FAs), and phosphatidic acid (PA), but decreased the levels of phosphatidylethanol (PE), phosphatidylserine (PS), and sphingomyelin (SM). TG accumulation was accompanied by increased levels of sterol regulatory element binding transcription factor 1 (SREBP1), acetyl-coA carboxylase (ACC), and fatty acid transport protein (CD36). Although PPARγ and its target CCAAT/enhancer binding proteins (C/EBPα) was decreased, the TG content and gene expression of SREBP1, ACC, and CD36 decreased when TPP was co-exposed to the PPARγ antagonist GW9662. TPP also induced inflammatory responses, endoplasmic reticulum stress (ERS), and cell apoptosis. Expression of genes related to ERS and apoptosis were attenuated by GW9662. Together, these results show that TPP can disturb lipid metabolism and cause lipid accumulation through PPARγ, induce ERS, and cell apoptosis. Our findings reveal that the developmental toxicity of TPP through placental toxicity should not be ignored.
Collapse
Affiliation(s)
- Yao Wang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Jiabin Hong
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Ming Shi
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Lianxian Guo
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Linhua Liu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Huanwen Tang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China.
| | - Xiaoshan Liu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China.
| |
Collapse
|