1
|
Dong M, Maturana AD. Effects of aging on calcium channels in skeletal muscle. Front Mol Biosci 2025; 12:1558456. [PMID: 40177518 PMCID: PMC11961898 DOI: 10.3389/fmolb.2025.1558456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
In skeletal muscle, calcium is not only essential to stimulate and sustain their contractions but also for muscle embryogenesis, regeneration, energy production in mitochondria, and fusion. Different ion channels contribute to achieving the various functions of calcium in skeletal muscles. Muscle contraction is initiated by releasing calcium from the sarcoplasmic reticulum through the ryanodine receptor channels gated mechanically by four dihydropyridine receptors of T-tubules. The calcium influx through store-operated calcium channels sustains the contraction and stimulates muscle regeneration. Mitochondrial calcium uniporter allows the calcium entry into mitochondria to stimulate oxidative phosphorylation. Aging alters the expression and activity of these different calcium channels, resulting in a reduction of skeletal muscle force generation and regeneration capacity. Regular physical training and bioactive molecules from nutrients can prevent the effects of aging on calcium channels. This review focuses on the current knowledge of the effects of aging on skeletal muscles' calcium channels.
Collapse
Affiliation(s)
| | - Andrés Daniel Maturana
- Department of Applied Biosciences, Graduate School of Bioagricultural Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Devakinandan GVS, Terasaki M, Dani A. Single-cell transcriptomics of vomeronasal neuroepithelium reveals a differential endoplasmic reticulum environment amongst neuronal subtypes. eLife 2024; 13:RP98250. [PMID: 39670989 PMCID: PMC11643622 DOI: 10.7554/elife.98250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
Specialized chemosensory signals elicit innate social behaviors in individuals of several vertebrate species, a process that is mediated via the accessory olfactory system (AOS). The AOS comprising the peripheral sensory vomeronasal organ has evolved elaborate molecular and cellular mechanisms to detect chemo signals. To gain insight into the cell types, developmental gene expression patterns, and functional differences amongst neurons, we performed single-cell transcriptomics of the mouse vomeronasal sensory epithelium. Our analysis reveals diverse cell types with gene expression patterns specific to each, which we made available as a searchable web resource accessed from https://www.scvnoexplorer.com. Pseudo-time developmental analysis indicates that neurons originating from common progenitors diverge in their gene expression during maturation with transient and persistent transcription factor expression at critical branch points. Comparative analysis across two of the major neuronal subtypes that express divergent GPCR families and the G-protein subunits Gnai2 or Gnao1, reveals significantly higher expression of endoplasmic reticulum (ER) associated genes within Gnao1 neurons. In addition, differences in ER content and prevalence of cubic membrane ER ultrastructure revealed by electron microscopy, indicate fundamental differences in ER function.
Collapse
Affiliation(s)
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health CenterFarmingtonUnited States
| | - Adish Dani
- Tata Institute of Fundamental ResearchHyderabadIndia
| |
Collapse
|
3
|
Hills MH, Ma L, Fang A, Chiremba T, Malloy S, Scott AR, Perera AG, Yu CR. Molecular, cellular, and developmental organization of the mouse vomeronasal organ at single cell resolution. eLife 2024; 13:RP97356. [PMID: 39656606 PMCID: PMC11630819 DOI: 10.7554/elife.97356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
We have generated single cell transcriptomic atlases of vomeronasal organs (VNO) from juvenile and adult mice. Combined with spatial molecular imaging, we uncover a distinct, previously unidentified class of cells that express the vomeronasal receptors (VRs) and a population of canonical olfactory sensory neurons in the VNO. High-resolution trajectory and cluster analyses reveal the lineage relationship, spatial distribution of cell types, and a putative cascade of molecular events that specify the V1r, V2r, and OR lineages from a common stem cell population. The expression of vomeronasal and olfactory receptors follow power law distributions, but there is high variability in average expression levels between individual receptor and cell types. Substantial co-expression is found between receptors across clades, from different classes, and between olfactory and VRs, with nearly half from pairs located on the same chromosome. Interestingly, the expression of V2r, but not V1r, genes is associated with various transcription factors, suggesting distinct mechanisms of receptor choice associated with the two cell types. We identify association between transcription factors, surface axon guidance molecules, and individual VRs, thereby uncovering a molecular code that guides the specification of the vomeronasal circuitry. Our study provides a wealth of data on the development and organization of the accessory olfactory system at both cellular and molecular levels to enable a deeper understanding of vomeronasal system function.
Collapse
Affiliation(s)
- Max Henry Hills
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Limei Ma
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Ai Fang
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Thelma Chiremba
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Seth Malloy
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Allison R Scott
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Anoja G Perera
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - C Ron Yu
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Cell Biology and Physiology, University of Kansas Medical CenterKansas CityUnited States
| |
Collapse
|
4
|
Sánchez Triviño CA, Hernandez- Clavijo A, Gonzalez-Velandia KY, Pifferi S, Menini A. Noradrenaline modulates sensory information in mouse vomeronasal sensory neurons. iScience 2024; 27:110872. [PMID: 39328934 PMCID: PMC11424947 DOI: 10.1016/j.isci.2024.110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
During the induction of the body's alert state, the sympathetic system modulates sensory modalities and fine-tunes peripheral organs for improved stimulus detection. We explored noradrenaline (NA)'s role in modulating signaling in vomeronasal sensory neurons (VSNs), responsible for detecting pheromones and other semiochemicals. In current-clamp recordings, NA increased the firing frequency in response to natural stimuli of responsive VSNs and induced spiking activity in previously unresponsive neurons. Current injections into VSNs showed an increase in firing frequency during NA application. Combining transcriptomic analysis, electrophysiology, Ca2+ imaging, and a pharmacological approach, we identified alpha 1 adrenergic receptors as crucial for NA-induced firing frequency increases in VSNs. Immunohistochemistry revealed catecholaminergic fibers in the vomeronasal sensory epithelium, suggesting localized NA release near VSNs. This study unveils NA as a key regulator of VSN signaling, shedding light on the intricate interplay between the sympathetic nervous system and chemosensory processing, advancing our understanding of sensory modulation.
Collapse
Affiliation(s)
| | - Andres Hernandez- Clavijo
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Simone Pifferi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| |
Collapse
|
5
|
Hills M, Ma L, Fang A, Chiremba T, Malloy S, Scott A, Perera A, Yu CR. Molecular, Cellular, and Developmental Organization of the Mouse Vomeronasal organ at Single Cell Resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581574. [PMID: 39253476 PMCID: PMC11383295 DOI: 10.1101/2024.02.22.581574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
We have generated single cell transcriptomic atlases of vomeronasal organs (VNO) from juvenile and adult mice. Combined with spatial molecular imaging, we uncover a distinct, previously unidentified class of cells that express the vomeronasal receptors and a population of canonical olfactory sensory neurons in the VNO. High resolution trajectory and cluster analyses reveal the lineage relationship, spatial distribution of cell types, and a putative cascade of molecular events that specify the V1r, V2r, and OR lineages from a common stem cell population. The expression of vomeronasal and olfactory receptors follow power law distributions, but there is high variability in average expression levels between individual receptor and cell types. Substantial co-expression is found between receptors across clades, from different classes, and between olfactory and vomeronasal receptors, with nearly half from pairs located on the same chromosome. Interestingly, the expression of V2r, but not V1r, genes is associated with various transcription factors, suggesting distinct mechanisms of receptor choice associated with the two cell types. We identify association between transcription factors, surface axon guidance molecules, and individual VRs, thereby uncovering a molecular code that guides the specification of the vomeronasal circuitry. Our study provides a wealth of data on the development and organization of the accessory olfactory system at both cellular and molecular levels to enable a deeper understanding of vomeronasal system function.
Collapse
Affiliation(s)
- Max Hills
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Limei Ma
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Ai Fang
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Thelma Chiremba
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Seth Malloy
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Allison Scott
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - C. Ron Yu
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
6
|
Zilkha N, Chuartzman SG, Sofer Y, Pen Y, Cum M, Mayo A, Alon U, Kimchi T. Sex-dependent control of pheromones on social organization within groups of wild house mice. Curr Biol 2023; 33:1407-1420.e4. [PMID: 36917976 PMCID: PMC10132349 DOI: 10.1016/j.cub.2023.02.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
Dominance hierarchy is a fundamental social phenomenon in a wide range of mammalian species, critically affecting fitness and health. Here, we investigate the role of pheromone signals in the control of social hierarchies and individual personalities within groups of wild mice. For this purpose, we combine high-throughput behavioral phenotyping with computational tools in freely interacting groups of wild house mice, males and females, in an automated, semi-natural system. We show that wild mice form dominance hierarchies in both sexes but use sex-specific strategies, displaying distinct male-typical and female-typical behavioral personalities that were also associated with social ranking. Genetic disabling of VNO-mediated pheromone detection generated opposite behavioral effects within groups, enhancing social interactions in males and reducing them in females. Behavioral personalities in the mutated mice displayed mixtures of male-typical and female-typical behaviors, thus blurring sex differences. In addition, rank-associated personalities were abolished despite the fact that both sexes of mutant mice formed stable hierarchies. These findings suggest that group organization is governed by pheromone-mediated sex-specific neural circuits and pave the way to investigate the mechanisms underlying sexual dimorphism in dominance hierarchies under naturalistic settings.
Collapse
Affiliation(s)
- Noga Zilkha
- Department of Brain Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | | | - Yizhak Sofer
- Department of Brain Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yefim Pen
- Department of Brain Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Meghan Cum
- Department of Brain Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Tali Kimchi
- Department of Brain Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
7
|
Kanageswaran N, Demond M, Nagel M, Schreiner BSP, Baumgart S, Scholz P, Altmüller J, Becker C, Doerner JF, Conrad H, Oberland S, Wetzel CH, Neuhaus EM, Hatt H, Gisselmann G. Deep sequencing of the murine olfactory receptor neuron transcriptome. PLoS One 2015; 10:e0113170. [PMID: 25590618 PMCID: PMC4295871 DOI: 10.1371/journal.pone.0113170] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/25/2014] [Indexed: 11/18/2022] Open
Abstract
The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfactory epithelium (OE). ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS) techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation.
Collapse
Affiliation(s)
| | - Marilen Demond
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
- University Duisburg-Essen, Institute of Medical Radiation Biology, Essen, Germany
| | - Maximilian Nagel
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | | | - Sabrina Baumgart
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Paul Scholz
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | | | | | - Julia F. Doerner
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Heike Conrad
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
- Cluster of Excellence and DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Sonja Oberland
- Pharmacology and Toxicology, University Hospital Jena, Drackendorfer Str. 1, 07747 Jena, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian H. Wetzel
- University of Regensburg, Department of Psychiatry and Psychotherapy, Molecular Neurosciences, Regensburg, Germany
| | - Eva M. Neuhaus
- Pharmacology and Toxicology, University Hospital Jena, Drackendorfer Str. 1, 07747 Jena, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hanns Hatt
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Günter Gisselmann
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| |
Collapse
|
8
|
Abstract
Trp2 was the second ortholog of the Drosophila trp gene to be identified. Whereas full-length TRPC2 transcripts have been cloned in a number of species including mice, rats, and New World monkeys, TRPC2 is a pseudogene in humans, apes, Old World monkeys, and in a number of other vertebrates. TRPC2 is highly expressed in the rodent VNO. It is also detectable at the protein level in murine erythroblasts, sperm, and brain and has been detected in other tissues by RT-PCR. Its activation by DAG and by erythropoietin has been described in greatest detail, and inhibition by Ca(2+)-calmodulin has been reported. The major demonstrated functions of TRPC2 are regulation of pheromone-evoked signaling in the rodent VNO, regulation of erythropoietin-stimulated calcium influx in murine erythroid cells, and ZP3-evoked calcium influx into sperm. Depletion of TRPC2 in knockout mice resulted in changes in behavior including altered sex discrimination and lack of male-male aggression. The red cells of TRPC2 knockout mice showed increased mean corpuscular volume, mean corpuscular hemoglobin, and hematocrit and reduced mean corpuscular hemoglobin concentration. TRPC2-depleted red cells were resistant to oxidative stress-induced hemolysis.
Collapse
|
9
|
Mildner S, Buchbauer G. Human Body Scents: Do they Influence our Behavior? Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300801138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pheromonal communication in the animal world has been of great research interest for a long time. While extraordinary discoveries in this field have been made, the importance of the human sense of smell was of far lower interest. Humans are seen as poor smellers and therefore research about human olfaction remains quite sparse compared with other animals. Nevertheless amazing achievements have been made during the past 15 years. This is a collection of available data on this topic and a controversial discussion on the role of putative human pheromones in our modern way of living. While the focus was definitely put on behavioral changes evoked by putative human pheromones this article also includes other important aspects such as the possible existence of a human vomeronasal organ. If pheromones do have an influence on human behavior there has to be a receptor organ. How are human body scents secreted and turned into odorous substances? And how can con-specifics detect those very odors and transmit them to the brain? Apart from that the most likely candidates for human pheromones are taken on account and their impact on human behavior is shown in various detail.
Collapse
Affiliation(s)
- Sophie Mildner
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, A-1090 Vienna, Austria
| | - Gerhard Buchbauer
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
10
|
Wicher D. Functional and evolutionary aspects of chemoreceptors. Front Cell Neurosci 2012; 6:48. [PMID: 23112762 PMCID: PMC3481119 DOI: 10.3389/fncel.2012.00048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/08/2012] [Indexed: 02/04/2023] Open
Abstract
The perception and processing of chemical signals from the environment is essential for any living systems and is most probably the first sense developed in life. This perspective discusses the physical limits of chemoreception and gives an overview on the receptor types developed during evolution to detect chemical signals from the outside world of an organism. It discusses the interaction of chemoreceptors with downstream signaling elements, especially the interaction between electrical and chemical signaling. It is further considered how the primary chemosignal is appropriately amplified. Three examples of chemosensory systems illustrate different strategies of such amplification.
Collapse
Affiliation(s)
- Dieter Wicher
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| |
Collapse
|
11
|
Dong HW, Davis JC, Ding S, Nai Q, Zhou FM, Ennis M. Expression of transient receptor potential (TRP) channel mRNAs in the mouse olfactory bulb. Neurosci Lett 2012; 524:49-54. [PMID: 22820212 DOI: 10.1016/j.neulet.2012.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/05/2012] [Accepted: 07/07/2012] [Indexed: 01/15/2023]
Abstract
Transient receptor potential (TRP) channels are a large family of cation channels. The 28 TRP channel subtypes in rodent are divided into 6 subfamilies: TRPC1-7, TRPV1-6, TRPM1-8, TRPP2/3/5, TRPML1-3 and TRPA1. TRP channels are involved in peripheral olfactory transduction. Several TRPC channels are expressed in unidentified neurons in the main olfactory bulb (OB), but the expression of most TRP channels in the OB has not been investigated. The present study employed RT-PCR as an initial survey of the expression of TRP channel mRNAs in the mouse OB and in 3 cell types: external tufted, mitral and granule cells. All TRP channel mRNAs except TRPV5 were detected in OB tissue. Single cell RT-PCR revealed that external tufted, mitral and granule cell populations expressed in aggregate 14 TRP channel mRNAs encompassing members of all 6 subfamilies. These different OB neuron populations expressed 7-12 channel mRNAs. Common channel expression was more similar among external tufted and mitral cells than among these cells and granule cells. These results indicate that a large number of TRP channel subtypes are expressed in OB neurons, providing the molecular bases for these channels to regulate OB neuron activity and central olfactory processing.
Collapse
Affiliation(s)
- Hong-Wei Dong
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Mostafa T, Khouly GE, Hassan A. Pheromones in sex and reproduction: Do they have a role in humans? J Adv Res 2012; 3:1-9. [DOI: 10.1016/j.jare.2011.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
13
|
Wirsig-Wiechmann CR, Colvard J, Aston CE, Dighe R, Houck LD, Feldhoff PW, Feldhoff RC. Gonadotropin-Releasing Hormone Modulates Vomeronasal Neuron Response to Male Salamander Pheromone. J Exp Neurosci 2012. [DOI: 10.4137/jen.s8414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Electrophysiological studies have shown that gonadotropin-releasing hormone (GnRH) modifies chemosensory neurons responses to odors. We have previously demonstrated that male Plethodon shermani pheromone stimulates vomeronasal neurons in the female conspecific. In the present study we used agmatine uptake as a relative measure of the effects of GnRH on this pheromone-induced neural activation of vomeronasal neurons. Whole male pheromone extract containing 3 millimolar agmatine with or without 10 micromolar GnRH was applied to the nasolabial groove of female salamanders for 45 minutes. Immunocytochemical procedures were conducted to visualize and quantify relative agmatine uptake as measured by labeling density of activated vomeronasal neurons. The relative number of labeled neurons did not differ between the two groups: pheromone alone or pheromone-GnRH. However, vomeronasal neurons exposed to pheromone-GnRH collectively demonstrated higher labeling intensity, as a percentage above background (75%) as compared with neurons exposed to pheromone alone (63%, P < 0.018). Since the labeling intensity of agmatine within neurons signifies the relative activity levels of the neurons, these results suggest that GnRH increases the response of female vomeronasal neurons to male pheromone.
Collapse
Affiliation(s)
- Celeste R. Wirsig-Wiechmann
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 S.L. Young Boulevard, Oklahoma City, OK 73104
| | - Justin Colvard
- Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112
| | - Christopher E. Aston
- Department of Pediatrics, University of Oklahoma Health Sciences Center, 1122 N.E. 13th Street, Oklahoma City, OK 73117
| | - Radhika Dighe
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 S.L. Young Boulevard, Oklahoma City, OK 73104
| | - Lynne D. Houck
- Department of Zoology, Oregon State University, Corvallis, Or 97331-2914
| | - Pamela W. Feldhoff
- Department of Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, KY 40292
| | - Richard C. Feldhoff
- Department of Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, KY 40292
| |
Collapse
|
14
|
Abstract
The substantia nigra pars reticulata (SNr) is a key basal ganglia output nucleus critical for movement control. A hallmark of the SNr gamma-aminobutyric acid (GABA)-containing projection neurons is their depolarized membrane potential, accompanied by rapid spontaneous spikes. Parkinsonian movement disorders are often associated with abnormalities in SNr GABA neuron firing intensity and/or pattern. A fundamental question is the molecular identity of the ion channels that drive these neurons to a depolarized membrane potential. Recent data show that SNr GABA projection neurons selectively express type 3 canonical transient receptor potential (TRPC3) channels. Such channels are tonically active and mediate an inward, Na(+)-dependent current, leading to a substantial depolarization and ensuring appropriate firing intensity and pattern in SNr GABA projection neurons. Equally important, TRPC3 channels in SNr GABA neurons are up-regulated by dopamine (DA) released from neighboring nigral DA neuron dendrites. Co-activation of D1 and D5 DA receptors leads to a TRPC3 channel-mediated inward current and increased firing in SNr GABA neurons, whereas D1-like receptor blockade reduces SNr GABA neuron firing frequency and increases their firing irregularity. TRPC3 channels serve as the effector channels mediating an ultra-short SNc-->SNr DA pathway that regulates the firing intensity and pattern of the basal ganglia output neurons.
Collapse
Affiliation(s)
- Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis TN 38163, USA.
| |
Collapse
|
15
|
Bahat A, Eisenbach M. Human Sperm Thermotaxis Is Mediated by Phospholipase C and Inositol Trisphosphate Receptor Ca2+ Channel1. Biol Reprod 2010; 82:606-16. [DOI: 10.1095/biolreprod.109.080127] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
16
|
Differentiation impairs low pH-induced Ca2+ signaling and ERK phosphorylation in granule precursor tumour cells. Cell Calcium 2009; 45:391-9. [PMID: 19249096 DOI: 10.1016/j.ceca.2009.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/18/2008] [Accepted: 01/15/2009] [Indexed: 12/19/2022]
Abstract
Extracellular acidification is a hallmark of a number of debilitating pathologies including cancer, ischemia and inflammation. We have recently shown that in human granule precursor tumour cells a fall in extracellular pH triggers increases in intracellular Ca(2+) concentration through activation of G-protein coupled proton-sensing receptors coupling to phospholipase C. This pH-dependent rise in cytosolic Ca(2+) led to activation of the extracellular signal-regulated kinase ERK, providing a mechanistic explanation of how extracellular acidification can promote tumour growth. We now find that differentiation of granule precursor tumour cells profoundly affects their ability to respond to extracellular acidification with gene transcription. Differentiating cells have a lower Ca(2+) release probability from intracellular Ca(2+) stores upon acidification and cells that respond have a significantly smaller and slower Ca(2+) signal than proliferating cells. Importantly, Ca(2+) release in differentiating cells fails to evoke ERK phosphorylation. This altered responsiveness of differentiating cells is not due to reduced proton-sensing receptor expression or diminished Ca(2+) store content. Rather, our results suggest that in differentiating cells, the proton-sensing receptor couples less effectively to phospholipase C activation and IP(3) formation. Hence, the ability of human granule cells to respond to extracellular acidification by generating Ca(2+) signals and ERK activation is state-dependent, being lost upon differentiation.
Collapse
|
17
|
Trebak M, Lemonnier L, DeHaven WI, Wedel BJ, Bird GS, Putney JW. Complex functions of phosphatidylinositol 4,5-bisphosphate in regulation of TRPC5 cation channels. Pflugers Arch 2008; 457:757-69. [PMID: 18665391 DOI: 10.1007/s00424-008-0550-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 06/19/2008] [Accepted: 06/24/2008] [Indexed: 11/27/2022]
Abstract
The canonical transient receptor potential (TRPC) proteins have been recognized as key players in calcium entry pathways activated through phospholipase-C-coupled receptors. While it is clearly demonstrated that members of the TRPC3/6/7 subfamily are activated by diacylglycerol, the mechanism by which phospholipase C activates members of the TRPC1/4/5 subfamily remains a mystery. In this paper, we provide evidence for both negative and positive modulatory roles for membrane polyphosphoinositides in the regulation of TRPC5 channels. Depletion of polyphosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate (PIP2) through inhibition of phosphatidylinositol 4-kinase activates calcium entry and membrane currents in TRPC5-expressing but not in TRPC3- or TRPC7-expressing cells. Inclusion of polyphosphatidylinositol 4-phosphate or PIP2, but not phosphatidylinositol 3,4,5-trisphosphate, in the patch pipette inhibited TRPC5 currents. Paradoxically, depletion of PIP2 with a directed 5-phosphatase strategy inhibited TRPC5. Furthermore, when the activity of single TRPC5 channels was examined in excised patches, the channels were robustly activated by PIP2. These findings indicate complex functions for regulation of TRPC5 by PIP2, and we propose that membrane polyphosphoinositides may have at least two distinct functions in regulating TRPC5 channel activity.
Collapse
Affiliation(s)
- Mohamed Trebak
- Department of Health and Human Services, Laboratory of Signal Transduction, NIEHS/NIH, P.O.Box 12233, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Ma HT, Peng Z, Hiragun T, Iwaki S, Gilfillan AM, Beaven MA. Canonical transient receptor potential 5 channel in conjunction with Orai1 and STIM1 allows Sr2+ entry, optimal influx of Ca2+, and degranulation in a rat mast cell line. THE JOURNAL OF IMMUNOLOGY 2008; 180:2233-9. [PMID: 18250430 DOI: 10.4049/jimmunol.180.4.2233] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Degranulation of mast cells in response to Ag or the calcium mobilizing agent, thapsigargin, is dependent on emptying of intracellular stores of Ca(2+) and the ensuing influx of external Ca(2+), also referred to as store-operated calcium entry. However, it is unlikely that the calcium release-activated calcium channel is the sole mechanism for the entry of Ca(2+) because Sr(2+) and other divalent cations also permeate and support degranulation in stimulated mast cells. In this study we show that influx of Ca(2+) and Sr(2+) as well as degranulation are dependent on the presence of the canonical transient receptor potential (TRPC) channel protein TRPC5, in addition to STIM1 and Orai1, as demonstrated by knock down of each of these proteins by inhibitory RNAs in a rat mast cell (RBL-2H3) line. Overexpression of STIM1 and Orai1, which are known to be essential components of calcium release-activated calcium channel, allows entry of Ca(2+) but not Sr(2+), whereas overexpression of STIM1 and TRPC5 allows entry of both Ca(2+) and Sr(2+). These and other observations suggest that the Sr(2+)-permeable TRPC5 associates with STIM1 and Orai1 in a stoichiometric manner to enhance entry of Ca(2+) to generate a signal for degranulation.
Collapse
Affiliation(s)
- Hong-Tao Ma
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Beginning with the neuroepithelium of the vomeronasal organ, the accessory olfactory system in rodents runs parallel to the main olfactory system and is specialized in the detection of pheromones. Only a small number of vomeronasal agonists carrying pheromonal information have been identified this far. These structurally diverse classes of chemicals include peptides secreted by exocrine glands and range from small volatile molecules to proteins and fragments thereof present in urine. Most pheromones activate both vomeronasal and main olfactory sensory neurons, making the identification of functionally relevant populations of sensory neurons difficult. Analyses of gene-targeted mice selectively affecting either vomeronasal or main olfactory signaling have attempted to elucidate the functional contribution of the different chemosensory epithelia to pheromone sensing in mice. These mouse models suggest that both the main and the accessory olfactory systems can converge and synergize to express the complex array of stereotyped behaviors and hormonal changes triggered by pheromones.
Collapse
Affiliation(s)
- I Rodriguez
- Department of Zoology and Animal Biology, University of Geneva, 30 Quai Ernest Ansermet, Geneva, 1211, Switzerland.
| | | |
Collapse
|
20
|
Shirokova E, Raguse JD, Meyerhof W, Krautwurst D. The human vomeronasal type-1 receptor family--detection of volatiles and cAMP signaling in HeLa/Olf cells. FASEB J 2007; 22:1416-25. [PMID: 18096815 DOI: 10.1096/fj.07-9233com] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The human genome harbors 5 remnant genes coding for vomeronasal type-1 receptors, compared with 187 of such receptors in mice. In rodents, vomeronasal type-1 receptors are typically expressed in the vomeronasal organ. They are believed to be highly selective and sensitive pheromone detectors, as may be inferred from one receptor, V1rb2, responding to picomolar concentrations of the mouse pheromone 2-heptanone. Expression patterns, ligands, and signal transduction of human vomeronasal type-1 receptors have, however, remained largely obscure. Our aim was to deorphan and functionally characterize these 5 putative human pheromone receptors. Here, we report functional expression for all 5 receptors in HeLa/Olf cells. The recombinant, N-terminally tagged receptors expressed at the plasma membrane of HeLa/Olf cells and responded differentially to 19 of 140 odorants in a combinatorial way. C9-C10 aliphatic alcohols or aldehydes emerged as the best agonists at submicromolar concentrations above human odorant thresholds. Surprisingly, and in contrast to mouse V1rb2, all human vomeronasal type-1 receptors activated cAMP signaling via G protein alphaolf, when expressed in HeLa/Olf cells. While a biological function of human vomeronasal type-1 receptors is still elusive, our data show that their major functional characteristics are similar to those of odorant receptors.
Collapse
Affiliation(s)
- Elena Shirokova
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | | | | | | |
Collapse
|
21
|
Ambudkar IS, Ong HL. Organization and function of TRPC channelosomes. Pflugers Arch 2007; 455:187-200. [PMID: 17486362 DOI: 10.1007/s00424-007-0252-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Accepted: 03/10/2007] [Indexed: 12/20/2022]
Abstract
TRPC proteins constitute a family of conserved Ca2+-permeable cation channels which are activated in response to agonist-stimulated PIP2 hydrolysis. These channels were initially proposed to be components of the store-operated calcium entry channel (SOC). Subsequent studies have provided substantial evidence that some TRPCs contribute to SOC activity. TRPC proteins have also been shown to form agonist-stimulated calcium entry channels that are not store-operated but are likely regulated by PIP2 or diacylglycerol. Further, and consistent with the presently available data, selective homomeric or heteromeric interactions between TRPC monomers generate distinct agonist-stimulated cation permeable channels. We suggest that interaction between TRPC monomers, as well as the association of these channels with accessory proteins, determines their mode of regulation as well as their cellular localization and function. Currently identified accessory proteins include key Ca2+ signaling proteins as well as proteins involved in vesicle trafficking, cytoskeletal interactions, and scaffolding. Studies reported until now demonstrate that TRPC proteins are segregated into specific Ca2+ signaling complexes which can generate spatially and temporally controlled [Ca2+]i signals. Thus, the functional organization of TRPC channelosomes dictates not only their regulation by extracellular stimuli but also serves as a platform to coordinate specific downstream cellular functions that are regulated as a consequence of Ca2+ entry. This review will focus on the accessory proteins of TRPC channels and discuss the functional implications of TRPC channelosomes and their assembly in microdomains.
Collapse
Affiliation(s)
- Indu S Ambudkar
- Secretory Physiology Section, Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
22
|
Harteneck C, Frenzel H, Kraft R. N-(p-Amylcinnamoyl)anthranilic Acid (ACA): A Phospholipase A2 Inhibitor and TRP Channel Blocker. ACTA ACUST UNITED AC 2007; 25:61-75. [PMID: 17445088 DOI: 10.1111/j.1527-3466.2007.00005.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phospholipase A(2) enzymes display a superfamily of structurally different enzymes classified in at least nine subfamilies by biochemical and structural properties. N-(p-amylcinnamoyl)anthranilic acid commonly referred to as ACA is often used as a broad-spectrum inhibitor for the characterization of phospholipase A(2)-mediated pathways. Compounds like ACA and ACA-like structures have been described to block the receptor-induced release of arachidonic acid and subsequent signaling cascades in the pancreas and the cardiovascular system. We showed that ACA directly blocks several transient receptor potential (TRP) channels (TRPC6, TRPM2, TRP and TRPM8). With respect to the published data of ACA in the phospholipase A(2) field, the finding that ACA blocks diacylglycerol-activated TRP channels is of specific interest as it offers the opportunity to interfere with receptor-induced calcium-dependent signaling processes in platelets and vascular smooth muscle cells. Overall, N-phenylcinnamides, as a new pharmaceutical lead structure, form the first class of synthetic TRP channel blockers and represent a promising start for the development of small organic TRP channel-specific blockers.
Collapse
Affiliation(s)
- Christian Harteneck
- Institut für Pharmakologie, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | | | | |
Collapse
|
23
|
Huang WC, Young JS, Glitsch MD. Changes in TRPC channel expression during postnatal development of cerebellar neurons. Cell Calcium 2006; 42:1-10. [PMID: 17141310 DOI: 10.1016/j.ceca.2006.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 10/24/2006] [Indexed: 10/23/2022]
Abstract
In the brain, classical (canonical) transient receptor potential (TRPC) channels are thought to be involved in different aspects of neuronal development. We investigated the developmental expression profile of TRPC channels in rat cerebellum during the first 6 weeks after birth. TRPC3 expression is significantly up-regulated whereas TRPC4 and TRPC6 expression are significantly down-regulated over this period of time. TRPC3 expression is mainly found on Purkinje cells and their dendrites, suggesting that the increase in TRPC3 expression reflects development of the dendritic tree of Purkinje cells. TRPC4 expression was restricted to granule and their precursor cells. TRPC6 expression is found on Purkinje cell bodies, on mature granule cells in the internal granule cell layer (but not their precursors) and interneurons in the molecular layer. The decrease in TRPC4 expression suggests that it is required for proper granule cell development whereas the decrease in TRPC6 expression is presumably correlated with interneuron development. Moreover, we demonstrate the presence of functional TRPC channels on Purkinje cell dendrites that are activated following stimulation of metabotropic glutamate receptors. Our results reveal cell-specific expression patterns for different TRPC proteins and suggest that developmental changes in TRPC protein expression may be required for proper postnatal cerebellar development.
Collapse
Affiliation(s)
- W-C Huang
- Sherrington Building, Department of Physiology, Anatomy and Genetics, Oxford University, Parks Road, Oxford OX1 3PT, UK
| | | | | |
Collapse
|
24
|
Smyth JT, Dehaven WI, Jones BF, Mercer JC, Trebak M, Vazquez G, Putney JW. Emerging perspectives in store-operated Ca2+ entry: Roles of Orai, Stim and TRP. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1147-60. [PMID: 17034882 DOI: 10.1016/j.bbamcr.2006.08.050] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 08/30/2006] [Indexed: 11/28/2022]
Abstract
Depletion of intracellular Ca2+ stores induces Ca2+ influx across the plasma membrane through store-operated channels (SOCs). This store-operated Ca2+ influx is important for the replenishment of the Ca2+ stores, and is also involved in many signaling processes by virtue of the ability of intracellular Ca2+ to act as a second messenger. For many years, the molecular identities of particular SOCs, as well as the signaling mechanisms by which these channels are activated, have been elusive. Recently, however, the mammalian proteins STIM1 and Orai1 were shown to be necessary for the activation of store-operated Ca2+ entry in a variety of mammalian cells. Here we present molecular, pharmacological, and electrophysiological properties of SOCs, with particular focus on the roles that STIM1 and Orai1 may play in the signaling processes that regulate various pathways of store-operated entry.
Collapse
Affiliation(s)
- Jeremy T Smyth
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health/DHHS, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Michel MC. Transient receptor potential (TRP) channels as drug targets. Naunyn Schmiedebergs Arch Pharmacol 2006; 373:271-2. [PMID: 16705436 DOI: 10.1007/s00210-006-0071-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Martin C Michel
- Department of Pharmacology and Pharmacotherapy, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Witt M, Hummel T. Vomeronasal versus olfactory epithelium: is there a cellular basis for human vomeronasal perception? INTERNATIONAL REVIEW OF CYTOLOGY 2006; 248:209-59. [PMID: 16487792 DOI: 10.1016/s0074-7696(06)48004-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vomeronasal organ (VNO) constitutes an accessory olfactory organ that receives chemical stimuli, pheromones, which elicit behavioral, reproductive, or neuroendocrine responses among individuals of the same species. In many macrosmatic animals, the morphological substrate constitutes a separate organ system consisting of a vomeronasal duct (ductus vomeronasalis, VND), equipped with chemosensory cells, and a vomeronasal nerve (nervus vomeronasalis, VNN) conducting information into the accessory olfactory bulb (AOB) in the central nervous system (CNS). Recent data require that the long-accepted dual functionality of a main olfactory system and the VNO be reexamined, since all species without a VNO are nevertheless sexually active, and species possessing a VNO also can sense other than "vomeronasal" stimuli via the vomeronasal epithelium (VNE). The human case constitutes a borderline situation, as its embryonic VNO anlage exerts a developmental track common to most macrosmatics, but later typical structures such as the VNN, AOB, and probably most of the chemoreceptor cells within the still existent VND are lost. This review also presents recent information on the VND including immunohistochemical expression of neuronal markers, intermediate filaments, lectins, integrins, caveolin, CD44, and aquaporins. Further, we will address the issue of human pheromone candidates.
Collapse
Affiliation(s)
- Martin Witt
- Department of Anatomy, University of Technology Dresden, Dresden, Germany
| | | |
Collapse
|
27
|
Gudermann T, Flockerzi V. TRP channels as new pharmacological targets. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:241-4. [PMID: 15756597 DOI: 10.1007/s00210-005-1029-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Abstract
In recent years many new members of the family of TRP ion channels have been identified. These channels are classified into several subgroups and participate in many sensory and physiological functions. TRPV channels are important for the perception of pain, temperature sensing, osmotic regulation, and maintenance of calcium homeostasis, and much recent research concerns the identification of protein domains involved in mediating specific channel functions. Recent literature on TRPV channel subunit composition, protein domains required for subunit assembly, trafficking, and regulation will be reviewed and discussed.
Collapse
Affiliation(s)
- Barbara A Niemeyer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Gebäude 46, 66421, Homburg, Germany.
| |
Collapse
|
29
|
Zufall F, Ukhanov K, Lucas P, Liman ER, Leinders-Zufall T. Neurobiology of TRPC2: from gene to behavior. Pflugers Arch 2005; 451:61-71. [PMID: 15971083 DOI: 10.1007/s00424-005-1432-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 04/01/2005] [Indexed: 11/25/2022]
Abstract
The mammalian vomeronasal organ (VNO), a part of the accessory olfactory system, plays an essential role in the sensing of pheromonal signals. The VNO has emerged as an excellent model to investigate the functional role of transient receptor potential (TRP) channels in intact neurons and intact physiological systems. TRPC2, a member of the (canonical) TRPC subfamily, is highly localized to the dendritic tip of vomeronasal sensory neurons. Phenotypic analysis of mice exhibiting a targeted deletion in the TRPC2 gene has established that TRPC2 occupies a fundamental role in the transduction machinery underlying the detection of pheromone signals by the VNO. TRPC2-deficient mice exhibit striking behavioral defects in the regulation of sexual and social behaviors. A previously unknown Ca(2+)-permeable, diacylglycerol (DAG)-activated cation channel found at the dendritic tip of vomeronasal neurons is severely defective in TRPC2 mutants, providing the first clear example for the existence of native DAG-gated cation channels in the mammalian nervous system. The experimental strategy employed in the mouse VNO now serves as a powerful model for examining the native functions of other TRP genes.
Collapse
Affiliation(s)
- Frank Zufall
- Department of Anatomy and Neurobiology and Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201-1509, USA.
| | | | | | | | | |
Collapse
|
30
|
Abstract
The physiological function and cellular role of some members of the TRPM family are poorly understood and still mysterious. Melastatin, the founding member of the TRPM group, is the most prominent example of the mysteries involved in understanding TRP channel function. Melastatin or TRPM1 was first cloned in 1998 and since then it has been suggested that it functions as a tumor suppressor protein in melanocytes. On the other hand, TRPM8 and TRPA1 have been described as cold receptors, TRPM4 and TRPM5 as calcium-activated nonselective cation channels, TRPM6 and TRPM7 as magnesium-permeable and magnesium-modulated cation channels, TRPM2 as an ADP-ribose-activated channel of macrophages, and TRPM3 as a hypo-osmolarity- and sphingosine-activated channel. There are many unsolved questions and many studies have to be performed to understand the overall function of the TRPM family. In addition to electrophysiological recordings and biochemical characterization, the use of compounds modulating TRPM channel function has often been helpful to study TRPM channels in a cellular context. Therefore, the review will summarize the known functions, activation mechanisms, and pharmacological modulations of the TRPM channels.
Collapse
Affiliation(s)
- Christian Harteneck
- Institut für Pharmakologie, Charité Campus Benjamin Franklin, Thielallee 69-73, 14195, Berlin, Germany.
| |
Collapse
|