1
|
Unsal S, Sanlier N. Longitudinal Effects of Lifetime Caffeine Consumption on Levels of Depression, Anxiety, and Stress: A Comprehensive Review. Curr Nutr Rep 2025; 14:26. [PMID: 39890748 PMCID: PMC11785678 DOI: 10.1007/s13668-025-00616-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
PURPOSE OF REVIEW Caffeine has high bioavailability and a purine-like alkaloid structure. It exerts wide-ranging physiological effects by binding to adenosine receptors throughout the human body. Through the activation of those receptors, it can regulate many physiological events in the body. The impact of caffeine consumption on depression, anxiety, stress, and human health remains unclear, constituting an important knowledge gap. This review was conducted to examine the effects of caffeine consumption on depression, anxiety, and stress levels and to offer some recommendations for its future use. RECENT FINDINGS We performed a comprehensive literature search using PubMed, Web of Science and Google Scholar databases for original articles published in recent years on "caffeine metabolism", "caffeine mechanism", "anxiety", "depression", "stress". Caffeine, which has an antagonistic effect on adenosine, can reduce the risk and symptoms of depression and improve general mental health by modulating the central nervous system and neurotransmitter systems. However, increases in anxiety and stress levels, which are often seen together with depression, are observed due to high-dose caffeine consumption. Caffeine's effects on depression, anxiety, and stress may vary depending on different factors, but the level of consumption is particularly important and attention should be paid to upper limits and reference values while evaluating consumption amounts.
Collapse
Affiliation(s)
- Sena Unsal
- Department of Nutrition and Dietetics, Institute of Health Sciences, Ankara Medipol University, Altındağ, Ankara, 06050, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, Institute of Health Sciences, Ankara Medipol University, Altındağ, Ankara, 06050, Turkey.
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Altındağ, Ankara, 06050, Turkey.
| |
Collapse
|
2
|
Truong J, Abu-Suriya N, Tory D, Bahho R, Ismaiel A, Nguyen T, Mansour A, Nand V, Saponja J, Dua K, De Rubis G, Parisi D. An Exploration of the Interplay Between Caffeine and Antidepressants Through the Lens of Pharmacokinetics and Pharmacodynamics. Eur J Drug Metab Pharmacokinet 2025; 50:1-15. [PMID: 39870954 PMCID: PMC11802704 DOI: 10.1007/s13318-024-00928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 01/29/2025]
Abstract
Caffeine consumption is regarded as a widespread phenomenon, and its usage has continued to increase. In addition, the growing usage of antidepressants worldwide and increase in mental health disorders were shown in recent statistical analyses conducted by the World Health Organisation. The coadministration of caffeine and antidepressants remains a concern due to potential interactions that can alter a patient's response to therapy. This review investigates the pharmacokinetic and pharmacodynamic interactions between caffeine and the five main classes of antidepressants: selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants (TCAs), serotonin and norepinephrine reuptake inhibitors (SNRIs), monoamine oxidase inhibitors (MAOIs), and other antidepressants not categorised by class, which we have categorised as 'miscellaneous'. The interaction between fluvoxamine and caffeine resulted in increased concentrations of caffeine in the body and lowered the renal clearance of fluvoxamine. Other SSRIs such as fluoxetine and escitalopram had augmented antidepressant effects by decreasing their renal clearance and prolonging their effects in the body when coadministered with caffeine. Caffeine may also increase the concentration of paroxetine, potentially affecting its pharmacodynamic effects. TCAs such as clomipramine, imipramine, desipramine, and sertraline, were found to reduce the metabolism of caffeine. However, studies suggest caffeine had no significant effect on the concentration of these medications in blood or brain tissue. The inhibition of caffeine at high doses when used with MAOIs such as tranylcypromine and phenelzine was found to lead to a higher likelihood of experiencing hypertension. Coadministration of caffeine with venlafaxine (SNRIs) suggests minimal interactions between the two substances and the pharmacodynamic effects of venlafaxine were unlikely to be impacted by caffeine consumption. Miscellaneous antidepressants (reboxetine, mianserin, agomelatine, maprotiline, and mirtazapine) displayed varying pharmacodynamic interactions with caffeine, resulting in increased antidepressant effects where vortioxetine, maprotiline, and mirtazapine failed to demonstrate any interactions. In conclusion, caffeine demonstrated varying effects on the pharmacokinetic and pharmacodynamic properties of each class of antidepressants, with several classes of antidepressants demonstrating a similar effect on caffeine.
Collapse
Affiliation(s)
- Jenny Truong
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Noor Abu-Suriya
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Daniel Tory
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Rita Bahho
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Audrey Ismaiel
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Thach Nguyen
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Angela Mansour
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Varsha Nand
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Julijana Saponja
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Daniele Parisi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Theratrame (SA), Avenue de l'Hopital 1, 4000, Liège, Belgium.
| |
Collapse
|
3
|
Szopa A, Bogatko K, Serefko A, Herbet M, Ostrowska-Leśko M, Wróbel A, Radziwoń-Zaleska M, Dudka J, Wlaź P, Poleszak E. Antidepressant effects of selective adenosine receptor antagonists targeting the A1 and A2A receptors administered jointly with NMDA receptor ligands: behavioral, biochemical and molecular investigations in mice. Pharmacol Rep 2024; 76:1012-1031. [PMID: 39048810 PMCID: PMC11387455 DOI: 10.1007/s43440-024-00627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The objective of the study was to ascertain the antidepressant potential of the co-administration of NMDA receptor ligands and selective adenosine A1 and A2A receptor antagonists. METHODS The forced swim test (FST) and spontaneous locomotor activity test were carried out in adult male naïve mice. Before the behavioral testing, animals received DPCPX (a selective adenosine A1 receptor antagonist, 1 mg/kg) or istradefylline (a selective adenosine A2A receptor antagonist, 0.5 mg/kg) in combination with L-701,324 (a potent NMDA receptor antagonist, 1 mg/kg), D-cycloserine (a partial agonist at the glycine recognition site of NMDA receptor, 2.5 mg/kg), CGP 37849 (a competitive NMDA receptor antagonist, 0.3 mg/kg) or MK-801 (a non-competitive NMDA receptor antagonist, 0.05 mg/kg). Additionally, serum BDNF level and the mRNA level of the Adora1, Comt, and Slc6a15 genes in the murine prefrontal cortex were determined. RESULTS The obtained results showed that DPCPX and istradefylline administered jointly with NMDA receptor ligands (except for DPCPX + D-cycloserine combination) produced an antidepressant effect in the FST in mice without enhancement in spontaneous motility of animals. An elevation in BDNF concentration was noted in the D-cycloserine-treated group. Adora1 expression increased with L-701,324, DPCPX + D-cycloserine, and DPCPX + CGP 37849, while D-cycloserine, CGP 37849, and MK-801 led to a decrease. Comt mRNA levels dropped with DPCPX + L-701,324, istradefylline + L-701,324/CGP 37849 but increased with D-cycloserine, MK-801, CGP 37849 and DPCPX + MK-801/ CGP 37849. Slc6a15 levels were reduced by D-cycloserine, DPCPX + L-701,324 but rose with DPCPX + CGP 37849/MK-801 and istradefylline + D-cycloserine/MK-801/CGP 37849. CONCLUSION Our study suggests that selective antagonists of adenosine receptors may enhance the antidepressant efficacy of NMDA receptor ligands highlighting a potential synergistic interaction between the adenosinergic and glutamatergic systems. Wherein, A2A receptor antagonists are seen as more promising candidates in this context. Given the intricate nature of changes in BDNF levels and the expression of Adora1, Comt, and Slc6a15 seen after drug combinations exerting antidepressant properties, further research and integrative approaches are crucial understand better the mechanisms underlying their antidepressant action.
Collapse
Affiliation(s)
- Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki 7, Lublin, PL, 20-093, Poland
| | - Karolina Bogatko
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, Lublin, PL, 20-093, Poland.
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki 7, Lublin, PL, 20-093, Poland
| | - Mariola Herbet
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, Lublin, PL, 20-093, Poland
| | - Marta Ostrowska-Leśko
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, Lublin, PL, 20-093, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, Lublin, PL, 20-090, Poland
| | - Maria Radziwoń-Zaleska
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska 27, Warszawa, PL, 00-665, Poland
| | - Jarosław Dudka
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, Lublin, PL, 20-093, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin, PL, 20-033, Poland
| | - Ewa Poleszak
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, Lublin, PL, 20-093, Poland
| |
Collapse
|
4
|
Bhat SS, Kulkarni SR, Uttarkar A, Niranjan V. Computational Insights into Papaveroline as an In Silico Drug Candidate for Alzheimer's Disease via Fyn Tyrosine Kinase Inhibition. Mol Biotechnol 2024:10.1007/s12033-024-01236-0. [PMID: 39004678 DOI: 10.1007/s12033-024-01236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
Alzheimer's disease (AD) poses a significant global health challenge, necessitating the exploration of novel therapeutic strategies. Fyn Tyrosine Kinase has emerged as a key player in AD pathogenesis, making it an attractive target for drug development. This study focuses on investigating the potential of Papaveroline as a drug candidate for AD by targeting Fyn Tyrosine Kinase. The research employed high-throughput virtual screening and QSAR analysis were conducted to identify compounds with optimal drug-like properties, emphasizing adherence to ADMET parameters for further evaluation. Molecular dynamics simulations to analyze the binding interactions between Papaveroline and Staurosporine with Fyn Tyrosine Kinase over a 200-ns period. The study revealed detailed insights into the binding mechanisms and stability of the Papaveroline-Fyn complex, showcasing the compound's potential as an inhibitor of Fyn Tyrosine Kinase. Comparative analysis with natural compounds and a reference compound highlighted Papaveroline's unique characteristics and promising therapeutic implications for AD treatment. Overall, the findings underscore Papaveroline's potential as a valuable drug candidate for targeting Fyn Tyrosine Kinase in AD therapy, offering new avenues for drug discovery in neurodegenerative diseases. This study contributes to advancing our understanding of molecular interactions in AD pathogenesis and paves the way for further research and development in this critical area.
Collapse
Affiliation(s)
- Shreya Satyanarayan Bhat
- Department of Biotechnology, R V College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi 590018), Bangalore, 560059, India
| | - Spoorthi R Kulkarni
- Department of Biotechnology, R V College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi 590018), Bangalore, 560059, India
| | - Akshay Uttarkar
- Department of Biotechnology, R V College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi 590018), Bangalore, 560059, India
| | - Vidya Niranjan
- Department of Biotechnology, R V College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi 590018), Bangalore, 560059, India.
| |
Collapse
|
5
|
Meamar M, Raise-Abdullahi P, Rashidy-Pour A, Raeis-Abdollahi E. Coffee and mental disorders: How caffeine affects anxiety and depression. PROGRESS IN BRAIN RESEARCH 2024; 288:115-132. [PMID: 39168554 DOI: 10.1016/bs.pbr.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Caffeine, the main psychoactive component in coffee, has garnered significant attention for its potential impact on the most prevalent mental health conditions like anxiety and depression. This chapter comprehensively examines the neurobiological effects of caffeine, its influence on anxiety and depression, and relevant clinical studies. Caffeine exerts its psychostimulant effects primarily through antagonizing adenosine receptors, modulating neurotransmitter systems, and influencing intracellular calcium signaling in the brain. Caffeine exhibits dose-dependent effects. While moderate caffeine consumption is safe in healthy adults and may offer benefits for mental health, excessive intake is linked to adverse effects on neurological and psychiatric health and can aggravate symptoms, highlighting the importance of adjusting consumption patterns. High caffeine intake correlates with elevated anxiety levels, especially in individuals predisposed to anxiety disorders. However, the relationship between caffeine consumption and the risk of depression is intricate, with some studies suggesting a potential protective effect of moderate intake, while others find no significant association. Individual variations in caffeine metabolism, sensitivity, and genetic factors considerably impact responses to caffeine. The chapter also explores the therapeutic potential of caffeine as an adjunct treatment and outlines challenges and future research directions in elucidating caffeine's multifaceted role in mental health.
Collapse
Affiliation(s)
- Morvarid Meamar
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Clinical Research Development Unit, Kowsar Educational Research and Therapeutic Hospital, Semnan University of Medical Sciences, Semnan, Iran.
| | | | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ehsan Raeis-Abdollahi
- Applied Physiology Research Center, Qom Medical Sciences, Islamic Azad University, Qom, Iran; Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| |
Collapse
|
6
|
Singer P, Yee BK. The adenosine hypothesis of schizophrenia into its third decade: From neurochemical imbalance to early life etiological risks. Front Cell Neurosci 2023; 17:1120532. [PMID: 36998267 PMCID: PMC10043328 DOI: 10.3389/fncel.2023.1120532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/15/2023] [Indexed: 03/17/2023] Open
Abstract
The adenosine hypothesis of schizophrenia was conceptualized about two decades ago in an attempt to integrate two prominent theories of neurochemical imbalance that attribute the pathogenesis of schizophrenia to hyperfunction of the mesocorticolimbic dopamine neurotransmission and hypofunction of cortical glutamate neurotransmission. Given its unique position as an endogenous modulator of both dopamine and glutamate signaling in the brain, adenosine was postulated as a potential new drug target to achieve multiple antipsychotic actions. This new strategy may offer hope for improving treatment, especially in alleviating negative symptoms and cognitive deficits of schizophrenia that do not respond to current medications. To date, however, the adenosine hypothesis has yet led to any significant therapeutic breakthroughs. Here, we address two possible reasons for the impasse. First, neither the presence of adenosine functional deficiency in people with schizophrenia nor its causal relationship to symptom production has been satisfactorily examined. Second, the lack of novel adenosine-based drugs also impedes progress. This review updates the latest preclinical and clinical data pertinent to the construct validity of the adenosine hypothesis and explores novel molecular processes whereby dysregulation of adenosine signaling could be linked to the etiology of schizophrenia. It is intended to stimulate and revitalize research into the adenosine hypothesis towards the development of a new and improved generation of antipsychotic drugs that has eluded us for decades.
Collapse
Affiliation(s)
- Philipp Singer
- Roche Diagnostics International AG, Rotkreuz, Switzerland
- *Correspondence: Philipp Singer Benjamin K. Yee
| | - Benjamin K. Yee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- *Correspondence: Philipp Singer Benjamin K. Yee
| |
Collapse
|
7
|
Wang Y, Wang Z, Gui P, Zhang B, Xie Y. Coffee and caffeine intake and depression in postpartum women: A cross-sectional study from the National Health and Nutrition Examination Survey 2007-2018. Front Psychol 2023; 14:1134522. [PMID: 36874862 PMCID: PMC9983362 DOI: 10.3389/fpsyg.2023.1134522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
This cross-sectional study examines the association between coffee and caffeine consumption and depressive symptoms in postpartum women. In total, 821 postpartum women who met the study's inclusion criteria were interviewed. Data were extracted from the 2007-2018 National Health and Nutrition Examination Survey. Coffee consumption and 11 confounding variables were considered and analyzed as baseline data. Weighted logistic regression models were constructed by adjusting the variables, and the odds ratios of total coffee, caffeinated coffee, and decaffeinated coffee were assessed for their impact on depression status. In addition, subgroup analyses were conducted according to race, breastfeeding status, and postpartum period. The results show that generic coffee and caffeinated coffee intake have a potentially protective effect in postpartum women. Drinking more than three cups of caffeinated coffee may lower the risk of postpartum depression, particularly in the 1-2 year postpartum period and in non-breastfeeding women. The association between decaffeinated coffee consumption and postpartum depression remains unclear.
Collapse
Affiliation(s)
- Yinuo Wang
- Department of Rehabilitation Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhuangfu Wang
- UCL Great Ormond Street Institute of Child Health, Faculty of Population Health Science, London, United Kingdom
| | - Peijun Gui
- Department of Rehabilitation Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bo Zhang
- Department of Rehabilitation Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ying Xie
- Department of Rehabilitation Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Ye L, Dai Q, Hou F, Wu C, Qiu X, Yuan P, Chen F, Meng Y, Feng X, Jiang L. Salivary metabolomics of burning mouth syndrome: A cross-sectional study. Arch Oral Biol 2022; 144:105552. [DOI: 10.1016/j.archoralbio.2022.105552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
|
9
|
Ortega MA, Fraile-Martínez Ó, García-Montero C, Alvarez-Mon MA, Lahera G, Monserrat J, Llavero-Valero M, Gutiérrez-Rojas L, Molina R, Rodríguez-Jimenez R, Quintero J, De Mon MA. Biological Role of Nutrients, Food and Dietary Patterns in the Prevention and Clinical Management of Major Depressive Disorder. Nutrients 2022; 14:3099. [PMID: 35956276 PMCID: PMC9370795 DOI: 10.3390/nu14153099] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Major Depressive Disorder (MDD) is a growing disabling condition affecting around 280 million people worldwide. This complex entity is the result of the interplay between biological, psychological, and sociocultural factors, and compelling evidence suggests that MDD can be considered a disease that occurs as a consequence of an evolutionary mismatch and unhealthy lifestyle habits. In this context, diet is one of the core pillars of health, influencing multiple biological processes in the brain and the entire body. It seems that there is a bidirectional relationship between MDD and malnutrition, and depressed individuals often lack certain critical nutrients along with an aberrant dietary pattern. Thus, dietary interventions are one of the most promising tools to explore in the field of MDD, as there are a specific group of nutrients (i.e., omega 3, vitamins, polyphenols, and caffeine), foods (fish, nuts, seeds fruits, vegetables, coffee/tea, and fermented products) or dietary supplements (such as S-adenosylmethionine, acetyl carnitine, creatine, amino acids, etc.), which are being currently studied. Likewise, the entire nutritional context and the dietary pattern seem to be another potential area of study, and some strategies such as the Mediterranean diet have demonstrated some relevant benefits in patients with MDD; although, further efforts are still needed. In the present work, we will explore the state-of-the-art diet in the prevention and clinical support of MDD, focusing on the biological properties of its main nutrients, foods, and dietary patterns and their possible implications for these patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28805 Alcalá de Henares, Spain
| | - Óscar Fraile-Martínez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Maria Llavero-Valero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
| | - Luis Gutiérrez-Rojas
- Department of Psychiatry and CTS-549 Research Group, Institute of Neuroscience, University of Granada, 18071 Granada, Spain;
- Psychiatry Service, San Cecilio University Hospital, 18016 Granada, Spain
| | - Rosa Molina
- Department of Psychiatry and Mental, Health San Carlos University Hospital (HCSC), 28034 Madrid, Spain;
- Research Biomedical Fundation of HCSC Hospital, 28034 Madrid, Spain
- Department of Psychology, Comillas University, Cantoblanco, 28015 Madrid, Spain
| | - Roberto Rodríguez-Jimenez
- Department of Legal Medicine, Psychiatry, and Pathology, Complutense University (UCM), 28040 Madrid, Spain;
- Institute for Health Research 12 de Octubre Hospital, (imas12)/CIBERSAM-ISCIII (Biomedical Research Networking Centre in Mental Health), 28041 Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
- Department of Legal Medicine, Psychiatry, and Pathology, Complutense University (UCM), 28040 Madrid, Spain;
| | - Melchor Alvarez De Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
10
|
Saimaiti A, Zhou DD, Li J, Xiong RG, Gan RY, Huang SY, Shang A, Zhao CN, Li HY, Li HB. Dietary sources, health benefits, and risks of caffeine. Crit Rev Food Sci Nutr 2022; 63:9648-9666. [PMID: 35574653 DOI: 10.1080/10408398.2022.2074362] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dietary intake of caffeine has significantly increased in recent years, and beneficial and harmful effects of caffeine have been extensively studied. This paper reviews antioxidant and anti-inflammatory activities of caffeine as well as its protective effects on cardiovascular diseases, obesity, diabetes mellitus, cancers, and neurodegenerative and liver diseases. In addition, we summarize the side effects of long-term or excessive caffeine consumption on sleep, migraine, intraocular pressure, pregnant women, children, and adolescents. The health benefits of caffeine depend on the amount of caffeine intake and the physical condition of consumers. Moderate intake of caffeine helps to prevent and modulate several diseases. However, the long-term or over-consumption of caffeine can lead to addiction, insomnia, migraine, and other side effects. In addition, children, adolescents, pregnant women, and people who are sensitive to caffeine should be recommended to restrict/reduce their intake to avoid potential adverse effects.
Collapse
Affiliation(s)
- Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jiahui Li
- School of Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu, China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ao Shang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
11
|
Effects of caffeine on anxiety and panic attacks in patients with panic disorder: A systematic review and meta-analysis. Gen Hosp Psychiatry 2022; 74:22-31. [PMID: 34871964 DOI: 10.1016/j.genhosppsych.2021.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/14/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Caffeine has been purported to have anxiogenic and panicogenic properties, specifically salient in patients with panic disorder (PD). However, compilations of the magnitude of the effect of caffeine on anxiety and panic attacks are lacking and potential dose-response relationships have not been examined. OBJECTIVES In the present systematic review and meta-analysis, we aimed to examine the acute effects of placebo-controlled caffeine challenge on occurrence of panic attacks and subjective anxiety in patients with PD and healthy controls (HC), including dose-response relationships. METHODS Systematic searches were performed in six databases. We included blinded placebo-controlled studies of acute caffeine challenge on panic attacks and/or subjective anxiety in adult patients with PD. RESULTS Of the 1893 identified articles, ten met our inclusion criteria. The 9 studies investigating panic attacks included 237 patients, of which 51.1% had a panic attack following caffeine, but none after placebo. Six of these studies compared 128 patients with 115 healthy controls (HC), finding that patients (53.9%) were more vulnerable than HC (1.7%) for panic attacks following caffeine (log RR: 3.47; 95% CI 2.06-4.87). Six studies investigated subjective anxiety in 121 patients and 111 HC following caffeine, with an overall effect indicating increased sensitivity to the anxiogenic effects of caffeine in the patient group (Hedges' g = 1.02 [95% CI: 0.09-1.96]). The restricted range of caffeine employed [400-750 mg] and few studies (3) not using 480 mg prevented any meaningful analysis of a dose-response relationship. LIMITATIONS Of the ten studies included, only 2 reported anxiety data for the placebo condition, precluding a proper meta-analysis comparing anxiogenic effects of caffeine and placebo. The restricted dose range used prevented assessment of dose-response relationships. CONCLUSIONS The results confirm that caffeine at doses roughly equivalent to 5 cups of coffee induces panic attacks in a large proportion of PD patients and highly discriminates this population from healthy adults. Caffeine also increases anxiety in PD patients as well as among healthy adults at these doses although the exact relationship between caffeine-induced anxiety and panic attacks remains uncertain. The results suggest that caffeine targets important mechanisms related to the pathophysiology of PD. IMPLICATIONS Future studies should employ a wider range of caffeine doses and investigate contributions of biological and psychological mechanisms underlying the anxiogenic and panicogenic effects of caffeine. In the clinic, patients with PD should be informed about the panicogenic and anxiogenic effects of caffeine, with the caveat that little is known regarding smaller doses than 480 mg. Registration. PROSPERO (www.crd.york.ac.uk/prospero) registration number CRD42019120220.
Collapse
|
12
|
Frick A, Persson J, Bodén R. Habitual caffeine consumption moderates the antidepressant effect of dorsomedial intermittent theta-burst transcranial magnetic stimulation. J Psychopharmacol 2021; 35:1536-1541. [PMID: 34872405 PMCID: PMC8652363 DOI: 10.1177/02698811211058975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Potentiating current antidepressant treatment is much needed. Based on animal studies, caffeine may augment the effects of currently available antidepressants. OBJECTIVE Here, we tested whether habitual caffeine consumption moderates the antidepressant effects of repetitive transcranial magnetic stimulation (rTMS) using intermittent theta-burst stimulation (iTBS). METHODS Forty patients with current depressive episodes were randomized to active iTBS (n = 19) or sham treatment (n = 21; shielded side of the coil and weak transcutaneous electrical stimulation) delivered two times per day for 10-15 weekdays. Neuronavigated stimulation was applied to the dorsomedial prefrontal cortex. Symptom improvement was measured using change in self-reported Montgomery-Åsberg Depression Rating Scale (MADRS) scores. Pretreatment habitual caffeine consumption was quantified using self-reports of number of cups of coffee and energy drinks consumed the 2 days before the treatment starts. RESULTS Habitual caffeine consumption was associated with symptom improvement following active iTBS (r = 0.51, 95% confidence interval (CI): 0.08-0.78, p = 0.025) but not following sham treatment (r = -0.02, 95% CI: -0.45 to 0.42, p = 0.938). A multiple regression analysis corroborated the findings by showing a significant caffeine consumption × treatment group interaction (β = 0.62, p = 0.043), but no main effects of treatment group (β = 0.22, p = 0.140) or caffeine consumption (β = -0.01, p = 0.948). No group differences in pretreatment symptom scores or caffeine consumption were detected (p values > 0.86). CONCLUSION Habitual caffeine consumption moderated the antidepressant effect of dorsomedial iTBS, consistent with caffeine improving antidepressant pharmacological treatments in animals. Caffeine is an antagonist of adenosine receptors and may enhance antidepressant effects through downstream dopaminergic targets.
Collapse
Affiliation(s)
- Andreas Frick
- The Beijer Laboratory, Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Jonas Persson
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Robert Bodén
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Design and Synthesis of Novel Thiazolo[5,4-d]pyrimidine Derivatives with High Affinity for Both the Adenosine A 1 and A 2A Receptors, and Efficacy in Animal Models of Depression. Pharmaceuticals (Basel) 2021; 14:ph14070657. [PMID: 34358083 PMCID: PMC8308585 DOI: 10.3390/ph14070657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/19/2023] Open
Abstract
New compounds with a 7-amino-2-arylmethyl-thiazolo[5,4-d]pyrimidine structure were synthesized and evaluated in vitro for their affinity and/or potency at the human (h) A1, hA2A, hA2B, and hA3 adenosine receptors (ARs). Several compounds (5, 8–10, 13, 18, 19) were characterized by nanomolar and subnanomolar binding affinities for the hA1 and the hA2A AR, respectively. Results of molecular docking studies supported the in vitro results. The 2-(2-fluorobenzyl)-5-(furan-2yl)-thiazolo[5,4-d]pyrimidin-7-amine derivative 18 (hA1 Ki = 1.9 nM; hA2A Ki = 0.06 nM) was evaluated for its antidepressant-like activity in in vivo studies, the forced swimming test (FST), the tail suspension test (TST), and the sucrose preference test (SPT) in mice, showing an effect comparable to that of the reference amitriptyline.
Collapse
|
14
|
Febrianto NA, Wang S, Zhu F. Chemical and biological properties of cocoa beans affected by processing: a review. Crit Rev Food Sci Nutr 2021; 62:8403-8434. [PMID: 34047627 DOI: 10.1080/10408398.2021.1928597] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cocoa (Theobroma cacao L.) is widely cultivated in tropical countries. The cocoa beans are a popular ingredient of confectionery. Cocoa beans contain various chemicals that contribute to their bioactivity and nutritional properties. There has been increasing interest in developing cocoa beans for "healthy" food products. Cocoa beans have special combination of nutrients such as lipids, carbohydrates, proteins and other compounds of biological activities. The bioactive phytochemicals include methylxanthines, polyphenols, biogenic amines, melanoidins, isoprostanoids and oxalates. These phytochemicals of cocoa are related to various in vivo and in vitro biological activities such as antioxidation, anti-cancer, anti-microbial, anti-inflammation, anti-diabetes, cardiovascular protection, physical improvement, anti-photoaging, anti-depression and blood glucose regulation. The potential of bioactive compounds in cocoa remains to be maximized for food and nutritional applications. The current processing technology promotes the degradation of beneficial bioactive compounds, while maximizing the flavors and its precursors. It is not optimized for the utilization of cocoa beans for "healthy" product formulations. Modifications of the current processing line and non-conventional processing are needed to better preserve and utilize the beneficial bioactive compounds in cocoa beans.
Collapse
Affiliation(s)
- Noor Ariefandie Febrianto
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Indonesian Coffee and Cocoa Research Institute (ICCRI), Jember, East Java, Indonesia
| | - Sunan Wang
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Canadian Food and Wine Institute, Niagara College, Ontario, Canada
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Szopa A, Socała K, Serefko A, Doboszewska U, Wróbel A, Poleszak E, Wlaź P. Purinergic transmission in depressive disorders. Pharmacol Ther 2021; 224:107821. [PMID: 33607148 DOI: 10.1016/j.pharmthera.2021.107821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Purinergic signaling involves the actions of purine nucleotides and nucleosides (such as adenosine) at P1 (adenosine), P2X, and P2Y receptors. Here, we present recent data contributing to a comprehensive overview of the association between purinergic signaling and depression. We start with background information on adenosine production and metabolism, followed by a detailed characterization of P1 and P2 receptors, with an emphasis on their expression and function in the brain as well as on their ligands. We provide data suggestive of altered metabolism of adenosine in depressed patients, which might be regarded as a disease biomarker. We then turn to considerable amount of preclinical/behavioral data obtained with the aid of the forced swim test, tail suspension test, learned helplessness model, or unpredictable chronic mild stress model and genetic activation/inactivation of P1 or P2 receptors as well as nonselective or selective ligands of P1 or P2 receptors. We also aimed to discuss the reason underlying discrepancies observed in such studies.
Collapse
Affiliation(s)
- Aleksandra Szopa
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Anna Serefko
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, PL 20-090 Lublin, Poland
| | - Ewa Poleszak
- Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland.
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
16
|
Szopa A, Bogatko K, Herbet M, Serefko A, Ostrowska M, Wośko S, Świąder K, Szewczyk B, Wlaź A, Skałecki P, Wróbel A, Mandziuk S, Pochodyła A, Kudela A, Dudka J, Radziwoń-Zaleska M, Wlaź P, Poleszak E. The Interaction of Selective A1 and A2A Adenosine Receptor Antagonists with Magnesium and Zinc Ions in Mice: Behavioural, Biochemical and Molecular Studies. Int J Mol Sci 2021; 22:ijms22041840. [PMID: 33673282 PMCID: PMC7918707 DOI: 10.3390/ijms22041840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
The purpose of the study was to investigate whether the co-administration of Mg2+ and Zn2+ with selective A1 and A2A receptor antagonists might be an interesting antidepressant strategy. Forced swim, tail suspension, and spontaneous locomotor motility tests in mice were performed. Further, biochemical and molecular studies were conducted. The obtained results indicate the interaction of DPCPX and istradefylline with Mg2+ and Zn2+ manifested in an antidepressant-like effect. The reduction of the BDNF serum level after co-administration of DPCPX and istradefylline with Mg2+ and Zn2+ was noted. Additionally, Mg2+ or Zn2+, both alone and in combination with DPCPX or istradefylline, causes changes in Adora1 expression, DPCPX or istradefylline co-administered with Zn2+ increases Slc6a15 expression as compared to a single-drug treatment, co-administration of tested agents does not have a more favourable effect on Comt expression. Moreover, the changes obtained in Ogg1, MsrA, Nrf2 expression show that DPCPX-Mg2+, DPCPX-Zn2+, istradefylline-Mg2+ and istradefylline-Zn2+ co-treatment may have greater antioxidant capacity benefits than administration of DPCPX and istradefylline alone. It seems plausible that a combination of selective A1 as well as an A2A receptor antagonist and magnesium or zinc may be a new antidepressant therapeutic strategy.
Collapse
Affiliation(s)
- Aleksandra Szopa
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, 1 Chodźki Street, PL 20–093 Lublin, Poland; (K.B.); (A.S.); (S.W.)
- Correspondence: (A.S.); (E.P.)
| | - Karolina Bogatko
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, 1 Chodźki Street, PL 20–093 Lublin, Poland; (K.B.); (A.S.); (S.W.)
| | - Mariola Herbet
- Chair and Department of Toxicology, Medical University of Lublin, 8 Chodźki Street, PL 20–093 Lublin, Poland; (M.H.); (M.O.); (A.K.) (J.D.)
| | - Anna Serefko
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, 1 Chodźki Street, PL 20–093 Lublin, Poland; (K.B.); (A.S.); (S.W.)
| | - Marta Ostrowska
- Chair and Department of Toxicology, Medical University of Lublin, 8 Chodźki Street, PL 20–093 Lublin, Poland; (M.H.); (M.O.); (A.K.) (J.D.)
| | - Sylwia Wośko
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, 1 Chodźki Street, PL 20–093 Lublin, Poland; (K.B.); (A.S.); (S.W.)
| | - Katarzyna Świąder
- Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, 1 Chodźki Street, PL 20–093 Lublin, Poland; (K.Ś.); (A.P.)
| | - Bernadeta Szewczyk
- Department of Neurobiology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna Street, PL 31–343 Kraków, Poland;
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, 8 Jaczewskiego Street, PL 20–090 Lublin, Poland;
| | - Piotr Skałecki
- Department of Commodity Science and Processing of Raw Animal Materials, University of Life Sciences, 13 Akademicka Street, PL 20–950 Lublin, Poland;
| | - Andrzej Wróbel
- Second Department of Gynecology, 8 Jaczewskiego Street, PL 20–090 Lublin, Poland;
| | - Sławomir Mandziuk
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 8 Jaczewskiego Street, PL 20–090 Lublin, Poland;
| | - Aleksandra Pochodyła
- Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, 1 Chodźki Street, PL 20–093 Lublin, Poland; (K.Ś.); (A.P.)
| | - Anna Kudela
- Chair and Department of Toxicology, Medical University of Lublin, 8 Chodźki Street, PL 20–093 Lublin, Poland; (M.H.); (M.O.); (A.K.) (J.D.)
| | - Jarosław Dudka
- Chair and Department of Toxicology, Medical University of Lublin, 8 Chodźki Street, PL 20–093 Lublin, Poland; (M.H.); (M.O.); (A.K.) (J.D.)
| | - Maria Radziwoń-Zaleska
- Department of Psychiatry, Medical University of Warsaw, 27 Nowowiejska Street, PL 00–665 Warsaw, Poland;
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie–Skłodowska University, Akademicka 19, PL 20–033 Lublin, Poland;
| | - Ewa Poleszak
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, 1 Chodźki Street, PL 20–093 Lublin, Poland; (K.B.); (A.S.); (S.W.)
- Correspondence: (A.S.); (E.P.)
| |
Collapse
|
17
|
Gomes JI, Farinha-Ferreira M, Rei N, Gonçalves-Ribeiro J, Ribeiro JA, Sebastião AM, Vaz SH. Of adenosine and the blues: The adenosinergic system in the pathophysiology and treatment of major depressive disorder. Pharmacol Res 2020; 163:105363. [PMID: 33285234 DOI: 10.1016/j.phrs.2020.105363] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) is the foremost cause of global disability, being responsible for enormous personal, societal, and economical costs. Importantly, existing pharmacological treatments for MDD are partially or totally ineffective in a large segment of patients. As such, the search for novel antidepressant drug targets, anchored on a clear understanding of the etiological and pathophysiological mechanisms underpinning MDD, becomes of the utmost importance. The adenosinergic system, a highly conserved neuromodulatory system, appears as a promising novel target, given both its regulatory actions over many MDD-affected systems and processes. With this goal in mind, we herein review the evidence concerning the role of adenosine as a potential player in pathophysiology and treatment of MDD, combining data from both human and animal studies. Altogether, evidence supports the assertions that the adenosinergic system is altered in both MDD patients and animal models, and that drugs targeting this system have considerable potential as putative antidepressants. Furthermore, evidence also suggests that modifications in adenosine signaling may have a key role in the effects of several pharmacological and non-pharmacological antidepressant treatments with demonstrated efficacy, such as electroconvulsive shock, sleep deprivation, and deep brain stimulation. Lastly, it becomes clear from the available literature that there is yet much to study regarding the role of the adenosinergic system in the pathophysiology and treatment of MDD, and we suggest several avenues of research that are likely to prove fruitful.
Collapse
Affiliation(s)
- Joana I Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Farinha-Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
18
|
Öz P, Timuçin AC, Teomete Ş, Akpunar F, Tufanç Ç, Oğur D, Uzbay T. The sex-dependent anti-depressant-like effects of zeatin in rat behavioral despair model as a candidate A2A receptor ligand. Neurosci Lett 2020; 734:135108. [PMID: 32497733 DOI: 10.1016/j.neulet.2020.135108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 11/30/2022]
Abstract
Zeatin, an adenine-derivative cytokinin has well-established functions in plants. It is also suggested to activate A2A receptors in animals, however, there is limited knowledge of its effects. The main objective of this study is to evaluate the possible effects of zeatin on depression, and our hypothesis is that zeatin might induce an anti-depressant effect via A2A receptor-linked pathways. The forced swim test was used to create a depression-like model on female and male rats. A balanced zeatin isomer mixture (80 % trans-zeatin (tZ), 20 % cis-zeatin (cZ)) was administered intraperitoneally to analyze the effects. Caffeine with a suboptimal dose (2 mg/kg) was used as a known ligand of A2A receptor. Finally, a molecular docking study was also implemented to compare caffeine and tZ in the ligand binding site of A2A receptor. We demonstrate that (1) there is a clear sex-dependent difference in the susceptibility to depression-like symptoms, where female rats in the metestrus phase display higher depressive-like behavior and lower responses to the anti-depressant-like effects of pharmacological applications; (2) 10 mg/kg zeatin exerts an anti-depressant-like effect for both females and males without affecting locomotor activity; (3) 8 mg/kg tZ alone replicates this effect for both sexes, (4) the effect of zeatin is also differential for either sex and (5) the similar effect of caffeine and zeatin implies that the effect might be exerted via A2A receptor mediated pathways. Computational analysis further yielded similar binding patterns for both ligands. In conclusion, zeatin might have a potential therapeutic use in depression, acting via adenosinergic pathways.
Collapse
Affiliation(s)
- Pınar Öz
- Department of Molecular Biology and Genetics (English), Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Turkey; Neuropsychopharmacology Application and Research Center, Üsküdar University, Istanbul, Turkey.
| | - Ahmet Can Timuçin
- Department of Chemical and Biological Engineering, Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Turkey
| | - Şeyma Teomete
- Department of Molecular Biology and Genetics (English), Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Turkey
| | - Fatmanur Akpunar
- Department of Molecular Biology and Genetics (English), Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Turkey
| | - Çağla Tufanç
- Department of Molecular Biology and Genetics (English), Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Turkey
| | - Deniz Oğur
- Neuroscience Graduate Program, Institute of Health Sciences, Üsküdar University, Istanbul, Turkey
| | - Tayfun Uzbay
- Department of Pharmacology, Faculty of Medicine, Üsküdar University, Istanbul, Turkey; Neuropsychopharmacology Application and Research Center, Üsküdar University, Istanbul, Turkey
| |
Collapse
|
19
|
Caffeine effects on systemic metabolism, oxidative-inflammatory pathways, and exercise performance. Nutr Res 2020; 80:1-17. [DOI: 10.1016/j.nutres.2020.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/11/2020] [Accepted: 05/09/2020] [Indexed: 01/06/2023]
|
20
|
Khaliullin F, Shabalina Y. Thietanyl Protection in the Synthesis of 8-Substituted 1-Benzyl-3-methyl-3,7-dihydro- 1H-purine-2,6-diones. Curr Org Synth 2020; 17:535-539. [PMID: 32600234 DOI: 10.2174/1570179417666200628015511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE 1-Аlkyl-3,7-dihydro-1H-purine-2,6-diones containing no substituents in the N7 position can be synthesized only using protecting groups, for example, benzyl protection. However, in the case of synthesis of 1-benzyl-3,7-dihydro-1H-purine-2,6-diones, the use of benzyl protection may lead to simultaneous debenzylation of both N1 and N7 positions. Therefore, it is necessary to use other protective groups for the synthesis of 1-benzyl-3,7-dihydro-1H-purine-2,6-diones. MATERIALS AND METHODS 8-Bromo- and 8-amino-substituted 1-benzyl-3-methyl-3,7-dihydro-1H-purine-2,6-diones unsubstituted in the N7 position were synthesized with the use of thietanyl protecting group. The thietane ring was introduced via the reaction of 8-bromo-3-methyl-3,7-dihydro-1H-purine-2,6-dione with 2-chloromethylthiirane, giving rise to 8-bromo-3-methyl-7-(thietan-3-yl)-3,7-dihydro-1H-purine-2,6-dione. The subsequent alkylation with benzyl chloride yielded 1-benzyl-8-bromo-3-methyl-7-(thietan-3-yl)-3,7-dihydro-1H-purine-2,6-dione, which was oxidized with hydrogen peroxide to be converted to 1-benzyl-8-bromo-3-methyl-7-(1,1-dioxothietan- 3-yl)-3,7-dihydro-1H-purine-2,6-dione. This product reacted with amines to give 8-amino-substituted 1-benzyl-3- methyl-7-(1,1-dioxothietan-3-yl)-3,7-dihydro-1H-purine-2,6-diones. The reaction of 8-substituted 1-benzyl-3- methyl-7-(1,1-dioxothietan-3-yl)-3,7-dihydro-1H-purine-2,6-diones with sodium isopropoxide resulted in the removal of the thietanyl protection and afforded target 8-substituted 1-benzyl-3-methyl-3,7-dihydro-1H-purine-2,6- diones. The structures of the targets compounds have been deduced upon their elemental analysis and spectral data (IR, 1H NMR, 13C NMR and 15N NMR). RESULTS AND DISCUSSION A new 8-substituted 1-benzyl-3-methyl-3,7-dihydro-1H-purine-2,6-diones unsubstituted in the N7 position were synthesized using thietanyl protecting group. CONCLUSION The present study described a new route to synthesize some new 1,8-disubstituted 3-methyl-3,7- dihydro-1H-purine-2,6-diones unsubstituted in the N7 position starting from available 8-bromo-3-methyl-3,7- dihydro-1H-purine-2,6-dione with use of thietanyl protecting group. The advantages of this protocol are the possibility of the synthesis of 1-benzyl-substituted 3,7-dihydro-1H-purine-2,6-diones, the stability of the thietanyl protecting group upon nucleophilic substitution by amines of the bromine atom in the position 8, as well as mild conditions, and simple execution of experiments.
Collapse
Affiliation(s)
- Ferkat Khaliullin
- Department of Pharmaceutical Chemistry, Bashkir State Medical University, Ufa, Russian Federation
| | - Yuliya Shabalina
- Department of Pharmaceutical Chemistry, Bashkir State Medical University, Ufa, Russian Federation
| |
Collapse
|
21
|
Alves ACDB, Bristot VJDO, Limana MD, Speck AE, Barros LSD, Solano AF, Aguiar AS. Role of Adenosine A 2A Receptors in the Central Fatigue of Neurodegenerative Diseases. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ana Cristina de Bem Alves
- Exercise Biology Lab, Department of Health Sciences, UFSC—Universidade Federal de Santa Catarina, Araranguá, Brazil
| | | | - Mirieli Denardi Limana
- Exercise Biology Lab, Department of Health Sciences, UFSC—Universidade Federal de Santa Catarina, Araranguá, Brazil
| | - Ana Elisa Speck
- Exercise Biology Lab, Department of Health Sciences, UFSC—Universidade Federal de Santa Catarina, Araranguá, Brazil
| | - Leonardo Soares de Barros
- LABOX—Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, UFSC—Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Alexandre Francisco Solano
- LABOX—Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, UFSC—Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aderbal S. Aguiar
- Exercise Biology Lab, Department of Health Sciences, UFSC—Universidade Federal de Santa Catarina, Araranguá, Brazil
| |
Collapse
|
22
|
Repeated caffeine administration aggravates post-traumatic stress disorder-like symptoms in rats. Physiol Behav 2019; 211:112666. [DOI: 10.1016/j.physbeh.2019.112666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/02/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022]
|
23
|
Sex and housing conditions modify the effects of adolescent caffeine exposure on anxiety-like and depressive-like behavior in the rat. Behav Pharmacol 2019; 30:539-546. [DOI: 10.1097/fbp.0000000000000489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Pérez-Pérez D, Reyes-Vidal I, Chávez-Cortez EG, Sotelo J, Magaña-Maldonado R. Methylxanthines: Potential Therapeutic Agents for Glioblastoma. Pharmaceuticals (Basel) 2019; 12:ph12030130. [PMID: 31500285 PMCID: PMC6789489 DOI: 10.3390/ph12030130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/24/2019] [Accepted: 09/01/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Currently, treatment is ineffective and the median overall survival is 20.9 months. The poor prognosis of GBM is a consequence of several altered signaling pathways that favor the proliferation and survival of neoplastic cells. One of these pathways is the deregulation of phosphodiesterases (PDEs). These enzymes participate in the development of GBM and may have value as therapeutic targets to treat GBM. Methylxanthines (MXTs) such as caffeine, theophylline, and theobromine are PDE inhibitors and constitute a promising therapeutic anti-cancer agent against GBM. MTXs also regulate various cell processes such as proliferation, migration, cell death, and differentiation; these processes are related to cancer progression, making MXTs potential therapeutic agents in GBM.
Collapse
Affiliation(s)
- Daniel Pérez-Pérez
- PECEM, Faculty of Medicine, National Autonomous University of México, México City 04510, Mexico
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, México City 14269, Mexico
| | - Iannel Reyes-Vidal
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, México City 14269, Mexico
| | - Elda Georgina Chávez-Cortez
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, México City 14269, Mexico
| | - Julio Sotelo
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, México City 14269, Mexico
| | - Roxana Magaña-Maldonado
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, México City 14269, Mexico.
| |
Collapse
|
25
|
Agomelatine and tianeptine antidepressant activity in mice behavioral despair tests is enhanced by DMPX, a selective adenosine A 2A receptor antagonist, but not DPCPX, a selective adenosine A 1 receptor antagonist. Pharmacol Rep 2019; 71:676-681. [PMID: 31200233 DOI: 10.1016/j.pharep.2019.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/12/2019] [Accepted: 03/11/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Adenosine, an endogenous nucleoside, modulates the release of monoamines, e.g., noradrenaline, serotonin, and dopamine in the brain. Both nonselective and selective stimulation of adenosine receptors produce symptoms of depression in some animal models. Therefore, the main objective of our study was to assess the influence of a selective adenosine A1 receptor antagonist (DPCPX) and a selective adenosine A2A receptor antagonist (DMPX) on the activity of agomelatine and tianeptine. METHODS The forced swim test (FST) and tail suspension test (TST) were performed to assess the effects of DPCPX and DMPX on the antidepressant-like activity of agomelatine and tianeptine. Drug serum and brain levels were analyzed using HPLC. RESULTS Co-administration of agomelatine (20 mg/kg) or tianeptine (15 mg/kg) with DMPX (3 mg/kg), but not with DPCPX (1 mg/kg), significantly reduced the immobility time both in the FST and TST in mice. These effects were not associated with an enhancement in animals' spontaneous locomotor activity. The observed changes in the mouse behavior after concomitant injection of DMPX and the tested antidepressant agents were associated with elevated brain concentration of agomelatine and tianeptine. CONCLUSION Our study shows a synergistic action of the selective A2A receptor antagonist and the studied antidepressant drugs, and a lack of such interaction in the case of the selective A1 receptor antagonist. The interaction between DMPX and agomelatine/tianeptine at least partly occurs in the pharmacokinetic phase. A combination of a selective A2A receptor antagonist and an antidepressant may be a new strategy for treating depression.
Collapse
|
26
|
Singh N, Shreshtha AK, Thakur M, Patra S. Xanthine scaffold: scope and potential in drug development. Heliyon 2018; 4:e00829. [PMID: 30302410 PMCID: PMC6174542 DOI: 10.1016/j.heliyon.2018.e00829] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023] Open
Abstract
Medicinal plants have been the basis for discovery of various important marketed drugs. Xanthine is one such lead molecule. Xanthines in various forms (caffeine, theophylline, theobromine, etc) are abode in tea, coffee, cocoa, chocolate etc. giving them popular recognition. These compounds are best known for their diverse pharmaceutical applications as cyclic nucleotide phosphodiesterase inhibition, antagonization of adenosine receptor, anti-inflammatory, anti-microbial, anti-oxidant and anti-tumor activities. These properties incentivize to use xanthine as scaffold to develop new derivatives. Chemical synthesis contributes greater diversity in xanthine based derivatisation. With highlighting the existing challenges in chemical synthesis, the present review focuses the probable solution to fill existing lacuna. The review summarizes the available knowledge of xanthine based drugs development along with exploring new xanthine led chemical synthesis path for bringing diversification in xanthine based research. The main objective of this review is to explore the immense potential of xanthine as scaffold in drug development.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | | - M.S. Thakur
- Fermentation Technology and Bioengineering Department, Central Food Technological Research Institute, Mysore, India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
27
|
Poleszak E, Szopa A, Bogatko K, Wyska E, Wośko S, Świąder K, Doboszewska U, Wlaź A, Wróbel A, Wlaź P, Serefko A. Antidepressant-Like Activity of Typical Antidepressant Drugs in the Forced Swim Test and Tail Suspension Test in Mice Is Augmented by DMPX, an Adenosine A 2A Receptor Antagonist. Neurotox Res 2018; 35:344-352. [PMID: 30267268 PMCID: PMC6331646 DOI: 10.1007/s12640-018-9959-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/31/2018] [Accepted: 09/11/2018] [Indexed: 01/06/2023]
Abstract
Unsatisfactory therapeutic effects of currently used antidepressants force to search for new pharmacological treatment strategies. Recent research points to the relationship between depressive disorders and the adenosinergic system. Therefore, the main goal of our studies was to evaluate the effects of DMPX (3 mg/kg, i.p.), which possesses selectivity for adenosine A2A receptors versus A1 receptors, on the activity of imipramine (15 mg/kg, i.p.), escitalopram (2.5 mg/kg, i.p.), and reboxetine (2 mg/kg, i.p.) given in subtherapeutic doses. The studies carried out using the forced swim and tail suspension tests in mice showed that DMPX at a dose of 6 and 12 mg/kg exerts antidepressant-like effect and does not affect the locomotor activity. Co-administration of DMPX at a dose of 3 mg/kg with the studied antidepressant drugs caused the reduction of immobility time in both behavioral tests. The observed effect was not associated with an increase in the locomotor activity. To evaluate whether the observed effects were due to a pharmacokinetic/pharmacodynamic interaction, the levels of the antidepressants in blood and brain were measured using high-performance liquid chromatography. It can be assumed that the interaction between DMPX and imipramine was exclusively pharmacodynamic in nature, whereas an increased antidepressant activity of escitalopram and reboxetine was at least partly related to its pharmacokinetic interaction with DMPX.
Collapse
Affiliation(s)
- Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland.
| | - Aleksandra Szopa
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland.
| | - Karolina Bogatko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Collegium Medicum, Jagiellonian University, Medyczna 9, PL 30-688, Kraków, Poland
| | - Sylwia Wośko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Katarzyna Świąder
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, PL 20-090, Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, PL 20-090, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Anna Serefko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| |
Collapse
|
28
|
Szopa A, Poleszak E, Bogatko K, Wyska E, Wośko S, Doboszewska U, Świąder K, Wlaź A, Dudka J, Wróbel A, Wlaź P, Serefko A. DPCPX, a selective adenosine A1 receptor antagonist, enhances the antidepressant-like effects of imipramine, escitalopram, and reboxetine in mice behavioral tests. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1361-1371. [PMID: 30094458 PMCID: PMC6208968 DOI: 10.1007/s00210-018-1551-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022]
Abstract
The main goal of the present study was to evaluate the influence of the adenosine A1 receptor (A1R) antagonist — DPCPX — on depressive-like behavior in mice, as well as the effect of DPCPX on the activity of imipramine, escitalopram, and reboxetine, each at non-effective doses. The influence of DPCPX on behavior and its influence on the activity of selected antidepressants was evaluated in the forced swim test (FST) and the tail suspension test (TST) in mice. Locomotor activity was measured to verify and exclude false-positive data obtained in the FST and TST. Moreover, serum and brain concentrations of tested antidepressants were determined using HPLC. DPCPX, at doses of 2 and 4 mg/kg, exhibited antidepressant activity in the FST and TST, which was not related to changes in the spontaneous locomotor activity. Co-administration of DPCPX with imipramine, escitalopram, or reboxetine, each at non-active doses, significantly reduced the immobilization period in the FST and TST in mice, which was not due to the increase in locomotor activity. Both antagonists of 5-HT receptors (WAY 100635 and ritanserin) completely antagonized the effect elicited by DPCPX in the behavioral tests. Results of assessment of the nature of the interaction between DPCPX and test drugs show that in the case of DPCPX and imipramine or reboxetine, there were pharmacodynamic interactions, whereas the DPCPX-escitalopram interaction is at least partially pharmacokinetic in nature. Presented outcomes indicate that an inhibition of A1Rs and an increase of monoaminergic transduction in the CNS may offer a novel strategy for the development of antidepressant drugs.
Collapse
Affiliation(s)
- Aleksandra Szopa
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland.
| | - Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland.
| | - Karolina Bogatko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Collegium Medicum, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Sylwia Wośko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Katarzyna Świąder
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Jarosław Dudka
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, 20-093, Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Anna Serefko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| |
Collapse
|
29
|
Assis MS, Soares AC, Sousa DN, Eudes-Filho J, Faro LRF, Carneiro FP, Silva MV, Motoyama AB, Souza GMR, Marchiori S, Lima NT, Boëchat-Barros R, Ferreira VM. Effects of Caffeine on Behavioural and Cognitive Deficits in Rats. Basic Clin Pharmacol Toxicol 2018; 123:435-442. [DOI: 10.1111/bcpt.13036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/23/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Melissa S. Assis
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - Aluízio C. Soares
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - Dircilei N. Sousa
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - João Eudes-Filho
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - Lilian Rosana F. Faro
- Department of Functional Biology and Health Sciences; Faculty of Biology; University of Vigo; Vigo Spain
| | - Fabiana P. Carneiro
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - Mônica V. Silva
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - Andrea B. Motoyama
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - Greice Maria R. Souza
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - Stéphanie Marchiori
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - Nadyelle T. Lima
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - Raphael Boëchat-Barros
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| | - Vania M. Ferreira
- Faculty of Medicine; Postgraduate Program in Medical Sciences; University of Brasília; Brasília Brazil
| |
Collapse
|
30
|
Herbet M, Szopa A, Serefko A, Wośko S, Gawrońska-Grzywacz M, Izdebska M, Piątkowska-Chmiel I, Betiuk P, Poleszak E, Dudka J. 8-Cyclopentyl-1,3-dimethylxanthine enhances effectiveness of antidepressant in behavioral tests and modulates redox balance in the cerebral cortex of mice. Saudi Pharm J 2018; 26:694-702. [PMID: 29991913 PMCID: PMC6035324 DOI: 10.1016/j.jsps.2018.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/05/2018] [Indexed: 02/05/2023] Open
Abstract
The objective of our study was to investigate whether 8-cyclopentyl-1,3-dimethylxanthine (CPT), associated with the adenosine system, enhances the antidepressant efficacy of antidepressant. All experiments were carried out on Albino Swiss mice. Following drugs: CPT (3 mg/kg) and imipramine (15 mg/kg) were administered intraperitoneally (ip), 60 min before tests. Two behavioral tests on antidepressant capability - a forced swim test (FST) and a tail suspension test (TST) - were performed. To examine whether co-administration of CPT with antidepressants affects the redox balance, the lipid peroxidation products (LPO), glutathione (GSH), glutathione disulfide (GSSG), nicotinamide adenine dinucleotide phosphate (NADP+), and reduced nicotinamide adenine dinucleotide phosphate (NADPH) were determined in the cerebral cortex. The results have demonstrated a CPT-induced enhancement of the antidepressant-like effect of imipramine both in the FST and TST, which may indicate that the adenosine system may be involved in the increasing the effect of antidepressant. Co-administration of CPT with imipramine, such as imipramine alone, decreased the NADP+ and LPO concentrations and increased the GSH/GSSG ratio in comparison to the control, which may confirm beneficial - but comparable to imipramine - effect on redox balance under environmental stress conditions. An increase in the concentration of GSSG in the cortex of animals treated with imipramine in ineffective dose compared to control and no such changes after combined administration of both drugs may suggest a favorable oxidation-reduction potential resulting from their synergistic antidepressant effect.
Collapse
Affiliation(s)
- Mariola Herbet
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, PL 20-093 Lublin, Poland
| | - Aleksandra Szopa
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Anna Serefko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Sylwia Wośko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, PL 20-093 Lublin, Poland
| | - Magdalena Izdebska
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, PL 20-093 Lublin, Poland
| | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, PL 20-093 Lublin, Poland
| | - Paulina Betiuk
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, PL 20-093 Lublin, Poland
| | - Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093 Lublin, Poland
| | - Jarosław Dudka
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, PL 20-093 Lublin, Poland
| |
Collapse
|
31
|
Bogatko K, Poleszak E, Szopa A, Wyska E, Wlaź P, Świąder K, Wlaź A, Doboszewska U, Rojek K, Serefko A. The influence of selective A1 and A2A receptor antagonists on the antidepressant-like activity of moclobemide, venlafaxine and bupropion in mice. J Pharm Pharmacol 2018; 70:1200-1208. [DOI: 10.1111/jphp.12954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/28/2018] [Indexed: 11/28/2022]
Abstract
Abstract
Objective
The main goal of our study was to investigate whether a selective antagonism of the adenosine A1 or A2A receptors is able to enhance the antidepressant activity of commonly prescribed drugs.
Materials and methods
All experiments were carried out on male Albino Swiss mice. The forced swim test and the tail suspension test were used to evaluate the antidepressant-like potential. Drug concentrations in animals’ serum and brains were measured by high-performance liquid chromatography.
Key findings
The antidepressant potential of moclobemide (1.5 mg/kg), venlafaxine (1 mg/kg) and bupropion (10 mg/kg) was enhanced by a co-administration with 3,7-dimethyl-1-propargylxanthine (DMPX; an antagonist of adenosine A2A receptors; 3 mg/kg) or 8-cyclopentyl-1,3-dipropylxanthine (an antagonist of adenosine A1 receptors; 1 mg/kg). However, significant interactions between the tested substances were detected only in the experiments with DMPX. The nature of the observed interplays is rather pharmacodynamic than pharmacokinetic, because neither serum nor brain concentrations of the used drugs were significantly increased.
Conclusions
Blockage of the adenosine receptors (particularly the A2A subtypes) could be considered in future as a novel, promising part of the combined antidepressant therapy. However, further studies on this subject are needed.
Collapse
Affiliation(s)
- Karolina Bogatko
- Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Szopa
- Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Collegium Medicum, Jagiellonian University, Kraków, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Katarzyna Świąder
- Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Karol Rojek
- Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Anna Serefko
- Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
32
|
López-Cruz L, Salamone JD, Correa M. Caffeine and Selective Adenosine Receptor Antagonists as New Therapeutic Tools for the Motivational Symptoms of Depression. Front Pharmacol 2018; 9:526. [PMID: 29910727 PMCID: PMC5992708 DOI: 10.3389/fphar.2018.00526] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/01/2018] [Indexed: 01/06/2023] Open
Abstract
Major depressive disorder is one of the most common and debilitating psychiatric disorders. Some of the motivational symptoms of depression, such anergia (lack of self-reported energy) and fatigue are relatively resistant to traditional treatments such as serotonin uptake inhibitors. Thus, new pharmacological targets are being investigated. Epidemiological data suggest that caffeine consumption can have an impact on aspects of depressive symptomatology. Caffeine is a non-selective adenosine antagonist for A1/A2A receptors, and has been demonstrated to modulate behavior in classical animal models of depression. Moreover, selective adenosine receptor antagonists are being assessed for their antidepressant effects in animal studies. This review focuses on how caffeine and selective adenosine antagonists can improve different aspects of depression in humans, as well as in animal models. The effects on motivational symptoms of depression such as anergia, fatigue, and psychomotor slowing receive particular attention. Thus, the ability of adenosine receptor antagonists to reverse the anergia induced by dopamine antagonism or depletion is of special interest. In conclusion, although further studies are needed, it appears that caffeine and selective adenosine receptor antagonists could be therapeutic agents for the treatment of motivational dysfunction in depression.
Collapse
Affiliation(s)
- Laura López-Cruz
- Àrea de Psicobiologia, Universitat Jaume I, Castellón de la Plana, Spain
| | - John D. Salamone
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT, United States
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Castellón de la Plana, Spain
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
33
|
Exploring the Potential of Direct-To-Consumer Genomic Test Data for Predicting Adverse Drug Events. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE PROCEEDINGS. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE 2018; 2017:247-256. [PMID: 29888082 PMCID: PMC5961769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent technological advancements in genetic testing and the growing accessibility of public genomic data provide researchers with a unique avenue to approach personalized medicine. This feasibility study examined the potential of direct-to-consumer (DTC) genomic tests (focusing on 23andMe) in research and clinical applications. In particular, we combined population genetics information from the Personal Genome Project with adverse event reports from AEOLUS and pharmacogenetic information from PharmGKB. Primarily, associations between drugs based on co-occurring genetic variations and associations between variants and adverse events were used to assess the potential for leveraging single nucleotide polymorphism information from 23andMe. The results of this study suggest potential clinical uses of DTC tests in light of potential drug interactions. Furthermore, the results suggest great potential for analyzing associations at a population level to facilitate knowledge discovery in the realm of predicting adverse drug events.
Collapse
|
34
|
Sanlier N, Atik A, Atik I. Consumption of green coffee and the risk of chronic diseases. Crit Rev Food Sci Nutr 2018; 59:2573-2585. [DOI: 10.1080/10408398.2018.1461061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Nevin Sanlier
- Lokman Hekim University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Ankara, Turkey
| | - Azize Atik
- Afyon Kocatepe University, Sultandağı Vocational School, Food Technology Program, Afyonkarahisar, Turkey
| | - Ilker Atik
- Afyon Kocatepe University, Afyon Vocational School, Food Quality Control and Analysis Program, Afyonkarahisar, Turkey
| |
Collapse
|
35
|
Correa M, SanMiguel N, López-Cruz L, Carratalá-Ros C, Olivares-García R, Salamone JD. Caffeine Modulates Food Intake Depending on the Context That Gives Access to Food: Comparison With Dopamine Depletion. Front Psychiatry 2018; 9:411. [PMID: 30237771 PMCID: PMC6135917 DOI: 10.3389/fpsyt.2018.00411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022] Open
Abstract
Caffeine is a methylxanthine consumed in different contexts to potentiate alertness and reduce fatigue. However, caffeine can induce anxiety at high doses. Caffeine is also a minor psychostimulant that seems to act as an appetite suppressant, but there are also reports indicating that it could stimulate appetite. Dopamine also is involved in food motivation and in behavioral activation. In the present series of experiments, we evaluated the effects of acute administration of caffeine on food consumption under different access conditions. CD1 male adult mice had access to highly palatable food (50% sucrose) in a restricted but habitual context, under continuous or intermittent access as well as under anxiogenic, or effortful conditions. Caffeine (2.5-20.0 mg/kg) increased intake at the highest dose under familiar continuous and intermittent access. However, this high dose reduced food intake in the dark-light paradigm. In contrast, a dopamine-depleting agent, tetrabenazine (TBZ; 1.0-8.0 mg/kg) did not affect food intake in any of those experimental conditions. In the T-maze-barrier task that evaluates seeking and taking of food under effortful conditions, caffeine (10.0 mg/kg) decreased latency to reach the food, but did not affect selection of the high-food density arm that required more effort, or the total amount of food consumed. In contrast, TBZ (4.0 mg/kg) reduced selection of the high food density arm with the barrier, thus affecting amount of food consumed. Interestingly, a small dose of caffeine (5.0 mg/kg) was able to reverse the anergia-inducing effects produced by TBZ in the T-maze. These results suggest that caffeine can potentiate or suppress food consumption depending on the context. Moreover, caffeine did not change appetite, and did not impair orientation toward food under effortful conditions, but it rather helped to achieve the goal by improving speed and by reversing performance to normal levels when fatigue was induced by dopamine depletion.
Collapse
Affiliation(s)
- Mercè Correa
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, Castelló, Spain.,Behavioral Neuroscience Division, University of Connecticut, Storrs, CT, United States
| | - Noemí SanMiguel
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, Castelló, Spain
| | - Laura López-Cruz
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, Castelló, Spain
| | - Carla Carratalá-Ros
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, Castelló, Spain
| | | | - John D Salamone
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
36
|
Szopa A, Poleszak E, Doboszewska U, Herbet M, Świąder K, Wyska E, Serefko A, Wlaź A, Korga A, Ostrowska M, Juś P, Jedynak S, Dudka J, Wlaź P. Withdrawal of caffeine after its chronic administration modifies the antidepressant-like activity of atypical antidepressants in mice. Changes in cortical expression of Comt, Slc6a15 and Adora1 genes. Psychopharmacology (Berl) 2018; 235:2423-2434. [PMID: 29882086 PMCID: PMC6061707 DOI: 10.1007/s00213-018-4940-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/01/2018] [Indexed: 11/30/2022]
Abstract
RATIONALE Depressed patients often present increased consumption of caffeine. OBJECTIVES We aimed to investigate the effects of chronic treatment with caffeine (5 mg/kg, twice daily for 14 days) on the activity of single, ineffective doses of agomelatine (20 mg/kg) or mianserin (10 mg/kg) given on day 15 alone or simultaneously with caffeine. METHODS We used the forced swim test (FST), tail suspension test (TST), and locomotor activity test in mice and quantitative real-time PCR analysis of the selected genes in the cerebral cortex (Cx). RESULTS There were no changes in the immobility time between mice that received saline and caffeine for 14 days. Administration of agomelatine or mianserin on day 15 did not produce an antidepressant-like effect, but such effect was observed after administration of agomelatine or mianserin simultaneously with caffeine on day 15, in both mice that received saline and caffeine for 14 days. In mice treated with caffeine for 14 days, joint administration of agomelatine or mianserin and caffeine on day 15 decreased solute carrier family 6, member 15 (Slc6a15), messenger RNA (mRNA) level in the Cx, compared to the group which received only the respective antidepressant on this day. Moreover, in mice treated with caffeine for 14 days, joint administration of mianserin and caffeine on day 15 decreased adenosine A1 receptor (Adora1) and catechol-O-methyltransferase (Comt) mRNA level in the Cx, compared to the group which received mianserin without caffeine on this day. CONCLUSIONS Withdrawal of caffeine after its chronic intake can modify the activity of antidepressants. Adora1, Slc6a15, and Comt may be involved in the antidepressant-like effect observed after joint administration of caffeine and mianserin or agomelatine, following chronic treatment with caffeine.
Collapse
Affiliation(s)
- Aleksandra Szopa
- Chair and Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland.
| | - Ewa Poleszak
- Chair and Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Mariola Herbet
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, 20-093 Lublin, Poland
| | - Katarzyna Świąder
- Chair and Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Serefko
- Chair and Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Agnieszka Korga
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, 20-093 Lublin, Poland
| | - Marta Ostrowska
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, 20-093 Lublin, Poland
| | - Piotr Juś
- Chair and Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Szymon Jedynak
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, 20-093 Lublin, Poland
| | - Jarosław Dudka
- Chair and Department of Toxicology, Medical University of Lublin, Chodźki 8, 20-093 Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
37
|
Chronic treatment with caffeine and its withdrawal modify the antidepressant-like activity of selective serotonin reuptake inhibitors in the forced swim and tail suspension tests in mice. Effects on Comt , Slc6a15 and Adora1 gene expression. Toxicol Appl Pharmacol 2017; 337:95-103. [DOI: 10.1016/j.taap.2017.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 11/24/2022]
|
38
|
Timosaponin B-III exhibits antidepressive activity in a mouse model of postpartum depression by the regulation of inflammatory cytokines, BNDF signaling and synaptic plasticity. Exp Ther Med 2017; 14:3856-3861. [PMID: 29042992 DOI: 10.3892/etm.2017.4930] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/11/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of this study was to investigate the antidepressive effects of timosaponin B-III (TB-III) and the underlying mechanism. A postpartum depression (PPD) mouse model was established by the administration of dexamethasone sodium phosphate during pregnancy. Mice with PPD were assigned to the following groups: Model, fluoxetine and high, medium and low doses of TB-III. Post-parturient mice without PPD served as a normal control group. To examine the effect of TB-III, mice were treated with TB-III, then forced swimming tests (FSTs) and tail suspension tests (TSTs) were performed to evaluate depression. Serum and hippocampal cytokines, namely tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-10, were quantified using ELISAs and protein levels of hippocampal brain-derived neurotrophic factor (BDNF), glucagon synthase kinase (GSK)-3β, glutamate receptor subunit 1 (GluR1), postsynaptic density protein 95 (PSD95) and synapsin I were quantified using western blot analysis. Compared with those in the control group, immobility time in the FST and TST, serum and hippocampal TNF-α, IL-1β and IL-6 levels and hippocampal IL-10 levels were increased significantly in the model group (P<0.01). Serum IL-10 levels and hippocampal levels of BDNF, GSK-3β, GluR1, PSD95 and synapsin I decreased significantly in the model group compared with the control group (P<0.01). Fluoxetine or TB-III (10, 20 or 40 mg/kg) treatment significantly decreased immobility times in the FST and TST (P<0.01) and significantly reversed the aforementioned alterations in cytokine and protein levels (P<0.01). Thus, TB-III exhibited a protective effect against depression in PPD and such effects may have been mediated via the regulation of inflammatory cytokines, the BNDF signaling pathway and synaptic plasticity-related proteins.
Collapse
|
39
|
Abstract
Polypharmacy is common in psychiatry. Usage of cognitive enhancers is increasing in the psychiatric population. Many clinicians are not familiar with these new psychoactive compounds. This paper reviews the potential drug-drug interactions when these cognitive enhancers are used together with psychotropic drugs and their confounding effects on diagnosis and clinical management.
Collapse
|
40
|
Alsufyani HA, Docherty JR. Gender differences in the effects of cathinone and the interaction with caffeine on temperature and locomotor activity in the rat. Eur J Pharmacol 2017; 809:203-208. [PMID: 28529142 DOI: 10.1016/j.ejphar.2017.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/01/2017] [Accepted: 05/12/2017] [Indexed: 01/25/2023]
Abstract
We have investigated gender differences in the effects of cathinone and the interaction with caffeine on temperature and movement activity in Wistar rats. Telemetry probes were implanted in rats under isoflurane anaesthesia, and 7 days later, temperature and activity were recorded in conscious unrestrained animals. Caffeine (10mg/lkg) or vehicle, and 30min later, cathinone (5mg/kg) or vehicle, were injected subcutaneously. Cathinone produced significant and marked increases in activity, and the response to cathinone was significantly greater in female animals. The combination of caffeine and cathinone causes a short lived potentiation followed by a prolonged inhibition of the activity response to cathinone. Cathinone alone had minor effects on temperature. However, the combination of caffeine and cathinone produced a significant acute rise in temperature only in male rats in the 90min after cathinone injection. Hence, cathinone caused greater increases in activity in female than in male rats. Secondly, caffeine produced an initial potentiation followed by a prolonged inhibition of the activity response to cathinone. Thirdly, cathinone in combination with caffeine significantly raised temperature acutely in male but not female rats. These differences highlight the need to carry out gender studies of the actions of stimulants.
Collapse
Affiliation(s)
- Hadeel A Alsufyani
- Department of Physiology, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; Department of Physiology, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
41
|
Liu QS, Deng R, Fan Y, Li K, Meng F, Li X, Liu R. Low dose of caffeine enhances the efficacy of antidepressants in major depressive disorder and the underlying neural substrates. Mol Nutr Food Res 2017; 61. [PMID: 28054436 DOI: 10.1002/mnfr.201600910] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/15/2016] [Accepted: 12/30/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Qing-Shan Liu
- Center for Translational Neuroscience & China Minority Medicine and Nutrition; Minzu University of China; Beijing China
| | - Ran Deng
- Center for Translational Neuroscience & China Minority Medicine and Nutrition; Minzu University of China; Beijing China
| | - Yuyan Fan
- Beijing Neurosurgical Institute & Pain Department; Beijing Tiantan Hospital; Capital Medical University; Beijing China
| | - Keqin Li
- Center for Translational Neuroscience & China Minority Medicine and Nutrition; Minzu University of China; Beijing China
| | - Fangang Meng
- Beijing Neurosurgical Institute & Pain Department; Beijing Tiantan Hospital; Capital Medical University; Beijing China
| | - Xueli Li
- Experimental Center for Medicine; China Academy of Traditional Chinese Medicine; Beijing China
| | - Rui Liu
- State Key Lab of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing China
| |
Collapse
|
42
|
Stasiuk W, Szopa A, Serefko A, Wyska E, Świąder K, Dudka J, Wlaź P, Poleszak E. Influence of the selective antagonist of the NR2B subunit of the NMDA receptor, traxoprodil, on the antidepressant-like activity of desipramine, paroxetine, milnacipran, and bupropion in mice. J Neural Transm (Vienna) 2016; 124:387-396. [PMID: 27900470 PMCID: PMC5310560 DOI: 10.1007/s00702-016-1657-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Pre-clinical and clinical studies indicated that a blockade of the NMDA receptor complex creates new opportunities for the treatment of affective disorders, including depression. The aim of the present study was to assess the influence of traxoprodil (10 mg/kg) on the activity of desipramine (10 mg/kg), paroxetine (0.5 mg/kg), milnacipran (1.25 mg/kg), and bupropion (10 mg/kg), each at sub-therapeutic doses. Moreover, brain levels of traxoprodil and tested agents were determined using HPLC. The obtained results were used to ascertain the nature of occurring interaction between traxoprodil and studied antidepressants. The experiment was carried out on naïve adult male Albino Swiss mice. Traxoprodil and other tested drugs were administered intraperitoneally. The influence of traxoprodil on the activity of selected antidepressants was evaluated in forced swim test (FST). Locomotor activity was estimated to exclude false positive/negative data. To assess the influence of traxoprodil on the concentration of used antidepressants, their levels were determined in murine brains using HPLC. Results indicated that traxoprodil potentiated activity of all antidepressants examined in FST and the observed effects were not due to the increase in locomotor activity. Only in the case of co-administration of traxoprodil and bupropion, increased bupropion concentrations in brain tissue were observed. All tested agents increased the traxoprodil levels in the brain. Administration of a sub-active dose of traxoprodil with antidepressants from different chemical groups, which act via enhancing monoaminergic transduction, caused the antidepressant-like effect in FST in mice. The interactions of traxoprodil with desipramine, paroxetine, milnacipran, and bupropion occur, at least partially, in the pharmacokinetic phase.
Collapse
Affiliation(s)
- Weronika Stasiuk
- Department of Human Physiology, Medical University of Lublin, Radziwiłłowska 11, PL-20080, Lublin, Poland
| | - Aleksandra Szopa
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL-20093, Lublin, Poland.
| | - Anna Serefko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL-20093, Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Collegium Medicum, Jagiellonian University, Medyczna 9, PL-30688, Kraków, Poland
| | - Katarzyna Świąder
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL-20093, Lublin, Poland
| | - Jarosław Dudka
- Department of Toxicology, Medical University of Lublin, Chodźki 8, PL-20093, Lublin, Poland
- Independent Medical Biology Unit, Medical University of Lublin, Jaczewskiego 8, PL-20950, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL-20033, Lublin, Poland
| | - Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL-20093, Lublin, Poland
| |
Collapse
|
43
|
Hall S, Arora D, Anoopkumar-Dukie S, Grant GD. Effect of Coffee in Lipopolysaccharide-Induced Indoleamine 2,3-Dioxygenase Activation and Depressive-like Behavior in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8745-8754. [PMID: 27690418 DOI: 10.1021/acs.jafc.6b03568] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Research has identified a potential inverse correlation between coffee consumption and the risk of depression. The aim of this study was to investigate the effects of caffeinated coffee on lipopolysaccharide-induced depressive-like behaviors and inflammatory biomarkers in an in vivo model of depression in a C57BL/6J mouse model. The behavioral studies showed that caffeinated coffee decreased immobility time in both the tail suspension test (caffeinated coffee 56.60 ± 9.17; p < 0.0001) and the forced swimming test (caffeinated coffee 28.80 ± 5.93; p < 0.0001), suggesting antidepressant-like activity. The effects of caffeinated coffee on the inflammatory biomarkers associated with depression supported the results observed in the behavioral studies. Statistically significant decreases in indoleamine 2,3-dioxygenase activity (p < 0.001) and the neopterin/biopterin ratio (p < 0.001) were observed in animals pretreated with caffeinated coffee 24 h post-lipopolysaccharide exposure in comparison to the lipopolysaccharide control group. In conclusion, this study has provided evidence to suggest that caffeinated coffee has antidepressant-like activities; however, further studies are required to fully investigate these effects.
Collapse
Affiliation(s)
- Susan Hall
- Menzies Health Institute Queensland, Griffith University , Queensland 4222, Australia
- School of Pharmacy, Griffith University , Queensland 4222, Australia
| | - Devinder Arora
- Menzies Health Institute Queensland, Griffith University , Queensland 4222, Australia
- School of Pharmacy, Griffith University , Queensland 4222, Australia
| | - Shailendra Anoopkumar-Dukie
- Menzies Health Institute Queensland, Griffith University , Queensland 4222, Australia
- School of Pharmacy, Griffith University , Queensland 4222, Australia
| | - Gary D Grant
- Menzies Health Institute Queensland, Griffith University , Queensland 4222, Australia
- School of Pharmacy, Griffith University , Queensland 4222, Australia
| |
Collapse
|
44
|
Selected Literature Watch. JOURNAL OF CAFFEINE RESEARCH 2016. [DOI: 10.1089/jcr.2016.29000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Enginar N, Yamantürk-Çelik P, Nurten A, Güney DB. Learning and memory in the forced swimming test: effects of antidepressants having varying degrees of anticholinergic activity. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:739-45. [DOI: 10.1007/s00210-016-1236-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/22/2016] [Indexed: 12/13/2022]
|