1
|
Zhu L, Liu Y, Wang K, Wang N. Regulated cell death in acute myocardial infarction: Molecular mechanisms and therapeutic implications. Ageing Res Rev 2025; 104:102629. [PMID: 39644925 DOI: 10.1016/j.arr.2024.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Acute myocardial infarction (AMI), primarily caused by coronary atherosclerosis, initiates a series of events that culminate in the obstruction of coronary arteries, resulting in severe myocardial ischemia and hypoxia. The subsequent myocardial ischemia/reperfusion (I/R) injury further aggravates cardiac damage, leading to a decline in heart function and the risk of life-threatening complications. The complex interplay of multiple regulated cell death (RCD) pathways plays a pivotal role in the pathogenesis of AMI. Each RCD pathway is orchestrated by a symphony of molecular regulatory mechanisms, highlighting the dynamic changes and critical roles of key effector molecules. Strategic disruption or inhibition of these molecular targets offers a tantalizing prospect for mitigating or even averting the onset of RCD, thereby limiting the extensive loss of cardiomyocytes and the progression of detrimental myocardial fibrosis. This review systematically summarizes the mechanisms underlying various forms of RCD, provides an in-depth exploration of the pathogenesis of AMI through the lens of RCD, and highlights a range of promising therapeutic targets that hold the potential to revolutionize the management of AMI.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yiyang Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Kangkai Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Cao B, Wu X, Zhou C, Chen H, Xue D, Pan Z. Salvianolic acid A promotes bone-fracture healing via balancing osteoblast and osteoclast differentiation. FASEB J 2025; 39:e70364. [PMID: 39878631 DOI: 10.1096/fj.202402515r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Nonunion is a significant complication in fracture management for surgeons. Salvianolic acid A (SAA), derived from the traditional Chinese plant Salviae miltiorrhizae Bunge (Danshen), exhibits notable anti-inflammatory and antioxidant properties. Although studies have demonstrated its ability to promote osteogenic differentiation, the exact mechanism of action remains unclear. This study investigated the effects of various SAA concentrations on the osteogenic differentiation of mouse-derived bone marrow mesenchymal stem cells (mBMSCs) and the osteoclastic differentiation of bone marrow-derived macrophages. Our findings indicate that SAA promotes the osteogenic differentiation of mBMSCs in a concentration-dependent manner, primarily by inhibiting the Notch1 signaling pathway. Notably, the administration of two Notch1 agonists (Jagged-1 and VPA) inhibited the effects of SAA on osteogenic differentiation. Additionally, SAA facilitated the autophagic degradation of NICD1, further enhancing osteogenic differentiation. Furthermore, SAA also dose-dependently inhibited the osteoclastic differentiation of bone marrow-derived macrophages, which is linked to its suppression of NF-κB signaling pathways. In a fracture model, SAA demonstrated a capacity to promote healing. In conclusion, SAA enhances bone fracture healing by balancing osteoblast and osteoclast differentiation.
Collapse
Affiliation(s)
- Binhao Cao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xiaoyong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, People's Republic of China
| | - Chengwei Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, People's Republic of China
| | - Hongyu Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, People's Republic of China
| | - Deting Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, People's Republic of China
| | - Zhijun Pan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
3
|
Zhang S, Zhan J, Li M, Wang J, Chen H, Wang Y, Fan Y, Zhang B, Wang X, Zhang X, Wu C. Therapeutic Potential of Traditional Chinese Medicine Against Osteoarthritis: Targeting the Wnt Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2021-2052. [PMID: 39562354 DOI: 10.1142/s0192415x24500782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative articular disease that leads to physical disability and reduced quality of life. The key pathological events in OA are cartilage degradation and synovial inflammation. Conventional therapies often lead to adverse effects that some patients are unwilling to endure. Traditional Chinese Medicines (TCMs) have long been known for their efficacy in treating OA with minimal side effects. The wingless-type (Wnt) signaling pathway is believed to play a role in OA progression, but there is still a lack of comprehensive understanding on how TCM may treat OA via the Wnt signaling pathway. This study aims to fill this gap by reviewing relevant research on the association between the Wnt signaling pathway and cartilage degradation and synovial inflammation in OA. Meanwhile, we also summarized and categorized TCMs and their active components, such as alkaloids, polysaccharides, flavonoids, sesquiterpene lactones, etc., which have shown varying efficacy in treating OA through modulation of the Wnt/[Formula: see text]-catenin signaling pathway. This work underscores the pivotal role of the Wnt signaling pathway in OA pathogenesis and progression, suggesting that targeting this pathway holds promise as a prospective therapeutic strategy for OA management in the future. TCMs and their active components have the potential to alleviate OA by modulating the Wnt signaling cascade. Harnessing TCMs and their active components to regulate the Wnt signaling pathway presents an encouraging avenue for delivering substantial therapeutic benefits to individuals with OA.
Collapse
Affiliation(s)
- Shaozhuo Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Jiaguo Zhan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Mai Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Junyi Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Huiyou Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Yuxing Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Yuchen Fan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Bingqi Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Xi Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Xizhe Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Chongming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| |
Collapse
|
4
|
Sun X, Gu Y, Liu X, Korla PK, Hao J. Neferine Pretreatment Attenuates Isoproterenol-Induced Cardiac Injury Through Modulation of Oxidative Stress, Inflammation, and Apoptosis in Rats. Appl Biochem Biotechnol 2024; 196:7404-7428. [PMID: 38526658 DOI: 10.1007/s12010-024-04917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Heart attacks, also known as myocardial infarctions (MIs), are one of the main reasons people die from cardiovascular diseases (CVDs) worldwide. Neferine, an alkaloid derived from Nelumbo nucifera seeds, has garnered interest due to its purported medicinal effects. In the current research, we induced MI in rats using the β-adrenergic agonist isoproterenol to investigate whether neferine can improve cardiac dysfunction. The rats were separated into four groups: control, isoproterenol (ISO), and two treatment groups received neferine at doses of 10 or 20 mg/kg once daily for 28 days. On days 27 and 28, the groups undergoing treatment were administered with an ISO injection. Results showed that pretreatment with neferine strongly protected against changes in lipid profiles and cardiac functional markers in ISO-administered rats. Neferine attenuated histopathologic changes, collagen deposition, and myocardial fibrosis in rats administered ISO. Neferine pretreatment significantly inhibited the oxidative stress, inflammatory, and apoptotic markers in the heart of ISO-injected rats. This was achieved through Nrf2/Keap1/ARE signaling stimulation, TLR4/NF-κB/MAPK-mediated signaling inhibition, and activation of the intrinsic apoptotic pathway. Using CB-Dock-2, researchers determined that neferine has a high binding affinity with protein receptors that are pivotal in several biological processes. In conclusion, the study provides strong evidence that pretreatment with neferine protects rats from ISO-induced heart damage.
Collapse
Affiliation(s)
- Xiaoqian Sun
- Cardiovascular Medicine Department, Xi'an Gaoxin Hospital, Xi'an, 710000, China
| | - Yongwen Gu
- Cardiovascular Medicine Department, Suzhou Yongding Hospital, Suzhou, 215200, China
| | - Xinghua Liu
- Cardiovascular Medicine Department, Putuo Center Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Praveen Kumar Korla
- Department of Clinical Science, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - Junjun Hao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
5
|
Din MAU, Wan A, Chu Y, Zhou J, Yan Y, Xu Z. Therapeutic role of extracellular vesicles from human umbilical cord mesenchymal stem cells and their wide therapeutic implications in inflammatory bowel disease and other inflammatory disorder. Front Med (Lausanne) 2024; 11:1406547. [PMID: 39139783 PMCID: PMC11319305 DOI: 10.3389/fmed.2024.1406547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
The chronic immune-mediated inflammatory condition known as inflammatory bowel disease (IBD) significantly affects the gastrointestinal system. While the precise etiology of IBD remains elusive, extensive research suggests that a range of pathophysiological pathways and immunopathological mechanisms may significantly contribute as potential factors. Mesenchymal stem cells (MSCs) have shown significant potential in the development of novel therapeutic approaches for various medical conditions. However, some MSCs have been found to exhibit tumorigenic characteristics, which limit their potential for medical treatments. The extracellular vesicles (EVs), paracrine factors play a crucial role in the therapeutic benefits conferred by MSCs. The EVs consist of proteins, microRNAs, and lipids, and are instrumental in facilitating intercellular communication. Due to the ease of maintenance, and decreased immunogenicity, tumorigenicity the EVs have become a new and exciting option for whole cell treatment. This review comprehensively assesses recent preclinical research on human umbilical cord mesenchymal stem cell (hUC-MSC)-derived EVs as a potential IBD therapy. It comprehensively addresses key aspects of various conditions, including diabetes, cancer, dermal injuries, neurological disorders, cardiovascular issues, liver and kidney diseases, and bone-related afflictions.
Collapse
Affiliation(s)
- Muhammad Azhar Ud Din
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, China
| | | | - Ying Chu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Zhiliang Xu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| |
Collapse
|
6
|
Zhang CJ, Qu XY, Yu ZY, Yang J, Zhu B, Zhong LY, Sun J, He JH, Zhu YX, Dong L, Xu WJ. Research of the dynamic regulatory mechanism of Compound Danshen Dripping Pills on myocardial infarction based on metabolic trajectory analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155626. [PMID: 38850631 DOI: 10.1016/j.phymed.2024.155626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/02/2023] [Accepted: 04/09/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Myocardial infarction (MI) is a serious cardiovascular disease, which presents different pathophysiological changes with the prolongation of the disease. Compound danshen dripping pills (CDDP) has obvious advantages in MI treatment and widely used in the clinic. However, the current studies were mostly focused on the endpoint of CDDP intervention, lacking the dynamic attention to the disease process. It is of great value to establish a dynamic research strategy focused on the changes in pharmacodynamic substances for guiding clinical medication more precisely. PURPOSE It is aimed to explore the dynamic regulating pattern of CDDP on MI based on metabolic trajectory analysis, and then clarify the variation characteristic biomarkers and pharmacodynamic substances in the intervention process. METHODS The MI model was successfully prepared by coronary artery left anterior descending branch ligation, and then CDDP intervention was given for 28 days. Endogenous metabolites and the components of CDDP in serum were measured by LC/MS technique simultaneously to identify dynamic the metabolic trajectory and screen the characteristic pharmacodynamic substances at different points. Finally, network pharmacology and molecular docking techniques were used to simulate the core pharmacodynamic substances and core target binding, then validated at the genetic and protein level by Q-PCR and western blotting technology. RESULTS CDDP performed typical dynamic regulation features on metabolite distribution, biological processes, and pharmacodynamic substances. During 1-7 days, it mainly regulated lipid metabolism and inflammation, the Phosphatidylcholine (PC(18:1(9Z/18:1(9Z)) and Sphingomyelin (SM(d18:1/23:1(9Z)), SM(d18:1/24:1(15Z)), SM(d18:0/16:1(9Z))) were the main characteristic biomarkers. Lipid metabolism was the mainly regulation pathway during 14-21 days, and the characteristic biomarkers were the Lysophosphatidylethanolamine (LysoPE(0:0/20:0), PE-NMe2(22:1(13Z)/15:0)) and Sphingomyelin (SM(d18:1/23:1(9Z))). At 28 days, in addition to inflammatory response and lipid metabolism, fatty acid metabolism also played the most important role. Correspondingly, Lysophosphatidylcholine (LysoPC(20:0/0:0)), Lysophosphatidylserine (LPS(18:0/0:0)) and Fatty acids (Linoelaidic acid) were the characteristic biomarkers. Based on the results of metabolite distribution and biological process, the characteristic pharmacodynamic substances during the intervention were further identified. The results showed that various kinds of Saponins and Tanshinones as the important active ingredients performed a long-range regulating effect on MI. And the other components, such as Tanshinol and Salvianolic acid B affected Phosphatidylcholine and Sphingomyelin through Relaxin Signaling pathway during the early intervention. Protocatechualdehyde and Rosmarinic acid affected Lysophosphatidylethanolamine and Sphingomyelin through EGFR Tyrosine kinase inhibitor resistance during the late intervention. Tanshinone IIB and Isocryptotanshinone via PPAR signaling pathway affected Lysophosphatidylcholine, Lysophosphatidylserine, and Fatty acids. CONCLUSION The dynamic regulating pattern was taken as the entry point and constructs the dynamic network based on metabolic trajectory analysis, establishes the dynamic correlation between the drug-derived components and the endogenous metabolites, and elucidates the characteristic biomarkers affecting the changes of the pharmacodynamic indexes, systematically and deeply elucidate the pharmacodynamic substance and mechanism of CDDP on MI. It also enriched the understanding of CDDP and provided a methodological reference for the dynamic analysis of complex systems of TCM.
Collapse
Affiliation(s)
- Cai-Juan Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing,100700, China
| | - Xiao-Yang Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China
| | - Zhi-Ying Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China
| | - Jie Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Bo Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China
| | - Lin-Ying Zhong
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China
| | - Jing Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiang-Hua He
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China
| | - Yu-Xin Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China
| | - Ling Dong
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China.
| | - Wen-Juan Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China.
| |
Collapse
|
7
|
Hu S, Wen J, Fan XD, Li P. Study on therapeutic mechanism of total salvianolic acids against myocardial ischemia-reperfusion injury based on network pharmacology, molecular docking, and experimental study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117902. [PMID: 38360382 DOI: 10.1016/j.jep.2024.117902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Salviae miltiorrhizae, also known as Danshen in Chinese, effectively activates the blood and resolves stasis. Total salvianolic acids (SA) is the main active ingredient of Danshen, and related preparations, such as salvianolate injection are commonly used clinically to treat myocardial ischemia-reperfusion injury (MIRI). However, the potential targets and key active ingredients of SA have not been sufficiently investigated. AIM OF THE STUDY This study aimed to investigate the mechanism of action of SA in treating MIRI. MATERIALS AND METHODS Network pharmacology and molecular docking techniques were used to predict SA targets against MIRI. The key acting pathway of SA were validated by performing experiments in a rat MIRI model. RESULTS Twenty potential ingredients and 54 targets of SA in treating MIRI were identified. Ingredient-target-pathway network analysis revealed that salvianolic acid B and rosmarinic acid had the highest degree value. Pathway enrichment analysis showed that SA may regulate MIRI through the IL-17 signaling pathway, and this result was confirmed in the rat MIRI experiment. CONCLUSION The results of this study indicate that SA may protect MIRI by regulating the IL-17 pathway.
Collapse
Affiliation(s)
- Shuang Hu
- Institute of Basic Medical Sciences, XiYuan Hospital of China Academy of Chinese Medical Sciences, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Graduate School of China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jing Wen
- Institute of Basic Medical Sciences, XiYuan Hospital of China Academy of Chinese Medical Sciences, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Graduate School of China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiao-di Fan
- Institute of Basic Medical Sciences, XiYuan Hospital of China Academy of Chinese Medical Sciences, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China.
| | - Peng Li
- Institute of Basic Medical Sciences, XiYuan Hospital of China Academy of Chinese Medical Sciences, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China; Key Laboratory of Pharmacology of Chinese Materia Medica of Beijing, No.1 XiYuan CaoChang, Haidian District, Beijing, 100091, China.
| |
Collapse
|
8
|
Li H, Zhang K, Chen W, Zhou Y, Li J, Zhao Y, Song Y. Metabolite identification of salvianolic acid A in rat using post collision-induced dissociation energy-resolved mass spectrometry. Chin Med 2024; 19:64. [PMID: 38671484 PMCID: PMC11046765 DOI: 10.1186/s13020-024-00931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND As one of the most famous natural products, salvianolic acid A (SAA) is undergoing clinical trials for the treatments of angina pectoris and coronary heart disorders. However, the in vivo metabolites of SAA have only been tentatively identified, leading to a barrier for precise therapeutical drug monitoring. METHODS Ultra-high performance liquid chromatography coupled with quadrupole time of flight tandem mass spectrometry (UPLC-Qtof-MS/MS) was firstly employed to acquire high-resolution MS1 and MS2 spectra for all metabolites. Through paying special attention onto the features of ester bond dissociation, metabolism sites were restricted at certain regions. To further determine the metabolism site, such as the monomethylated products (M23, M25, and M26), post collision-induced dissociation energy-resolved mass spectrometry (post-CID ER-MS) was proposed through programming progressive exciting energies to the second collision chamber of hybrid triple quadrupole-linear ion trap mass spectrometry (Qtrap-MS) device. RESULTS After SAA oral administration, 29 metabolites (M1-M29), including five, thirteen, and sixteen ones in rat plasma, urine, and feces, respectively, were detected in rats. The metabolism route was initially determined by applying well-defined mass fragmentation pathways to those HR-m/z values of precursor and fragment ions. Metabolism site was limited to SAF- or DSS-unit based on the fragmentation patterns of ester functional group. Through matching the dissociation trajectories of concerned 1st-generation fragment ions with expected decomposition product anions using post-CID ER-MS strategy, M23 and M25 were unequivocally assigned as 3'-methyl-SAA and 3''-methyl-SAA, and M26 was identified as 2-methyl-SAA or 3-methyl-SAA. Hydrolysis, methylation, glucuronidation, sulfation, and oxidation were the primary metabolism channels being responsible for the metabolites' generation. CONCLUSION Together, the metabolism regions and sites of SAA metabolites were sequentially identified based on the ester bond dissociation features and post-CID ER-MS strategy. Importantly, the present study provided a promising way to elevate the structural identification confidence of natural products and metabolites.
Collapse
Affiliation(s)
- Han Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ke Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wei Chen
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuxuan Zhou
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yunfang Zhao
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
9
|
Zou LF, Liu DF, Yang H, Zhou CH, Deng SB, Xu NS, He XM, Liu YQ, Shao M, Yu LZ, Liu JS. Salvianolic acids from Salvia miltiorrhiza Bunge and their anti-inflammatory effects through the activation of α7nAchR signaling. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116743. [PMID: 37331452 DOI: 10.1016/j.jep.2023.116743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiovascular disease (CVD) is a serious disease with a high incidence rate and mortality. Inflammation is closely related to the occurrence of CVDs. As an essential medicine of promoting blood circulation and removing blood stasis in China, Salvia miltiorrhiza Bunge (Danshen) is widely used to treat CVDs due to its anti-inflammatory and cardiovascular protective effects. Salvianolic acids are the most abundant component in the water extract of S. miltiorrhiza, which has a significant effect on the treatment of CVDs. However, due to the complex composition of salvianolic acids, the active molecules and their underlying mechanisms have not been fully explored. AIM OF THIS STUDY The present study aims to isolate and identify salvianolic acids from Danshen with anti-inflammatory activity and explore the potential mechanisms of isolates. METHODS The structures of isolated salvianolic acids were elucidated by UV, IR, NMR, MS and electronic circular dichroism (ECD) calculations. Then anti-inflammatory activities of isolates were screened out by the zebrafish inflammation models. The most active compound was further used to explore the anti-inflammatory mechanisms on LPS-stimulated RAW 264.7 cells. The key inflammatory cytokines IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay (ELISA). The protein expression levels of STAT3, p-STAT3 (Tyr705), NF-κB p65, IκBα, p-IκBα (Ser32) and α7nAchR were determined by Western blotting. The nuclear translocation of p-STAT3 (Tyr705) and NF-κB p65 was evaluated by immunofluorescence assays. Finally, the in vivo anti-inflammatory mechanisms were investigated by observation of neutrophil migration, H&E staining, survival analysis and quantitative PCR (Q-PCR) in LPS-microinjected zebrafish. RESULTS Two new and four known compounds were isolated from Danshen. Among them, isosalvianolic acid A-1 (C1) and ethyl lithospermate (C5) inhibited neutrophil migrations in three zebrafish inflammation models and C1 with the best activities decreased the secretion of IL-6 and TNF-α and inhibited the expression level of p-IκBα (Ser32) in LPS stimulated RAW 264.7 cells. In addition, C1 also reduced the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705). Moreover, C1 significantly upregulated the protein expression of α7nAchR, and the knockdown of α7nAchR counteracted the effects of C1 on the production of IL-6 and TNF-α and the expression levels of p-STAT3 (Tyr705), NF-κB p65 and p-IκBα (Ser32). In vivo experiments, C1 decreased the migration and infiltration of inflammatory cells, increased the survival ratio and inhibited the mRNA level of IL-6, TNF-α, STAT3, NF-κB and IκBα in LPS-microinjected zebrafish. CONCLUSION Two new and four known compounds were isolated from Danshen. Among them, C1 exerted anti-inflammatory activities by activating α7nAchR signaling and subsequently inhibiting STAT3 and NF-κB pathways. This study provided evidence for the clinical application of Danshen and contributed to the development of C1 as a novel in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Li-Fang Zou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Di-Fa Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, School of Pharmacy, Jinan University, Guangzhou, 510632, PR China; State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, 341000, PR China
| | - Hua Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Chun-Hong Zhou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Shuang-Bing Deng
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, 341000, PR China
| | - Ni-Shan Xu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Xue-Mei He
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Yao-Qi Liu
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, 341000, PR China
| | - Meng Shao
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Lin-Zhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
| | - Jun-Shan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
| |
Collapse
|
10
|
Gong D, Yuan T, Wang R, Sun S, Dawuti A, Wang S, Du G, Fang L. Network pharmacology approach and experimental verification of Dan-Shen Decoction in the treatment of ischemic heart disease. PHARMACEUTICAL BIOLOGY 2023; 61:69-79. [PMID: 36546685 PMCID: PMC9793910 DOI: 10.1080/13880209.2022.2152059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 11/20/2022] [Indexed: 05/28/2023]
Abstract
CONTEXT Dan-Shen Decoction, which is composed of Danshen, Tanxiang and Sharen, has a good therapeutic effect on ischemic heart disease (IHD). However, systematic research on the exact mechanism of action of Dan-Shen Decoction is still lacking. The anti-IHD effect of Dan-Shen Decoction was examined in this study using a systematic pharmacological method. OBJECTIVE This study validates the efficacy and explores the potential mechanisms of Dan-Shen Decoction in treating IHD by integrating network pharmacology analyses and experimental verification. MATERIALS AND METHODS The active components, critical targets and potential mechanisms of Dan-Shen Decoction against IHD were predicted by network pharmacology and molecule docking. H9c2 cells were pretreated with various 1 µg/mL Dan-Shen Decoction for 2 h before induction with 1000 µmol/L CoCl2 for 24 h. The cell viability was detected by CCK8, and protein expression was detected by western blots. RESULTS The network pharmacology approach successfully identified 69 active components in Dan-Shen Decoction, and 122 potential targets involved in the treatment of IHD. The in vitro experiments indicate that the anti-IHD effect of Dan-Shen Decoction may be closely associated with targets such as AKT1 and MAPK1, as well as biological processes such as cell proliferation, inflammatory response, and metabolism. CONCLUSIONS This study not only provides new insights into the mechanism of Dan-Shen Decoction against IHD, but also provides important information and new research ideas for the discovery of anti-IHD compounds from traditional Chinese medicine.
Collapse
Affiliation(s)
- Difei Gong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ranran Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuchan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Awaguli Dawuti
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shoubao Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Feng M, Gui Y, An J, Cao X, Lu W, Yang G, Jian S, Hu B, Wen C. The thioredoxin expression of Cristaria plicata is regulated by Nrf2/ARE pathway under microcystin stimulation. Int J Biol Macromol 2023; 242:124509. [PMID: 37085063 DOI: 10.1016/j.ijbiomac.2023.124509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Thioredoxin plays an important role in inhibiting apoptosis and protecting cells from oxidative stress. This study was aimed to clarify how the expression of Trx from Cristaria plicata is regulated by Nrf2/ARE pathway. The expression of CpTrx mRNA was significantly up-regulated in gill and kidney tissues under microcystin stress. The Nrf2 gene of Cristaria plicata was identified to possess an auto active domain bit. While CpNrf2 was knocked down by specific small RNA, CpTrx mRNA expression was significantly down-regulated. The promoter of CpTrx gene had high transcriptional activity, and this basic transcriptional activity persisted after ARE element mutation. The region of promoter -206 to +217 bp was a core promoter region and had forward regulatory elements. Gel shift Assay exhibited that the CpTrx promoter could bind to the purified proteins CpNrf2 and CpMafK in vitro. The binding phenomenon disappeared after the ARE element mutation in promoter region. Subcellular localization experiments displayed that fluorescence overlap between CpNrf2 and Trx promoter increased under microcystin toxin stress. These results suggested that Trx expression was regulated by Nrf2/ARE pathway under oxidative stress.
Collapse
Affiliation(s)
- Maolin Feng
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Yingping Gui
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Jinhua An
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - XinYing Cao
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Wuting Lu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Gang Yang
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Shaoqing Jian
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Baoqing Hu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Chungen Wen
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
12
|
Zhang Z, Chen F, Wan J, Liu X. Potential traditional Chinese medicines with anti-inflammation in the prevention of heart failure following myocardial infarction. Chin Med 2023; 18:28. [PMID: 36932409 PMCID: PMC10022008 DOI: 10.1186/s13020-023-00732-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Inflammation plays an important role in the development of heart failure (HF) after myocardial infarction (MI). Suppression of post-infarction inflammatory cascade has become a new strategy to delay or block the progression of HF. At present, there are no approved anti-inflammatory drugs used to prevent HF following MI. Traditional Chinese medicine (TCM) has been used clinically for cardiovascular disease for a long time. Here, we summarized the recent progress about some TCM which could both improve cardiac function and inhibit inflammation in patients or experimental models with MI or HF, in order to provide evidence for their potential application in reducing the onset of HF following MI. Among them, single Chinese medicinal herbs (eg. Astragalus and Salvia miltiorrhiza) and Chinese herbal formulas (eg. Gualou Xiebai Decoction and Sini Tang) are discussed separately. The main targets for their anti-inflammation effect are mainly involved the TLR4/NF-κB signaling, as well as pro-inflammatory cytokines IL-1β, IL-6 or TNF-α. It is worthy of further evaluating their potential, experimentally or clinically, in the prevention or delay of HF following MI.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200082, China
| | - Fei Chen
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200082, China
| | - Jingjing Wan
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200082, China.
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Yangpu District, Shanghai, 200082, China.
| |
Collapse
|
13
|
Martins-Gomes C, Nunes FM, Silva AM. Modulation of Cell Death Pathways for Cellular Protection and Anti-Tumoral Activity: The Role of Thymus spp. Extracts and Their Bioactive Molecules. Int J Mol Sci 2023; 24:ijms24021691. [PMID: 36675206 PMCID: PMC9864824 DOI: 10.3390/ijms24021691] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Natural products used for their health-promoting properties have accompanied the evolution of humanity. Nowadays, as an effort to scientifically validate the health-promoting effects described by traditional medicine, an ever-growing number of bioactivities are being described for natural products and the phytochemicals that constitute them. Among them, medicinal plants and more specifically the Thymus genus spp., arise as products already present in the diet and with high acceptance, that are a source of phytochemicals with high pharmacological value. Phenolic acids, flavonoid glycoside derivatives, and terpenoids from Thymus spp. have been described for their ability to modulate cell death and survival pathways, much-valued bioactivities in the pharmaceutical industry, that continually sought-after new formulations to prevent undesired cell death or to control cell proliferation. Among these, wound treatment, protection from endogenous/exogenous toxic molecules, or the induction of selective cell death, such as the search for new anti-tumoral agents, arise as main objectives. This review summarizes and discusses studies on Thymus spp., as well as on compounds present in their extracts, with regard to their health-promoting effects involving the modulation of cell death or survival signaling pathways. In addition, studies regarding the main bioactive molecules and their cellular molecular targets were also reviewed. Concerning cell survival and proliferation, Thymus spp. present themselves as an option for new formulations designed for wound healing and protection against chemicals-induced toxicity. However, Thymus spp. extracts and some of their compounds regulate cell death, presenting anti-tumoral activity. Therefore Thymus spp. is a rich source of compounds with nutraceutical and pharmaceutical value.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Lab, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, UTAD Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, UTAD Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Chemistry, School of Life Sciences and Environment, UTAD, 5001-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Lab, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Biology and Environment, School of Life Sciences and Environment, UTAD, 5001-801 Vila Real, Portugal
- Correspondence: ; Tel.: +351-259-350-921
| |
Collapse
|
14
|
Zhang Y, RuXian G. Didymin, a natural flavonoid, relieves the progression of myocardial infarction via inhibiting the NLR family pyrin domain containing 3 inflammasome. PHARMACEUTICAL BIOLOGY 2022; 60:2319-2327. [PMID: 36416076 PMCID: PMC9704078 DOI: 10.1080/13880209.2022.2148170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
CONTEXT Globally, the morbidity and mortality of cardiovascular diseases remain high. Didymin, a flavonoid glycoside, has long been used as a dietary antioxidant. OBJECTIVE To determine the role of didymin in myocardial infarction (MI), and its possible myocardial protective mechanism. MATERIALS AND METHODS C57/BL6 mice (aged 6-8 weeks, n = 40) were divided into five groups: sham group, ischaemia-reperfusion (I/R) group, I/R + didymin (1 mg/kg) group, I/R + didymin (2 mg/kg) group and I/R + didymin (4 mg/kg) group. Didymin was administered intragastrically daily before I/R for 5 consecutive days. H9C2 cells were divided into five groups: control group, H/R group, H/R + didymin (3 μM) group, H/R + didymin (10 μM) group and H/R + didymin (30 μM) group. H9C2 cells were treated with didymin for 24 h before hypoxia/reoxygenation (H/R). RESULTS In vivo, didymin reduced the pathological damage and fibrosis of myocardial tissues, decreased the levels of lactate dehydrogenase, creatine kinase, connective tissue growth factor, collagen I and collagen III. Moreover, didymin reduced myocardial apoptosis, inhibited NLRP3, ASC and caspase-1 expression, and alleviated the inflammatory response. In vitro, didymin reduced MI, apoptosis, inflammation and the levels of NLRP3, ASC and caspase-1 in H9C2. DISCUSSION AND CONCLUSIONS Didymin prevented the deterioration of MI by inhibiting NLRP3 inflammasome in vivo and in vitro, and may be a potential natural drug for the treatment of MI. Our study provides the scientific basis for further research of didymin.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- CONTACT Yong Zhang Department of Cardiology, School of Medicine, First Affiliated Hospital, Shihezi University, No. 107 North 2nd Road, Shihezi, Xinjiang832008, China
| | - GuLi RuXian
- Department of Digestive Internal Medicine, School of Medicine, First Affiliated Hospital, Shihezi University, Shihezi, China
| |
Collapse
|
15
|
Deng B, Tao L, Wang Y. Natural products against inflammation and atherosclerosis: Targeting on gut microbiota. Front Microbiol 2022; 13:997056. [PMID: 36532443 PMCID: PMC9751351 DOI: 10.3389/fmicb.2022.997056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/25/2022] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota (GM) has become recognized as a crucial element in preserving human fitness and influencing disease consequences. Commensal and pathogenic gut microorganisms are correlated with pathological progress in atherosclerosis (AS). GM may thus be a promising therapeutic target for AS. Natural products with cardioprotective qualities might improve the inflammation of AS by modulating the GM ecosystem, opening new avenues for researches and therapies. However, it is unclear what components of natural products are useful and what the actual mechanisms are. In this review, we have summarized the natural products relieving inflammation of AS by regulating the GM balance and active metabolites produced by GM.
Collapse
Affiliation(s)
- Bing Deng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liyu Tao
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiru Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Huang Q, Zhang C, Tang S, Wu X, Peng X. Network Pharmacology Analyses of the Pharmacological Targets and Therapeutic Mechanisms of Salvianolic Acid A in Myocardial Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8954035. [PMID: 36248430 PMCID: PMC9556248 DOI: 10.1155/2022/8954035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 11/05/2022]
Abstract
Objective Salvianolic acid A, a natural polyphenolic ingredient extracted from traditional Chinese medicine, possesses an excellent pharmacological activity against cardiovascular diseases. Herein, therapeutic mechanisms of salvianolic acid A in myocardial infarction were explored through systematic and comprehensive network pharmacology analyses. Methods The chemical structure of salvianolic acid A was retrieved from PubChem database. Targets of salvianolic acid A were estimated through SwissTargetPrediction, HERB, and TargetNet databases. Additionally, by GeneCards, OMIM, DisGeNET, and TTD online tools, myocardial infarction-relevant targets were predicted. Following intersection, therapeutic targets were determined. The interaction of their products was evaluated with STRING database, and hub therapeutic targets were selected. GO and KEGG enrichment analyses of therapeutic targets were then implemented. H9C2 cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic myocardial infarction and administrated with salvianolic acid A. Cellular proliferation was assayed via CCK-8 assay, and hub therapeutic targets were verified with RT-qPCR. Results In total, 120 therapeutic targets of salvianolic acid A in myocardial infarction were identified. There were close interactions between their products. Ten hub therapeutic targets were determined, covering SRC, CTNNB1, PIK3CA, AKT1, RELA, EGFR, FYN, ITGB1, MAPK8, and NFKB1. Therapeutic targets were significantly correlated to myocardial infarction-relevant pathways, especially PI3K-Akt signaling pathway. Salvianolic acid A administration remarkably ameliorated the viability of OGD/R-induced H9C2 cells, and altered the expression of hub therapeutic targets. Conclusion Our work uncovers therapeutic mechanisms of salvianolic acid A for the treatment of myocardial infarction, providing a new insight into further research on salvianolic acid A.
Collapse
Affiliation(s)
- Qing Huang
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Chao Zhang
- Heart Function Testing Center of Cardiovascular Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shaoyong Tang
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Xiaoyan Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiong Peng
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| |
Collapse
|
17
|
Li N, Hang W, Shu H, Wen Z, Ceesay BM, Zhou N. Salvianolic Acid Ameliorates Pressure Overload-Induced Cardiac Endothelial Dysfunction via Activating HIF1[Formula: see text]/HSF1/CD31 Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1869-1885. [PMID: 36121714 DOI: 10.1142/s0192415x22500793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pressure overload is a major risk factor for various cardiovascular diseases. Disorders of the endothelium are involved in the pathological mechanisms of pressure, and maintaining endothelial function is a practical strategy to alleviate pressure overload-induced cardiac injury. In this study, we provided evidence that salvianolic acid, the active component of Danshen, a traditional Chinese herb medicine, preserved pressure overload-induced cardiac dysfunction via protecting endothelium. Male C57BL/6J mice were imposed with transverse aortic constriction to mimic pressure overload and treated with salvianolic acid (200[Formula: see text]mg/kg/day) or vehicle for 6 weeks. The hemodynamic and cardiac functional parameters were detected by the cardiac catheter and transthoracic echocardiography. The pathological measurements were conducted by heart hematoxylin-eosin, wheat germ agglutinin staining, Masson's trichrome staining, and immunofluorescence staining. Endothelial cell (EC) proliferation was estimated using the Cell Counting Kit-8, EC migration was evaluated by scratched assay, and EC integrity was observed by electron microscope. Salvianolic acid notably inhibited cardiac chamber enlargement, restrained cardiac contractile dysfunction, and repressed cardiac fibrosis caused by chronic pressure overload. Salvianolic acid maintained endothelial tight junction integrity by boosting the expression of CD31. Furthermore, the endothelial protective effect of salvianolic acid against pressure overload is dependent on the activation of hypoxia-inducible factor 1[Formula: see text], which consequently activated heat shock factor 1 and promoted CD31 expression. Our study uncovered that salvianolic acid protected cardiac ECs against pressure overload via a HIF1[Formula: see text]/HSF1/CD31 pathway, indicating a potential appliance of salvianolic acid in hypertensive heart disease.
Collapse
Affiliation(s)
- Na Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, P. R. China
| | - Weijian Hang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, P. R. China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, P. R. China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, P. R. China
| | - Bala Musa Ceesay
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, P. R. China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, P. R. China
| |
Collapse
|
18
|
Cheng X, Hu J, Liu X, Tibenda JJ, Wang X, Zhao Q. Therapeutic targets by traditional Chinese medicine for ischemia-reperfusion injury induced apoptosis on cardiovascular and cerebrovascular diseases. Front Pharmacol 2022; 13:934256. [PMID: 36060007 PMCID: PMC9437626 DOI: 10.3389/fphar.2022.934256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 12/02/2022] Open
Abstract
Traditional Chinese medicine (TCM) has a significant role in treating and preventing human diseases. Ischemic heart and cerebrovascular injuries are two types of diseases with different clinical manifestations with high prevalence and incidence. In recent years, it has been reported that many TCM has beneficial effects on ischemic diseases through the inhibition of apoptosis, which is the key target to treat myocardial and cerebral ischemia. This review provides a comprehensive summary of the mechanisms of various TCMs in treating ischemic cardiovascular and cerebrovascular diseases through anti-apoptotic targets and pathways. However, clinical investigations into elucidating the pharmacodynamic ingredients of TCM are still lacking, which should be further demystified in the future. Overall, the inhibition of apoptosis by TCM may be an effective strategy for treating ischemic cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiuli Cheng
- Department of Pharmacy, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jin Hu
- Department of Preparation Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaofeng Liu
- Department of Pharmacy, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | | | - Xiaobo Wang
- Research Institute of Integrated TCM and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaobo Wang, ; Qipeng Zhao,
| | - Qipeng Zhao
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education (Ningxia Medical University), Yinchuan, China
- *Correspondence: Xiaobo Wang, ; Qipeng Zhao,
| |
Collapse
|
19
|
Song H, Li B, Guo R, He S, Peng Z, Qu J, Zhao Y, Zhai X, Yin W, Yang K, Fan X, Zhang J, Tan J, Liu Y, Xie J, Xu J. Hypoxic preconditioned aged BMSCs accelerates MI injury repair by modulating inflammation, oxidative stress and apoptosis. Biochem Biophys Res Commun 2022; 627:45-51. [PMID: 36007334 DOI: 10.1016/j.bbrc.2022.08.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022]
Abstract
The benefits of autologous cell therapy for cardiac repair are diminished in aged individuals due to the limited quality and poor tolerance of aged stem cells in the ischemic micro-environment. The safe and efficient methods to improve the therapeutic effect of aged stem cells are needed to treat the increasing number of aged patients with cardiac diseases. In the present study, we aimed to determine whether hypoxic preconditioning can improve the therapeutic effect of aged stem cells even if the responsiveness of aged MSCs is poor, and to seek the underlying mechanism. Using a murine model of MI, our results showed that hypoxic preconditioning promoted the therapeutic effect of aged BMSCs, which was expressed in improved cardiac function, decreased scar size and alleviated cardiac remodeling in vivo. This in vivo effect of hypoxic preconditioned aged BMSCs was associated with alleviated inflammation, oxidative stress and apoptosis in infarcted heart. In vitro studies confirmed that hypoxic preconditioned aged BMSCs exert cytoprotective impacts on H9C2 cells against lethal hypoxia injury via attenuating oxidative stress and apoptosis. Our data support the promise of hypoxic preconditioning as a potential strategy to improve autologous stem cell therapy for ischemic heart injury in aged individuals.
Collapse
Affiliation(s)
- Huifang Song
- Department of Hepatological Surgery, First Hospital of Shanxi Medical University, Taiyuan, China; Department of Anatomy, Shanxi Medical University, Taiyuan, China; Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China.
| | - Bin Li
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Rui Guo
- Department of Pathology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Sheng He
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Zexu Peng
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Junyuan Qu
- Department of Pathology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yunhe Zhao
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Zhai
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Wenjuan Yin
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Kun Yang
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Xuemei Fan
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Jie Zhang
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Jiayin Tan
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Yang Liu
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Jun Xie
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China.
| | - Jun Xu
- Department of Hepatological Surgery, First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
20
|
Yang M, Liao M, Liu R, Zhang Q, Zhang S, He Y, Jin J, Zhang P, Zhou L. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles loaded with miR-223 ameliorate myocardial infarction through P53/S100A9 axis. Genomics 2022; 114:110319. [PMID: 35227836 DOI: 10.1016/j.ygeno.2022.110319] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/22/2022] [Accepted: 02/19/2022] [Indexed: 01/14/2023]
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have been proposed as a promising strategy for myocardial infarction (MI). This study aims to explore the mechanism of human umbilical cord MSCs (hucMSCs)-derived EVs loaded with miR-223 on MI. Inflammation, cell biological functions, and fibrosis in vitro were measured. Furthermore, MI rat models were established to verify the role of EVs-miR-223 in vivo. The binding relationship between miR-223 and P53 was confirmed. ChIP assay was utilized to observe the combination of P53 and S100A9. The suppressed fibrosis of cardiomyocytes occurred with cells overexpressing miR-223. MiR-223 contributed to the angiogenesis of HUVECs. P53 was a target gene of miR-223. In vivo, miR-223 relieved myocardial fibrosis and inflammation infiltration, and promoted the angiogenesis in MI rats. HucMSC-derived EVs loaded with miR-223 mitigates MI and promotes myocardial repair through the P53/S100A9 axis, manifesting the underlying therapy values of hucMSC-derived EVs loaded with miR-223 in MI.
Collapse
Affiliation(s)
- Mei Yang
- Departmemt of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Mingmei Liao
- Departmemt of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Ruijie Liu
- Departmemt of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Qi Zhang
- Departmemt of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Sai Zhang
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yi He
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jin Jin
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Pengfei Zhang
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.
| | - Lin Zhou
- Departmemt of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
21
|
Zhang J, Zhou R, Cao G, Zhang Y, Xu H, Yang H. Guhong Injection Prevents Ischemic Stroke-Induced Neuro-Inflammation and Neuron Loss Through Regulation of C5ar1. Front Pharmacol 2022; 13:818245. [PMID: 35387346 PMCID: PMC8979065 DOI: 10.3389/fphar.2022.818245] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
C5ar1 (CD88) has been identified as an important potential therapeutic target for regulating inflammation in ischemic stroke. In this study, the neuroprotective effect of Guhong injection (GHI) on middle cerebral artery occlusion (MCAO)-induced reperfusion injury was assessed and the mechanism was explored by RNA-seq technology. GHI administered for 6 consecutive days significantly decreased body weight loss, infarction rate, neurological deficient scores, and neuron loss but improved rat survival percentage and regional cerebral blood flow after MCAO surgery. Furthermore, we identified inflammation as a vital process and C5AR1 as a vital target in GHI-mediated protection by using RNA-seq analysis. Further experiments confirmed that GHI decreased C5AR1, C5A, CASP3, 8-OHdG, and inflammatory factors such as IL-1β, TNF, IL6, ICAM-1, MMP9, and MCP-1, and enhanced the expression of TIMP1, JAM-A, and laminin. Furthermore, GHI and its major components hydroxysafflower yellow A (HSYA) and aceglutamide (AG) enhanced cell viability and reduced LDH level and C5AR1 expression in a C5A-induced Neuro-2a cell damage model. In general, this study elucidated the mechanism of GHI against ischemic stroke by inhibiting inflammation and highlighted the potential important role of C5AR1 in ischemic stroke. This research provided new insights into the mechanism of GHI in resisting ischemic stroke and benefits of its clinical application.
Collapse
Affiliation(s)
- Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangzhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Liu Y, Xue N, Zhang B, Lv H, Li S. Role of Thioredoxin-1 and its inducers in human health and diseases. Eur J Pharmacol 2022; 919:174756. [PMID: 35032486 DOI: 10.1016/j.ejphar.2022.174756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/08/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022]
Abstract
Thioredoxin-1 (Trx-1) is a small redox-active protein normally found in mammalian cells that responds to the changing redox environment by contributing electrons or regulating related proteins. There is growing evidence that Trx-1 has multiple functions, including cytoprotective, anti-apoptotic, antioxidant and anti-inflammatory effects. To date, researchers have found that Trx-1 deficiency leads to severe damage in various disease models, such as atherosclerosis, cerebral ischemia, diabetes and tumors. Conversely, activation of Trx-1 has a protective effect against these diseases. Accordingly, a variety of Trx-1 inducers have been widely used in the clinic with significant therapeutic value. In this paper, we summarize the pathogenesis of Trx-1 involvement in the above-mentioned diseases and describe the protective effects of Trx-1 inducers on them.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Bayi, China
| | - Nianyu Xue
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Bayi, China
| | - Boxi Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Bayi, China
| | - Hongming Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Bayi, China.
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Bayi, China.
| |
Collapse
|
23
|
Wu X, Yan Y, Zhang Q. Neuroinflammation and Modulation Role of Natural Products After Spinal Cord Injury. J Inflamm Res 2021; 14:5713-5737. [PMID: 34764668 PMCID: PMC8576359 DOI: 10.2147/jir.s329864] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury (SCI) is a severe traumatic injury of the central nervous system, characterized by neurological dysfunction and locomotor disability. Although the underlying pathological mechanism of SCI is complex and remains unclear, the important role of neuroinflammation has been gradually unveiled in recent years. The inflammation process after SCI involves disruption of the blood–spinal cord barrier (BSCB), activation of gliocytes, infiltration of peripheral macrophages, and feedback loops between different cells. Thus, our first aim is to illustrate pathogenesis, related cells and factors of neuroinflammation after SCI in this review. Due to the good bioactivity of natural products derived from plants and medicinal herbs, these widely exist as food, health-care products and drugs in our lives. In the inflammation after SCI, multiple natural products exert satisfactory effects. Therefore, the second aim of this review is to sum up the effects and mechanisms of 25 natural compounds and 7 extracts derived from plants or medicinal herbs on neuroinflammation after SCI. Clarification of the SCI inflammation mechanism and a summary of the related natural products is helpful for in-depth research and drug development.
Collapse
Affiliation(s)
- Xue Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| | - Yaping Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| | - Qian Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| |
Collapse
|
24
|
Zhang J, Guo F, Zhou R, Xiang C, Zhang Y, Gao J, Cao G, Yang H. Proteomics and transcriptome reveal the key transcription factors mediating the protection of Panax notoginseng saponins (PNS) against cerebral ischemia/reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153613. [PMID: 34500302 DOI: 10.1016/j.phymed.2021.153613] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND PURPOSE Transcription factors (TFs) play a critical role in the cerebral ischemia/reperfusion injury (IRI). Panax notoginseng saponins (PNS) are extensively used in the treatment of acute cerebral ischemia in China, but the mechanism of their effects, especially at the TF level, remains unclear. In this study, a combination of transcriptomics, proteomics and network pharmacology analysis was used to identify the key TFs involved in the protection of PNS against middle cerebral artery occlusion (MCAO)-induced IRI. METHODS AND RESULTS Sprague-Dawley rats which were subjected to 1.5 hours of MCAO-induced occlusionand then followed by reperfusion, were treated with PNS at a concentration of 36 mg/kg or 72 mg/kg daily for 7 days. PNS significantly decreased neurological deficient scores and infarction rate; prevented cerebral tissue damage; and reduced CASP3 activity, levels of TNF, IL1B and CCL2 after IRI. Through a combination of transcriptomics and proteomics, 9 critical TFs were identified, including Excision repair cross-complementing group 2 (ERCC2), Nuclear receptor subfamily 4 group A member 3 (NR4A3) and 7 other TFs. The targets of ERCC2 and NR4A3, such as Ubxn11, Ush2a, Numr2, Oxt, Ubxn11, Scrt2, Ttc34 and Lrrc23, were verified by using real-time PCR analysis. RNA-seq analyses indicated that PNS regulated nerve system development and inflammation, and the majority of the identified TFs were also involved in these processes. By using network pharmacology analysis, 73 chemical components in PNS were predicted to affect ERCC2, NR4A3 and 3 other identified TFs. CONCLUSION ERCC2, NR4A3 and 7 other TFs were of importance in the protection of PNS against IRI. This study promoted the understanding of protective mechanism of PNS against cerebral IRI and facilitated the identification of possible targets of PNS.
Collapse
Affiliation(s)
- Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Chinese Institute for Brain Research, Beijing, 102206, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changpei Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jinhuan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guangzhao Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
25
|
Liu Y, Zhong J, Zhao L, Yu S, Zha H, Chai Y, Zhu Q. Molecular characterization and functional analysis of Trx and Trp14 in roughskin sculpin (Trachidermus fasciatus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1369-1382. [PMID: 34279744 DOI: 10.1007/s10695-021-00978-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Thioredoxins (Trxs) are a family of small and highly conserved proteins which play crucial roles in the maintenance and regulation of the cellular redox homeostasis. In this study, the full-length cDNAs of thioredoxin 1 (TfTrx1) and thioredoxin-related protein of 14 kDa (TfTrp14) were isolated from roughskin sculpin (Trachidermus fasciatus). TfTrx1 is 662 bp in length with a 336-bp open reading frame (ORF) that encodes for a peptide with 111 amino acids, and TfTrp14 consists of 1066 bp with a 372-bp ORF that is translated to 123 amino acids. TfTrx1 and TfTrp14 contain highly conserved catalytic site motif CGPC and CPDC, respectively. Tissue distribution analysis indicated that both genes were broadly expressed in all examined tissues with the highest expression of TfTrx1 in the blood and TfTrp14 in the brain. In post-LPS and heavy metal challenge, the mRNA of both genes was significantly increased in the skin, liver, spleen, and brain at various times. The results of western blot detection displayed that the time of the induced maximum protein expression was 6-h post-LPS injection in the skin and liver, which were slightly delayed compared with that of 2 h at mRNA level. The recombinant TfTrp14 and TfTrx1 proteins were expressed in E. coli BL21 (DE3). The increase of the fluorescence intensity in rTfTrx1 and rTfTrp14 suggested the redox state changes in the microenvironment around tryptophan residues. Both of the recombinant proteins exhibited concentration-dependent disulfide reductase activity towards insulin, and the catalytic activity of rTfTrx1 was much higher than that of rTfTrp14.
Collapse
Affiliation(s)
- Yingying Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jinmiao Zhong
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Lihua Zhao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shanshan Yu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Haidong Zha
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yingmei Chai
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Qian Zhu
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
26
|
Zhao X, Ren Y, Ren H, Wu Y, Liu X, Chen H, Ying C. The mechanism of myocardial fibrosis is ameliorated by myocardial infarction-associated transcript through the PI3K/Akt signaling pathway to relieve heart failure. J Int Med Res 2021; 49:3000605211031433. [PMID: 34275376 PMCID: PMC8293849 DOI: 10.1177/03000605211031433] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the role of long noncoding RNA (LncRNA) myocardial infarction-associated transcript (MIAT) in a heart failure (HF) model in vivo and in vitro by regulating the PI3K/Akt signaling pathway. METHODS We established HF models in vivo and in vitro and evaluated the collagen content of these models and other factors. RESULTS We found that when LncRNA MIAT was silenced, vascular endothelial growth factor, phosphorylated protein kinase B (Akt), and phosphorylated phosphoinositide 3-kinase (PI3K) mRNA and protein levels were significantly downregulated, which suggested that MIAT activated the PI3K/Akt signaling pathway. Akt and PI3K expression was not significantly changed. We also found that when LncRNA MIAT was silenced, collagen expression was significantly downregulated. This finding suggested that MIAT promoted myocardial fibrosis during the development of HF. The levels of inflammatory factors were also significantly reduced with silencing of LncRNA MIAT. This finding suggested that MIAT promoted the expression of inflammatory factors in myocardial fibrosis by activating the PI3K/Akt signaling pathway. CONCLUSION This study indicates that silencing LncRNA MIAT may improve myocardial fibrosis and alleviate HF through the PI3K/Akt signaling pathway, which may be helpful for patients with HF to obtain a better therapeutic effect.
Collapse
Affiliation(s)
- Xingsheng Zhao
- Cardiology Department, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yu Ren
- Cardiology Department, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Hongkun Ren
- Cardiology Department, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yun Wu
- Cardiology Department, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Xi Liu
- Cardiology Department, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Hua Chen
- Cardiology Department, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Chun Ying
- Cardiology Department, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
27
|
Zhou R, Guo F, Xiang C, Zhang Y, Yang H, Zhang J. Systematic Study of Crucial Transcription Factors of Coptidis rhizoma Alkaloids against Cerebral Ischemia-Reperfusion Injury. ACS Chem Neurosci 2021; 12:2308-2319. [PMID: 34114461 DOI: 10.1021/acschemneuro.0c00730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Coptidis rhizoma alkaloids (CRAs), extracted from Coptidis rhizoma, have been indicated to play important neuroprotective roles, but the mechanism underlying has not been determined, especially from the perspective of transcription factors (TFs). In this study, crucial TFs involved in the protective activity of CRA were revealed based on RNA-Seq technology, proteomics, and network pharmacological analysis of the effects of CRA on middle cerebral artery occlusion-mediated cerebral ischemia-reperfusion (I/R) injury. Importantly, CRA significantly reduced the infarction rate and neurological deficiency score. Moreover, CRA significantly decreased the levels of TNF-α, MCP-1, and IL-1β. In addition, seven TFs, including Ncor1, Smad1, Bhlhe41, Stat3, Sp100, Satb2, and Lrpprc, were found to be crucial TFs, and five of these TFs were associated with inflammation. Furthermore, eight compounds in CRA were associated with the identified TFs through network pharmacological analysis. The alteration of Lrpprc and Sabt2 was further confirmed by measuring their downstream genes, including Pigg, Hhatl, Wdr77, Mpped1, Arpp21, Ppfia3, Rims1, and Cacna2d1 by reverse transcriptase polymerase chain reaction. Thus, these seven TFs may be important targets in CRA-mediated protection against I/R injury. This research provides a new view of the protective effect of CRA against cerebral I/R injury and reveals new therapeutic targets for treating cerebral ischemia.
Collapse
Affiliation(s)
- Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changpei Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
28
|
Wu Y, Xiu W, Wu Y. Salvianolic Acid A Protects H9C2 Cardiomyocytes from Doxorubicin-Induced Damage by Inhibiting NFKB1 Expression Thereby Downregulating Long-Noncoding RNA (lncRNA) Plasmacytoma Variant Translocation 1 (PVT1). Med Sci Monit 2021; 27:e929824. [PMID: 34153024 PMCID: PMC8230250 DOI: 10.12659/msm.929824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background A cardioprotective effect of salvianolic acid A (SalA) has been described, but it is unknown whether SalA can protect cardiomyocytes against doxorubicin (Dox)-induced cardiotoxicity. This study aimed to investigate whether SalA could inhibit Dox-induced apoptosis in H9C2 cells and to uncover the potential mechanism. Material/Methods H9C2 cardiomyocytes exposed to Dox were treated with SalA or not, and then cell viability, apoptosis, and the expression of nuclear factor-κB (NF-κB) signaling were detected by Cell Counting Kit-8, TUNEL staining, and western blot assays, respectively. Nuclear factor kappa B subunit 1 (NFKB1) was overexpressed in H9C2 cells, and then alterations in cell viability and apoptosis in H9C2 cells co-treated with Dox and SalA were investigated. Results SalA (2, 10, and 50 μM) had no effect on H9C2 cell viability, while Dox reduced cell viability in a concentration-dependent manner. In addition, SalA rescued Dox-decreased cell viability. Dox also triggered apoptosis as evidenced by an increased ratio of TUNEL-positive cells, enhanced expression of pro-apoptotic proteins, and reduced expression of anti-apoptotic protein BCL-2, which were all partially blocked by SalA co-treatment. The proteins involved in NF-κB signaling including IκBα, IKKα, IKKβ, and p65 were activated by Dox but inactivated by SalA co-treatment. Moreover, Dox increased NFKB1 mRNA and nuclear expression, which was blocked by SalA. NFKB1 could bind to plasmacytoma variant translocation 1 (PVT1) and upregulate PVT1 expression. Mechanistically, the overexpression of NFKB1 blocked the inhibitory effect of SalA on Dox-induced cell viability impairment and apoptosis. Conclusions We demonstrated that SalA may exert a protective effect against Dox-induced H9C2 injury and apoptosis via inhibition of NFKB1 expression, thereby downregulating lncRNA PVT1.
Collapse
Affiliation(s)
- Yumeng Wu
- Department of Pharmacy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Wei Xiu
- Department of Pharmacy, Heilongjiang Sengong Red Cross General Hospital, Harbin, Heilongjiang, China (mainland)
| | - Yubo Wu
- Department of Pharmacy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
29
|
Zhang S, Zhang Y, Wang X, Wu L, Shen J, Gu M, Fang Z. Effects of Shenfu Qiangxin Drink on H 2O 2-induced oxidative stress, inflammation and apoptosis in neonatal rat cardiomyocytes and possible underlying mechanisms. Exp Ther Med 2021; 21:553. [PMID: 33850525 PMCID: PMC8027745 DOI: 10.3892/etm.2021.9985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate the effects of Shenfu Qiangxin Drink (SFQXD) on acute myocardial infarction (AMI) and identify the possible underlying mechanisms. Levels of reactive oxygen species (ROS) and inflammatory factors, including interleukin (IL)-6, IL-1β and tumor necrosis factor-α (TNF-α) in the blood samples of patients with AMI were measured using commercially available kits by visible spectrophotometry after SFQXD administration. The contents of phosphorylated (p-) forkhead box O3a (FOXO3a) was examined using an ELISA kit. In addition, a hydrogen peroxide (H2O2)-induced myocardial injury model was established in vitro using neonatal rat cardiomyocytes. Following treatment with SFQXD, the levels of intracellular ROS, cell apoptosis, oxidative stress- and inflammation-related markers were measured using commercially available kits by visible spectrophotometry. Additionally, western blot analysis was used to measure the expression of sirtuin-4 (SIRT4), p-FOXO3a, acetylated FOXO3a (ace-FOXO3a) and apoptosis-related genes (Bcl-2, Bax, BIM and cleaved caspase-3). Subsequently, to investigate the possible underlying regulatory mechanisms, SIRT4 expression was silenced by transfection with small hairpin RNA against SIRT4, following which changes in the extent of oxidative stress, inflammation and apoptosis were assessed. The levels of ROS and interleukin (IL)-1β were found to be significantly reduced, whilst FOXO3a phosphorylation was markedly increased following administration with SFQXD. In vitro, SFQXD dose-dependently inhibited H2O2-induced oxidative stress, inflammation and apoptosis in neonatal rat cardiomyocytes. In addition, FOXO3a phosphorylation was markedly upregulated whilst FOXO3a acetylation was downregulated following treatment of H2O2-induced primary neonatal cardiomyocytes with SFQXD. SIRT4 knockdown also markedly reversed the effects of SFQXD on oxidative stress, inflammation and apoptosis in neonatal rat cardiomyocytes. In conclusion, these findings demonstrated that SFQXD may alleviate oxidative stress-induced myocardial injury by potentially regulating SIRT4/FOXO3a signaling, suggesting that SFQXD may be of clinical value for the treatment of AMI.
Collapse
Affiliation(s)
- Sujie Zhang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
- Department of Cardiology, Jiangsu Province Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Yiyan Zhang
- Department of Cardiology, Jiangsu Province Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Xindong Wang
- Department of Cardiology, Jiangsu Province Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Lixing Wu
- Department of Cardiology, Jiangsu Province Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Jianping Shen
- Department of Cardiology, Jiangsu Province Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Minglin Gu
- Department of Cardiology, Jiangsu Province Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Zhuyuan Fang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
30
|
Yang Z, Chen Y, Yan Z, Xu TT, Wu X, Pi A, Liu Q, Chai H, Li S, Dou X. Inhibition of TLR4/MAPKs Pathway Contributes to the Protection of Salvianolic Acid A Against Lipotoxicity-Induced Myocardial Damage in Cardiomyocytes and Obese Mice. Front Pharmacol 2021; 12:627123. [PMID: 33762947 PMCID: PMC7982403 DOI: 10.3389/fphar.2021.627123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
The occurrence of lipotoxicity during obesity-associated cardiomyopathy is detrimental to health. Salvianolic acid A (SAA), a natural polyphenol extract of Salvia miltiorrhiza Bunge (Danshen in China), is known to be cardioprotective. However, its clinical benefits against obesity-associated cardiomyocyte injuries are unclear. This study aimed at evaluating the protective effects of SAA against lipotoxicity-induced myocardial injury and its underlying mechanisms in high fat diet (HFD)-fed mice and in palmitate-treated cardiomyocyte cells (H9c2). Our analysis of aspartate aminotransferase and creatine kinase isoenzyme-MB (CM-KB) levels revealed that SAA significantly reversed HFD-induced myocardium morphological changes and improved myocardial damage. Salvianolic acid A pretreatment ameliorated palmitic acid-induced myocardial cell death and was accompanied by mitochondrial membrane potential and intracellular reactive oxygen species improvement. Analysis of the underlying mechanisms showed that SAA reversed myocardial TLR4 induction in HFD-fed mice and H9c2 cells. Palmitic acid-induced cell death was significantly reversed by CLI-95, a specific TLR4 inhibitor. TLR4 activation by LPS significantly suppressed SAA-mediated lipotoxicity protection. Additionally, SAA inhibited lipotoxicity-mediated expression of TLR4 target genes, including MyD88 and p-JNK/MAPK in HFD-fed mice and H9c2 cells. However, SAA did not exert any effect on palmitic acid-induced SIRT1 suppression and p-AMPK induction. In conclusion, our data shows that SAA protects against lipotoxicity-induced myocardial damage through a TLR4/MAPKs mediated mechanism.
Collapse
Affiliation(s)
- Zhen Yang
- College of Basic Medicine and Public Health, Zhejiang Chinese Medical University, Hangzhou, China.,College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanli Chen
- College of Basic Medicine and Public Health, Zhejiang Chinese Medical University, Hangzhou, China.,College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaoyuan Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tian Tian Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangyao Wu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aiwen Pi
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingsheng Liu
- Hangzhou Hospital of Traditional Chinese Medicine, Guangxing Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Hui Chai
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songtao Li
- College of Basic Medicine and Public Health, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaobing Dou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
31
|
Danhong Injection and Trimetazidine Protect Cardiomyocytes and Enhance Calcium Handling after Myocardial Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2480465. [PMID: 33510801 PMCID: PMC7822665 DOI: 10.1155/2021/2480465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 11/18/2022]
Abstract
Myocardial infarction (MI) is one of the leading causes of death worldwide. However, there is no effective treatment for MI. In this study, trimetazidine (TMZ) and Danhong injection (DHI), representing western medicine and traditional Chinese medicine for MI, were used as tools to identify vital processes in alleviating MI injury. Administration of DHI and TMZ obviously decreased myocardial infarct size, improved ultrasonic heart function, and reduced creatine kinase (CK), lactate dehydrogenase (LDH), and glutamic oxaloacetic transaminase (AST) levels after MI. RNA-seq results indicated calcium ion handling and negative regulation of apoptotic process were vital processes and DHI and TMZ obviously reduced the expression of CaMK II and inhibited cleaved caspase-3 and Bax. Furthermore, DHI and TMZ increased p-S16-PLB, p-S16T17-PLB, CACNA1C, p-RyR2, and p-PKA expression but did not affect SERCA2a expression. In addition to the enhancement of cardiac myocyte shortening amplitude, maximum shortening velocity, and calcium transients, DHI and TMZ increased sarcoplasmic reticulum calcium content and enhanced SERCA2a calcium uptake capability by upregulating the phosphorylation of PLB but did not affect calcium exclusion by NCX. In conclusion, DHI and TMZ protect against MI through inhibiting apoptosis by downregulating CaMKII pathway and enhancing cardiac myocyte contractile functions possibly through the PKA signaling pathway.
Collapse
|
32
|
Zhao X, Oduro PK, Tong W, Wang Y, Gao X, Wang Q. Therapeutic potential of natural products against atherosclerosis: Targeting on gut microbiota. Pharmacol Res 2020; 163:105362. [PMID: 33285231 DOI: 10.1016/j.phrs.2020.105362] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/08/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
Gut microbiota (GM) has emerged as an essential and integral factor for maintaining human health and affecting pathological outcomes. Metagenomics and metabolomics characterization have furthered gut metagenome's understanding and unveiled that deviation of specific GM community members and GM-dependent metabolites imbalance orchestrate metabolic or cardiovascular diseases (CVDs). Restoring GM ecosystem with nutraceutical supplements keenly prebiotics and probiotics relatively decreases CVDs incidence and overall mortality. In Atherosclerosis, commensal and pathogenic gut microbes correlate with atherogenesis events. GM-dependent metabolites-trimethylamine N-oxide and short-chain fatty acids regulate atherosclerosis-related metabolic processes in opposite patterns to affect atherosclerosis outcomes. Therefore, GM might be a potential therapeutic target for atherosclerosis. In atherogenic animal models, natural products with cardioprotective properties could modulate the GM ecosystem by revitalizing healthier GM phylotypes and abrogating proatherogenic metabolites, paving future research paths for clinical therapeutics.
Collapse
Affiliation(s)
- Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin, China
| | - Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanyu Tong
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuefei Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin, China
| | - Xiumei Gao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin, China.
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin, China.
| |
Collapse
|
33
|
Wu Y, Wang Z, Lin Z, Fu X, Zhan J, Yu K. Salvianolic Acid A Has Anti-Osteoarthritis Effect In Vitro and In Vivo. Front Pharmacol 2020; 11:682. [PMID: 32581777 PMCID: PMC7283387 DOI: 10.3389/fphar.2020.00682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/27/2020] [Indexed: 01/03/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease found in middle-aged and elderly people, which seriously affects their quality of life. The anti-inflammatory and anti-apoptosis pharmacological effects of salvianolic acid A (SAA) have been shown in many studies. In this study, we intended to explore the anti-inflammatory and anti-apoptotic effects of SAA in OA. We evaluated the expression of pro-inflammatory mediators and cartilage matrix catabolic enzymes in chondrocytes by ELISA, Griess reaction, immunofluorescence, and Western blot, which includes nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), MMPs (MMP-3, MMP-13), and ADAMTS-5. Bax, Bcl-2, and cleaved caspase-3 were also measured by Western blot methods. The results of this experiment in vitro showed that SAA not only inhibited the production of inflammatory mediators induced by IL-1β and the loss of cartilage matrix but also reduced the apoptosis of mouse chondrocytes induced by IL-1β. According to the results of immunofluorescence and Western blot, SAA inhibited the activation of the NF-κB pathway and MAPK pathway. The results of these in vitro experiments revealed for the first time that SAA down-regulated the production of inflammatory mediators and inhibited the apoptosis of mouse chondrocytes and the degradation of extracellular matrix (ECM), which may be attributed to the inhibition of the activation of NF-κB and MAPK signaling pathways. In the in vivo experiments, 45 mice were randomly divided among three groups (the sham group, OA group, and OA + SAA group). The results of animal experiments showed that SAA treatment for eight consecutive weeks inhibited further deterioration of OA. These results demonstrate that SAA plays an active therapeutic role in the development of OA.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhanghong Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeng Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Fu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingdi Zhan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kehe Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|