1
|
Anoush M, Taghaddosi N, Bokaei Hosseini Z, Rahmati F, Bijani S, Kalantari-Hesari A, Hosseini MJ. Neuroprotective effects of empagliflozin against scopolamine-induced memory impairment and oxidative stress in rats. IBRO Neurosci Rep 2025; 18:163-170. [PMID: 39896712 PMCID: PMC11786754 DOI: 10.1016/j.ibneur.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Alzheimer's disease (AD) is one of the most common age-related neurodegenerative disorders. The main medicinal theory for the management of AD belongs to the acetyl-cholinesterase-inhibition pathway and NMDA antagonism. Recent investigation proposed memory improvement by sodium-glucose co-transporter 2 (SGLT2) inhibitors which indicated to improve glycemic control in adults with type 2 diabetes mellitus. According to the lack of sufficient evidence about the efficacy of empagliflozin (EMPA) for memory improvement, in comparison with donepezil (DON), the present research was carried out in order to investigate this hypothesis towards scopolamine-induced neurotoxicity on experimental male Wistar rats. The animals divided into two sets, each included 4 groups: The first set of Healthy animals [Control, EMPA (4 or 10 mg/kg), DON (1 mg/kg)]. The second set of rat Alzheimer model, which received 2 mg/kg Scopolamine by intraperitoneal route for 10 days followed by other treatments [AD, AD+ EMPA (4 or 10 mg/kg) and AD+DON]. Normal rats and AD rats, with each group receiving different substances for 8 consecutive days and 24 h after the accomplishment of the drug administrations, the memory functions assessed through Morris water maze (MWM) paradigm. This task was followed by decapitation of rats in order to evaluate the biochemical oxidative stress parameters in brain tissue. Our data indicated that EMPA significantly improved animals' performance in the behavioral test with a significant decrease in oxidative stress and antioxidant imbalance. In addition, EMPA (4 mg/kg) significantly reduced both cellular malondialdehyde and protein carbonyl content while conversely increased the total reduced glutathione content. Besides, the levels of total as well as endogenous antioxidants in the ferric reducing antioxidant power assay reported to be augmented. It seems that EMPA significantly improved both cellular biochemical aspects and memory performance in animal models in accordance with histopathological assessments. Conclusively, 4 mg/kg EMPA demonstrated better results in all aspects that were evaluated during this research.
Collapse
Affiliation(s)
- Mahdieh Anoush
- Zanjan Applied Pharmacology Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Neda Taghaddosi
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Bokaei Hosseini
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Rahmati
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Soroush Bijani
- Zanjan Applied Pharmacology Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Kalantari-Hesari
- Department of Basic Sciences, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Kodama T, Kameshima S, Otani K, Okada M, Yamawaki H. The eukaryotic elongation factor 2 kinase inhibitor, A484954, induces hypoglycaemic and hypotensive effects. Br J Pharmacol 2025; 182:1823-1835. [PMID: 39842419 DOI: 10.1111/bph.17443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 10/22/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND AND PURPOSE Eukaryotic elongation factor 2 kinase (eEF2K) belongs to the Ca2+/calmodulin-dependent protein kinase family. We previously revealed that A484954, a selective eEF2K inhibitor, caused hypotensive and diuretic effects via the production of nitric oxide (NO) in spontaneously hypertensive rats. Otsuka Long-Evans Tokushima Fatty (OLETF) rats are hypertensive because of obesity and type 2 diabetes. Because an NO synthase inhibitor was reported to increase the expression of sodium glucose co-transporter 2 (SGLT2), we hypothesised that A484954 causes not only hypotensive but also hypoglycaemic effects via NO production in OLETF rats. EXPERIMENTAL APPROACH To test the hypothesis, we examined the effects of A484954 administration on hyperglycaemia and hypertension in OLETF rats. OLETF rats were given an intraperitoneal injection of A484954 (2.5 mg kg-1 day-1) for 7 days. Then, we measured blood and urinary glucose level, urine output, systolic blood pressure and ventricular contractility. We also conducted Western blotting and isometric tension measurements. KEY RESULTS A484954 induced a decrease in blood glucose, an increase in urinary glucose excretion, and a decrease in protein expression of kidney SGLT2. In addition, A484954 induced a decrease in systolic blood pressure, an NO-dependent vasorelaxation, and a diuretic effect. Further, A484954 enhanced left ventricular contractility. CONCLUSION AND IMPLICATIONS We, for the first time, revealed that (1) A484954 caused hypoglycaemic effects through increasing urinary glucose excretion via decreasing SGLT2, (2) A484954 improved diabetic complication, including hypertension, through vasorelaxation and diuresis via NO production, and (3) A484954 had a positive inotropic effect.
Collapse
Affiliation(s)
- Tomoko Kodama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Satoshi Kameshima
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kosuke Otani
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
3
|
Ridha-Salman H, Al-Zubaidy AA, Abbas AH, Hassan DM, Malik SA. The alleviative effects of canagliflozin on imiquimod-induced mouse model of psoriasis-like inflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2695-2715. [PMID: 39254877 DOI: 10.1007/s00210-024-03406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Psoriasis is a life-long immune-mediated dermatosis with thickened, reddish, and flaky skin patches. Canagliflozin is a gliflozin antidiabetic with non-classical remarkable antioxidative, anti-inflammatory, anti-proliferative, and immune-modulating effects. The aim of this study is to examine the probable effects of topical canagliflozin on a mouse model of imiquimod-provoked psoriasis-like dermatitis. The study evaluated 20 Swiss white mice, sorted haphazardly into 4 groups of 5 animals each. Every mouse, with the exception of the control group, had imiquimod applied topically to their shaved backs for 7 days. The control group included healthy mice that were not given any treatment. Mice in the other three groups underwent topical treatment with vehicle (induction group), 0.05% clobetasol propionate ointment (clobetasol group), or 4% canagliflozin emulgel (canagliflozin 4% group) on exactly the same day as imiquimod cream was administered. Topical canagliflozin markedly lowered the intensity of imiquimod-provoked psoriasis eruptions, featuring redness, glossy-white scales, and acanthosis, while also correcting histopathological aberrations. Canagliflozin administration to imiquimod-exposed animals resulted in significantly decreased cutaneous concentrations of inflammatory mediators such as IL-8, IL-17, IL-23, and TNF-α, with raised levels of IL-10. Canagliflozin further lowered proliferative factors involving Ki-67 and PCNA, diminished oxidative indicators such as MDA and MPO, and augmented the activity of antioxidant markers, notably SOD and CAT. Canagliflozin might alleviate the imiquimod-induced animal model of psoriasis, probably thanks to its profound anti-inflammatory, antioxidant, antiangiogenic, and antiproliferative activities.
Collapse
Affiliation(s)
| | - Adeeb Ahmed Al-Zubaidy
- Department of Pharmacology, College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Alaa Hamza Abbas
- College of Pharmacy, Al-Mustaqbal University, Babylon, Hillah, 51001, Iraq
| | - Dhuha M Hassan
- Pedodontic, Orthodontic and Preventive Department, College of Dentistry, Babylon University, Babylon, Iraq
| | - Samir A Malik
- College of Pharmacy, Al-Mustaqbal University, Babylon, Hillah, 51001, Iraq
| |
Collapse
|
4
|
Chang GJ, Chen WJ, Hsu YJ, Chen YH. Empagliflozin Attenuates Neointima Formation After Arterial Injury and Inhibits Smooth Muscle Cell Proliferation and Migration by Suppressing Platelet-Derived Growth Factor-Related Signaling. J Am Heart Assoc 2024; 13:e035044. [PMID: 39508166 DOI: 10.1161/jaha.124.035044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/23/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce cardiovascular events. However, the precise mechanisms beyond glycemic control are not fully understood. The objective of this study was to determine the role of PDGF (platelet-derived growth factor)-related signaling in empagliflozin-mediated inhibition of neointima formation. METHODS AND RESULTS Adult male nondiabetic Wistar rats were subjected to carotid artery balloon injury. Empagliflozin (30 mg/kg per day) was administered by oral gavage for 18 days beginning 4 days before surgery. The in vitro effects of empagliflozin on rat aortic vascular smooth muscle cell (VSMC) proliferation and migration were also determined. Empagliflozin attenuated balloon injury-induced neointima formation in carotid arteries. In VSMCs, empagliflozin attenuated PDGF-BB-induced proliferation and migration. Moreover, empagliflozin-treated VSMCs did not undergo apoptosis or cytotoxic death. Empagliflozin suppressed PDGF-related signaling, including phosphorylation of PDGF receptor β, Akt, and STAT3 (signal transducer and activator of transcription 3). Overactivation of PDGF signaling attenuated empagliflozin-mediated inhibition of VSMC function. SGLT2 mRNA levels in rat VSMCs were undetectable, and SGLT2 silencing did not alter the empagliflozin-mediated effects, supporting the SGLT2-independent effects of empagliflozin on VSMC. CONCLUSIONS This study highlights the crucial role of suppressing PDGF-related signaling in mediating the beneficial effects of empagliflozin on neointima formation and VSMC function, which are independent of SGLT2 and glycemic control. Our study provides a novel mechanistic aspect of empagliflozin for the prevention of vascular stenosis disorders.
Collapse
MESH Headings
- Animals
- Glucosides/pharmacology
- Male
- Neointima
- Benzhydryl Compounds/pharmacology
- Cell Proliferation/drug effects
- Cell Movement/drug effects
- Signal Transduction/drug effects
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/drug therapy
- Carotid Artery Injuries/metabolism
- Rats, Wistar
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Cells, Cultured
- Disease Models, Animal
- Phosphorylation
- STAT3 Transcription Factor/metabolism
- Rats
- Proto-Oncogene Proteins c-akt/metabolism
- Becaplermin/pharmacology
- Becaplermin/metabolism
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Platelet-Derived Growth Factor/metabolism
- Platelet-Derived Growth Factor/pharmacology
Collapse
Affiliation(s)
- Gwo-Jyh Chang
- Graduate Institute of Clinical Medicinal Sciences Chang-Gung University College of Medicine Tao-Yuan Taiwan
- Cardiovascular Division, Chang-Gung Memorial Hospital Chang-Gung University College of Medicine Tao-yuan Taiwan
| | - Wei-Jan Chen
- Cardiovascular Division, Chang-Gung Memorial Hospital Chang-Gung University College of Medicine Tao-yuan Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital National Defense Medical Center Taipei Taiwan
| | - Ying-Hwa Chen
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital National Yang Ming Chiao Tung University College of Medicine Taipei Taiwan
| |
Collapse
|
5
|
Lai YJ, Yeh YH, Huang YL, De Almeida C, Chang GJ, Chen WJ, Hsu HH. Empagliflozin Attenuates Pulmonary Arterial Remodeling Through Peroxisome Proliferator-Activated Receptor Gamma Activation. ACS Pharmacol Transl Sci 2024; 7:2725-2738. [PMID: 39296270 PMCID: PMC11406702 DOI: 10.1021/acsptsci.4c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 09/21/2024]
Abstract
The loss of peroxisome proliferator-activated receptor gamma (PPARγ) exacerbates pulmonary arterial hypertension (PAH), while its upregulation reduces cell proliferation and vascular remodeling, thereby decreasing PAH severity. SGLT2 inhibitors, developed for type 2 diabetes, might also affect signal transduction in addition to modulating sodium-glucose cotransporters. Pulmonary arterial smooth muscle cells (PASMCs) isolated from patients with idiopathic pulmonary arterial hypertension (IPAH) were treated with three SGLT2 inhibitors, canagliflozin (Cana), dapagliflozin (Dapa), and empagliflozin (Empa), to investigate their antiproliferative effects. To assess the impact of Empa on PPARγ, luciferase reporter assays and siRNA-mediated PPARγ knockdown were employed to examine regulation of the γ-secretase complex and its downstream target Notch3. Therapy involving daily administration of Empa was initiated 21 days after inducing hypoxia-induced PAH in mice. Empa exhibited significant antiproliferative effects on fast-growing IPAH PASMCs. Empa activated PPARγ to prevent formation of the γ-secretase complex, with specific impacts on presenilin enhancer 2 (PEN2), which plays a crucial role in maintaining γ-secretase complex stability, thereby inhibiting Notch3. Similar results were obtained in lung tissue of chronically hypoxic mice. Empa attenuated pulmonary arterial remodeling and right ventricle hypertrophy in a hypoxic PAH mouse model. Moreover, PPARγ expression was significantly decreased and PEN2, and Notch3 levels were increased in lung tissue from PAH patients compared with non-PAH lung tissue. Empa reverses vascular remodeling by activating PPARγ to suppress the γ-secretase-Notch3 axis. We propose Empa as a PPARγ activator and potential therapeutic for PAH.
Collapse
Affiliation(s)
- Ying-Ju Lai
- Cardiovascular Division, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan
- Department of Respiratory Therapy, Chang Gung University College of Medicine, Chang-Gung University, Tao-Yuan 33353, Taiwan
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chia-Yi 61363, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Division, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan
| | - Yen-Lin Huang
- Department of Pathology, National Taiwan University Cancer Center and National Taiwan University College of Medicine, Taipei 106328, Taiwan
| | - Celina De Almeida
- Department of Respiratory Therapy, Chang Gung University College of Medicine, Chang-Gung University, Tao-Yuan 33353, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Tao-Yuan 33353, Taiwan
| | - Gwo-Jyh Chang
- Cardiovascular Division, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Tao-Yuan 33353, Taiwan
| | - Wei-Jan Chen
- Cardiovascular Division, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan
| | - Hsao-Hsun Hsu
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10002, Taiwan
| |
Collapse
|
6
|
Ahwin P, Martinez D. The relationship between SGLT2 and systemic blood pressure regulation. Hypertens Res 2024; 47:2094-2103. [PMID: 38783146 PMCID: PMC11298408 DOI: 10.1038/s41440-024-01723-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
The sodium-glucose cotransporter 2 (SGLT2) is a glucose transporter that is located within the proximal tubule of the kidney's nephrons. While it is typically associated with the kidney, it was later identified in various areas of the central nervous system, including areas modulating cardiorespiratory regulation like blood pressure. In the kidney, SGLT2 functions by reabsorbing glucose from the nephron's tubule into the bloodstream. SGLT2 inhibitors are medications that hinder the function of SGLT2, thus preventing the absorption of glucose and allowing for its excretion through the urine. While SGLT2 inhibitors are not the first-line choice, they are given in conjunction with other pharmaceutical interventions to manage hyperglycemia in individuals with diabetes mellitus. SGLT2 inhibitors also have a surprising secondary effect of decreasing blood pressure independent of blood glucose levels. The implication of SGLT2 inhibitors in lowering blood pressure and its presence in the central nervous system brings to question the role of SGLT2 in the brain. Here, we evaluate and review the function of SGLT2, SGLT2 inhibitors, their role in blood pressure control, the future of SGLT2 inhibitors as antihypertensive agents, and the possible mechanisms of SGLT2 blood pressure control in the central nervous system.
Collapse
Affiliation(s)
- Priscilla Ahwin
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 South Broadway, Camden, NJ, 08103, USA
| | - Diana Martinez
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, 401 South Broadway, Camden, NJ, 08103, USA.
| |
Collapse
|
7
|
Mohamed HE, Abdelhady MA, Elmaghraby AM, Elrashidy RA. Empagliflozin and pirfenidone confer renoprotection through suppression of glycogen synthase kinase-3β and promotion of tubular regeneration in rats with induced metabolic syndrome. Toxicol Appl Pharmacol 2024; 485:116892. [PMID: 38492675 DOI: 10.1016/j.taap.2024.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Metabolic syndrome (MetS) is largely coupled with chronic kidney disease (CKD). Glycogen synthase kinase-3β (GSK-3β) pathway drives tubular injury in animal models of acute kidney injury; but its contribution in CKD is still elusive. This study investigated the effect empagliflozin and/or pirfenidone against MetS-induced kidney dysfunction, and to clarify additional underpinning mechanisms particularly the GSK-3β signaling pathway. Adult male rats received 10%w/v fructose in drinking water for 20 weeks to develop MetS, then treated with either drug vehicle, empagliflozin (30 mg/kg/day) and/or pirfenidone (100 mg/kg/day) via oral gavage for subsequent 4 weeks, concurrently with the high dietary fructose. Age-matched rats receiving normal drinking water were used as controls. After 24 weeks, blood and kidneys were harvested for subsequent analyses. Rats with MetS showed signs of kidney dysfunction, structural changes and interstitial fibrosis. Activation of GSK-3β, decreased cyclinD1 expression and enhanced apoptotic signaling were found in kidneys of MetS rats. There was abundant alpha-smooth muscle actin (α-SMA) expression along with up-regulation of TGF-β1/Smad3 in kidneys of MetS rats. These derangements were almost alleviated by empagliflozin or pirfenidone, with evidence that the combined therapy was more effective than either individual drug. This study emphasizes a novel mechanism underpinning the beneficial effects of empagliflozin and pirfenidone on kidney dysfunction associated with MetS through targeting GSK-3β signaling which can mediate the regenerative capacity, anti-apoptotic effects and anti-fibrotic properties of such drugs. These findings recommend the possibility of using empagliflozin and pirfenidone as promising therapies for management of CKD in patients with MetS.
Collapse
Affiliation(s)
- Hoda E Mohamed
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Merna A Abdelhady
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Asmaa M Elmaghraby
- Histology and Cell Biology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt
| | - Rania A Elrashidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
8
|
Makaro A, Świerczyński M, Pokora K, Sarniak B, Kordek R, Fichna J, Salaga M. Empagliflozin attenuates intestinal inflammation through suppression of nitric oxide synthesis and myeloperoxidase activity in in vitro and in vivo models of colitis. Inflammopharmacology 2024; 32:377-392. [PMID: 37086302 PMCID: PMC10907478 DOI: 10.1007/s10787-023-01227-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023]
Abstract
Inflammatory bowel diseases (IBD) are characterized by chronic and relapsing inflammation affecting the gastrointestinal (GI) tract. The incidence and prevalence of IBD are relatively high and still increasing. Additionally, current therapeutic strategies for IBD are not optimal. These facts urge todays' medicine to find a novel way to treat IBD. Here, we focused on the group of anti-diabetic drugs called gliflozins, which inhibit sodium glucose co-transporter type 2 (SGLT-2). Numerous studies demonstrated that gliflozins exhibit pleiotropic effect, including anti-inflammatory properties. In this study, we tested the effect of three gliflozins; empagliflozin (EMPA), dapagliflozin (DAPA), and canagliflozin (CANA) in in vitro and in vivo models of intestinal inflammation. Our in vitro experiments revealed that EMPA and DAPA suppress the production of nitric oxide in LPS-treated murine RAW264.7 macrophages. In in vivo part of our study, we showed that EMPA alleviates acute DSS-induced colitis in mice. Treatment with EMPA reduced macro- and microscopic colonic damage, as well as partially prevented from decrease in tight junction gene expression. Moreover, EMPA attenuated biochemical inflammatory parameters including reduced activity of myeloperoxidase. We showed that SGLT-2 inhibitors act as anti-inflammatory agents independently from their hypoglycemic effects. Our observations suggest that gliflozins alleviate inflammation through their potent effects on innate immune cells.
Collapse
Affiliation(s)
- Adam Makaro
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Mikołaj Świerczyński
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kacper Pokora
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Barbara Sarniak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Radzisław Kordek
- Department of Pathology, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
9
|
Yadav J, Ahsan F, Panda P, Mahmood T, Ansari VA, Shamim A. Empagliflozin-A Sodium Glucose Co-transporter-2 Inhibitor: Overview ofits Chemistry, Pharmacology, and Toxicology. Curr Diabetes Rev 2024; 20:e230124226010. [PMID: 38265382 DOI: 10.2174/0115733998271026231127051545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Empagliflozin is a sodium glucose co-transporter-2 (SGLT2) inhibitor that has gained significant attention in the treatment of type 2 diabetes mellitus. Understanding its chemistry, pharmacology, and toxicology is crucial for the safe and effective use of this medication. OBJECTIVE This review aims to provide a comprehensive overview of the chemistry, pharmacology, and toxicology of empagliflozin, synthesizing the available literature to present a concise summary of its properties and implications for clinical practice. METHODS A systematic search of relevant databases was conducted to identify studies and articles related to the chemistry, pharmacology, and toxicology of empagliflozin. Data from preclinical and clinical studies, as well as post-marketing surveillance reports, were reviewed to provide a comprehensive understanding of the topic. RESULTS Empagliflozin is a selective SGLT2 inhibitor that works by constraining glucose reabsorption in the kidneys, causing increased urinary glucose elimination. Its unique mechanism of action provides glycemic control, weight reduction, and blood pressure reduction. The drug's chemistry is characterized by its chemical structure, solubility, and stability. Pharmacologically, empagliflozin exhibits favorable pharmacokinetic properties with rapid absorption, extensive protein binding, and renal elimination. Clinical studies have demonstrated its efficacy in improving glycemic control, reducing cardiovascular risks, and preserving renal function. However, adverse effects, for instance, urinary tract infections, genital infections, and diabetic ketoacidosis have been reported. Toxicological studies indicate low potential for organ toxicity, mutagenicity, or carcinogenicity. CONCLUSION Empagliflozin is a promising SGLT2 inhibitor that offers an innovative approach to the treatment of type 2 diabetes mellitus. Its unique action mechanism and favorable pharmacokinetic profile contribute to its efficacy in improving glycemic control and reducing cardiovascular risks. While the drug's safety profile is generally favorable, clinicians should be aware of potential adverse effects and monitor patients closely. More study is required to determine the longterm safety and explore potential benefits in other patient populations. Overall, empagliflozin represents a valuable addition to the armamentarium of antidiabetic medications, offering significant benefits to patients suffering from type 2 diabetes mellitus. This study covers all aspects of empagliflozin, including its history, chemistry, pharmacology, and various clinical studies, case reports, and case series.
Collapse
Affiliation(s)
- Jyoti Yadav
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India
| | - Farogh Ahsan
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India
| | - Prabhudatta Panda
- Department of Pharmacy, Institute of Technology & Management, Gorakhpur (U.P.), 226026, India
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India
| | - Vaseem Ahamad Ansari
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India
| | - Arshiya Shamim
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow (U.P.), 226026, India
| |
Collapse
|
10
|
Debnath A, Sharma S, Mazumder R, Mazumder A, Singh R, Kumar A, Dua A, Singhal P, Kumar A, Singh G. In Search of Novel SGLT2 Inhibitors by High-throughput Virtual Screening. Curr Drug Discov Technol 2024; 21:20-31. [PMID: 38047361 DOI: 10.2174/0115701638267615231123160650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus constitutes approximately 90% of all reported forms of diabetes mellitus. Insulin resistance characterizes this manifestation of diabetes. The prevalence of this condition is commonly observed in patients aged 45 and above; however, there is an emerging pattern of younger cohorts receiving diagnoses primarily attributed to lifestyle-related variables, including obesity, sedentary behavior, and poor dietary choices. The enzyme SGLT2 exerts a negative regulatory effect on insulin signaling pathways, resulting in the development of insulin resistance and subsequent elevation of blood glucose levels. The maintenance of glucose homeostasis relies on the proper functioning of insulin signaling pathways, while disruptions in insulin signaling can contribute to the development of type 2 diabetes. OBJECTIVE Our study aimed to identify novel SGLT2 inhibitors by high-throughput virtual Screening. METHODS We screened the May bridge Hit Discover database to identify potent hits followed by druglikeness, synthetic accessibility, PAINS alert, toxicity estimation, ADME assessment, and consensus molecular docking. RESULTS The screening process led to the identification of three molecules that demonstrated significant binding affinity, favorable drug-like properties, effective ADME, and minimal toxicity. CONCLUSION The identified molecules could manage T2DM effectively by inhibiting SGLT2, providing a promising avenue for future therapeutic strategies.
Collapse
Affiliation(s)
- Abhijit Debnath
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India
| | - Shalini Sharma
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India
| | - Rupa Mazumder
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India
| | - Avijit Mazumder
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India
| | - Rajesh Singh
- Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ankit Kumar
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India
| | - Arpita Dua
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India
| | - Priya Singhal
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India
| | - Arvind Kumar
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India
| | - Gurvinder Singh
- Department of Medicinal Chemistry, Lovely Professional University, Phagwara, 144001, Punjab, India
| |
Collapse
|
11
|
Dwaib HS, Michel MC. Is the β 3-Adrenoceptor a Valid Target for the Treatment of Obesity and/or Type 2 Diabetes? Biomolecules 2023; 13:1714. [PMID: 38136585 PMCID: PMC10742325 DOI: 10.3390/biom13121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
β3-Adrenoceptors mediate several functions in rodents that could be beneficial for the treatment of obesity and type 2 diabetes. This includes promotion of insulin release from the pancreas, cellular glucose uptake, lipolysis, and thermogenesis in brown adipose tissue. In combination, they lead to a reduction of body weight in several rodent models including ob/ob mice and Zucker diabetic fatty rats. These findings stimulated drug development programs in various pharmaceutical companies, and at least nine β3-adrenoceptor agonists have been tested in clinical trials. However, all of these projects were discontinued due to the lack of clinically relevant changes in body weight. Following a concise historical account of discoveries leading to such drug development programs we discuss species differences that explain why β3-adrenoceptors are not a meaningful drug target for the treatment of obesity and type 2 diabetes in humans.
Collapse
Affiliation(s)
- Haneen S. Dwaib
- Department of Clinical Nutrition and Dietetics, Palestine Ahliya University, Bethlehem P.O. Box 1041, Palestine;
| | - Martin C. Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
12
|
Samaan E, Ramadan NM, Abdulaziz HMM, Ibrahim D, El-Sherbiny M, ElBayar R, Ghattas Y, Abdlmalek J, Bayali O, Elhusseini Y, Maghrabia A, El-Gamal R. DPP-4i versus SGLT2i as modulators of PHD3/HIF-2α pathway in the diabetic kidney. Biomed Pharmacother 2023; 167:115629. [PMID: 37804810 DOI: 10.1016/j.biopha.2023.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
RATIONALE Renal hypoxia is one of the currently highlighted pathophysiologic mechanisms of diabetic nephropathy (DN). Both hypoxia-inducible factor-1α (HIF-1α) and HIF-2α are major regulators of renal adaptive responses to hypoxia. OBJECTIVES This study aims to compare the effects of vildagliptin (a dipeptidyl peptidase-IV inhibitor, DPP-4i) and empagliflozin (a sodium-glucose cotransporter 2 inhibitor, SGLT2i) on the differential expression of renal HIF-1α/2α. Tissue expression of prolylhydroxylase 3 (PHD3), a key regulator of HIF-2α stability, was also highlighted in a diabetic nephropathy rat model. Type 1 diabetes mellitus was induced and diabetic rats were treated with either Vildagliptin or Empagliflozin (10 mg/kg/d each) for 12 weeks. Improvements in the kidney functional and histopathological parameters were addressed and correlated to changes in the renal expression of HIF-1α/2α, and PHD3. Urinary KIM-1 concentration was tested as a correlate to HIF pathway changes. FINDINGS Both vildagliptin- and empagliflozin-treated groups exhibited significant improvement in the functional, pathological, and ultra-structural renal changes induced by chronic diabetes. Compared to the untreated group, renal gene expression of HIF-1α was decreased while that of HIF-2α was increased in both treated groups, with significantly greater effects observed with SGLT2i. Renal PHD3 immune-reactivity was also decreased by both drugs, again with better efficacy for the SGLT2i. Importantly, improvements in the diabetic kidney biochemical and structural biomarkers were significantly correlated to PHD3 reductions and HIF-2α increments. CONCLUSIONS Both DPP-4i and SGLT2i could delay the progression of DN through their differential modulating effects on the PHD3/ HIF-2α pathway with significantly better efficacy for SGLT2i.
Collapse
Affiliation(s)
- Emad Samaan
- Mansoura Nephrology and Dialysis Unit, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Nehal M Ramadan
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, 35516, Egypt; Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, 35516, Egypt; Department of Clinical Pharmacology, Horus University in Egypt (HUE), New Damietta, Damietta, Egypt.
| | - Hoda M M Abdulaziz
- Mansoura Nephrology and Dialysis Unit, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Dina Ibrahim
- Pathology Department, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Rana ElBayar
- Undergraduate Medical student, Faculty of Medicine, Mansoura University, Egypt
| | - Yasmin Ghattas
- Undergraduate medical student, Mansoura Manchester Program of Medical Education, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Joly Abdlmalek
- Undergraduate medical student, Mansoura Manchester Program of Medical Education, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Omnia Bayali
- Undergraduate medical student, Mansoura Manchester Program of Medical Education, Mansoura Faculty of Medicine, Mansoura, Egypt
| | | | - Aya Maghrabia
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Randa El-Gamal
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, 35516, Egypt; Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, 35516, Egypt; Department of Medical Biochemistry, Horus University in Egypt (HUE), New Damietta, Damietta, Egypt
| |
Collapse
|
13
|
Khezri MR, Ghasemnejad-Berenji H, Ghasemnejad-Berenji M. Protective effects of empagliflozin on testicular injury induced by torsion/detorsion in adult male rats. J Pediatr Urol 2023; 19:545.e1-545.e7. [PMID: 37394304 DOI: 10.1016/j.jpurol.2023.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Testicular torsion is a known urologic emergency condition and one of the common causes of infertility in males. Hence, prompt diagnosis and treatment play a crucial role in prevention of testicular injury. It has been observed that empagliflozin, a drug for management of hyperglycemia, has anti-oxidative properties against different pathologies, the most important of which are ischemia reperfusion related injuries. OBJECTIVE This study aims to evaluate the protective effects of empagliflozin on a testicular torsion injury in adolescent rats followed by ischemia/reperfusion (I/R) phenomena. STUDY DESIGN Thirty-six rats were randomly assigned into three groups including sham-operated group received all surgical procedures except testicular torsion-detorsion, torsion/detorsion + dimethyl sulfoxide (DMSO) as vehicle, and torsion/detorsion + empagliflozin (10 mg/kg). Testicular torsion was performed for 2 h through rotating right testis 720° in the clockwise direction. Thirty minutes before detorsion, a single intraperitoneal dose of empagliflozin was injected to treatment group. Four hours later, orchiectomy was conducted for histopathological and biochemical examinations of testicular tissue specimens. RESULTS The malondialdehyde (MDA) content in the torsion/detorsion animals was markedly greater than in the animals under sham operated procedure. Moreover, the testicular MDA levels in the torsion/detorsion + empagliflozin group were significantly lower than in the torsion/detorsion group. Also, significant decreases observed in catalase, superoxide dismutase, and glutathione peroxidase activities in the torsion/detorsion group in comparison with sham operated group. These values were significantly improved in the empagliflozin group. Furthermore, histopathological examinations also revealed severe testicular injury which were improved by empagliflozin administration. DISCUSSION Empagliflozin prevented increases in oxidative stress markers and subsequently reduced the tissue injury induced by torsion/detorsion in the current study. CONCLUSION It can be concluded that administration of empagliflozin before prevents I/R related cellular damage in testicular torsion, possibly via oxidative stress inhibition.
Collapse
Affiliation(s)
| | - Hojjat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
14
|
Guler E, Nur Hazar-Yavuz A, Tatar E, Morid Haidari M, Sinemcan Ozcan G, Duruksu G, Graça MPF, Kalaskar DM, Gunduz O, Emin Cam M. Oral empagliflozin-loaded tri-layer core-sheath fibers fabricated using tri-axial electrospinning: Enhanced in vitro and in vivo antidiabetic performance. Int J Pharm 2023; 635:122716. [PMID: 36791999 DOI: 10.1016/j.ijpharm.2023.122716] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Empagliflozin (EM) was successfully loaded in polycaprolactone/poly (L-lactic acid)/polymethyl methacrylate (PCL/PLA/PMMA) fibers. In the rat β-cell line (BRIN-BD11), the insulin expression ratio of pancreatic β-cells was stimulated at high and low glucose by culturing with tri-layer EM-loaded fiber (EMF) for 48 h. The expression ratios of glucokinase and GLUT-2 proteins increased after EMF treatment. According to the in vitro drug release test, 97% of all drug contained in fibers was released in a controlled manner for 24 h. The pharmacokinetic test revealed that the bioavailability was improved ∼4.8-fold with EMF treatment compared to EM-powder and blood glucose level was effectively controlled for 24 h with EMF. Oral administration of EMF exhibited a better sustainable anti-diabetic activity even in the half-dosage than EM-powder in streptozotocin/nicotinamide-induced T2DM rats. The levels of GLP-1, PPAR-γ, and insulin were increased while the levels of SGLT-2 and TNF-α were decreased with EMF treatment. Also, EMF recovered the histopathological changes in the liver, pancreas, and kidney in T2DM rats and protected pancreatic β-cells. Consequently, EMF is suggested as an unprecedented and promotive treatment approach for T2DM with a higher bioavailability and better antidiabetic effect compared to conventional dosage forms.
Collapse
Affiliation(s)
- Ece Guler
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Ayse Nur Hazar-Yavuz
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey
| | - Esra Tatar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey
| | - Mohammad Morid Haidari
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey
| | - Gul Sinemcan Ozcan
- Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey
| | - Gokhan Duruksu
- Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey
| | | | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; Department of Metallurgy and Material Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Muhammet Emin Cam
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; Biomedical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Istanbul, Turkey.
| |
Collapse
|
15
|
Maiorana A, Tagliaferri F, Dionisi-Vici C. Current understanding on pathogenesis and effective treatment of glycogen storage disease type Ib with empagliflozin: new insights coming from diabetes for its potential implications in other metabolic disorders. Front Endocrinol (Lausanne) 2023; 14:1145111. [PMID: 37152929 PMCID: PMC10160627 DOI: 10.3389/fendo.2023.1145111] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Glycogen storage type Ib (GSDIb) is a rare inborn error of metabolism caused by glucose-6-phosphate transporter (G6PT, SLC37A4) deficiency. G6PT defect results in excessive accumulation of glycogen and fat in the liver, kidney, and intestinal mucosa and into both glycogenolysis and gluconeogenesis impairment. Clinical features include hepatomegaly, hypoglycemia, lactic acidemia, hyperuricemia, hyperlipidemia, and growth retardation. Long-term complications are liver adenoma, hepatocarcinoma, nephropathy and osteoporosis. The hallmark of GSDIb is neutropenia, with impaired neutrophil function, recurrent infections and inflammatory bowel disease. Alongside classical nutritional therapy with carbohydrates supplementation and immunological therapy with granulocyte colony-stimulating factor, the emerging role of 1,5-anhydroglucitol in the pathogenesis of neutrophil dysfunction led to repurpose empagliflozin, an inhibitor of the renal glucose transporter SGLT2: the current literature of its off-label use in GSDIb patients reports beneficial effects on neutrophil dysfunction and its clinical consequences. Surprisingly, this glucose-lowering drug ameliorated the glycemic and metabolic control in GSDIb patients. Furthermore, numerous studies from big cohorts of type 2 diabetes patients showed the efficacy of empagliflozin in reducing the cardiovascular risk, the progression of kidney disease, the NAFLD and the metabolic syndrome. Beneficial effects have also been described on peripheral neuropathy in a prediabetic rat model. Increasing evidences highlight the role of empagliflozin in regulating the cellular energy sensors SIRT1/AMPK and Akt/mTOR, which leads to improvement of mitochondrial structure and function, stimulation of autophagy, decrease of oxidative stress and suppression of inflammation. Modulation of these pathways shift the oxidative metabolism from carbohydrates to lipids oxidation and results crucial in reducing insulin levels, insulin resistance, glucotoxicity and lipotoxicity. For its pleiotropic effects, empagliflozin appears to be a good candidate for drug repurposing also in other metabolic diseases presenting with hypoglycemia, organ damage, mitochondrial dysfunction and defective autophagy.
Collapse
Affiliation(s)
- Arianna Maiorana
- Division of Metabolism, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- *Correspondence: Arianna Maiorana,
| | - Francesco Tagliaferri
- SCDU of Pediatrics, Azienda Ospedaliero-Universitaria Maggiore della Carità, University of Piemonte Orientale, Novara, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
16
|
Forycka J, Hajdys J, Krzemińska J, Wilczopolski P, Wronka M, Młynarska E, Rysz J, Franczyk B. New Insights into the Use of Empagliflozin-A Comprehensive Review. Biomedicines 2022; 10:biomedicines10123294. [PMID: 36552050 PMCID: PMC9775057 DOI: 10.3390/biomedicines10123294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Empagliflozin is a relatively new drug that, as an inhibitor of the sodium−glucose cotransporter 2 (SGLT2), causes increased urinary glucose excretion and thus contributes to improved glycemic control, better glucose metabolism, reduced glucotoxicity and insulin resistance. Although its original use was to induce a hypoglycemic effect in patients with type 2 diabetes mellitus (T2DM), empagliflozin has also shown a number of other beneficial effects by demonstrating a nephroprotective effect, and it has proven to be a breakthrough in the treatment of heart failure (HF). Empagliflozin has been shown to reduce hospitalizations for HF and the number of deaths from cardiovascular causes. Empagliflozin treatment also reduces the incidence of renal events, including death from renal causes, as well as the risk of end-stage renal failure. Empagliflozin appears to be a fairly well-tolerated and safe drug. In patients with inadequate glycemic control, empagliflozin used in monotherapy or as an adjunct to therapy effectively lowers fasting blood glucose, postprandial blood glucose, average daily glucose levels, glycated hemoglobin A1C (HbA1C) and also leads to significant weight reduction in patients with T2DM. Unfortunately, there are some limitations, e.g., severe hypersensitivity reaction to the drug and a glomerular filtration rate (GFR) < 30 mL/min/1.73 m2. As with any drug, empagliflozin is also characterized by several side effects among which symptomatic hypotension, troublesome genital fungal infections, urinary tract infections and rare ketoacidosis are characteristic.
Collapse
Affiliation(s)
- Joanna Forycka
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Hajdys
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Julia Krzemińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Piotr Wilczopolski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Magdalena Wronka
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
- Correspondence: ; Tel.: +48-(042)-639-37-50
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
17
|
Yesilyurt ZE, Matthes J, Hintermann E, Castañeda TR, Elvert R, Beltran-Ornelas JH, Silva-Velasco DL, Xia N, Kannt A, Christen U, Centurión D, Li H, Pautz A, Arioglu-Inan E, Michel MC. Analysis of 16 studies in nine rodent models does not support the hypothesis that diabetic polyuria is a main reason of urinary bladder enlargement. Front Physiol 2022; 13:923555. [PMID: 36003651 PMCID: PMC9393211 DOI: 10.3389/fphys.2022.923555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
The urinary bladder is markedly enlarged in the type 1 diabetes mellitus model of streptozotocin-injected rats, which may contribute to the frequent diabetic uropathy. Much less data exists for models of type 2 diabetes. Diabetic polyuria has been proposed as the pathophysiological mechanism behind bladder enlargement. Therefore, we explored such a relationship across nine distinct rodent models of diabetes including seven models of type 2 diabetes/obesity by collecting data on bladder weight and blood glucose from 16 studies with 2–8 arms each; some studies included arms with various diets and/or pharmacological treatments. Data were analysed for bladder enlargement and for correlations between bladder weight on the one and glucose levels on the other hand. Our data confirm major bladder enlargement in streptozotocin rats and minor if any enlargement in fructose-fed rats, db/db mice and mice on a high-fat diet; enlargement was present in some of five not reported previously models. Bladder weight was correlated with blood glucose as a proxy for diabetic polyuria within some but not other models, but correlations were moderate to weak except for RIP-LCMV mice (r2 of pooled data from all studies 0.0621). Insulin levels also failed to correlate to a meaningful extent. Various diets and medications (elafibranor, empagliflozin, linagliptin, semaglutide) had heterogeneous effects on bladder weight that often did not match their effects on glucose levels. We conclude that the presence and extent of bladder enlargement vary markedly across diabetes models, particularly type 2 diabetes models; our data do not support the idea that bladder enlargement is primarily driven by glucose levels/glucosuria.
Collapse
Affiliation(s)
- Zeynep E. Yesilyurt
- Department of Pharmacology, School of Pharmacy, Ankara University, Ankara, Turkey
| | - Jan Matthes
- Department of Pharmacology, University of Cologne, Cologne, Germany
| | | | | | - Ralf Elvert
- Sanofi Research and Development, Frankfurt, Germany
| | | | | | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Aimo Kannt
- Sanofi Research and Development, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Urs Christen
- Pharmazentrum, Goethe University, Frankfurt, Germany
| | - David Centurión
- Department of Pharmacobiology, Cinvestav IPN, Mexico City, Mexico
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Ebru Arioglu-Inan
- Department of Pharmacology, School of Pharmacy, Ankara University, Ankara, Turkey
| | - Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
- *Correspondence: Martin C. Michelm,
| |
Collapse
|
18
|
Yagi T, Kolluru GK. SGLT2 Inhibitors-A Medical Revelation: Molecular Signaling of Canagliflozin Underlying Hypertension and Vascular Remodeling. J Am Heart Assoc 2022; 11:e026774. [PMID: 35906180 PMCID: PMC9375488 DOI: 10.1161/jaha.122.026774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Takashi Yagi
- Department of Pathology LSU Health Shreveport Shreveport LA
| | - Gopi K Kolluru
- Department of Pathology LSU Health Shreveport Shreveport LA
| |
Collapse
|
19
|
Erdogan BR, Liu G, Arioglu-Inan E, Michel MC. Established and emerging treatments for diabetes-associated lower urinary tract dysfunction. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:887-906. [PMID: 35545721 PMCID: PMC9276575 DOI: 10.1007/s00210-022-02249-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022]
Abstract
Dysfunction of the lower urinary tract (LUT) including urinary bladder and urethra (and prostate in men) is one of the most frequent complications of diabetes and can manifest as overactive bladder, underactive bladder, urinary incontinence, and as aggravated symptoms of benign prostate hyperplasia. We have performed a selective literature search to review existing evidence on efficacy of classic medications for the treatment of LUT dysfunction in diabetic patients and animals, i.e., α1-adrenoceptor and muscarinic receptor antagonists, β3-adrenoceptor agonists, and phosphodiesterase type 5 inhibitors. Generally, these agents appear to have comparable efficacy in patients and/or animals with and without diabetes. We also review effects of antidiabetic medications on LUT function. Such studies have largely been performed in animal models. In the streptozotocin-induced models of type 1 diabetes, insulin can prevent and reverse alterations of morphology, function, and gene expression patterns in bladder and prostate. Typical medications for the treatment of type 2 diabetes have been studied less often, and the reported findings are not yet sufficient to derive robust conclusions. Thereafter, we review animal studies with emerging medications perhaps targeting diabetes-associated LUT dysfunction. Data with myoinositol, daidzein, and with compounds that target oxidative stress, inflammation, Rac1, nerve growth factor, angiotensin II receptor, serotonin receptor, adenosine receptor, and soluble guanylyl cyclase are not conclusive yet, but some hold promise as potential treatments. Finally, we review nonpharmacological interventions in diabetic bladder dysfunction. These approaches are relatively new and give promising results in preclinical studies. In conclusion, the insulin data in rodent models of type 1 diabetes suggest that diabetes-associated LUT function can be mostly or partially reversed. However, we propose that considerable additional experimental and clinical studies are needed to target diabetes itself or pathophysiological changes induced by chronic hyperglycemia for the treatment of diabetic uropathy.
Collapse
Affiliation(s)
- Betül R Erdogan
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Guiming Liu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Martin C Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
20
|
Kaku K, Yamamoto K, Fukushima Y, Mizuno S, Nitta D. Safety and effectiveness of empagliflozin according to body mass index in Japanese patients with type 2 diabetes: a subgroup analysis of a 3-year post-marketing surveillance study. Expert Opin Drug Saf 2022; 21:1411-1422. [PMID: 35379060 DOI: 10.1080/14740338.2022.2062322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Empagliflozin, a glucose-lowering drug licensed for type 2 diabetes (T2D), demonstrated tolerability and effectiveness overall in a post-marketing surveillance (PMS) study in Japan. However, the impact of body mass index (BMI) is unclear. RESEARCH DESIGN AND METHODS This was a prespecified sub-analysis of the prospective, 3-year, PMS study of empagliflozin in Japan where the primary endpoint was adverse drug reactions (ADRs). We evaluated results according to BMI. RESULTS We enrolled 7931 T2D patients treated with empagliflozin. Baseline mean age was 58.7 years; 63.01% were male. Baseline BMI was <20 kg/m2 in 2.06% of patients, while 21.28%, 37.35%, and 24.97% had BMI 20-<25, 25-<30 and ≥30 kg/m2, respectively. ADRs occurred in 19 (11.66%), 203 (12.03%), 411 (13.88%), and 295 (14.90%) patients with BMI <20, 20-<25, 25-<30 and ≥30 kg/m2, respectively. Excessive/frequent urination was the most frequent ADR of special interest in all BMI subgroups except 20-<25 kg/m2 (urinary tract infection). Mean change in glycated hemoglobin from baseline was -0.75%, with similar magnitude across BMI subgroups. Body-weight reduction seemed dependent on BMI, with almost no change in the <20 kg/m2 subgroup. CONCLUSIONS Empagliflozin appeared well tolerated and effective in Japanese T2D patients regardless of BMI, although the number of patients with BMI <20 kg/m2 was small in this study.
Collapse
Affiliation(s)
- Kohei Kaku
- Department of Medicine, Kawasaki Medical School, Okayama, Japan
| | - Kazuhiro Yamamoto
- Department of Cardiovascular Medicine, and Endocrinology and Metabolism, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Yumiko Fukushima
- Medicine Division, Nippon Boehringer Ingelheim Co. Ltd., Tokyo, Japan
| | | | - Daisuke Nitta
- Medicine Division, Nippon Boehringer Ingelheim Co. Ltd., Tokyo, Japan
| |
Collapse
|
21
|
Sadria M, Seo D, Layton AT. The mixed blessing of AMPK signaling in Cancer treatments. BMC Cancer 2022; 22:105. [PMID: 35078427 PMCID: PMC8786626 DOI: 10.1186/s12885-022-09211-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Background Nutrient acquisition and metabolism pathways are altered in cancer cells to meet bioenergetic and biosynthetic demands. A major regulator of cellular metabolism and energy homeostasis, in normal and cancer cells, is AMP-activated protein kinase (AMPK). AMPK influences cell growth via its modulation of the mechanistic target of Rapamycin (mTOR) pathway, specifically, by inhibiting mTOR complex mTORC1, which facilitates cell proliferation, and by activating mTORC2 and cell survival. Given its conflicting roles, the effects of AMPK activation in cancer can be counter intuitive. Prior to the establishment of cancer, AMPK acts as a tumor suppressor. However, following the onset of cancer, AMPK has been shown to either suppress or promote cancer, depending on cell type or state. Methods To unravel the controversial roles of AMPK in cancer, we developed a computational model to simulate the effects of pharmacological maneuvers that target key metabolic signalling nodes, with a specific focus on AMPK, mTORC, and their modulators. Specifically, we constructed an ordinary differential equation-based mechanistic model of AMPK-mTORC signaling, and parametrized the model based on existing experimental data. Results Model simulations were conducted to yield the following predictions: (i) increasing AMPK activity has opposite effects on mTORC depending on the nutrient availability; (ii) indirect inhibition of AMPK activity through inhibition of sirtuin 1 (SIRT1) only has an effect on mTORC activity under conditions of low nutrient availability; (iii) the balance between cell proliferation and survival exhibits an intricate dependence on DEP domain-containing mTOR-interacting protein (DEPTOR) abundance and AMPK activity; (iv) simultaneous direct inhibition of mTORC2 and activation of AMPK is a potential strategy for suppressing both cell survival and proliferation. Conclusions Taken together, model simulations clarify the competing effects and the roles of key metabolic signalling pathways in tumorigenesis, which may yield insights on innovative therapeutic strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09211-1.
Collapse
|
22
|
Kowalska K, Walczak J, Femlak J, Młynarska E, Franczyk B, Rysz J. Empagliflozin-A New Chance for Patients with Chronic Heart Failure. Pharmaceuticals (Basel) 2021; 15:47. [PMID: 35056104 PMCID: PMC8779904 DOI: 10.3390/ph15010047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 11/27/2022] Open
Abstract
The heart failure (HF) epidemic is one of the challenges that has been faced by the healthcare system worldwide for almost 25 years. With an ageing world population and a fast-paced lifestyle that promotes the development of cardiovascular disease, the number of people suffering from heart failure will continue to rise. To improve the treatment regimen and consequently the prognosis and quality of life of heart failure patients, new therapeutic solutions have been introduced, such as an inclusion of Sodium-glucose co-transporter 2 (SGLT-2) inhibitors in a new treatment regimen as announced by the European Society of Cardiology in August 2021. This article focuses on the SGLT2 inhibitor empagliflozin and its use in patients with heart failure. Empagliflozin is a drug originally intended for the treatment of diabetes due to its glycosuric properties, yet its beneficial effects extend beyond lowering glycemia. The pleiotropic effects of the drug include nephroprotection, improving endothelial function, lowering blood pressure and reducing body weight. In this review we discuss the cardioprotective mechanism of the drug in the context of the benefits of empagliflozin use in patients with chronic cardiac insufficiency. Numerous findings confirm that despite its potential limitations, the use of empagliflozin in HF treatment is advantageous and effective.
Collapse
Affiliation(s)
| | | | | | - Ewelina Młynarska
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (K.K.); (J.W.); (J.F.); (B.F.); (J.R.)
| | | | | |
Collapse
|
23
|
Hüttl M, Markova I, Miklankova D, Zapletalova I, Poruba M, Haluzik M, Vaněčkova I, Malinska H. In a Prediabetic Model, Empagliflozin Improves Hepatic Lipid Metabolism Independently of Obesity and before Onset of Hyperglycemia. Int J Mol Sci 2021; 22:ijms222111513. [PMID: 34768942 PMCID: PMC8584090 DOI: 10.3390/ijms222111513] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Recent studies suggest that treatment with SGLT-2 inhibitors can reduce hepatic lipid storage and ameliorate non-alcoholic fatty liver disease (NAFLD) development beyond their glycemic benefits. However, the exact mechanism involved is still unclear. We investigated the hepatic metabolic effect of empagliflozin (10 mg/kg/day for eight weeks) on the development of NAFLD and its complications using HHTg rats as a non-obese prediabetic rat model. Empagliflozin treatment reduced neutral triacylglycerols and lipotoxic diacylglycerols in the liver and was accompanied by significant changes in relative mRNA expression of lipogenic enzymes (Scd-1, Fas) and transcription factors (Srebp1, Pparγ). In addition, alterations in the gene expression of cytochrome P450 proteins, particularly Cyp2e1 and Cyp4a, together with increased Nrf2, contributed to the improvement of hepatic lipid metabolism after empagliflozin administration. Decreased circulating levels of fetuin-A improved lipid metabolism and attenuated insulin resistance in the liver and in peripheral tissues. Our results highlight the beneficial effect of empagliflozin on hepatic lipid metabolism and lipid accumulation independent of obesity, with the mechanisms understood to involve decreased lipogenesis, alterations in cytochrome P450 proteins, and decreased fetuin-A. These changes help to alleviate NAFLD symptoms in the early phase of the disease and before the onset of diabetes.
Collapse
Affiliation(s)
- Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14321 Prague, Czech Republic; (M.H.); (I.M.); (D.M.)
| | - Irena Markova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14321 Prague, Czech Republic; (M.H.); (I.M.); (D.M.)
| | - Denisa Miklankova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14321 Prague, Czech Republic; (M.H.); (I.M.); (D.M.)
| | - Iveta Zapletalova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (I.Z.); (M.P.)
| | - Martin Poruba
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (I.Z.); (M.P.)
| | - Martin Haluzik
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14321 Prague, Czech Republic;
| | - Ivana Vaněčkova
- Department of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Hana Malinska
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14321 Prague, Czech Republic; (M.H.); (I.M.); (D.M.)
- Correspondence: ; Tel.: +420-261-365-369; Fax: +420-261-363-027
| |
Collapse
|
24
|
Complex Positive Effects of SGLT-2 Inhibitor Empagliflozin in the Liver, Kidney and Adipose Tissue of Hereditary Hypertriglyceridemic Rats: Possible Contribution of Attenuation of Cell Senescence and Oxidative Stress. Int J Mol Sci 2021; 22:ijms221910606. [PMID: 34638943 PMCID: PMC8508693 DOI: 10.3390/ijms221910606] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
(1) Background: empagliflozin, sodium-glucose co-transporter 2 (SGLT-2) inhibitor, is an effective antidiabetic agent with strong cardio- and nephroprotective properties. The mechanisms behind its cardio- and nephroprotection are still not fully clarified. (2) Methods: we used male hereditary hypertriglyceridemic (hHTG) rats, a non-obese model of dyslipidaemia, insulin resistance, and endothelial dysfunction fed standard diet with or without empagliflozin for six weeks to explore the molecular mechanisms of empagliflozin effects. Nuclear magnetic resonance (NMR)-based metabolomics; quantitative PCR of relevant genes involved in lipid and glucose metabolism, or senescence; glucose and palmitic acid oxidation in isolated tissues and cell lines of adipocytes and hepatocytes were used. (3) Results: empagliflozin inhibited weight gain and decreased adipose tissue weight, fasting blood glucose, and triglycerides and increased HDL-cholesterol. It also improved insulin sensitivity in white fat. NMR spectroscopy identified higher plasma concentrations of ketone bodies, ketogenic amino acid leucine and decreased levels of pyruvate and alanine. In the liver, adipose tissue and kidney, empagliflozin up-regulated expression of genes involved in gluconeogenesis and down-regulated expression of genes involved in lipogenesis along with reduction of markers of inflammation, oxidative stress and cell senescence. (4) Conclusion: multiple positive effects of empagliflozin, including reduced cell senescence and oxidative stress, could contribute to its long-term cardio- and nephroprotective actions.
Collapse
|
25
|
Domon A, Katayama K, Sato T, Tochigi Y, Tazaki H, Suzuki H. Empagliflozin ameliorates symptoms of diabetes and renal tubular dysfunction in a rat model of diabetes with enlarged kidney (DEK). PLoS One 2021; 16:e0251135. [PMID: 33945582 PMCID: PMC8096081 DOI: 10.1371/journal.pone.0251135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Background Sodium-glucose cotransporter 2 (SGLT2) inhibitors are widely used to reduce hyperglycemia. The present study investigated the effects of a SGLT2 inhibitor, empagliflozin, on hyperglycemia in a novel rat model of non-obesity type 2 diabetes with enlarged kidney (DEK). Methods Male DEK rats with non-fasting blood glucose concentrations ≤300 mg/dl and >300 mg/dl were classified as nondiabetic and diabetic, respectively. Groups of nondiabetic (control) and diabetic (DM-cont) rats were fed standard chow for 12 weeks, whereas another group of diabetic (DM-empa) rats was fed standard chow containing empagliflozin (300 mg/kg/day) for 12 weeks. Blood glucose, body weight, glucose tolerance, food and water intake, urinary volume, plasma and urinary biochemical parameters, and bone mineral density were measured, and their kidneys and pancreas histologically analyzed. Results Treatment with empagliflozin reduced blood glucose concentration and food intake in diabetic rats, but inhibited loss of adeps renis and led to body weight gain. Empagliflozin attenuated polyuria and polydipsia but increased plasma concentrations of total cholesterol, sodium and total protein toward normal level. Empagliflozin also significantly reduced urinary excretion of proteins and electrolytes and restored bone mineral density and plasma concentrations of valine and isoleucine to normal levels. Moreover, dilation of renal tubules and kidney enlargement were not attenuated in the DM-empa group. Conclusion The response of DEK rats to empagliflozin differed from that of other diabetic animal models, suggesting that DEK rats have unique characters for studying and evaluating the multiple biological effects of SGLT2 inhibitors. These findings also indicted that empagliflozin could ameliorate systemic metabolism and improve renal tubule function in diabetic condition.
Collapse
Affiliation(s)
- Ayaka Domon
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kentaro Katayama
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Touko Sato
- Laboratory of Biomolecular Chemistry, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yuki Tochigi
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hiroyuki Tazaki
- Laboratory of Biomolecular Chemistry, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hiroetsu Suzuki
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
26
|
Mprah R, Adzika GK, Gyasi YI, Ndzie Noah ML, Adu-Amankwaah J, Adekunle AO, Duah M, Wowui PI, Weili Q. Glutaminolysis: A Driver of Vascular and Cardiac Remodeling in Pulmonary Arterial Hypertension. Front Cardiovasc Med 2021; 8:667446. [PMID: 33996951 PMCID: PMC8113389 DOI: 10.3389/fcvm.2021.667446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a decimating ailment described by chronic precapillary pulmonary hypertension, an elevated mean pulmonary arterial pressure with a normal pulmonary capillary wedge pressure, and a raised pulmonary vascular resistance resulting in increased right ventricular afterload culminating in heart failure and death. Current PAH treatments regulate the vasodilatory/vasoconstrictory balance of pulmonary vessels. However, these treatment options are unable to stop the progression of, or reverse, an already established disease. Recent studies have advanced a metabolic dysregulation, featuring increased glutamine metabolism, as a mechanism driving PAH progression. Metabolic dysregulation in PAH leads to increased glutaminolysis to produce substrate to meet the high-energy requirement by hyperproliferative and apoptosis-resistant pulmonary vascular cells. This article explores the role of glutamate metabolism in PAH and how it could be targeted as an anti-remodeling therapeutic strategy.
Collapse
Affiliation(s)
- Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | | | - Yusif I. Gyasi
- Department of Chemistry & Biochemistry, Central Michigan University, Mount Pleasant, TX, United States
| | | | | | | | - Maxwell Duah
- Haematology Department, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | | | - Qiao Weili
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
27
|
Empagliflozin therapy and insulin resistance-associated disorders: effects and promises beyond a diabetic state. ACTA ACUST UNITED AC 2021; 6:e57-e78. [PMID: 34027215 PMCID: PMC8117073 DOI: 10.5114/amsad.2021.105314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/21/2021] [Indexed: 12/21/2022]
Abstract
Empagliflozin is a SGLT2 inhibitor that has shown remarkable cardiovascular and renal activities in patients with type 2 diabetes (T2D). Preclinical and clinical studies of empagliflozin in T2D population have demonstrated significant improvements in body weight, waist circumference, insulin sensitivity, and blood pressure – effects beyond its antihyperglycaemic control. Moreover, several studies suggested that this drug possesses significant anti-inflammatory and antioxidative stress properties. This paper explores extensively the main preclinical and clinical evidence of empagliflozin administration in insulin resistance-related disorders beyond a diabetic state. It also discusses its future perspectives, as a therapeutic approach, in this high cardiovascular-risk population.
Collapse
|
28
|
Benham JL, Booth JE, Sigal RJ, Daskalopoulou SS, Leung AA, Rabi DM. Systematic review and meta-analysis: SGLT2 inhibitors, blood pressure and cardiovascular outcomes. IJC HEART & VASCULATURE 2021; 33:100725. [PMID: 33659605 PMCID: PMC7892922 DOI: 10.1016/j.ijcha.2021.100725] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Clinical trials suggest that SGLT2 inhibitors reduce the risk of cardiovascular mortality in patients with type 2 diabetes, however the mechanism is unclear. Our objective was to test the hypothesis that blood pressure reduction is one potential mechanism underlying the observed improvements in cardiovascular outcomes with SGLT2 inhibitors. METHODS We searched MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials (inception-June 2019) for randomized controlled trials that reported the effect of SGLT2 inhibitors compared with placebo on cardiovascular outcomes in adults with type 2 diabetes. Two reviewers independently extracted data and assessed study quality. Random effects meta-analyses, stratified meta-analyses and meta-regressions were conducted to evaluate the association between blood pressure reduction in SGLT2 inhibitor treated patients and cardiovascular outcomes. RESULTS Of 11,232 articles identified, 40 articles (n = 54,279 participants) were included. The relative risk of cardiovascular mortality was reduced by 18% with the use of SGLT2 inhibitors compared with placebo (RR 0.82; 95%CI 0.74, 0.91, I2 = 0.0%). Meta-regression analysis revealed no detectable difference in cardiovascular mortality (RR 0.93; 95%CI 0.88, 1.13, p = 0.483), 3-point major adverse cardiovascular events (p = 0.839) or congestive heart failure hospitalizations (p = 0.844) with change in mean systolic blood pressure. CONCLUSIONS Cardiovascular events are reduced in participants with type 2 diabetes treated with SGLT2 inhibitors compared with placebo. There was no significant relationship between the risk of developing adverse cardiovascular events and blood pressure reduction with SGLT2 inhibitors. There is insufficient evidence to suggest that blood pressure reduction is a significant contributor to the cardiovascular benefits observed.
Collapse
Affiliation(s)
- Jamie L. Benham
- Departments of Medicine and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jane E. Booth
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ronald J. Sigal
- Departments of Medicine, Community Health Sciences, Cardiac Sciences and Faculty of Kinesiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Alexander A. Leung
- Departments of Medicine and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Doreen M. Rabi
- Departments of Medicine, Community Health Sciences and Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
29
|
Gallwitz B, Schmieder R. Metabolische Wirkungen und kardiovaskuläre Sicherheit einer oralen Dreifachtherapie des Typ-2-Diabetes: das Beispiel Metformin, Empagliflozin und Linagliptin. DIABETOL STOFFWECHS 2020. [DOI: 10.1055/a-1197-6223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ZusammenfassungBasierend auf neuen Erkenntnissen und Leitlinien wird die orale Dreifachtherapie des Typ-2-Diabetes am Beispiel der Kombination aus Metformin, Empagliflozin und Linagliptin diskutiert. Der SGLT-2-Hemmstoff Empagliflozin verbessert im Vergleich zu Placebo den kombinierten Endpunkt aus kardiovaskulärem Tod oder nicht tödlichem Myokardinfarkt oder Schlaganfall (MACE-3) und reduziert die Wahrscheinlichkeit einer Klinikaufnahme wegen Herzinsuffizienz sowie die Gesamtsterblichkeit. Eine neu auftretende oder sich verschlechternde Nephropathie wird ebenfalls seltener beobachtet. Der DPP-4-Hemmstoff Linagliptin senkt Blutzucker und HbA1c und hat keine Wirkungen auf den kardiovaskulären Endpunkt MACE-3, während die Progression der Albuminurie im Vergleich zu Placebo vermindert wird. Im Vergleich zum Sulfonylharnstoff Glimepirid sind die kardiovaskulären Wirkungen ähnlich, Hypoglykämien aber deutlich seltener. Die Kombination des insulinotropen Linagliptin mit dem insulinunabhängigen Glukose ausscheidenden Wirkprinzip von Empagliflozin verbessert im Vergleich zu Placebo bei mit Metformin unzureichend behandelten Patienten die metabolische Situation. Bei solchen Patienten ist die Fixkombination aus Empagliflozin und Linagliptin die erste, bei der Langzeitwirkungen der Einzelkomponenten in drei kardiovaskulären Endpunktstudien bestätigt wurden.
Collapse
Affiliation(s)
- Baptist Gallwitz
- Department Innere Medizin, Abt. IV, Diabetologie, Endokrinologie & Nephrologie, Eberhard-Karls-Universität Tübingen, Medizinische Fakultät, Tübingen, Germany
| | | |
Collapse
|
30
|
Sano R, Shinozaki Y, Ohta T. Sodium-glucose cotransporters: Functional properties and pharmaceutical potential. J Diabetes Investig 2020; 11:770-782. [PMID: 32196987 PMCID: PMC7378437 DOI: 10.1111/jdi.13255] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Glucose is the most abundant monosaccharide, and an essential source of energy for most living cells. Glucose transport across the cell membrane is mediated by two types of transporters: facilitative glucose transporters (gene name: solute carrier 2A) and sodium-glucose cotransporters (SGLTs; gene name: solute carrier 5A). Each transporter has its own substrate specificity, distribution, and regulatory mechanisms. Recently, SGLT1 and SGLT2 have attracted much attention as therapeutic targets for various diseases. This review addresses the basal and functional properties of glucose transporters and SGLTs, and describes the pharmaceutical potential of SGLT1 and SGLT2.
Collapse
Affiliation(s)
- Ryuhei Sano
- Biological/Pharmacological Research LaboratoriesCentral Pharmaceutical Research InstituteJapan Tobacco IncTakatsukiJapan
| | - Yuichi Shinozaki
- Biological/Pharmacological Research LaboratoriesCentral Pharmaceutical Research InstituteJapan Tobacco IncTakatsukiJapan
| | - Takeshi Ohta
- Laboratory of Animal Physiology and Functional AnatomyGraduate School of AgricultureKyoto UniversityKyotoJapan
| |
Collapse
|
31
|
Connelly KA, Zhang Y, Desjardins JF, Nghiem L, Visram A, Batchu SN, Yerra VG, Kabir G, Thai K, Advani A, Gilbert RE. Load-independent effects of empagliflozin contribute to improved cardiac function in experimental heart failure with reduced ejection fraction. Cardiovasc Diabetol 2020; 19:13. [PMID: 32035482 PMCID: PMC7007658 DOI: 10.1186/s12933-020-0994-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/26/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIMS Sodium-glucose linked cotransporter-2 (SGLT2) inhibitors reduce the likelihood of hospitalization for heart failure and cardiovascular death in both diabetic and non-diabetic individuals with reduced ejection fraction heart failure. Because SGLT2 inhibitors lead to volume contraction with reductions in both preload and afterload, these load-dependent factors are thought to be major contributors to the cardioprotective effects of the drug class. Beyond these effects, we hypothesized that SGLT2 inhibitors may also improve intrinsic cardiac function, independent of loading conditions. METHODS Pressure-volume (P-V) relationship analysis was used to elucidate changes in intrinsic cardiac function, independent of alterations in loading conditions in animals with experimental myocardial infarction, a well-established model of HFrEF. Ten-week old, non-diabetic Fischer F344 rats underwent ligation of the left anterior descending (LAD) coronary artery to induce myocardial infarction (MI) of the left ventricle (LV). Following confirmation of infarct size with echocardiography 1-week post MI, animals were randomized to receive vehicle, or the SGLT2 inhibitor, empagliflozin. Cardiac function was assessed by conductance catheterization just prior to termination 6 weeks later. RESULTS The circumferential extent of MI in animals that were subsequently randomized to vehicle or empagliflozin groups was similar. Empagliflozin did not affect fractional shortening (FS) as assessed by echocardiography. In contrast, load-insensitive measures of cardiac function were substantially improved with empagliflozin. Load-independent measures of cardiac contractility, preload recruitable stroke work (PRSW) and end-systolic pressure volume relationship (ESPVR) were higher in rats that had received empagliflozin. Consistent with enhanced cardiac performance in the heart failure setting, systolic blood pressure (SBP) was higher in rats that had received empagliflozin despite its diuretic effects. A trend to improved diastolic function, as evidenced by reduction in left ventricular end-diastolic pressure (LVEDP) was also seen with empagliflozin. MI animals treated with vehicle demonstrated myocyte hypertrophy, interstitial fibrosis and evidence for changes in key calcium handling proteins (all p < 0.05) that were not affected by empagliflozin therapy. CONCLUSION Empagliflozin therapy improves cardiac function independent of loading conditions. These findings suggest that its salutary effects are, at least in part, due to actions beyond a direct effect of reduced preload and afterload.
Collapse
Affiliation(s)
- Kim A Connelly
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada.
| | - Yanling Zhang
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Jean-François Desjardins
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Linda Nghiem
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Aylin Visram
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Sri N Batchu
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Verra G Yerra
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Golam Kabir
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Kerri Thai
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Andrew Advani
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Richard E Gilbert
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada.
| |
Collapse
|
32
|
Petito-da-Silva TI, Souza-Mello V, Barbosa-da-Silva S. Empaglifozin mitigates NAFLD in high-fat-fed mice by alleviating insulin resistance, lipogenesis and ER stress. Mol Cell Endocrinol 2019; 498:110539. [PMID: 31419466 DOI: 10.1016/j.mce.2019.110539] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 12/14/2022]
Abstract
AIM To evaluate the pleiotropic effects of empagliflozin in the liver through lipogenesis, beta-oxidation, and endoplasmic reticulum stress pathways. METHODS Male C57Bl/6 mice, 3 months of age, received a control diet (C, 10% lipids, n = 20) or high-fat diet (HF, 50% lipids, n = 20) for 10 weeks, after that, the groups were subdivided to receive empagliflozin, during 5 weeks at a dose of 10 mg/kg/day added to the diets, totalizing four groups: C, C-EMPA, HF, and HF-EMPA. We performed biochemical analyzes, oral glucose tolerance test, homeostasis model assessment of insulin resistance (HOMA-IR), indirect calorimetry, liver stereology, western blotting, RT-qPCR for genes related to beta-oxidation, lipogenesis, and endoplasmic reticulum stress. RESULTS After the treatment with empagliflozin, there was a 4% increase in energy expenditure, a 5% reduction in body mass, improvement in glucose tolerance and insulin sensitivity and insulin resistance. The expression of Ppar alpha was greater in the HF-EMPA group with a concomitant reduction in the expression of the lipogenic genes Fas, Srebp1c and Ppar gamma, according to protein expression. In addition, HF-EMPA showed a reduction in the genes related to endoplasmic reticulum stress Chop, Atf4, and Gadd45. CONCLUSION Empagliflozin mitigates the development of NAFLD, confirmed through reduced expression of the genes involved in hepatic lipogenesis and genes involved in endoplasmic reticulum stress. Thus, empagliflozin may be an important tool to treat the progression of hepatic steatosis.
Collapse
Affiliation(s)
- Tamiris Ingrid Petito-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, State University of Rio de Janeiro, RJ, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, State University of Rio de Janeiro, RJ, Brazil
| | - Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, State University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
33
|
Aragón-Herrera A, Feijóo-Bandín S, Otero Santiago M, Barral L, Campos-Toimil M, Gil-Longo J, Costa Pereira TM, García-Caballero T, Rodríguez-Segade S, Rodríguez J, Tarazón E, Roselló-Lletí E, Portolés M, Gualillo O, González-Juanatey JR, Lago F. Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of Zucker diabetic fatty rats. Biochem Pharmacol 2019; 170:113677. [PMID: 31647926 DOI: 10.1016/j.bcp.2019.113677] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022]
Abstract
The EMPA-REG OUTCOME (Empagliflozin, Cardiovascular Outcome Event Trial in patients with Type 2 Diabetes Mellitus (T2DM)) trial made evident the potentiality of pharmacological sodium-glucose cotransporter 2 (SGLT2) inhibition for treating patients with diabetes and cardiovascular disease. Since the effect of empagliflozin or other SGLT2 inhibitors on the whole cardiac metabolic profile was never analysed before, and with the purpose to contribute to elucidate the benefits at cardiac level of the use of empagliflozin, we explored the effect of the treatment with empagliflozin for six weeks on the cardiac metabolomic profile of Zucker diabetic fatty rats, a model of early stage T2DM, using untargeted metabolomics approach. Empagliflozin reduced significantly the cardiac content of sphingolipids (ceramides and sphingomyelins) and glycerophospholipids (major bioactive contributing factors linking insulin resistance to cardiac damage) and decreased the cardiac content of the fatty acid transporter cluster of differentiation 36 (CD36); induced significant decreases of the cardiac levels of essential glycolysis intermediaries 2,3-bisphosphoglycerate and phosphoenolpyruvate, and regulated the abundance of several amino acids of relevance as tricarboxylic acid suppliers and/or in the metabolic control of the cardiac function as glutamic acid, gamma-aminobutyric acid and sarcosine. Empagliflozin treatment activated the cardioprotective master regulator of cellular energyhomeostasis AMP-activatedproteinkinase (AMPK) and enhanced autophagy at cardiac level, while it decreased significantly the cardiac mRNA levels of the pro-inflammatory cytokines interleukin-6 (IL-6), chemerin, TNF-α and MCP-1, reinforcing the hypothesis of a direct role for empagliflozin in attenuating cardiac inflammation. Our results provide an advancement on the knowledge of the mechanisms linking the therapy with empagliflozin with protective effects on the development of cardiometabolic diseases whose course is associated with remarkable cardiac bioenergetics dysregulation and disarrangement in cardiac metabolome and lipidome.
Collapse
Affiliation(s)
- Alana Aragón-Herrera
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago/Servicio Gallego de Salud (XXIS/SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Spain
| | - Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago/Servicio Gallego de Salud (XXIS/SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Spain.
| | - Manuel Otero Santiago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago/Servicio Gallego de Salud (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Luis Barral
- Group of Polymers, Department of Physics and Earth Sciences, University of La Coruña, Spain
| | - Manuel Campos-Toimil
- Group of Pharmacology of Chronic Diseases (CD Pharma), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Spain
| | - José Gil-Longo
- Group of Pharmacology of Chronic Diseases (CD Pharma), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Spain
| | - Thiago M Costa Pereira
- Group of Pharmacology of Chronic Diseases (CD Pharma), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Spain; Pharmaceutical Sciences Graduate Program, Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Tomás García-Caballero
- Department of Morphological Sciences, University of Santiago de Compostela and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Santiago Rodríguez-Segade
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Spain; Clinical Biochemistry Laboratory, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Javier Rodríguez
- Clinical Biochemistry Laboratory, Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Estefanía Tarazón
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Spain; Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Esther Roselló-Lletí
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Spain; Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Manuel Portolés
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Spain; Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Oreste Gualillo
- Laboratory of Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago/Servicio Gallego de Salud (XXIS/SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago/Servicio Gallego de Salud (XXIS/SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Spain
| |
Collapse
|
34
|
Yesilyurt ZE, Erdogan BR, Karaomerlioglu I, Muderrisoglu AE, Michel MC, Arioglu-Inan E. Urinary Bladder Weight and Function in a Rat Model of Mild Hyperglycemia and Its Treatment With Dapagliflozin. Front Pharmacol 2019; 10:911. [PMID: 31474866 PMCID: PMC6706456 DOI: 10.3389/fphar.2019.00911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/18/2019] [Indexed: 11/13/2022] Open
Abstract
Hypertrophy and dysfunction of the urinary bladder are consistently observed in animal models of type 1 and less consistently in those of type 2 diabetes. We have tested the effects of mild hyperglycemia (n = 10 per group) in a randomized, blinded study and, in a blinded pilot study, of type 2 diabetes (n = 6 per group) and its treatment with dapagliflozin (1 mg/kg per day) on weight, contraction, and relaxation of the rat bladder. Based on a combination of high-fat diet and a low dose of streptozotocin, animals in the main study reached a mean peak blood glucose level of about 300 mg/dl, which declined to 205 mg/dl at study end. This was associated with a small, if any, increase in bladder weight. In a pooled analysis of all animals of the main and the pilot study, we detected a correlation of moderate strength between blood glucose and bladder weight (r2 = 0.2013; P = 0.0003 for Pearson correlation coefficient). Neither the main nor the pilot study found evidence for an altered contractility (responses to carbachol or KCl) or relaxation (responses to isoprenaline, fenoterol, CL 316,243, or forskolin). Treatment with dapagliflozin in the absence of hyperglycemia increased diuresis in the main study by 43% relative to control and increased bladder weight by 15% in the pooled groups of both studies (post hoc analysis). We conclude that mild hyperglycemia has no major effects on bladder hypertrophy or function.
Collapse
Affiliation(s)
| | - Betül Rabia Erdogan
- Department of Pharmacology, School of Pharmacy, Ankara University, Ankara, Turkey
| | - Irem Karaomerlioglu
- Department of Pharmacology, School of Pharmacy, Ankara University, Ankara, Turkey
| | | | | | - Ebru Arioglu-Inan
- Department of Pharmacology, School of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
35
|
Utsunomiya K, Senda M, Kakiuchi S, Kameda H, Tamura M, Kurihara Y, Gunji R, Fujii S, Fujiwara H, Kaku K. Safety and efficacy of tofogliflozin in Japanese patients with type 2 diabetes mellitus in real-world clinical practice: Results of 3-month interim analysis of a long-term post-marketing surveillance study (J-STEP/LT). J Diabetes Investig 2019; 10:1272-1283. [PMID: 30702214 PMCID: PMC6717810 DOI: 10.1111/jdi.13017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/26/2018] [Accepted: 01/22/2019] [Indexed: 01/14/2023] Open
Abstract
AIMS/INTRODUCTION The present study analysis was carried out to evaluate the safety and efficacy of tofogliflozin, a sodium-glucose cotransporter 2 inhibitor, in Japanese patients with type 2 diabetes mellitus in real-world clinical practice. MATERIALS AND METHODS This was a 3-year non-interventional observational study of patients with type 2 diabetes mellitus newly administered tofogliflozin who were uncontrolled on current therapy. We carried out a 12-week interim analysis of tofogliflozin as part of 3-year post-marketing surveillance study. The incidence of adverse drug reactions was evaluated as a safety end-point. As efficacy end-points, glycated hemoglobin and bodyweight were evaluated. RESULTS A total of 6,897 patients were enrolled. Tofogliflozin significantly reduced mean changes from baseline glycated hemoglobin (-0.63%, P < 0.0001) and bodyweight (-2.02 kg, P < 0.0001). The change in glycated hemoglobin and bodyweight reductions in response to tofogliflozin was consistently observed in all body mass index subgroups. Adverse drug reactions occurred in 345 of 6,712 patients (5.14%). There was a low incidence of adverse drug reactions known to be associated with sodium-glucose cotransporter 2 inhibitors, and they were reported as non-serious. The incidences of polyuria/pollakiuria were higher in patients aged ≥65 years than <65 years, and were significantly different among estimated glomerular filtration rate subgroups. Urinary tract and genital infections occurred more frequently in women than in men. CONCLUSIONS Tofogliflozin was well tolerated, and no emerging new safety concerns were observed. Tofogliflozin significantly improved glycemic control with no impact on bodyweight gain. The short-term administration of tofogliflozin is considered to have a favorable benefit-risk profile in Japanese patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Kazunori Utsunomiya
- Division of Diabetes, Metabolism and EndocrinologyDepartment of Internal MedicineThe Jikei University School of MedicineTokyoJapan
| | | | - Seigo Kakiuchi
- Post Marketing Surveillance DepartmentKowa Company, Ltd.TokyoJapan
| | | | | | - Yuji Kurihara
- Post Marketing Surveillance DepartmentKowa Company, Ltd.TokyoJapan
| | - Ryoji Gunji
- Post Marketing Surveillance DepartmentKowa Company, Ltd.TokyoJapan
| | - Shoko Fujii
- Post Marketing Surveillance DepartmentKowa Company, Ltd.TokyoJapan
| | | | - Kohei Kaku
- Department of MedicineKawasaki Medical SchoolKurashikiJapan
| |
Collapse
|
36
|
Chawla G, Chaudhary KK. A complete review of empagliflozin: Most specific and potent SGLT2 inhibitor used for the treatment of type 2 diabetes mellitus. Diabetes Metab Syndr 2019; 13:2001-2008. [PMID: 31235127 DOI: 10.1016/j.dsx.2019.04.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/22/2019] [Indexed: 01/14/2023]
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors are the latest class of drugs to be introduced for the treatment of type 2 diabetes mellitus (T2DM). They reduce hyperglycemia by increasing urinary glucose excretion and exert favorable effects beyond glucose control with consistent body weight, blood pressure, and serum uric acid reductions. Empagliflozin is a potent SGLT2 inhibitor used to improve glycemic control in adults with T2DM. It has the highest SGLT2 specificity among all the clinically used or currently tested SGLT2 inhibitors. Low risk of hypoglycemia, absence of weight gain and demonstrated cardiovascular risk reduction support its consideration as a first line medication in addition to metformin for patients with T2DM and cardiovascular disease. Mostly reported adverse events are genital mycotic infections, while urinary tract infections and events linked to volume depletion are rather rare. This review covers the complete information on empagliflozin including the history of its development, synthesis, pharmacology and different methods which have been reported for its analysis.
Collapse
Affiliation(s)
- Gita Chawla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed to be University), Hamdard Nagar, New Delhi, 110 062, India.
| | - Krishna Kr Chaudhary
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed to be University), Hamdard Nagar, New Delhi, 110 062, India
| |
Collapse
|
37
|
Adingupu DD, Göpel SO, Grönros J, Behrendt M, Sotak M, Miliotis T, Dahlqvist U, Gan LM, Jönsson-Rylander AC. SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob -/- mice. Cardiovasc Diabetol 2019; 18:16. [PMID: 30732594 PMCID: PMC6366096 DOI: 10.1186/s12933-019-0820-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/28/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sodium-glucose cotransporter 2 inhibitors (SGLT2i) is the first class of anti-diabetes treatment that reduces mortality and risk for hospitalization due to heart failure. In clinical studies it has been shown that SGLT2i's promote a general shift to fasting state metabolism characterized by reduced body weight and blood glucose, increase in glucagon/insulin ratio and modest increase in blood ketone levels. Therefore, we investigated the connection between metabolic changes and cardiovascular function in the ob/ob-/- mice; a rodent model of early diabetes with specific focus on coronary microvascular function. Due to leptin deficiency these mice develop metabolic syndrome/diabetes and hepatic steatosis. They also develop cardiac contractile and microvascular dysfunction and are thus a promising model for translational studies of cardiometabolic diseases. We investigated whether this mouse model responded in a human-like manner to empagliflozin treatment in terms of metabolic parameters and tested the hypothesis that it could exert direct effects on coronary microvascular function and contractile performance. METHODS Lean, ob/ob-/- untreated and ob/ob-/- treated with SGLT2i were followed for 10 weeks. Coronary flow velocity reserve (CFVR) and fractional area change (FAC) were monitored with non-invasive Doppler ultrasound imaging. Food intake, urinary glucose excursion and glucose control via HbA1c measurements were followed throughout the study. Liver steatosis was assessed by histology and metabolic parameters determined at the end of the study. RESULTS Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob-/- animals resulted in a switch to a more catabolic state as observed in clinical studies: blood cholesterol and HbA1c were decreased whereas glucagon/insulin ratio and ketone levels were increased. SGLT2i treatment reduced liver triglyceride, steatosis and alanine aminotransferase, an indicator for liver dysfunction. L-Arginine/ADMA ratio, a marker for endothelial function was increased. SGLT2i treatment improved both cardiac contractile function and coronary microvascular function as indicated by improvement of FAC and CFVR, respectively. CONCLUSIONS Sodium-glucose cotransporter 2 inhibitors treatment of ob/ob-/- mice mimics major clinical findings regarding metabolism and cardiovascular improvements and is thus a useful translational model. We demonstrate that SGLT2 inhibition improves coronary microvascular function and contractile performance, two measures with strong predictive values in humans for CV outcome, alongside with the known metabolic changes in a preclinical model for prediabetes and heart failure.
Collapse
Affiliation(s)
- Damilola D. Adingupu
- Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg, Pepparedsleden 1, Mölndal, 431 83 Gothenburg, Sweden
| | - Sven O. Göpel
- Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg, Pepparedsleden 1, Mölndal, 431 83 Gothenburg, Sweden
| | - Julia Grönros
- Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg, Pepparedsleden 1, Mölndal, 431 83 Gothenburg, Sweden
| | - Margareta Behrendt
- Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg, Pepparedsleden 1, Mölndal, 431 83 Gothenburg, Sweden
| | - Matus Sotak
- Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg, Pepparedsleden 1, Mölndal, 431 83 Gothenburg, Sweden
| | - Tasso Miliotis
- Translational Science, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg, Gothenburg, Sweden
| | - Ulrika Dahlqvist
- Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg, Pepparedsleden 1, Mölndal, 431 83 Gothenburg, Sweden
| | - Li-Ming Gan
- Early Clinical Development, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ann-Cathrine Jönsson-Rylander
- Bioscience, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca Gothenburg, Pepparedsleden 1, Mölndal, 431 83 Gothenburg, Sweden
| |
Collapse
|
38
|
Hammel B, Michel MC. Why Are New Drugs Expensive and How Can They Stay Affordable? Handb Exp Pharmacol 2019; 260:453-466. [PMID: 31696349 DOI: 10.1007/164_2019_301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increasing life expectancy leading to a higher median age causes an increasing need for healthcare resources, which is aggravated by an increasing prevalence of preventable diseases such as type 2 diabetes. This includes increasing expenditures for medicines, although these increases when expressed as a share of overall societal wealth are more moderate than often claimed. An increasing use of generic medicines (currently about 90% of all prescriptions) means that costs for discovery and development of innovative drugs must be recovered on a shrinking percentage of prescriptions. However, the key challenge to affordable drugs is exponentially increasing costs to bring a new medicine to the market, which in turn are largely driven by an about 90% attrition rate after start of clinical development. While many factors will be required in concert to keep innovative medicines affordable, reducing attrition appears to be the factor with the greatest potential to contain escalating drug development costs and thereby medication expenditures.
Collapse
Affiliation(s)
- Basma Hammel
- Institute of Pharmacology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
39
|
Ellenbroek JH, Arioglu Inan E, Michel MC. A systematic review of urinary bladder hypertrophy in experimental diabetes: Part 2. Comparison of animal models and functional consequences. Neurourol Urodyn 2018; 37:2346-2360. [DOI: 10.1002/nau.23786] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Johanne H. Ellenbroek
- Department of Internal Medicine; Leiden University Medical Centre; Leiden The Netherlands
| | | | - Martin C. Michel
- Department of Pharmacology; Johannes Gutenberg University; Mainz Germany
| |
Collapse
|
40
|
Abstract
Cardiovascular disease (CVD) is a major challenge in the management of type 2 diabetes mellitus. Glucose-lowering agents that reduce the risk of major cardiovascular events would be considered a major advance, as recently reported with liraglutide and semaglutide, 2 glucagon-like peptide-1 receptor agonists, and with empagliflozin and canagliflozin, 2 SGLT-2 (sodium-glucose cotransporter type 2) inhibitors, but not with DPP-4 (dipeptidyl peptidase-4) inhibitors. The present review is devoted to CV effects of new oral glucose-lowering agents. DPP-4 inhibitors (gliptins) showed some positive cardiac and vascular effects in preliminary studies, and initial data from phase 2 to 3 clinical trials suggested a reduction in major cardiovascular events. However, subsequent CV outcome trials with alogliptin, saxagliptin, and sitagliptin showed noninferiority but failed to demonstrate any superiority compared with placebo in patients with type 2 diabetes mellitus and high CV risk. An unexpected higher risk of hospitalization for heart failure was reported with saxagliptin. SGLT-2 inhibitors (gliflozins) promote glucosuria, thus reducing glucose toxicity and body weight, and enhance natriuresis, thus lowering blood pressure. Two CV outcome trials in type 2 diabetes mellitus patients mainly in secondary prevention showed remarkable positive results. Empagliflozin in EMPA-REG-OUTCOME (EMPAgliflozin Cardiovascular OUTCOME Events in Type 2 Diabetes Mellitus Patients) reduced major cardiovascular events, CV mortality, all-cause mortality, and hospitalization for heart failure. In CANVAS (Canagliflozin Cardiovascular Assessment Study), the reduction in CV mortality with canagliflozin failed to reach statistical significance despite a similar reduction in major cardiovascular events. The underlying protective mechanisms of SGLT-2 inhibitors remain unknown and both hemodynamic and metabolic explanations have been proposed. CVD-REAL studies (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors; with the limitation of an observational approach) suggested that these favorable results may be considered as a class effect shared by all SGLT-2 inhibitors (including dapagliflozin) and be extrapolated to a larger population of patients with type 2 diabetes mellitus in primary prevention. Ongoing CV outcome trials with other DPP-4 (linagliptin) and SGLT-2 (dapagliflozin, ertugliflozin) inhibitors should provide additional information about CV effects of both pharmacological classes.
Collapse
Affiliation(s)
- André J Scheen
- From the Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Liège, Belgium (A.J.S.)
- Division of Clinical Pharmacology, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium (A.J.S.)
| |
Collapse
|
41
|
Effect of Canagliflozin on endothelial function in diabetic patients with suspected coronary artery disease: retrospective preliminary pilot study. ACTA ACUST UNITED AC 2018. [DOI: 10.30548/vascfail.2.1_32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
42
|
Arioglu Inan E, Ellenbroek JH, Michel MC. A systematic review of urinary bladder hypertrophy in experimental diabetes: Part I. Streptozotocin‐induced rat models. Neurourol Urodyn 2018; 37:1212-1219. [DOI: 10.1002/nau.23490] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/24/2017] [Indexed: 12/18/2022]
Affiliation(s)
| | - Johanne H. Ellenbroek
- Department of Internal MedicineLeiden University Medical CentreLeidenThe Netherlands
| | - Martin C. Michel
- Department of PharmacologyJohannes Gutenberg UniversityMainzGermany
| |
Collapse
|
43
|
Shiba T, Ishii S, Okamura T, Mitsuyoshi R, Pfarr E, Koiwai K. Efficacy and safety of empagliflozin in Japanese patients with type 2 diabetes mellitus: A sub-analysis by body mass index and age of pooled data from three clinical trials. Diabetes Res Clin Pract 2017; 131:169-178. [PMID: 28753486 DOI: 10.1016/j.diabres.2017.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/14/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022]
Abstract
AIMS To investigate the efficacy and safety of empagliflozin in subgroups based on body mass index (BMI) and age, using a pooled data set from Japanese patients with type 2 diabetes mellitus (T2DM). METHODS Pooled data from 1403 patients treated with empagliflozin at 10mg/day or 25mg/day in three clinical studies (≥52week treatment) were stratified by baseline BMI (<22, 22 to <25 and ≥25kg/m2) and baseline age (<50, 50 to <65 and ≥65years). RESULTS Empagliflozin at 10mg/day and 25mg/day reduced mean glycated hemoglobin (HbA1c) (-0.77 to -0.87% and -0.76 to -0.97%, respectively), mean fasting plasma glucose (FPG) (-20.79 to -27.06mg/dL and -26.08 to -29.60mg/dL) and mean body weight (-3.4 to -4.7% and -3.7 to -4.7%) in all subgroups of baseline BMI and age, regardless of age and degree of obesity. Adverse events were observed in approximately 70-80% patients in BMI and age subgroups of both empagliflozin groups. No hypoglycemia requiring assistance was observed. Neither UTI nor genital infection rates differed markedly among the BMI and age subgroups. Volume depletion was increased in patients ≥65years of age as compared to younger patients. CONCLUSIONS Empagliflozin was well tolerated and improved HbA1c, FPG and body weight in all BMI and age subgroups of Japanese patients with T2DM, regardless of age and degree of obesity. Empagliflozin is considered to be effective and well tolerated for treating a wide range of Japanese patients with T2DM. TRIAL REGISTRATION Study 1 (NCT01193218), Study 2 (NCT01289990) and Study 3 (NCT01368081).
Collapse
Affiliation(s)
- Teruo Shiba
- Division of Diabetes and Metabolism, Toho University Ohashi Medical Center, 2-17-6 Ohashi, Meguro-ku, Tokyo 153-8515, Japan.
| | - So Ishii
- Eli Lilly Japan K.K., 4-15-1, Akasaka, Minato-ku, Tokyo 107-0052, Japan.
| | - Tomoo Okamura
- Nippon Boehringer Ingelheim Co., Ltd., 2-1-1 Osaki, Shinagawa-ku, Tokyo 141-6017, Japan.
| | - Rika Mitsuyoshi
- Nippon Boehringer Ingelheim Co., Ltd., 2-1-1 Osaki, Shinagawa-ku, Tokyo 141-6017, Japan.
| | - Egon Pfarr
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Germany.
| | - Kazuki Koiwai
- Nippon Boehringer Ingelheim Co., Ltd., 2-1-1 Osaki, Shinagawa-ku, Tokyo 141-6017, Japan.
| |
Collapse
|
44
|
Bonnet F, Scheen AJ. Impact of glucose-lowering therapies on risk of stroke in type 2 diabetes. DIABETES & METABOLISM 2017; 43:299-313. [PMID: 28522196 DOI: 10.1016/j.diabet.2017.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023]
Abstract
Patients with type 2 diabetes (T2D) have an increased risk of stroke compared with people without diabetes. However, the effects of glucose-lowering drugs on risk of ischaemic stroke in T2D have been less extensively investigated than in coronary heart disease. Some evidence, including the UKPDS, has suggested a reduced risk of stroke with metformin, although the number of studies is limited. Inhibition of the KATP channels increases ischaemic brain lesions in animals. This is in agreement with a recent meta-analysis showing an increased risk of stroke with sulphonylureas vs. various comparators as both mono- and combination therapy. Pioglitazone can prevent recurrence of stroke in patients with previous stroke, as already shown in PROactive, although results are less clear for first strokes. As for DPP-4 inhibitors, there was a non-significant trend towards benefit for stroke, whereas a possible increased risk of stroke with SGLT2 inhibitors-and in particular, empagliflozin in the EMPA-REG OUTCOME trial-has been suggested and requires clarification. Experimental results support a potential protective effect of GLP-1 receptor agonists against stroke that has, at least in part, been translated to clinical benefits in T2D patients in the LEADER and SUSTAIN-6 trials. Further interventional studies are now warranted to confirm the effects of glucose-lowering agents on risk of stroke in patients with T2D. In summary, the effects of antidiabetic drugs on risk of stroke appear to be heterogeneous, with some therapies (pioglitazone, GLP-1 receptor agonists) conferring possible protection against ischaemic stroke, other classes showing a neutral impact (DPP-4 inhibitors, insulin) and some glucose-lowering agents being associated with an increased risk of stroke (sulphonylureas, possibly SGLT2 inhibitors, high-dose insulin in the presence of insulin resistance).
Collapse
Affiliation(s)
- F Bonnet
- Centre Hospitalier Universitaire de Rennes, Université Rennes 1, Rennes, France; INSERM U1018, Villejuif, France.
| | - A J Scheen
- Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU, Liège, Belgium
| |
Collapse
|
45
|
The Na+-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacol Ther 2017; 170:148-165. [DOI: 10.1016/j.pharmthera.2016.10.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Yildirim O, Gottwald M, Schüler P, Michel MC. Opportunities and Challenges for Drug Development: Public-Private Partnerships, Adaptive Designs and Big Data. Front Pharmacol 2016; 7:461. [PMID: 27999543 PMCID: PMC5138214 DOI: 10.3389/fphar.2016.00461] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/16/2016] [Indexed: 01/18/2023] Open
Abstract
Drug development faces the double challenge of increasing costs and increasing pressure on pricing. To avoid that lack of perceived commercial perspective will leave existing medical needs unmet, pharmaceutical companies and many other stakeholders are discussing ways to improve the efficiency of drug Research and Development. Based on an international symposium organized by the Medical School of the University of Duisburg-Essen (Germany) and held in January 2016, we discuss the opportunities and challenges of three specific areas, i.e., public–private partnerships, adaptive designs and big data. Public–private partnerships come in many different forms with regard to scope, duration and type and number of participants. They range from project-specific collaborations to strategic alliances to large multi-party consortia. Each of them offers specific opportunities and faces distinct challenges. Among types of collaboration, investigator-initiated studies are becoming increasingly popular but have legal, ethical, and financial implications. Adaptive trial designs are also increasingly discussed. However, adaptive should not be used as euphemism for the repurposing of a failed trial; rather it requires carefully planning and specification before a trial starts. Adaptive licensing can be a counter-part of adaptive trial design. The use of Big Data is another opportunity to leverage existing information into knowledge useable for drug discovery and development. Respecting limitations of informed consent and privacy is a key challenge in the use of Big Data. Speakers and participants at the symposium were convinced that appropriate use of the above new options may indeed help to increase the efficiency of future drug development.
Collapse
Affiliation(s)
- Oktay Yildirim
- Institute of Pharmacology, University Duisburg-Essen Essen, Germany
| | | | - Peter Schüler
- Department of Drug Development Services CNS, ICON Clinical Research Langen, Germany
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University Mainz, Germany
| |
Collapse
|
47
|
Katsiki N, Athyros VG, Mikhailidis DP. Cardiovascular effects of sodium-glucose cotransporter 2 inhibitors: multiple actions. Curr Med Res Opin 2016; 32:1513-4. [PMID: 27309977 DOI: 10.1080/03007995.2016.1201465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Niki Katsiki
- a 12 Dionyssiou St , Thessaloniki , 546 34 , Greece
| | - Vasilios G Athyros
- b Second Propedeutic Department of Internal Medicine , Medical School, Aristotle University of Thessaloniki, Hippocration Hospital , Thessaloniki , Greece
| | - Dimitri P Mikhailidis
- c Department of Clinical Biochemistry , Royal Free Hospital Campus, University College London Medical School, University College London (UCL) , Pond Street , London NW3 2QG , UK
| |
Collapse
|
48
|
Atageldiyeva K, Fujita Y, Yanagimachi T, Mizumoto K, Takeda Y, Honjo J, Takiyama Y, Abiko A, Makino Y, Haneda M. Sodium-Glucose Cotransporter 2 Inhibitor and a Low Carbohydrate Diet Affect Gluconeogenesis and Glycogen Content Differently in the Kidney and the Liver of Non-Diabetic Mice. PLoS One 2016; 11:e0157672. [PMID: 27327650 PMCID: PMC4915669 DOI: 10.1371/journal.pone.0157672] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/02/2016] [Indexed: 01/01/2023] Open
Abstract
A low carbohydrate diet (LCHD) as well as sodium glucose cotransporter 2 inhibitors (SGLT2i) may reduce glucose utilization and improve metabolic disorders. However, it is not clear how different or similar the effects of LCHD and SGLT2i are on metabolic parameters such as insulin sensitivity, fat accumulation, and especially gluconeogenesis in the kidney and the liver. We conducted an 8-week study using non-diabetic mice, which were fed ad-libitum with LCHD or a normal carbohydrate diet (NCHD) and treated with/without the SGLT-2 inhibitor, ipragliflozin. We compared metabolic parameters, gene expression for transcripts related to glucose and fat metabolism, and glycogen content in the kidney and the liver among the groups. SGLT2i but not LCHD improved glucose excursion after an oral glucose load compared to NCHD, although all groups presented comparable non-fasted glycemia. Both the LCHD and SGLT2i treatments increased calorie-intake, whereas only the LCHD increased body weight compared to the NCHD, epididimal fat mass and developed insulin resistance. Gene expression of certain gluconeogenic enzymes was simultaneously upregulated in the kidney of SGLT2i treated group, as well as in the liver of the LCHD treated group. The SGLT2i treated groups showed markedly lower glycogen content in the liver, but induced glycogen accumulation in the kidney. We conclude that LCHD induces deleterious metabolic changes in the non-diabetic mice. Our results suggest that SGLT2i induced gluconeogenesis mainly in the kidney, whereas for LCHD it was predominantly in the liver.
Collapse
Affiliation(s)
- Kuralay Atageldiyeva
- Division of Metabolism an Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yukihiro Fujita
- Division of Metabolism an Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
- * E-mail:
| | - Tsuyoshi Yanagimachi
- Division of Metabolism an Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Katsutoshi Mizumoto
- Division of Metabolism an Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yasutaka Takeda
- Division of Metabolism an Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Jun Honjo
- Division of Metabolism an Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yumi Takiyama
- Division of Metabolism an Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Atsuko Abiko
- Division of Metabolism an Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yuichi Makino
- Division of Metabolism an Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Masakazu Haneda
- Division of Metabolism an Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
49
|
Seifert R. Naunyn-Schmiedeberg's Archives of Pharmacology under new editorship: change and continuity. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:667-70. [PMID: 27222234 DOI: 10.1007/s00210-016-1261-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
50
|
Michel MC, Korstanje C. β3-Adrenoceptor agonists for overactive bladder syndrome: Role of translational pharmacology in a repositioning clinical drug development project. Pharmacol Ther 2016; 159:66-82. [PMID: 26808167 DOI: 10.1016/j.pharmthera.2016.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
β3-Adrenoceptor agonists were originally considered as a promising drug class for the treatment of obesity and/or type 2 diabetes. When these development efforts failed, they were repositioned for the treatment of the overactive bladder syndrome. Based on the example of the β3-adrenoceptor agonist mirabegron, but also taking into consideration evidence obtained with ritobegron and solabegron, we discuss challenges facing a translational pharmacology program accompanying clinical drug development for a first-in-class molecule. Challenges included generic ones such as ligand selectivity, species differences and drug target gene polymorphisms. Challenges that are more specific included changing concepts of the underlying pathophysiology of the target condition while clinical development was under way; moreover, a paucity of public domain tools for the study of the drug target and aspects of receptor agonists as drugs had to be addressed. Nonetheless, a successful first-in-class launch was accomplished. Looking back at this translational pharmacology program, we conclude that a specifically tailored and highly flexible approach is required. However, several of the lessons learned may also be applicable to translational pharmacology programs in other indications.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany.
| | - Cees Korstanje
- Department of Drug Discovery Science & Management-Europe, Astellas Pharma Europe R&D, Leiden, The Netherlands
| |
Collapse
|