1
|
Man F, Jayanti NE, Leow CY, Choo CY. Bruceine E attenuates hepatic steatosis through modulation of PI3K/AKT/NFκB signalling pathway. J Pharm Pharmacol 2025:rgaf016. [PMID: 40341535 DOI: 10.1093/jpp/rgaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 03/26/2025] [Indexed: 05/10/2025]
Abstract
OBJECTIVES This study aims to establish the effect of bruceine E in attenuating nonalcoholic steatohepatitis (NASH) through the PI3K/AKT/NFκB pathway. METHODS High-fat-diet (HFD) male Wistar rats were orally administered with glibenclamide (20 mg/kg) or bruceine E (400, 800, or 1600 µg/kg) for 4 weeks. After 4 weeks of treatment, blood serum was analysed for liver markers. Liver histology was used to identify the degree of inflammation. The liver tissue was evaluated on the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and inflammatory genes (nuclear factor-kappa B [NFκB], tumor necrosis factor alpha [TNFα], interleukin-6 [IL6], and interleukin-10 [IL10]) and protein expressions. KEY FINDINGS The alanine transferase and aspartate transferase were reduced in HFD rats administered orally with bruceine E. In liver histology, steatosis, ballooning, and lobular inflammation were alleviated in bruceine E-treated HFD rats. The PI3K/AKT genes and proteins were activated while the inflammatory genes and protein expressions were suppressed in the bruceine E-treated HFD rats showing improvement towards insulin resistance (IR), liver steatosis, and inflammation. CONCLUSIONS In conclusion, bruceine E attenuated NASH through activation of the PI3K/AKT/NFκB inflammation pathway and may further delay the progression of NASH to hepatocellular carcinoma .
Collapse
Affiliation(s)
- Farahdina Man
- MedChem Herbal Research Group, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Neti Eka Jayanti
- Department of Basic Sciences in Physiology, Faculty of Health Sciences, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Chee-Yan Choo
- MedChem Herbal Research Group, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
2
|
Dhas Y, Biswas N, M R D, Jones LD, Ashili S. Repurposing metabolic regulators: antidiabetic drugs as anticancer agents. MOLECULAR BIOMEDICINE 2024; 5:40. [PMID: 39333445 PMCID: PMC11436690 DOI: 10.1186/s43556-024-00204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/26/2024] [Indexed: 09/29/2024] Open
Abstract
Drug repurposing in cancer taps into the capabilities of existing drugs, initially designed for other ailments, as potential cancer treatments. It offers several advantages over traditional drug discovery, including reduced costs, reduced development timelines, and a lower risk of adverse effects. However, not all drug classes align seamlessly with a patient's condition or long-term usage. Hence, repurposing of chronically used drugs presents a more attractive option. On the other hand, metabolic reprogramming being an important hallmark of cancer paves the metabolic regulators as possible cancer therapeutics. This review emphasizes the importance and offers current insights into the repurposing of antidiabetic drugs, including metformin, sulfonylureas, sodium-glucose cotransporter 2 (SGLT2) inhibitors, dipeptidyl peptidase 4 (DPP-4) inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1RAs), thiazolidinediones (TZD), and α-glucosidase inhibitors, against various types of cancers. Antidiabetic drugs, regulating metabolic pathways have gained considerable attention in cancer research. The literature reveals a complex relationship between antidiabetic drugs and cancer risk. Among the antidiabetic drugs, metformin may possess anti-cancer properties, potentially reducing cancer cell proliferation, inducing apoptosis, and enhancing cancer cell sensitivity to chemotherapy. However, other antidiabetic drugs have revealed heterogeneous responses. Sulfonylureas and TZDs have not demonstrated consistent anti-cancer activity, while SGLT2 inhibitors and DPP-4 inhibitors have shown some potential benefits. GLP-1RAs have raised concerns due to possible associations with an increased risk of certain cancers. This review highlights that further research is warranted to elucidate the mechanisms underlying the potential anti-cancer effects of these drugs and to establish their efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Yogita Dhas
- Rhenix Lifesciences, Hyderabad, 500038, Telangana, India
| | - Nupur Biswas
- Rhenix Lifesciences, Hyderabad, 500038, Telangana, India.
- CureScience, 5820 Oberlin Dr, Suite 202, San Diego, CA, 92121, USA.
| | | | - Lawrence D Jones
- CureScience, 5820 Oberlin Dr, Suite 202, San Diego, CA, 92121, USA
| | | |
Collapse
|
3
|
Li SJ, Liu AB, Yu YY, Ma JH. The role and mechanism of pyroptosis and potential therapeutic targets in non-alcoholic fatty liver disease (NAFLD). Front Cell Dev Biol 2024; 12:1407738. [PMID: 39022762 PMCID: PMC11251954 DOI: 10.3389/fcell.2024.1407738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinical pathological syndrome characterized by the excessive accumulation of fat within liver cells, which can progress to end-stage liver disease in severe cases, posing a threat to life. Pyroptosis is a distinct, pro-inflammatory form of cell death, differing from traditional apoptosis. In recent years, there has been growing research interest in the association between pyroptosis and NAFLD, encompassing the mechanisms and functions of pyroptosis in the progression of NAFLD, as well as potential therapeutic targets. Controlled pyroptosis can activate immune cells, eliciting host immune responses to shield the body from harm. However, undue activation of pyroptosis may worsen inflammatory responses, induce cellular or tissue damage, disrupt immune responses, and potentially impact liver function. This review elucidates the involvement of pyroptosis and key molecular players, including NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome, gasdermin D (GSDMD), and the caspase family, in the pathogenesis and progression of NAFLD. It emphasizes the promising prospects of targeting pyroptosis as a therapeutic approach for NAFLD and offers valuable insights into future directions in the field of NAFLD treatment.
Collapse
Affiliation(s)
- Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Hai Ma
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
4
|
Lamba D, Dwivedi DK, Yadav M, Kumar Yr S. Boldine: a narrative review of the bioactive compound with versatile biological and pharmacological potential. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 21:jcim-2023-0224. [PMID: 38234264 DOI: 10.1515/jcim-2023-0224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
OBJECTIVE Boldine is a plant-derived bioactive compound that has a beneficial impact on human health. Boldine is an aporphine alkaloid mainly obtained from the leaves and bark of the Chilean Boldo tree (Peumus boldus, Family: Monimiaceae). There are plenty of preclinical evidence supports that boldine exerts its beneficial effects against various diseases. Lumiskin™, a patented and marketed formulation by Revitol Skincare for skin brightening, contains Dicetyl boldine, a boldine derivative. CONTENT All the available information on the Chilean boldo tree (P. boldus Molina) species was actualized by systematically searching the scientific databases (PubMed, SciFinder, Web of Science, Google Scholar, Scopus and others) and scientific literature. This article covers the recent advances in pharmacokinetic, toxicological, pharmacological/biological activities, and molecular mechanisms of the bioactive compound to understand health benefits of boldine better. SUMMARY Boldine exerts antioxidant, hepatoprotective, anti-atherosclerotic, anti-diabetic, analgesic, antipyretic, anti-inflammatory, anti-epileptic, neuroprotective, nephroprotective, anti-arthritis, anticancer and nootropic effects. Moreover, boldine exhibits its various pharmacological activities by altering antioxidant parameters (MDA, superoxide dismutase, glutathione), peroxynitrite, inflammatory markers apoptotic index, caspase-3, acetyl-cholinesterase, myeloperoxidase, TNF-α (Tumor necrosis factor-α), iNOS, Bcl-2-associated X protein (BAX), ACE-1(Angiotensin-converting enzyme-1), dopamine D2 receptors and nicotinic acetylcholine receptor. Boldine has the potential to modulate a variety of biological networks. OUTLOOK Due to its versatile pharmacological effects reported in various experimental animals as well as in randomized clinical trials for the treatment of facial melasma and for treatment of urinary stone lithotripsy in children as a complementary phytotherapy; in the future, this compound might be developed as a novel drug for a different indication.
Collapse
Affiliation(s)
- Deepak Lamba
- Central Council for Research in Ayurvedic Sciences, Janakpuri, New Delhi, India
| | - Durgesh Kumar Dwivedi
- Department of Pharmacology, National Research Institute of Unani Medicine for Skin Disorders, (Under Central Council for Research in Unani Medicine, New Delhi), Erragadda, Hyderabad, Telangana, India
| | - Monu Yadav
- Department of Pharmacology, Amity University, Gurugram, Haryana, India
| | - Sanjaya Kumar Yr
- Central Council for Research in Ayurvedic Sciences, Janakpuri, New Delhi, India
| |
Collapse
|
5
|
Li L, Sun L, Liang X, Ou Q, Tan X, Li F, Lai Z, Ding C, Chen H, Yu X, Wu Q, Wei J, Wu F, Wang L. Maternal betaine supplementation ameliorates fatty liver disease in offspring mice by inhibiting hepatic NLRP3 inflammasome activation. Nutr Res Pract 2023; 17:1084-1098. [PMID: 38053832 PMCID: PMC10694418 DOI: 10.4162/nrp.2023.17.6.1084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND/OBJECTIVES Previous research has shown maternal betaine supplementation alleviates fetal-derived hepatic steatosis. Therefore, this study examined the anti-inflammatory effect of maternal betaine intake in offspring mice and its mechanism. MATERIALS/METHODS Female C57BL/6J mice and their offspring were randomly divided into 3 groups according to the treatment received during gestation and lactation: control diet (CD), fatty liver disease (FLD), and fatty liver disease + 1% betaine (FLD-BET). The FLD group was given a high-fat diet and streptozotocin (HFD + STZ), and the FLD-BET group was treated with HFD + STZ + 1% betaine. After weaning, the offspring mice were given a normal diet for 5 weeks and then dissected to measure the relevant indexes. RESULTS Compared to the CD group, the offspring mice in the FLD group revealed obvious hepatic steatosis and increased serum levels of alanine aminotransferase, interleukin (IL)-6, and tumor necrosis factor (TNF)-α; maternal betaine supplementation reversed these changes. The hepatic mRNA expression levels of IL-6, IL-18, and Caspase-1 were significantly higher in the FLD group than in the CD group. Maternal betaine supplementation reduced the expression of IL-1β, IL-6, IL-18, and apoptosis-associated speck-like protein containing C-terminal caspase recruitment domain (ASC). Maternal betaine supplementation also reversed the increasing protein expressions of nitric oxide dioxygenase-like receptor family pyrin domain containing 3 (NLRP3), ASC, Caspase-1, IL-1β, and IL-18 in offspring mice exposed to HFD + STZ. Maternal betaine supplementation decreased the homocysteine (Hcy) and s-adenosine homocysteine (SAH) levels significantly in the livers. Furthermore, the hepatic Hcy concentrations showed significant inverse relationships with the mRNA expression of TNF-α, NLRP3, ASC, and IL-18. The hepatic SAH concentration was inversely associated with the IL-1β mRNA expression. CONCLUSIONS The lipotropic and anti-inflammatory effect of maternal betaine supplementation may be associated with the inhibition of NLRP3 inflammasome in the livers of the offspring mice.
Collapse
Affiliation(s)
- Lun Li
- Department of Delivery Room, Guangzhou Women and Children’s Medical Center, Guangzhou 510623, People’s Republic of China
| | - Liuqiao Sun
- Department of Maternal, Child and Adolescent Health, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Xiaoping Liang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Qian Ou
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Xuying Tan
- Department of Child Health Care, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, People’s Republic of China
| | - Fangyuan Li
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Zhiwei Lai
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Chenghe Ding
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Hangjun Chen
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Xinxue Yu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Qiongmei Wu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Jun Wei
- Department of Science and Technology, Guangzhou Customs, Guangzhou 510623, People’s Republic of China
| | - Feng Wu
- Department of Science and Technology, Guangzhou Customs, Guangzhou 510623, People’s Republic of China
| | - Lijun Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| |
Collapse
|
6
|
Ramos-Tovar E, Muriel P. NLRP3 inflammasome in hepatic diseases: A pharmacological target. Biochem Pharmacol 2023; 217:115861. [PMID: 37863329 DOI: 10.1016/j.bcp.2023.115861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway is mainly responsible for the activation and release of a cascade of proinflammatory mediators that contribute to the development of hepatic diseases. During alcoholic liver disease development, the NLRP3 inflammasome pathway contributes to the maturation of caspase-1, interleukin (IL)-1β, and IL-18, which induce a robust inflammatory response, leading to fibrosis by inducing profibrogenic hepatic stellate cell (HSC) activation. Substantial evidence demonstrates that nonalcoholic fatty liver disease (NAFLD) progresses to nonalcoholic steatohepatitis (NASH) via NLRP3 inflammasome activation, ultimately leading to fibrosis and hepatocellular carcinoma (HCC). Activation of the NLRP3 inflammasome in NASH can be attributed to several factors, such as reactive oxygen species (ROS), gut dysbiosis, leaky gut, which allow triggers such as cardiolipin, cholesterol crystals, endoplasmic reticulum stress, and uric acid to reach the liver. Because inflammation triggers HSC activation, the NLRP3 inflammasome pathway performs a central function in fibrogenesis regardless of the etiology. Chronic hepatic activation of the NLRP3 inflammasome can ultimately lead to HCC; however, inflammation also plays a role in decreasing tumor growth. Some data indicate that NLRP3 inflammasome activation plays an important role in autoimmune hepatitis, but the evidence is scarce. Most researchers have reported that NLRP3 inflammasome activation is essential in liver injury induced by a variety of drugs and hepatotropic virus infection; however, few reports indicate that this pathway can play a beneficial role by inducing liver regeneration. Modulation of the NLRP3 inflammasome appears to be a suitable strategy to treat liver diseases.
Collapse
Affiliation(s)
- Erika Ramos-Tovar
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina-IPN, Apartado Postal 11340, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, México
| | - Pablo Muriel
- Laboratorio de Hepatología Experimental, Departamento de Farmacología, Cinvestav-IPN, Apartado Postal 14-740, Ciudad de México, México.
| |
Collapse
|
7
|
Guedes Lúcio H, Grancieri M, David Medina Martinez O, Celi Lopes Toledo R, Beserra de Menezes C, Maria Brunoro Costa N, Aparecida Vieira Queiroz V, Pereira da Silva B, Stampini Duarte Martino H. Dry heat whole Sorghum BRS 305 flour modulate satiety and improves antioxidant response in brain of Wistar rats fed with high-fat high-fructose diet. Food Res Int 2023; 173:113252. [PMID: 37803565 DOI: 10.1016/j.foodres.2023.113252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 10/08/2023]
Abstract
Sorghum BRS 305 (Sorghum bicolor L. Moench) is a cereal with high tannins and anthocyanins content and keep better the resistant starch when submitted to dry heat treatment. Our objective was to investigate the effects of BRS 305 dry heat treatment whole sorghum flour on satiety and antioxidant response in brain and adipose tissue of Wistar rats fed with a high fat high fructose diet (HFHF). Male Wistar rats were divided in two groups: control (n = 8) and HFHF (n = 16) for eight weeks. After, animals of HFHF group were divided: HFHF (n = 8) and HFHF + BRS 305 sorghum whole flour (n = 8), for 10 weeks. Sorghum consumption reduced gene expression of leptin, resistin, and endocannabinoid receptor 1 type (CB1) in adipose and brain tissues compared to HFHF group. In brain, sorghum consumption also promotes reduction in neuropeptide Y (NPY) gene expression. BRS305 sorghum consumption improved gene expression of sirtuin-1 (SIRT1) in adipose tissue, and in the brain increased heat shock protein 72 (HSP72), erythroid-derived nuclear factor 2 (NRF2), peroxisome proliferator-activated receptor alpha (PPARα), superoxide dismutase (SOD) and catalase activity compared to HFHF. In silicoanalysis showed interaction with PPARα, CB1, and leptin receptors. Advanced glycation end products (AGEs) concentrations in group HFHF + sorghum did not differ from HFHF group. Advanced glycation end products receptors (RAGEs) concentrations did not differ among experimental groups. Then, BRS 305 sorghum submitted to dry treatment was able to modulate gene expression of markers related to satiety and improve antioxidant capacity of rats fed with HFHF diet.
Collapse
Affiliation(s)
- Haira Guedes Lúcio
- Nutrition and Health Department. Federal University of Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa, MG Zip Code: 36.570-900, Brazil
| | - Mariana Grancieri
- Nutrition and Health Department. Federal University of Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa, MG Zip Code: 36.570-900, Brazil; Pharmacy and Nutrition Department, Federal University of Espírito Santo, Alto Universitário, Centro, Alegre, ES Zip Code: 29500-000, Brazil
| | - Oscar David Medina Martinez
- Nutrition and Health Department. Federal University of Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa, MG Zip Code: 36.570-900, Brazil
| | - Renata Celi Lopes Toledo
- Nutrition and Health Department. Federal University of Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa, MG Zip Code: 36.570-900, Brazil
| | | | - Neuza Maria Brunoro Costa
- Pharmacy and Nutrition Department, Federal University of Espírito Santo, Alto Universitário, Centro, Alegre, ES Zip Code: 29500-000, Brazil
| | | | - Bárbara Pereira da Silva
- Nutrition and Health Department. Federal University of Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa, MG Zip Code: 36.570-900, Brazil
| | - Hércia Stampini Duarte Martino
- Nutrition and Health Department. Federal University of Viçosa. Av. Purdue, s/n, Campus Universitário, Viçosa, MG Zip Code: 36.570-900, Brazil.
| |
Collapse
|
8
|
Dwivedi DK, Sahu C, Jena GB. Simultaneous intervention against oxidative stress and inflammation by targeting Nrf2/ARE and NLRP3 inflammasome pathway mitigates thioacetamide-induced liver fibrosis in rat. Can J Physiol Pharmacol 2023; 101:509-520. [PMID: 37665062 DOI: 10.1139/cjpp-2023-0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Liver fibrosis is a typical pathological state/stage involved in most chronic liver diseases and its persistence results in cirrhosis. Inflammasomes are cytoplasmic sensors that induce inflammation in response to stress. Glibenclamide (GLB) is an USFDA-approved drug for type 2 diabetes and is reported to possess anti-inflammatory activity by inhibiting inflammatory cytokines. Dimethyl fumarate (DMF) is an USFDA-approved drug for multiple sclerosis and has been reported to activate the Nrf2/ARE pathway to maintain the cellular antioxidant balance. A total of 36 rats were randomized into six groups (n = 6 each). The rats were injected with thioacetamide (TAA) 200 mg/kg, intraperitoneally every third day for eight consecutive weeks to induce liver fibrosis and oral treatment of GLB 0.5 mg/kg/day and DMF 25 mg/kg/day, and their combinations were provided for the last four consecutive weeks. Treatment with GLB, DMF, and GLB+DMF significantly protected against TAA-mediated oxidative stress and inflammatory conditions by improving hepatic function test, triglycerides, hydroxyproline, and histopathological alterations, by inhibiting the NLRP3 inflammasome signaling and fibrogenic markers, and by activating Nrf2/ARE pathway in Wistar rats. The present results suggest that simultaneous Nrf2/ARE activation and NLRP3 inflammasome inhibition could significantly contribute to developing a novel therapy for patients with liver fibrosis.
Collapse
Affiliation(s)
- Durgesh Kumar Dwivedi
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
- CCRUM-National Research Institute of Unani Medicine for Skin Disorders (NRIUMSD), Hyderabad, Central Council for Research in Unani Medicine (CCRUM), New Delhi, India
| | - Chittaranjan Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - G B Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
9
|
Nițulescu IM, Ciulei G, Cozma A, Procopciuc LM, Orășan OH. From Innate Immunity to Metabolic Disorder: A Review of the NLRP3 Inflammasome in Diabetes Mellitus. J Clin Med 2023; 12:6022. [PMID: 37762961 PMCID: PMC10531881 DOI: 10.3390/jcm12186022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The role of the NLRP3 inflammasome is pivotal in the pathophysiology and progression of diabetes mellitus (DM), encompassing both type 1 (T1D), or type 2 (T2D). As part of the innate immune system, NLRP3 is also responsible for the chronic inflammation triggered by hyperglycemia. In both conditions, NLRP3 facilitates the release of interleukin-1β and interleukin-18. For T1D, NLRP3 perpetuates the autoimmune cascade, leading to the destruction of pancreatic islet cells. In T2D, its activation is associated with the presence of insulin resistance. NLRP3 activation is also instrumental for the presence of numerous complications associated with DM, microvascular and macrovascular. A considerable number of anti-diabetic drugs have demonstrated the ability to inhibit the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Iris Maria Nițulescu
- Department 4 of Internal Medicine, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.M.N.); (A.C.); (O.H.O.)
| | - George Ciulei
- Department 4 of Internal Medicine, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.M.N.); (A.C.); (O.H.O.)
| | - Angela Cozma
- Department 4 of Internal Medicine, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.M.N.); (A.C.); (O.H.O.)
| | - Lucia Maria Procopciuc
- Department 2 of Molecular Sciences, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Olga Hilda Orășan
- Department 4 of Internal Medicine, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (I.M.N.); (A.C.); (O.H.O.)
| |
Collapse
|
10
|
Chen CS, Zhang YG, Wang HJ, Fan HN. Effect and mechanism of reactive oxygen species-mediated NOD-like receptor family pyrin domain-containing 3 inflammasome activation in hepatic alveolar echinococcosis. World J Gastroenterol 2023; 29:2153-2171. [PMID: 37122606 PMCID: PMC10130966 DOI: 10.3748/wjg.v29.i14.2153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 03/16/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a significant component of the innate immune system that plays a vital role in the development of various parasitic diseases. However, its role in hepatic alveolar echinococcosis (HAE) remains unclear.
AIM To investigate the NLRP3 inflammasome and its mechanism of activation in HAE.
METHODS We assessed the expression of NLRP3, caspase-1, interleukin (IL)-1β, and IL-18 in the marginal zone and corresponding normal liver of 60 patients with HAE. A rat model of HAE was employed to investigate the role of the NLRP3 inflammasome in the marginal zone of HAE. Transwell experiments were conducted to investigate the effect of Echinococcus multilocularis (E. multilocularis) in stimulating Kupffer cells and hepatocytes. Furthermore, immunohistochemistry, Western blotting, and enzyme-linked immunosorbent assay were used to evaluate NLRP3, caspase-1, IL-1β, and IL-18 expression; flow cytometry was used to detect apoptosis and reactive oxygen species (ROS).
RESULTS NLRP3 inflammasome activation was significantly associated with ROS. Inhibition of ROS production decreased NLRP3-caspase-1-IL-1β pathway activation and mitigated hepatocyte damage and inflammation.
CONCLUSION E. multilocularis induces hepatocyte damage and inflammation by activating the ROS-mediated NLRP3-caspase-1-IL-1β pathway in Kupffer cells, indicating that ROS may serve as a potential target for the treatment of HAE.
Collapse
Affiliation(s)
- Cai-Song Chen
- Research Center for High Altitude Medicine of Qinghai University, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - Yao-Gang Zhang
- Qinghai Province Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - Hai-Jiu Wang
- Qinghai Province Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - Hai-Ning Fan
- Department of Hepatobiliary and Pancreatic Surgery, Qinghai Province Research Key Laboratory for Echinococcosis, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| |
Collapse
|
11
|
Chen KQ, Ke BY, Cheng L, Yu XQ, Wang ZB, Wang SZ. Research and progress of inflammasomes in nonalcoholic fatty liver disease. Int Immunopharmacol 2023; 118:110013. [PMID: 36931172 DOI: 10.1016/j.intimp.2023.110013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
With the development of the social economy, unhealthy living habits and eating styles are gradually affecting people's health in recent years. As a chronic liver disease, NAFLD is deeply affected by unhealthy living habits and eating styles and has gradually become an increasingly serious public health problem. As a protein complex in clinical research, the inflammasomes play a crucial role in the development of NAFLD, atherosclerosis, and other diseases. This paper reviews the types, composition, characteristics of inflammasomes, and molecular mechanism of the inflammasome in NAFLD. Meanwhile, the paper reviews the drugs and non-drugs that target NLRP3 inflammasome in the treatment of NAFLD in the past decades. we also analyzed and summarized the related experimental models, mechanisms, and results of NAFLD. Although current therapeutic strategies for NAFLD are not effective, we expect that we will be able to find an appropriate treatment to address this problem in the future with further research on inflammasome.
Collapse
Affiliation(s)
- Ke-Qian Chen
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Bo-Yi Ke
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Lu Cheng
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Xiao-Qing Yu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
12
|
Lu S, Li Y, Qian Z, Zhao T, Feng Z, Weng X, Yu L. Role of the inflammasome in insulin resistance and type 2 diabetes mellitus. Front Immunol 2023; 14:1052756. [PMID: 36993972 PMCID: PMC10040598 DOI: 10.3389/fimmu.2023.1052756] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
The inflammasome is a protein complex composed of a variety of proteins in cells and which participates in the innate immune response of the body. It can be activated by upstream signal regulation and plays an important role in pyroptosis, apoptosis, inflammation, tumor regulation, etc. In recent years, the number of metabolic syndrome patients with insulin resistance (IR) has increased year by year, and the inflammasome is closely related to the occurrence and development of metabolic diseases. The inflammasome can directly or indirectly affect conduction of the insulin signaling pathway, involvement the occurrence of IR and type 2 diabetes mellitus (T2DM). Moreover, various therapeutic agents also work through the inflammasome to treat with diabetes. This review focuses on the role of inflammasome on IR and T2DM, pointing out the association and utility value. Briefly, we have discussed the main inflammasomes, including NLRP1, NLRP3, NLRC4, NLRP6 and AIM2, as well as their structure, activation and regulation in IR were described in detail. Finally, we discussed the current therapeutic options-associated with inflammasome for the treatment of T2DM. Specially, the NLRP3-related therapeutic agents and options are widely developed. In summary, this article reviews the role of and research progress on the inflammasome in IR and T2DM.
Collapse
Affiliation(s)
- Shen Lu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanrong Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhaojun Qian
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Tiesuo Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaogang Weng
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- *Correspondence: Lili Yu, ; Xiaogang Weng,
| | - Lili Yu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
- *Correspondence: Lili Yu, ; Xiaogang Weng,
| |
Collapse
|
13
|
Guan X, Shen S, Liu J, Song H, Chang J, Mao X, Song J, Zhang L, Liu C. Protective effecs of baicalin magnesium on non-alcoholic steatohepatitis rats are based on inhibiting NLRP3/Caspase-1/IL-1β signaling pathway. BMC Complement Med Ther 2023; 23:72. [PMID: 36879310 PMCID: PMC9987046 DOI: 10.1186/s12906-023-03903-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Baicalin magnesium is a water-soluble compound isolated from the aqueous solution by Scutellaria baicalensis Georgi. Preliminary experiments have demonstrated that baicalin magnesium can exert protective effects against acute liver injury in rats induced by carbon tetrachloride or lipopolysaccharide combined with d-galactose by regulating lipid peroxidation and oxidative stress. The aim of this study was to investigate the protective effect of baicalin magnesium on non-alcoholic steatohepatitis (NASH) in rats and to elucidate the underlying mechanisms. NASH was induced through a high-fat diet (HFD) for 8 weeks, and Sprague-Dawley rats were intravenously injected with baicalin magnesium, baicalin, and magnesium sulfate for 2 weeks, respectively. Serum was obtained for biochemical analyses and the determination of oxidative stress indicators. Liver tissues were collected for use in liver index assessment, histopathological examination, inflammatory factor analysis, and protein and gene expression analysis. The results revealed that baicalin magnesium markedly improved HFD-induced lipid deposition, inflammatory response, oxidative stress, and histopathological impairments. And baicalin magnesium may exert a protective effect on NASH rats by inhibiting the NLR family pyrin domain involving the 3 (NLRP3)/caspase-1/interleukin (IL)-1β inflammatory pathway. Additionally, the effect of baicalin magnesium was remarkably superior to that of equimolar baicalin and magnesium sulfate in regard to ameliorating NASH symptoms. In conclusion, the findings suggested that baicalin magnesium may represent a potential drug for the treatment of NASH.
Collapse
Affiliation(s)
- Xiulu Guan
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China
| | - Shiyuan Shen
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China
| | - Jinxia Liu
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China
| | - Hongru Song
- Heibei North University, Zhangjiakou, 075000, China
| | - Jinhua Chang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China
| | - Xiaoxia Mao
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China
| | - Jingyu Song
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China
| | - Lin Zhang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China.
| | - Cuizhe Liu
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical College, Anyuan Road, Shuangqiao District, Chengde, 067000, Hebei Province, China.
| |
Collapse
|
14
|
Wang J, Wang L, Zhang XJ, Zhang P, Cai J, She ZG, Li H. Recent updates on targeting the molecular mediators of NAFLD. J Mol Med (Berl) 2023; 101:101-124. [PMID: 36792729 DOI: 10.1007/s00109-022-02282-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 02/17/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the most common disease worldwide in an era of rapid economic growth. NAFLD is a multifactorial disease, involving multiple genetic, metabolic, and environmental factors, and is closely associated with metabolic syndrome, obesity, and cardiovascular disease. NAFLD can be classified into nonalcoholic fatty liver disease (NAFL) and nonalcoholic steatohepatitis (NASH), which can both progress to cirrhosis and even hepatocellular carcinoma (HCC). Due to the enormous burden of NAFLD and its complications, no FDA-approved drugs for the treatment of NAFLD are on the market, and therapeutic targets and drug therapies are being actively investigated. In view of the various pathological mechanisms of NAFLD, numbers of preclinical studies and clinical trials have made rapid progress. This review mainly summarizes the most recently characterized mechanisms and therapeutic targets in each mechanism of NAFLD, focusing on the mechanism and application potential.
Collapse
Affiliation(s)
- Jia Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Luojia Mount Wuchang, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Neurosurgery, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Translation Medicine Research Center, Yangtze University, Huanggang, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, The Third Xiangya Hospital, Changsha, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Luojia Mount Wuchang, Wuhan, China.
- Institute of Model Animal, Wuhan University, Wuhan, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Luojia Mount Wuchang, Wuhan, China.
- Institute of Model Animal, Wuhan University, Wuhan, China.
- Translation Medicine Research Center, Yangtze University, Huanggang, China.
| |
Collapse
|
15
|
Ahmed ES, Mohamed HE, Farrag MA. Luteolin loaded on zinc oxide nanoparticles ameliorates non-alcoholic fatty liver disease associated with insulin resistance in diabetic rats via regulation of PI3K/AKT/FoxO1 pathway. Int J Immunopathol Pharmacol 2022; 36:3946320221137435. [PMID: 36319192 PMCID: PMC9630902 DOI: 10.1177/03946320221137435] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is a worldwide health problem with high prevalence and morbidity associated with obesity, insulin resistance, type 2 diabetes mellitus (T2DM), and dyslipidemia. Nano-formulation of luteolin with Zn oxide in the form of Lut/ZnO NPs may improve the anti-diabetic property of each alone and ameliorate the insulin resistance thus management of NAFLD. This study aimed to measure the efficiency of Lut/ZnO NPs against insulin resistance coupled with NAFLD and T2DM. METHODS A diabetic rat model with NAFLD was induced by a high-fat diet and streptozotocin (30 mg/kg I.P). Serum diabetogenic markers levels, lipid profile, and activity of liver enzymes were measured beside liver oxidative stress markers. Moreover, the hepatic expressions of PI3K/AKT/FoxO1/SERBP1c as well as heme oxygenase-1 were measured beside the histopathological examination. RESULTS Lut/ZnO NPs treatment effectively reduced hyperglycemia, hyperinsulinemia, and ameliorated insulin resistance. Additionally, Lut/ZnO NPs improved the hepatic functions, the antioxidant system, and reduced the oxidative stress markers. Furthermore, the lipid load in the liver, as well as the circulating TG and TC, was minified via the suppression of lipogenesis and gluconeogenesis. Moreover, Lut/ZnO NPs activated the PI3K/AKT signaling pathway, hence inactivating FoxO1, therefore enhancing the hepatic cells' insulin sensitivity. CONCLUSION Lut/ZnO NPs have a hepatoprotective effect and may relieve the progression of NAFLD by alleviating insulin resistance, ameliorating the antioxidant status, and regulating the insulin signal pathway.
Collapse
Affiliation(s)
- Esraa Sa Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, 68892Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Hebatallah E Mohamed
- Radiation Biology Research, National Center for Radiation Research and Technology, 68892Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mostafa A Farrag
- Radiation Biology Research, National Center for Radiation Research and Technology, 68892Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
16
|
Liu Y, Han X, Cai M, Jin S, Yan Z, Lu H, Chen Q. Jianpi Qinghua Fomula alleviates insulin resistance via restraining of MAPK pathway to suppress inflammation of the small intestine in DIO mice. BMC Complement Med Ther 2022; 22:129. [PMID: 35534842 PMCID: PMC9088054 DOI: 10.1186/s12906-022-03595-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Jianpi Qinghua Fomula (JPQHF), a clinically proven prescription,has been applied to cure insulin resistance(IR) and type 2 diabetes (T2DM) for more than 20 years. Here, we will unravel the underlying molecular mechanisms relevant to the therapeutic actions of JPQHF. Methods High-fat(HF)diet-induced obesity(DIO)mouse were established in our research, along with insulin resistance. After the administration of JPQHF 5 or 6 weeks, the parameters of the glucose and lipid metabolism were measured. Flow cytometry and Luminex were utilized to assess the inflammation in small intestine,whilst Western blot was used to determine the relative expression levels of the MAPK pathway-related proteins. The glucose and lipid transporter of small intestine was assessed by immunofluorescence and ELISA, and the expression of insulin signaling pathway was detected by Western blot. Results The metabolic phenotypes of DIO mouse were ameliorated after 6-week oral administration of JPQHF; Meanwhile,JPQHF downregulated levels of IL-1β,IL-6, TNF-α and IFN-γ but upregulated the ratio of M2/M1 macrophages in the small intestine. The elevated expressions of p-P38 MAPK/P38 MAPK、p-JNK/JNK and p-ERK1/2/ERK1/2 were reversed by JPQHF. Moreover, JPQHF enhanced expression of PI3K,p-AKT/AKT, p-IRS1/ IRS1, p-IRS2/ IRS2 and apoB48 in small intestine, and facilitated the translocation of GLUT2 to the basal side of small intestine epithelial cells. Conclusion JPQHF alleviates insulin resistance in DIO mice, and this effect may be associated with its restraining of inflammation of small intestine via attenuating MAPK pathway, and then diminishes small intestinal glucose and lipid absorption. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03595-0.
Collapse
Affiliation(s)
- Yahua Liu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xu Han
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengjie Cai
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shenyi Jin
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zihui Yan
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao Lu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qingguang Chen
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Diabetes Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
17
|
Griffett K, Hayes ME, Boeckman MP, Burris TP. The role of REV-ERB in NASH. Acta Pharmacol Sin 2022; 43:1133-1140. [PMID: 35217816 PMCID: PMC9061770 DOI: 10.1038/s41401-022-00883-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
REV-ERBs are atypical nuclear receptors as they function as ligand-regulated transcriptional repressors. The natural ligand for the REV-ERBs (REV-ERBα and REV-ERBβ) is heme, and heme-binding results in recruitment of transcriptional corepressor proteins such as N-CoR that mediates repression of REV-ERB target genes. These two receptors regulate a large range of physiological processes including several important in the pathophysiology of non-alcoholic steatohepatitis (NASH). These include carbohydrate and lipid metabolism as well as inflammatory pathways. A number of synthetic REV-ERB agonists have been developed as chemical tools and they show efficacy in animal models of NASH. Here, we will review the functions of REV-ERB with regard to their relevance to NASH as well as the potential to target REV-ERB for treatment of this disease.
Collapse
Affiliation(s)
- Kristine Griffett
- Center for Clinical Pharmacology, Washington University in St. Louis and University of Health Sciences & Pharmacy, St. Louis, MO, 63110, USA
| | - Matthew E Hayes
- University of Florida Genetics Institute, Gainesville, FL, 32610, USA
| | - Michael P Boeckman
- Center for Clinical Pharmacology, Washington University in St. Louis and University of Health Sciences & Pharmacy, St. Louis, MO, 63110, USA
| | - Thomas P Burris
- University of Florida Genetics Institute, Gainesville, FL, 32610, USA.
| |
Collapse
|
18
|
Ramadan OI, Nasr M, El-Hay OMA, Hasan A, Abd-Allah EEE, Mahmoud ME, Abd-Allah FM, Abuamara TMM, Hablas MGA, Awad MMY, Diab M, Taha AM, Radwan MK, Abulkhair NH, Abdel-Hady AA. Potential Protective Effect of Zingiber officinale in Comparison to Rosuvastatin on High-fat diet-induced Non-alcoholic Fatty Liver Disease in Rats. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a common liver disease affecting nearly 25% of adults worldwide with related risk factors including obesity, metabolic, and inflammatory diseases. Many therapeutic remedies of natural or synthetic properties were used.
AIM: This study aimed to investigate and compare the effects of ginger/rosuvastatin (ROSU) on the liver of rats with induced NAFLD.
MATERIALS AND METHODS: Forty adult male albino rats were used in this study and divided into four equal subgroups, Group I, control received the standard rat chow diet and given normal saline (1 ml/kg/day), Group II, high-fat diet (HFD) group, Group III, received HFD+ ROSU (15 mg/kg/day), and Group IV, HFD+ Zingiber officinale (10% W/V) for 6 weeks. At the end of our experiment, the rats were sacrificed then blood samples were collected for biochemical analysis of lipid profiles and liver enzymes, liver specimen was prepared for light and electron microscopic examination, and measurement of tissue level of malondialdehyde.
RESULTS: NAFLD caused degenerative changes and lipid deposition in liver cells as evidenced by microscopic results and laboratory tests. Treatment with ginger/ROSU alleviated those changes.
CONCLUSION: Ginger and ROSU could ameliorate liver functions in NAFLD and ginger effect is superior to ROSU.
Collapse
|
19
|
Dwivedi DK, Jena GB. Simultaneous Modulation of NLRP3 Inflammasome and Nrf2/ARE Pathway Rescues Thioacetamide-Induced Hepatic Damage in Mice: Role of Oxidative Stress and Inflammation. Inflammation 2022; 45:610-626. [PMID: 34664134 DOI: 10.1007/s10753-021-01571-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023]
Abstract
Chronic tissue injury resulting in fibrosis of multiple organs, responsible for one-third of the death globally. Liver fibrosis is a common pathway/condition involved in all chronic liver diseases. Thioacetamide (TAA), a hepatotoxicant, was used to induce hepatic fibrosis. Anti-diabetic drug glibenclamide (GLB) possesses anti-inflammatory properties and inhibits NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome activation. Dimethyl fumarate (DMF), a multiple sclerosis drug, activates the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway and maintains the antioxidant status in the cell. The present study was designed to investigate (i) role of NLRP3 inflammasome and Nrf2/ARE pathway in TAA-induced hepatotoxicity and liver fibrosis, (ii) mechanism involved in GLB and DMF mediated hepatoprotection against TAA-induced hepatotoxicity, and (iii) additional/synergistic hepatoprotective effect of combination treatment with NLRP3 inhibition + Nrf2 activation or GLB + DMF or MCC950 + 4OI to reverse/ameliorate the experimental liver fibrosis completely. TAA was administered intraperitoneally to mice for seven consecutive weeks, and treatments of GLB, DMF, GLB + DMF, MCC950, 4OI, and MCC950 + 4OI were provided for the last three consecutive weeks. The intervention with GLB, DMF, GLB + DMF, MCC950, 4OI, and MCC950 + 4OI significantly protected TAA-induced oxidative stress and inflammatory conditions by improving biochemical, histological, and immunoexpression changes in mice. The GLB, DMF, and GLB + DMF intervention exhibited a better protective effect compared with MCC950, 4OI, and MCC950 + 4OI, which revealed that this specific inhibitor/activator possesses only NLRP3 inflammasome inhibitory/Nrf2 activatory properties. In contrast, the clinical drug GLB and DMF have several other beneficial effects, which are independent of NLRP3 inhibition and Nrf2 activation.
Collapse
Affiliation(s)
- Durgesh Kumar Dwivedi
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S., Nagar, Punjab, 160062, India
| | - G B Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S., Nagar, Punjab, 160062, India.
| |
Collapse
|
20
|
Yu L, Hong W, Lu S, Li Y, Guan Y, Weng X, Feng Z. The NLRP3 Inflammasome in Non-Alcoholic Fatty Liver Disease and Steatohepatitis: Therapeutic Targets and Treatment. Front Pharmacol 2022; 13:780496. [PMID: 35350750 PMCID: PMC8957978 DOI: 10.3389/fphar.2022.780496] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is among the most prevalent primary liver diseases worldwide and can develop into various conditions, ranging from simple steatosis, through non-alcoholic steatohepatitis (NASH), to fibrosis, and eventually cirrhosis and hepatocellular carcinoma. Nevertheless, there is no effective treatment for NAFLD due to the complicated etiology. Recently, activation of the NLPR3 inflammasome has been demonstrated to be a contributing factor in the development of NAFLD, particularly as a modulator of progression from initial hepatic steatosis to NASH. NLRP3 inflammasome, as a caspase-1 activation platform, is critical for processing key pro-inflammatory cytokines and pyroptosis. Various stimuli involved in NAFLD can activate the NLRP3 inflammasome, depending on the diverse cellular stresses that they cause. NLRP3 inflammasome-related inhibitors and agents for NAFLD treatment have been tested and demonstrated positive effects in experimental models. Meanwhile, some drugs have been applied in clinical studies, supporting this therapeutic approach. In this review, we discuss the activation, biological functions, and treatment targeting the NLRP3 inflammasome in the context of NAFLD progression. Specifically, we focus on the different types of therapeutic agents that can inhibit the NLRP3 inflammasome and summarize their pharmacological effectiveness for NAFLD treatment.
Collapse
Affiliation(s)
- Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China.,The Third Clinical College of Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Wei Hong
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
| | - Shen Lu
- The Third Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Yanrong Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yaya Guan
- The Third Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Xiaogang Weng
- The Third Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
21
|
Chinta PK, Tambe S, Umrani D, Pal AK, Nandave M. Effect of parthenolide, an NLRP3 inflammasome inhibitor, on insulin resistance in high-fat diet-obese mice. Can J Physiol Pharmacol 2022; 100:272-281. [PMID: 35119950 DOI: 10.1139/cjpp-2021-0116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The activation of Nod-like receptor proteins (NLRP3) containing the pyrin domain inflammasome is a hallmark of the pathogenesis of metabolic disorders. Inhibition of the NLRP3 inflammasome by phytoconstituents has been attempted as a strategy to mitigate these disorders. Therefore, the present study aimed to evaluate the efficacy of an NLRP3 inflammasome inhibitor, parthenolide (PN; 5 mg/kg i.p.) against inflammation and insulin resistance in high-fat diet (HFD) - obese mice. Treatment with PN and pioglitazone (PIO; 30 mg/kg p.o.) attenuated lipopolysaccharide (LPS; 1 ng/ml) - induced elevation of tumor necrosis factor-α and interleukin-1β in mouse peritoneal macrophages in a dose-dependent manner. Sixty days of PN and PIO treatment marginally reduced obesity-induced insulin resistance in HFD-obese mice. PN treatment also decreased blood glucose from 14th to 60th day, supporting the hypothesis of simultaneous attenuation of inflammation and insulin resistance in obese mice. Thus, PN treatment was also evident with significant improvement in glucose tolerance and peripheral insulin resistance validated through the respective tolerance tests. Therefore, the present study suggests that PN, an NLRP3 inflammasome inhibitor, could be a possible therapeutic agent for attenuating obesity-induced insulin resistance.
Collapse
Affiliation(s)
| | | | | | - Ajay Kumar Pal
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi-110017, INDIA
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi-110017, INDIA
| |
Collapse
|
22
|
Sahu C, Singla S, Jena G. Studies on male gonadal toxicity of bisphenol A in diabetic rats: An example of exacerbation effect. J Biochem Mol Toxicol 2022; 36:e22996. [DOI: 10.1002/jbt.22996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Chittaranjan Sahu
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies National Institute of Pharmaceutical Education and Research, S.A.S Nagar Sahibzada Ajit Singh Nagar Punjab India
| | - Shivani Singla
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies National Institute of Pharmaceutical Education and Research, S.A.S Nagar Sahibzada Ajit Singh Nagar Punjab India
| | - Gopabandhu Jena
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies National Institute of Pharmaceutical Education and Research, S.A.S Nagar Sahibzada Ajit Singh Nagar Punjab India
| |
Collapse
|
23
|
Beta vulgaris L. (Beetroot) Methanolic Extract Prevents Hepatic Steatosis and Liver Damage in T2DM Rats by Hypoglycemic, Insulin-Sensitizing, Antioxidant Effects, and Upregulation of PPARα. BIOLOGY 2021; 10:biology10121306. [PMID: 34943221 PMCID: PMC8698622 DOI: 10.3390/biology10121306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Beetroot is one of the most consumable plants across the world. Previous studies have shown many health benefits of beetroot, with evidence of having potent hypoglycemic, antioxidant, and anti-inflammatory effects. The data obtained from this study further confirmed this effect in streptozotocin-diabetic animals. They showed the ability of methanolic beetroot extract to prevent the associated hepatic oxidative stress, inflammation, steatosis, and dyslipidaemia. However, the protection mechanisms involve, at least, upregulation of endogenous antioxidants, anti-apoptotic Bcl2, and PPARα. Abstract The present study examined if methanolic beetroot extract (BE) could prevent dyslipidemia and hepatic steatosis and damage in a type-2 diabetes mellitus (T2DM) rat model and studied some mechanisms of action. T2DM was induced in adult male Wistar rats by a low single dose of streptozotocin (STZ) (35 mg/kg, i.p) and a high-fat diet (HFD) feeding for 5 weeks. Control or T2DM rats then continued on standard or HFDs for another 12 weeks and were treated with the vehicle or BE (250 or 500 mg/kg). BE, at both doses, significantly improved liver structure and reduced hepatic lipid accumulation in the livers of T2DM rats. They also reduced body weight gain, serum glucose, insulin levels, serum and hepatic levels of cholesterol, triglycerides, free fatty acids, and serum levels of low-density lipoproteins in T2DM rats. In concomitant, they significantly reduced serum levels of aspartate and alanine aminotransferases, hepatic levels of malondialdehyde, tumor-necrosis factor-α, interleukin-6, and mRNA of Bax, cleaved caspase-3, and SREBP1/2. However, both doses of BE significantly increased hepatic levels of total glutathione, superoxide dismutase, and mRNA levels of Bcl2 and PPARα in the livers of both the control and T2DM rats. All of these effects were dose-dependent and more profound with doses of 500 mg/kg. In conclusion, chronic feeding of BE to STZ/HFD-induced T2DM in rats prevents hepatic steatosis and liver damage by its hypoglycemic and insulin-sensitizing effects and its ability to upregulate antioxidants and PPARα.
Collapse
|
24
|
Miao P, Ruiqing T, Yanrong L, Zhuwen S, Huan Y, Qiong W, Yongnian L, Chao S. Pyroptosis: A possible link between obesity-related inflammation and inflammatory diseases. J Cell Physiol 2021; 237:1245-1265. [PMID: 34751453 DOI: 10.1002/jcp.30627] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022]
Abstract
The main manifestation of obesity is persistent low-level inflammation and insulin resistance, which is an important factor inducing or promoting other obesity-related diseases. As a proinflammatory programmed cell death, pyroptosis plays an important role, especially in the activation and regulation of the NLRP3 inflammasome pathway. Pyroptosis is associated with the pathogenesis of many chronic inflammatory diseases and is characterized by the formation of micropores in the plasma membrane and the release of a large number of proinflammatory cytokines. This article mainly introduces the main pathways and key molecules of pyroptosis and focuses on the phenomenon of pyroptosis in obesity. It is suggested that the regulation of pyroptosis-related targets may become a new potential therapy for the prevention and treatment of systemic inflammatory response caused by obesity, and we summarize the potential molecular substances that may be beneficial to obesity-related inflammatory diseases through target pyroptosis.
Collapse
Affiliation(s)
- Pan Miao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tai Ruiqing
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Liu Yanrong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Sun Zhuwen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Huan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Wu Qiong
- Medical College; Qinghai Health Development and Research Center, Qinghai University, Xining, Qinghai, China
| | - Liu Yongnian
- Medical College; Qinghai Health Development and Research Center, Qinghai University, Xining, Qinghai, China
| | - Sun Chao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
25
|
Gegen Qinlian Decoction Ameliorates Nonalcoholic Fatty Liver Disease in Rats via Oxidative Stress, Inflammation, and the NLRP3 Signal Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6659445. [PMID: 33643422 PMCID: PMC7902151 DOI: 10.1155/2021/6659445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/22/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022]
Abstract
Gegen Qinlian Decoction (GQD), a classic Chinese herbal formula, has been widely used in Chinese clinic for centuries and is well defined in treating nonalcoholic fatty liver disease (NAFLD). However, the mechanism action of GQD on NAFLD is still rarely evaluated. The present study aims to investigate the effect of GQD on treatment of NAFLD in rats and to further explore the underlying mechanism. The rat NAFLD model established by high-fat-diet feeding was used in the research. Our results exhibited the liver lesions and steatosis was significantly alleviated in NAFLD rats treated with GQD via Oil Red O and H&E staining. Body weight and liver index in GQD groups were reduced significantly (P < 0.05). Moreover, the biochemical analyzer test results showed that GQD significantly decreased blood lipid levels total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and liver injury indicators alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), while it increased the level of high-density lipoprotein cholesterol (HDL-C) (P < 0.05). The levels of interferon-β (IFN-β), tumor necrosis factor-α (TNF-α), and malondialdehyde (MDA) after the GQD treatment were significantly lower, and then interleukin-2 (IL-2), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) levels were lifted significantly (P < 0.05). Further, GQD blocked the expression of NLRP3, ASC, caspase-1 mRNA, and proteins in the liver tissues significantly (P < 0.05). These findings indicated that GQD can ameliorate the hepatic steatosis and injury of NAFLD. Its possible mechanism involves the modulation of inflammatory cytokines and antioxidative stress and the inhibition of NLRP3 signal axis activation. The results support that GQD may be a promising candidate in the treatment of NAFLD.
Collapse
|
26
|
Wang X, Sun K, Zhou Y, Wang H, Zhou Y, Liu S, Nie Y, Li Y. NLRP3 inflammasome inhibitor CY-09 reduces hepatic steatosis in experimental NAFLD mice. Biochem Biophys Res Commun 2021; 534:734-739. [PMID: 33213837 DOI: 10.1016/j.bbrc.2020.11.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 01/04/2023]
Abstract
AIMS Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases. The NOD-like receptor protein 3 (NLRP3) inflammasome was suggested to be involved in the pathogenesis of NAFLD. A small-molecule named CY-09 is a new selective and direct inhibitor of the NLRP3 inflammasome. We aimed to investigate whether CY-09 is effective for the treatment of NAFLD in a high-fat diet (HFD)-induced mouse model. METHODS Twenty mice were fed by HFD for 14 weeks, and then were randomly assigned into two groups: (1) control group receiving dimethylsulfoxide (DMSO) solution; (2) CY-09 group receiving CY-09 injection. In an 8-week follow-up, oral glucose tolerance test (OGTT) and homeostasis model assessment of insulin resistance (HOMA-IR) were used to measure glucose metabolism. Liver steatosis was evaluated by the NAFLD activity score (NAS) and deemed as the primary outcome. RESULTS The body weight in CY-09 group was significantly lower than the DMSO control group on 27 weeks (41.0 ± 3.5 g vs. 49.7 ± 5.2 g, P = 0.014). The area under the curve (AUC) of OGTT was less in CY-09 group than that in DMSO group (35.81 ± 6.79 vs. 22.91 ± 2.58 mmol/L·hr, P = 0.004), as well as HOMA-IR (14.36 ± 3.89 vs. 8.82 ± 2.04 mmol.mIU.L-2, P = 0.023). Microscopically, liver lipid droplets dramatically improved and significantly lower NAS was observed in CY-09 group (8.25 ± 1.26 vs. 3.20 ± 0.45, P < 0.001). CONCLUSION CY-09 reduces hepatic steatosis in experimental NAFLD mice and CY-09 may be a potential therapeutic drug of NAFLD in clinical practice.
Collapse
Affiliation(s)
- Xianfei Wang
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510180, China; Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Kangyue Sun
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Youlian Zhou
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510180, China
| | - Hong Wang
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510180, China
| | - Yongjian Zhou
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510180, China
| | - Side Liu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuqiang Nie
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510180, China.
| | - Yue Li
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
27
|
Study on the attenuated effect of Ginkgolide B on ferroptosis in high fat diet induced nonalcoholic fatty liver disease. Toxicology 2020; 445:152599. [DOI: 10.1016/j.tox.2020.152599] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
|
28
|
Pandey SN, Kwatra M, Dwivedi DK, Choubey P, Lahkar M, Jangra A. 7,8-Dihydroxyflavone alleviated the high-fat diet and alcohol-induced memory impairment: behavioral, biochemical and molecular evidence. Psychopharmacology (Berl) 2020; 237:1827-1840. [PMID: 32206827 DOI: 10.1007/s00213-020-05502-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE Alcoholism and obesity impart a deleterious impact on human health and affects the quality of life. Chronic consumption of alcohol and western diet has been reported to cause memory deficits. 7,8-dihydroxyflavone (7,8-DHF), a TrkB agonist, comprises antioxidant and anti-inflammatory properties in treating various neurological disorders. OBJECTIVES The current study was aimed to determine the protective effect and molecular mechanism of 7,8-DHF against alcohol and high-fat diet (HFD)-induced memory deficits in rats. METHODS The adult male Wistar rats were given alcohol (3-15%) and HFD ad libitum for 12 weeks in different experimental groups. 7,8-DHF (5 mg/kg) was intraperitoneally injected daily for the last 4 weeks (9th-12th week). RESULTS The alcohol and HFD administration caused cognitive impairment as evaluated through the Morris water maze (MWM) test in alcohol, HFD, and alcohol + HFD-fed animals. The last 4-week treatment of 7,8-DHF (5 mg/kg; i.p.) attenuated alcohol and HFD-induced memory loss. 7,8-DHF treatment also restored the glutathione (GSH) level along with attenuation of nitrite, malondialdehyde content (markers of oxidative and nitrosative stress), and reduction of the acetylcholinesterase activity in the hippocampus of alcohol and HFD-fed animals. Furthermore, the administration of 7,8-DHF caused downregulation of NF-κB, iNOS, and caspase-3 and upregulation of Nrf2, HO-1, and BDNF mRNA level in rat hippocampus. CONCLUSION 7,8-DHF administration conferred beneficial effects against alcohol and HFD-induced memory deficit via its unique antioxidant, anti-inflammatory, anti-apoptotic potential, along with the activation of TrkB/BDNF signaling pathway in the hippocampus.
Collapse
Affiliation(s)
- Surya Narayan Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Mohit Kwatra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Durgesh Kumar Dwivedi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Priyansha Choubey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Mangala Lahkar
- Department of Pharmacology, Gauhati Medical College, Guwahati, Assam, India
| | - Ashok Jangra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
- Department of Pharmacology, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
29
|
Jangra A, Rajput P, Dwivedi DK, Lahkar M. Amelioration of Repeated Restraint Stress-Induced Behavioral Deficits and Hippocampal Anomalies with Taurine Treatment in Mice. Neurochem Res 2020; 45:731-740. [PMID: 31898086 DOI: 10.1007/s11064-019-02945-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 02/08/2023]
Abstract
Taurine, an essential neutraceutical, has been reported to exhibit antioxidant and anti-inflammatory properties. Substantial evidence indicates that prolonged stress is one of the leading causes of psychological and physiological anomalies. Restraint stress (RS) rat model is the most widely used experimental model for the induction of chronic psycho-emotional stress. In the present study, Swiss albino male mice were restrained for 6 h/day for 28 consecutive days. Animals were divided into four groups: control, RS, RS + taurine, and taurine control group. Taurine, a potent antioxidant, was administered (200 mg/kg) orally along with RS for 28 days. The taurine intervention significantly restored the RS-induced neurobehavioral alterations evident by the elevated plus-maze, Morris water maze test, forced swim test, tail suspension test, and a sucrose preference test. Moreover, taurine significantly prevented hippocampal oxidative stress (lipid peroxidation, reduced glutathione, and nitrite) and other neurochemical (acetylcholinesterase, and IL-1β) anomalies. Using western blotting analyses, we demonstrate that taurine treatment significantly ameliorated the alterations in Brain-derived neurotrophic factor, caspase-3, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) level in the hippocampus. Thus, Taurine effectively inhibited RS-induced oxidative stress, neuroinflammation, and apoptosis via a mechanism involving the inhibition of the NF-κB signaling pathway. In summary, our study is the first to demonstrate that NF-κB and caspase-3 inhibition, as well as BDNF augmentation, was involved in neuroprotective potential of taurine against RS-induced behavioural anomalies.
Collapse
Affiliation(s)
- Ashok Jangra
- Department of Pharmacology, KIET School of Pharmacy, Krishna Institute of Engineering and Technology, Ghaziabad, Uttar Pradesh, India.
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Prabha Rajput
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Durgesh Kumar Dwivedi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Mangala Lahkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
- Department of Pharmacology, Gauhati Medical College, Guwahati, Assam, India
| |
Collapse
|