1
|
Witt KL, van Benthem J, Kobets T, Chen G, Kelber O, Krzykwa J, MacGregor JT, Mei N, Mitchell CA, Rietjens I, Sarigol-Kilic Z, Smith-Roe SL, Stopper H, Thakkar Y, Zeiger E, Pfuhler S. A proposed screening strategy for evaluating the genotoxicity potential of botanicals and botanical extracts. Food Chem Toxicol 2025; 197:115277. [PMID: 39855614 DOI: 10.1016/j.fct.2025.115277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Botanicals have long been used to promote health and treat diseases, but the safety of many currently marketed botanicals has not been adequately evaluated. Given the chemical complexity of botanicals, which often contain numerous unknown constituents, and their widespread use, comprehensive toxicity assessments are needed. The Botanical Safety Consortium was established to address this challenge. This international group of experts in toxicology, chemistry, bioinformatics, and pharmacognosy is developing a toolkit of assays to generate reliable toxicological profiles for botanicals. Genotoxicity assessment is especially critical, because, unlike other toxicities, genotoxicity is not adequately identified by adverse event and history-of-use reports, and genotoxicity is directly linked to health consequences such as cancer and birth defects. The Consortium's Genotoxicity Technical Working Group is exploring a genotoxicity testing strategy based on the use of in silico modeling and the bacterial reverse mutation and in vitro micronucleus assays and including several options for additional tests to further characterize genotoxicity and mode of action when indicated. The effectiveness of this testing strategy is being evaluated using 13 well-characterized botanicals with existing toxicological data as case studies. A brief overview of each of these 13 botanicals is provided. The final strategy for developing comprehensive genotoxicity profiles of botanicals will incorporate published genotoxicity data, chemical composition information, in silico and in vitro test data, and human exposure data, reducing the need for animal testing.
Collapse
Affiliation(s)
- Kristine L Witt
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jan van Benthem
- National Institute for Public Health and the Environment (RIVM), Beethoven, the Netherlands
| | - Tetyana Kobets
- Department of Pathology, New York Medical College, Valhalla, NY, 10595, USA
| | - Guosheng Chen
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Olaf Kelber
- Bayer Consumer Health, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Julie Krzykwa
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | | | - Ivonne Rietjens
- Division of Toxicology, Wageningen University, Wageningen, the Netherlands
| | | | - Stephanie L Smith-Roe
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Yax Thakkar
- Research Institute for Fragrance Materials, Inc., Woodcliff Lake, NJ, USA
| | | | | |
Collapse
|
2
|
Tecchio KB, Alves FDM, Alves JD, Barbosa CDS, Salgado MAR, Santos VJDSVD, Varotti FDP, Campos-Junior PHDA, Viana GHR, Santos FVD. Evaluation of the in vivo acute toxicity and in vitro genotoxicity and mutagenicity of synthetic β-carboline alkaloids with selective cytotoxic activity against ovarian and breast cancer cell lines. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 899:503808. [PMID: 39326936 DOI: 10.1016/j.mrgentox.2024.503808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 09/28/2024]
Abstract
The aim of this study was to evaluate the in vitro cytotoxic, genotoxic, and mutagenic potential and to determine the in silico ADME parameters of two synthetic β-carboline alkaloids developed as prototypes of antitumor agents (NQBio-06 and NQBio-21). Additionally, acute toxicity of the compounds was evaluated in mice. The results from the MTT assay showed that NQBio-06 presented higher cytotoxicity in the ovarian cancer cell line TOV-21 G (IC50 = 2.5 µM, selectivity index = 23.7). NQBio-21 presented an IC50 of 6.9 µM and a selectivity index of 14.5 against MDA-MB-231 breast cancer cells. Comet assay results showed that NQBio-06 did not induce chromosomal breaks in vitro, but NQBio-21 was genotoxic with and without metabolic activation (S9 fraction). Micronucleus assay showed that both compounds were mutagenic. In addition, metabolic activation enhanced this effect in vitro. The in silico predictions showed that the compounds met the criteria set by Lipinski's rules, had strong prediction for intestinal absorption, and were possible substrates for P-glycoprotein. The in vivo results demonstrated that both the compounds exhibited low acute toxicity. These results suggest that the mechanisms underlying the cytotoxicity of NQBio-06 and NQBio-21 are related to DNA damage induction and that the use of S9 enhanced these effects. In vivo analysis showed signs of toxicity after a single administration of the compounds in mice. These findings highlight the potential of β-carboline compounds as sources for the development of new anticancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Kimberly Brito Tecchio
- Laboratório de Biologia Celular e Mutagênese (LaBCeM), Universidade Federal de São João del Rei (UFSJ), Campus Centro Oeste, Divinópolis, MG 35501-296, Brazil; Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Campus Centro Oeste, Divinópolis, MG 35501-296, Brazil
| | - Fernanda de Moura Alves
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Campus Centro Oeste, Divinópolis, MG 35501-296, Brazil
| | - Janaina Domingas Alves
- Laboratório de Pesquisa em Reprodução, Departamento de Ciências Naturais, Universidade Federal de São João del Rei, Campus Dom Bosco, São João del-Rei, MG 36301-160, Brazil
| | - Camila de Souza Barbosa
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Campus Centro Oeste, Divinópolis, MG 35501-296, Brazil
| | - Mariana Alves Rezende Salgado
- Laboratório de Biologia Celular e Mutagênese (LaBCeM), Universidade Federal de São João del Rei (UFSJ), Campus Centro Oeste, Divinópolis, MG 35501-296, Brazil
| | - Vanessa Jaqueline da Silva Vieira Dos Santos
- Laboratório de Biologia Celular e Mutagênese (LaBCeM), Universidade Federal de São João del Rei (UFSJ), Campus Centro Oeste, Divinópolis, MG 35501-296, Brazil; Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Campus Centro Oeste, Divinópolis, MG 35501-296, Brazil
| | - Fernando de Pilla Varotti
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Campus Centro Oeste, Divinópolis, MG 35501-296, Brazil
| | - Paulo Henrique de Almeida Campos-Junior
- Laboratório de Pesquisa em Reprodução, Departamento de Ciências Naturais, Universidade Federal de São João del Rei, Campus Dom Bosco, São João del-Rei, MG 36301-160, Brazil
| | - Gustavo Henrique Ribeiro Viana
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Campus Centro Oeste, Divinópolis, MG 35501-296, Brazil
| | - Fabio Vieira Dos Santos
- Laboratório de Biologia Celular e Mutagênese (LaBCeM), Universidade Federal de São João del Rei (UFSJ), Campus Centro Oeste, Divinópolis, MG 35501-296, Brazil; Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João del Rei (UFSJ), Campus Centro Oeste, Divinópolis, MG 35501-296, Brazil.
| |
Collapse
|
3
|
Collia M, Møller P, Langie SAS, Vettorazzi A, Azqueta A. Further development of CometChip technology to measure DNA damage in vitro and in vivo: Comparison with the 2 gels/slide format of the standard and enzyme-modified comet assay. Toxicology 2024; 501:153690. [PMID: 38040084 DOI: 10.1016/j.tox.2023.153690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
DNA damage plays a pivotal role in carcinogenesis and other diseases. The comet assay has been used for more than three decades to measure DNA damages. The 1-2 gels/slide format is the most used version of the assay. In 2010, a high throughput 96 macrowell format with a spatially encoded array of microwells patterned in agarose was developed, called the CometChip. The commercial version (CometChip®) has been used for the in vitro standard version of the comet assay (following the manufacturer's protocol), although it has not been compared directly with the 2 gels/slide format. The aim of this work is to developed new protocols to allow use of DNA repair enzymes as well as the analysis of in vivo frozen tissue samples in the CometChip®, to increase the throughput, and to compare its performance with the classic 2 gels/slide format. We adapted the manufacturer's protocol to allow the use of snap frozen tissue samples, using male Wistar rats orally dosed with methyl methanesulfonate (MMS, 200 mg/kg b.w.), and to detect altered nucleobases using DNA repair enzymes, with TK6 cells treated with potassium bromate (KBrO3, 0-4 mM, 3 h) and formamidopyrimidine DNA glycosylase (Fpg) as the enzyme. Regarding the standard version of the comet, we performed thee comparison of the 2 gel/slide and CometChip® format (using the the manufacturer's protocol), using TK6 cells with MMS (100-800 µM, 1 h) and hydrogen peroxide (H2O2, 7.7-122.5 µM, 5 min) as testing compounds. In all cases the CometChip® was performed along with the 2 gels/slide format. Results obtained were comparable and the CometChip® is a good alternative to the 2 gels/slide format when a higher throughput is required.
Collapse
Affiliation(s)
- Miguel Collia
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Sabine A S Langie
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Ariane Vettorazzi
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Amaya Azqueta
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.
| |
Collapse
|
4
|
Pehlivan ÖC, Cavuşoğlu K, Yalçin E, Acar A. In silico interactions and deep neural network modeling for toxicity profile of methyl methanesulfonate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117952-117969. [PMID: 37874518 DOI: 10.1007/s11356-023-30465-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
In this study, the toxicity induced by the alkylating agent methyl methanesulfonate (MMS) in Allium cepa L. was investigated. For this aim, bulbs were divided into 4 groups as control and application (100, 500 and 4000 µM MMS) and germinated for 72 h at 22-24 °C. At the end of the germination period root tips were collected and made ready for analysis by applying traditional preparation methods. Germination, root elongation, weight, mitotic index (MI) values, micronucleus (MN) and chromosomal abnormality (CAs) numbers, malondialdehyde (MDA) levels, superoxide dismutase (SOD) and catalase (CAT) activities and anatomical structures of bulbs were used as indicators to determine toxicity. Moreover the extent of DNA fragmentation induced by MMS was determined by comet assay. To confirm the DNA fragmentation induced by MMS, the DNA-MMS interaction was examined with molecular docking. Correlation and principal component analyses (PCA) were performed to examine the relationship between all parameters and understand the underlying structure and relationships among these parameters. In the present study, a deep neural network (DNN) with two hidden layers implemented in Matlab has been developed for the comparison of the estimated data with the real data. The effect of MDA levels, SOD and CAT activities at 4 different endpoints resulting from administration of various concentrations of MMS, including MN, MI, CAs and DNA damage, was attempted to be estimated by DNN model. It is assumed that the predicted results are in close agreement with the actual data. The effectiveness of the model was evaluated using 4 different metrics, MAE, MAPE, RMSE and R2, which together show that the model performs commendably. As a result, the highest germination, root elongation, weight gain and MI were measured in the control group. MMS application caused a decrease in all physiological parameters and an increase in cytogenetic (except MI) and biochemical parameters. MMS application caused an increase in antioxidant enzyme levels (SOD and CAT) up to a concentration of 500 µM and a decrease at 4000 µM. MMS application induced different types of CAs and anatomical damages in root meristem cells. The results of the comet assay showed that the severity of DNA fragmentation increased with increasing MMS concentration. Molecular docking analysis showed a strong DNA-MMS interaction. The results of correlation and PCA revealed significant positive and negative interactions between the studied parameters and confirmed the interactions of these parameters with MMS. It has been shown that the DNN model developed in this study is a valuable resource for predicting genotoxicity due to oxidative stress and lipid peroxidation. In addition, this model has the potential to help evaluate the genotoxicity status of various chemical compounds. At the end of the study, it was concluded that MMS strongly supports a versatile toxicity in plant cells and the selected parameters are suitable indicators for determining this toxicity.
Collapse
Affiliation(s)
- Ömer Can Pehlivan
- Department of Biology, Institute of Science, Giresun University, Giresun, Türkiye
| | - Kültiğin Cavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Türkiye.
| | - Emine Yalçin
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Türkiye
| | - Ali Acar
- Department of Medical Services and Techniques, Vocational School of Health Services, Giresun University, Giresun, Türkiye
| |
Collapse
|
5
|
Møller P, Azqueta A, Rodriguez-Garraus A, Bakuradze T, Richling E, Bankoglu EE, Stopper H, Claudino Bastos V, Langie SAS, Jensen A, Ristori S, Scavone F, Giovannelli L, Wojewódzka M, Kruszewski M, Valdiglesias V, Laffon B, Costa C, Costa S, Paulo Teixeira J, Marino M, Del Bo' C, Riso P, Zheng C, Shaposhnikov S, Collins A. Long-term cryopreservation of potassium bromate positive assay controls for measurement of oxidatively damaged DNA by the Fpg-modified comet assay: results from the hCOMET ring trial. Mutagenesis 2023; 38:264-272. [PMID: 37357815 DOI: 10.1093/mutage/gead020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023] Open
Abstract
The formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay is widely used for the measurement of oxidatively generated damage to DNA. However, there has not been a recommended long-term positive control for this version of the comet assay. We have investigated potassium bromate as a positive control for the Fpg-modified comet assay because it generates many Fpg-sensitive sites with a little concurrent generation of DNA strand breaks. Eight laboratories used the same procedure for the treatment of monocytic THP-1 cells with potassium bromate (0, 0.5, 1.5, and 4.5 mM) and subsequent cryopreservation in a freezing medium consisting of 50% foetal bovine serum, 40% RPMI-1640 medium, and 10% dimethyl sulphoxide. The samples were analysed by the Fpg-modified comet assay three times over a 3-year period. All laboratories obtained a positive concentration-response relationship in cryopreserved samples (linear regression coefficients ranging from 0.79 to 0.99). However, there was a wide difference in the levels of Fpg-sensitive sites between the laboratory with the lowest (4.2% Tail DNA) and highest (74% Tail DNA) values in THP-1 cells after exposure to 4.5 mM KBrO3. In an attempt to assess sources of inter-laboratory variation in Fpg-sensitive sites, comet images from one experiment in each laboratory were forwarded to a central laboratory for visual scoring. There was high consistency between measurements of %Tail DNA values in each laboratory and the visual score of the same comets done in the central laboratory (r = 0.98, P < 0.001, linear regression). In conclusion, the results show that potassium bromate is a suitable positive comet assay control.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31009 Pamplona, Spain
| | - Adriana Rodriguez-Garraus
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31009 Pamplona, Spain
| | - Tamara Bakuradze
- Food Chemistry and Toxicology, Department of Chemistry, Rhineland-Palatinate Technical University Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Elke Richling
- Food Chemistry and Toxicology, Department of Chemistry, Rhineland-Palatinate Technical University Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, D-67663 Kaiserslautern, Germany
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Str. 9, 97078 Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Str. 9, 97078 Wuerzburg, Germany
| | - Victoria Claudino Bastos
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Sabine A S Langie
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Annie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Sara Ristori
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), Section Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Francesca Scavone
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), Section Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lisa Giovannelli
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), Section Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Maria Wojewódzka
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 01-310 Warsaw, Poland
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 01-310 Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Vanessa Valdiglesias
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía - CICA, Departamento de Biología, A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
- Universidade da Coruña, Grupo DICOMOSA, Centro Interdisciplinar de Química e Bioloxía - CICA, Departamento de Psicología, A Coruña, Spain
| | - Carla Costa
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Solange Costa
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, Porto, Portugal
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy
| | - Congying Zheng
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
- Department of Nutrition, University of Oslo, Norway
| | | | - Andrew Collins
- Department of Nutrition, University of Oslo, Norway
- NorGenotech AS, Oslo, Norway
| |
Collapse
|
6
|
Audebert M, Assmann AS, Azqueta A, Babica P, Benfenati E, Bortoli S, Bouwman P, Braeuning A, Burgdorf T, Coumoul X, Debizet K, Dusinska M, Ertych N, Fahrer J, Fetz V, Le Hégarat L, López de Cerain A, Heusinkveld HJ, Hogeveen K, Jacobs MN, Luijten M, Raitano G, Recoules C, Rundén-Pran E, Saleh M, Sovadinová I, Stampar M, Thibol L, Tomkiewicz C, Vettorazzi A, Van de Water B, El Yamani N, Zegura B, Oelgeschläger M. New approach methodologies to facilitate and improve the hazard assessment of non-genotoxic carcinogens-a PARC project. FRONTIERS IN TOXICOLOGY 2023; 5:1220998. [PMID: 37492623 PMCID: PMC10364052 DOI: 10.3389/ftox.2023.1220998] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Carcinogenic chemicals, or their metabolites, can be classified as genotoxic or non-genotoxic carcinogens (NGTxCs). Genotoxic compounds induce DNA damage, which can be detected by an established in vitro and in vivo battery of genotoxicity assays. For NGTxCs, DNA is not the primary target, and the possible modes of action (MoA) of NGTxCs are much more diverse than those of genotoxic compounds, and there is no specific in vitro assay for detecting NGTxCs. Therefore, the evaluation of the carcinogenic potential is still dependent on long-term studies in rodents. This 2-year bioassay, mainly applied for testing agrochemicals and pharmaceuticals, is time-consuming, costly and requires very high numbers of animals. More importantly, its relevance for human risk assessment is questionable due to the limited predictivity for human cancer risk, especially with regard to NGTxCs. Thus, there is an urgent need for a transition to new approach methodologies (NAMs), integrating human-relevant in vitro assays and in silico tools that better exploit the current knowledge of the multiple processes involved in carcinogenesis into a modern safety assessment toolbox. Here, we describe an integrative project that aims to use a variety of novel approaches to detect the carcinogenic potential of NGTxCs based on different mechanisms and pathways involved in carcinogenesis. The aim of this project is to contribute suitable assays for the safety assessment toolbox for an efficient and improved, internationally recognized hazard assessment of NGTxCs, and ultimately to contribute to reliable mechanism-based next-generation risk assessment for chemical carcinogens.
Collapse
Affiliation(s)
- Marc Audebert
- INRAE: Toxalim, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Ann-Sophie Assmann
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, UNAV: University of Navarra, Pamplona, Spain
| | - Pavel Babica
- RECETOX: RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Emilio Benfenati
- IRFMN: Istituto di Ricerche Farmacologiche Mario Negri—IRCCS, Milan, Italy
| | - Sylvie Bortoli
- INSERM: INSERM UMR-S 1124 T3S—Université Paris Cité, Paris, France
| | - Peter Bouwman
- UL-LACDR: Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Albert Braeuning
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| | - Tanja Burgdorf
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| | - Xavier Coumoul
- INSERM: INSERM UMR-S 1124 T3S—Université Paris Cité, Paris, France
| | - Kloé Debizet
- INSERM: INSERM UMR-S 1124 T3S—Université Paris Cité, Paris, France
| | - Maria Dusinska
- Health Effects Laboratory, NILU: The Climate and Environmental Research Institute, Kjeller, Norway
| | - Norman Ertych
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jörg Fahrer
- Department of Chemistry, RPTU: Division of Food Chemistry and Toxicology, Kaiserslautern, Germany
| | - Verena Fetz
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| | - Ludovic Le Hégarat
- ANSES: French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, UNAV: University of Navarra, Pamplona, Spain
| | - Harm J. Heusinkveld
- RIVM: National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Kevin Hogeveen
- ANSES: French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Miriam N. Jacobs
- Radiation, Chemical and Environmental Hazards, UKHSA: UK Health Security Agency, Chilton, Oxfordshire, United Kingdom
| | - Mirjam Luijten
- RIVM: National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Giuseppa Raitano
- IRFMN: Istituto di Ricerche Farmacologiche Mario Negri—IRCCS, Milan, Italy
| | - Cynthia Recoules
- INRAE: Toxalim, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Elise Rundén-Pran
- Health Effects Laboratory, NILU: The Climate and Environmental Research Institute, Kjeller, Norway
| | - Mariam Saleh
- ANSES: French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Iva Sovadinová
- RECETOX: RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martina Stampar
- Department of Genetic Toxicology and Cancer Biology, NIB: National Institute of Biology, Ljubljana, Slovenia
| | - Lea Thibol
- Department of Chemistry, RPTU: Division of Food Chemistry and Toxicology, Kaiserslautern, Germany
| | | | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, School of Pharmacy and Nutrition, UNAV: University of Navarra, Pamplona, Spain
| | - Bob Van de Water
- UL-LACDR: Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Naouale El Yamani
- Health Effects Laboratory, NILU: The Climate and Environmental Research Institute, Kjeller, Norway
| | - Bojana Zegura
- Department of Genetic Toxicology and Cancer Biology, NIB: National Institute of Biology, Ljubljana, Slovenia
| | - Michael Oelgeschläger
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R) and Department Food Safety, BfR: German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
7
|
Barbé L, Lam S, Holub A, Faghihmonzavi Z, Deng M, Iyer R, Finkbeiner S. AutoComet: A fully automated algorithm to quickly and accurately analyze comet assays. Redox Biol 2023; 62:102680. [PMID: 37001328 PMCID: PMC10090439 DOI: 10.1016/j.redox.2023.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 04/16/2023] Open
Abstract
DNA damage is a common cellular feature seen in cancer and neurodegenerative disease, but fast and accurate methods for quantifying DNA damage are lacking. Comet assays are a biochemical tool to measure DNA damage based on the migration of broken DNA strands towards a positive electrode, which creates a quantifiable 'tail' behind the cell. However, a major limitation of this approach is the time needed for analysis of comets in the images with available open-source algorithms. The requirement for manual curation and the laborious pre- and post-processing steps can take hours to days. To overcome these limitations, we developed AutoComet, a new open-source algorithm for comet analysis that utilizes automated comet segmentation and quantification of tail parameters. AutoComet first segments and filters comets based on size and intensity and then filters out comets without a well-connected head and tail, which significantly increases segmentation accuracy. Because AutoComet is fully automated, it minimizes curator bias and is scalable, decreasing analysis time over ten-fold, to less than 3 s per comet. AutoComet successfully detected statistically significant differences in tail parameters between cells with and without induced DNA damage, and was more comparable to the results of manual curation than other open-source software analysis programs. We conclude that the AutoComet algorithm provides a fast, unbiased and accurate method to quantify DNA damage that avoids the inherent limitations of manual curation and will significantly improve the ability to detect DNA damage.
Collapse
Affiliation(s)
- Lise Barbé
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Stephanie Lam
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Austin Holub
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Zohreh Faghihmonzavi
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Minnie Deng
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Rajshri Iyer
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA; Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
8
|
Zhang G, Huang L, Feng M, Zhang T, Gao Y, Yao Y, Li S, Li X, Lin Y. Nano shield: a new tetrahedral framework nucleic acids-based solution to radiation-induced mucositis. NANOSCALE 2023; 15:7877-7893. [PMID: 37060124 DOI: 10.1039/d2nr07174f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Radiation-induced oral mucositis (RIOM) is considered to be one of the most important public health problems today, affecting the overall well-being of millions of patients who have received radiotherapy. Nevertheless, the field of preventing and treating RIOM is still widely unexplored. Curcumin (Cur) with its promising anti-inflammatory and antioxidant properties is accompanied with obstacles in application, including poor dissolubility, instability and low bioavailability. In this study, a tetrahedral framework nucleic acid drug delivery system (TFNAS) was synthesized and established using a novel method to carry Cur (Cur-TFNAS) for efficient drug delivery. The results showed that Cur-TFNAS enhanced the antioxidant capacity of human oral mucosal keratin-forming cells (HOKs) compared to free Cur and TFNAS. Meanwhile, Cur-TFNAS reduced DNA damage and shielded the cells from inflammatory factors. A similar result was also well documented in vivo. Herein, we consider that Cur-TFNAS acts as a nano-shield for preventing radiation oral mucositis and shows important clinical value in the future.
Collapse
Affiliation(s)
- Geru Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.
| | - Liwei Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.
| | - Maogeng Feng
- The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.
| | - Yang Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.
| | - Yangxue Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
9
|
Nguyen H, Segers S, Ledent M, Anthonissen R, Verschaeve L, Hinsenkamp M, Collard JF, Feipel V, Mertens B. Effects of long-term exposure to 50 Hz magnetic fields on cell viability, genetic damage, and sensitivity to mutagen-induced damage. Heliyon 2023; 9:e14097. [PMID: 36923833 PMCID: PMC10008985 DOI: 10.1016/j.heliyon.2023.e14097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Until today, it remains controversial whether long-term exposure to extremely low-frequency magnetic fields (ELF-MF) below the legislative exposure limits could result in adverse human health effects. In the present study, the effects of long-term in vitro MF exposure on three different study endpoints (cell viability, genetic damage, and sensitivity to damage induced by known mutagens) were investigated in the human B lymphoblastoid (TK6) cell line. Cells were exposed to 50 Hz MF at three selected magnetic flux densities (i.e., 10, 100, and 500 μT) for different exposure periods ranging from 96h up to 6 weeks. Cell viability following MF exposure was assessed using the ATP-based cell viability assay. Effects of MF exposure on cell genetic damage and cell sensitivity to mutagen-induced damage were evaluated using the in vitro alkaline comet assay and the in vitro cytokinesis block micronucleus assay. The results showed that long-term exposure up to 96h to 50 Hz MF at all tested flux densities could significantly increase TK6 cell viability. In contrast, long-term MF exposure did not affect cell genetic damage, and long-term pre-exposure to MF did not change cell sensitivity to damage induced by known mutagens. At certain time points, statistically significant difference in genotoxicity test results were observed between the MF-exposed cells and the control cells. However, these observations could not be confirmed in the repeat experiments, indicating that they are probably not biologically significant.
Collapse
Affiliation(s)
- Ha Nguyen
- Scientific Direction Chemical and Physical Health Risks, Sciensano, 1050 Ixelles, Belgium.,Faculty of Medicine, Universite Libre de Bruxelles, 1070 Brussels, Belgium
| | - Seppe Segers
- Scientific Direction Chemical and Physical Health Risks, Sciensano, 1050 Ixelles, Belgium
| | - Maryse Ledent
- Scientific Direction Chemical and Physical Health Risks, Sciensano, 1050 Ixelles, Belgium
| | - Roel Anthonissen
- Scientific Direction Chemical and Physical Health Risks, Sciensano, 1050 Ixelles, Belgium
| | - Luc Verschaeve
- Scientific Direction Chemical and Physical Health Risks, Sciensano, 1050 Ixelles, Belgium
| | - Maurice Hinsenkamp
- Faculty of Medicine, Universite Libre de Bruxelles, 1070 Brussels, Belgium
| | | | - Veronique Feipel
- Faculty of Medicine, Universite Libre de Bruxelles, 1070 Brussels, Belgium
| | - Birgit Mertens
- Scientific Direction Chemical and Physical Health Risks, Sciensano, 1050 Ixelles, Belgium
| |
Collapse
|
10
|
Cebadero-Dominguez Ó, Medrano-Padial C, Puerto M, Sánchez-Ballester S, Cameán AM, Jos Á. Genotoxicity evaluation of graphene derivatives by a battery of in vitro assays. Chem Biol Interact 2023; 372:110367. [PMID: 36706891 DOI: 10.1016/j.cbi.2023.110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
The interest of graphene materials has increased markedly in the recent years for their promising applications in many fields as food packing. These new applications have caused some concern regarding their safety for consumers since the intake of these materials may increase. In this sense, a battery of in vitro test is required before its use as a food contact material. Then, the aim of this study was to assess the potential mutagenicity and genotoxicity of graphene oxide (GO) and reduced-graphene oxide (rGO) following the recommendations of the European Food Safety Authority (EFSA). Thus, the mouse lymphoma assay (MLA) and the micronucleus test (MN) were performed in L5178YTk ± cells, and the Caco-2 cells were used for the standard and modified comet assays. The results indicated that GO (0-250 μg/mL) was not mutagenic in the MLA. However, rGO revealed mutagenic activity from 250 μg/mL and 125 μg/mL after 4h and 24h of exposure, respectively. In the MN test, negative results were obtained for both compounds at the concentrations assayed (0-250 μg/mL) for GO/rGO. Moreover, no DNA strand breaks, or oxidative DNA damage were detected in Caco-2 cells exposed to GO (0-250 μg/mL) and rGO (0-176.3 μg/mL for 24h and 0-166.5 μg/mL for 48h). Considering the mutagenic potential of rGO observed further investigation is needed to describe its toxic profile.
Collapse
Affiliation(s)
- Óscar Cebadero-Dominguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Professor García González n°2, 41012, Seville, Spain
| | - Concepción Medrano-Padial
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Professor García González n°2, 41012, Seville, Spain
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Professor García González n°2, 41012, Seville, Spain.
| | - Soraya Sánchez-Ballester
- Packaging, Transport and Logistic Research Institute, Albert Einstein 1. Paterna, 46980, Valencia, Spain
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Professor García González n°2, 41012, Seville, Spain
| | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Professor García González n°2, 41012, Seville, Spain
| |
Collapse
|
11
|
Lim C, Shin K, Seo D. Genotoxicity study of 2-methoxyethanol and benzalkonium chloride through Comet assay using 3D cultured HepG2 cells. Environ Anal Health Toxicol 2022; 37:e2022031-0. [PMID: 36916044 PMCID: PMC10014747 DOI: 10.5620/eaht.2022031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Though the key data in identifying carcinogenicity is experience in human, long-term carcinogenicity tests using experimental animals are more realistic. Because carcinogenicity tests require much time and cost, performing the test is minimized through pre-screening. Recently, as bioethics has been strengthened, it is required to minimize animal testing in screening tests as well as carcinogenicity tests. The replacement of the micronucleus assay in experimental animal is the beginning, and the ultimate goal is to replace the carcinogenicity test using experimental animals. The micronucleus assay and the comet assay in 3D culture system of human-derived cells is considered as the most applicable practical measures at this stage. This study was conducted to provide more diverse information in the evaluation of carcinogenicity by establishing the comet test method in a three-dimensional cell culture system. In this study, HepG2 cells were cultured for 4 days in hang-in drop method, and then cultured for 7 days on a low adhesion plate to prepare spheroids. The methods were confirmed by d-mannitol (negative control), ethylmethane sulfonate (positive control), and cyclophosphamide (positive control for metabolite). 2-methoxyethanol and benzalkonium chloride were selected as test substances. Though 2-methoxyethanol is positive in in vivo comet assay and in vitro mammalian chromosome aberration test, it is considered negative in the comprehensive genotoxicity evaluation based on negative in bacterial reverse mutation assay, in vitro mammalian cell gene mutation test and mammalian chromosome aberration test. Benzalkonium chloride has been questioned on carcinogenicity because it is a disinfectant ingredient that has become a social issue in Korea. As a result of the Comet assay for 2-methoxyethanol and benzalkonium chloride in the cultured HepG2 cell line, 2-methoxyethanol was evaluated as positive in the metabolic activation system, but benzalkonium chloride was evaluated as negative in both the presence and absence of the metabolic activation system. Therefore, in order to clarify the carcinogenic potential of 2-methoxyethanol, it is judged that additional studies based on mechanistic studies are needed.
Collapse
Affiliation(s)
- Cheolhong Lim
- Toxicological Study Department, Occupational Safety and Health Research Institute, KOSHA,
Korea
| | - Kyungmin Shin
- Toxicological Study Department, Occupational Safety and Health Research Institute, KOSHA,
Korea
| | - Dongseok Seo
- Toxicological Study Department, Occupational Safety and Health Research Institute, KOSHA,
Korea
| |
Collapse
|
12
|
Lorenzo-López L, Lema-Arranz C, Fernández-Bertólez N, Costa S, Costa C, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Relationship between DNA damage measured by the comet-assay and cognitive function. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 883-884:503557. [DOI: 10.1016/j.mrgentox.2022.503557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
|
13
|
Azqueta A, Stopper H, Zegura B, Dusinska M, Møller P. Do cytotoxicity and cell death cause false positive results in the in vitro comet assay? MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503520. [PMID: 36031332 DOI: 10.1016/j.mrgentox.2022.503520] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
The comet assay is used to measure DNA damage induced by chemical and physical agents. High concentrations of test agents may cause cytotoxicity or cell death, which may give rise to false positive results in the comet assay. Systematic studies on genotoxins and cytotoxins (i.e. non-genotoxic poisons) have attempted to establish a threshold of cytotoxicity or cell death by which DNA damage results measured by the comet assay could be regarded as a false positive result. Thresholds of cytotoxicity/cell death range from 20% to 50% in various publications. Curiously, a survey of the latest literature on comet assay results from cell culture studies suggests that one-third of publications did not assess cytotoxicity or cell death. We recommend that it should be mandatory to include results from at least one type of assay on cytotoxicity, cell death or cell proliferation in publications on comet assay results. A combination of cytotoxicity (or cell death) and proliferation (or colony forming efficiency assay) is preferable in actively proliferating cells because it covers more mechanisms of action. Applying a general threshold of cytotoxicity/cell death to all types of agents may not be applicable; however, 25% compared to the concurrent negative control seems to be a good starting value to avoid false positive comet assay results. Further research is needed to establish a threshold value to distinguish between true and potentially false positive genotoxic effects detected by the comet assay.
Collapse
Affiliation(s)
- Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31009 Pamplona, Spain and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | - Bojana Zegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen, Denmark
| |
Collapse
|
14
|
Li T, Yan B, Xiao X, Zhou L, Zhang J, Yuan Q, Shan L, Wu H, Efferth T. Onset of p53/NF-κB signaling crosstalk in human melanoma cells in response to anti-cancer theabrownin. FASEB J 2022; 36:e22426. [PMID: 35779042 DOI: 10.1096/fj.202200261r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 12/27/2022]
Abstract
As a major tea component, theabrownin represents a promising anti-cancer candidate. However, its effect on the melanoma is unknown. To evaluate the in vitro and in vivo anti-melanoma efficacy of TB, we conducted cell viability, immunostaining, comet, and TUNEL assays on human A375 melanoma cells, and employed a zebrafish xenograft model of A375 cells. Real-time PCR (qPCR) and western blot were conducted to explore the molecular mechanisms of TB. In vitro, TB significantly inhibited the proliferation of A375 cells, and A375 cells showed the highest inhibitory rate among the other melanoma cell line (A875) and human dermal fibroblasts. TB triggered DNA damage and induced apoptosis of A375 cells and significantly inhibited the growth of A375 xenograft tumors in zebrafishes. Several key molecular events were activated by TB, including DNA damage-associated p53 and NF-κB pathways, through up-regulation of GADD45α, γ-H2A.X, phospho-ATM(p-ATM), phospho-ATR (p-ATR), phospho-p53 (p-p53), phospho-IKKα/β (p-IKKα/β), phospho-p65 (p-p65), etc. However, the TB-activated molecular events were counteracted by either knockdown of p53 or p65, and only dual knockdown of both p53 and p65 completed counteracted the anti-melanoma efficacy of TB. In conclusion, TB triggered DNA damage and thereby inhibited proliferation and induced cellular senescence and apoptosis of melanoma cells through mechanisms mediated by p53/NF-κB signaling crosstalk. This is the first report on the efficacy and mechanisms of TB on melanoma cells, making TB a promising candidate for anti-melanoma agent development.
Collapse
Affiliation(s)
- Ting Li
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Bo Yan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional cell preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China
| | - Xiujuan Xiao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | | | - Qiang Yuan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huiling Wu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
15
|
Caloni F, De Angelis I, Hartung T. Replacement of animal testing by integrated approaches to testing and assessment (IATA): a call for in vivitrosi. Arch Toxicol 2022; 96:1935-1950. [PMID: 35503372 PMCID: PMC9151502 DOI: 10.1007/s00204-022-03299-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/06/2022] [Indexed: 12/19/2022]
Abstract
Alternative methods to animal use in toxicology are evolving with new advanced tools and multilevel approaches, to answer from one side to 3Rs requirements, and on the other side offering relevant and valid tests for drugs and chemicals, considering also their combination in test strategies, for a proper risk assessment.While stand-alone methods, have demonstrated to be applicable for some specific toxicological predictions with some limitations, the new strategy for the application of New Approach Methods (NAM), to solve complex toxicological endpoints is addressed by Integrated Approaches for Testing and Assessment (IATA), aka Integrated Testing Strategies (ITS) or Defined Approaches for Testing and Assessment (DA). The central challenge of evidence integration is shared with the needs of risk assessment and systematic reviews of an evidence-based Toxicology. Increasingly, machine learning (aka Artificial Intelligence, AI) lends itself to integrate diverse evidence streams.In this article, we give an overview of the state of the art of alternative methods and IATA in toxicology for regulatory use for various hazards, outlining future orientation and perspectives. We call on leveraging the synergies of integrated approaches and evidence integration from in vivo, in vitro and in silico as true in vivitrosi.
Collapse
Affiliation(s)
- Francesca Caloni
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, Via Celoria 10, 20133, Milan, Italy.
| | - Isabella De Angelis
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- CAAT Europe, University of Konstanz, 78464, Konstanz, Germany
| |
Collapse
|
16
|
In Vitro Genotoxicity Evaluation of an Antiseptic Formulation Containing Kaolin and Silver Nanoparticles. NANOMATERIALS 2022; 12:nano12060914. [PMID: 35335725 PMCID: PMC8948953 DOI: 10.3390/nano12060914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023]
Abstract
Worldwide antimicrobial resistance is partly caused by the overuse of antibiotics as growth promoters. Based on the known bactericidal effect of silver, a new material containing silver in a clay base was developed to be used as feed additive. An in vitro genotoxicity evaluation of this silver-kaolin clay formulation was conducted, which included the mouse lymphoma assay in L5178Y TK+/− cells and the micronucleus test in TK6 cells, following the principles of the OECD guidelines 490 and 487, respectively. As a complement, the standard and Fpg-modified comet assays for the evaluation of strand breaks, alkali labile sites and oxidative DNA damage were also performed in TK6 cells. The formulation was tested without metabolic activation after an exposure of 3 h and 24 h; its corresponding release in medium, after the continuous agitation of the silver-kaolin for 24 h was also evaluated. Under the conditions tested, the test compound did not produce gene mutations, chromosomal aberrations or DNA damage (i.e., strand breaks, alkali labile sites or oxidized bases). Considering the results obtained in the present study, the formulation seems to be a promising material to be used as antimicrobial in animal feed.
Collapse
|