1
|
Mantry S, Das PK, Sankaraiah J, Panda S, Silakabattini K, Reddy Devireddy AK, Barik CS, Khalid M. Advancement on heparin-based hydrogel/scaffolds in biomedical and tissue engineering applications: Delivery carrier and pre-clinical implications. Int J Pharm 2025:125733. [PMID: 40398669 DOI: 10.1016/j.ijpharm.2025.125733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025]
Abstract
The advancement of biomaterials utilization in biomedical and tissue regenerative applications has emerged progressively. Hydrogels are three-dimensional, hydrophilic polymeric networks that replicate the natural extracellular matrix (ECM), establishing a hydrated porous milieu that emulates biological functions such as proliferation and differentiation of cellular components. The application of biological macromolecules, particularly Heparin-based hydrogel, has garnered considerable interest owing to various intrinsic biological and mechanical properties. This comprehensive review paper is designed to elucidate the derivation of heparin and its purification method for biomedical uses. The article briefly outlines the diverse physiochemical and biological properties of heparin derivative-based hydrogels/scaffolds and emphasizes their significance as vehicles for growth factors, genes, and cells in complex biomedical and tissue engineering applications. This publication also summarizes the potential concerns associated with heparin-based derivatives, efforts to address these issues, and current clinical perspectives. This represents the inaugural instance of an extensive summarization of heparin-based hydrogels in biomedical applications, emphasizing pre-clinical and clinical investigations, which will further assist the scientific community in addressing the challenges associated with heparin-based hydrogels in biomedical contexts.
Collapse
Affiliation(s)
- Shubhrajit Mantry
- Department of Pharmacy, Sarala Birla University, Birla Knowledge City, P.O.- Mahilong, Purulia Road, Ranchi 835103 Jharkhand, India.
| | - Prabhat Kumar Das
- Department of Pharmacology, GRY Institute of Pharmacy, Borawan, Khargone, MP, India
| | - Jonna Sankaraiah
- Department of Process Development, Medytox Inc., 102, Osongsaengmyeong 4-ro, Osong-eup, Heugdeok-gu, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Satyajit Panda
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack, Odisha 754202, India.
| | - Kotaiah Silakabattini
- Department of Pharmacognosy, Chebrolu Hanumaiah Institute of Pharmaceutical Sciences, Chandramoulipuram, Chowdavaram, Guntur 522019 Andhra Pradesh, India
| | - Ashok Kumar Reddy Devireddy
- Department of Pharmacology, A M Reddy Memorial College of Pharmacy, Petlurivaripalem, Narasaraopet, Palnadu (Dt), A.P 522601, India
| | - Chandra Sekhar Barik
- Department of Pharmacology, School of Pharmacy, DRIEMS University, Kotasahi, Kairapari, Tangi, Cuttack, Odisha 754022, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| |
Collapse
|
2
|
Xi S, Li X, Chen W, Cao Y, Ke Y. Crocin-I mitigates diquat-induced pulmonary fibrosis via activation of the SIRT3/FOXO3a pathway. Biomed Pharmacother 2025; 186:118043. [PMID: 40194334 DOI: 10.1016/j.biopha.2025.118043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Diquat (DQ) is a potent herbicide known for its significant toxicity to humans and animals, often resulting in severe pulmonary fibrosis, a serious and potentially life-threatening complication of DQ poisoning. Currently, there are no effective pharmacological treatments for this condition. Crocin-I, a primary bioactive component derived from crocin, possesses notable antioxidant and anti-inflammatory properties; however, its potential to inhibit DQ-induced pulmonary fibrosis has not been fully explored. This study aimed to elucidate the underlying mechanisms and therapeutic effects of crocin-I on DQ-induced pulmonary fibrosis. METHODS C57BL/6 mice exposed to DQ served as a model of pulmonary fibrosis. Pathological characteristics were assessed with hematoxylin and eosin staining, and collagen deposition was measured using Masson's trichrome staining. The expression of epithelial-mesenchymal transition markers was measured using Western blotting and quantitative real-time polymerase chain reaction. Additionally, proteins associated with the SIRT3/FOXO3a signaling pathway were analyzed through Western blotting and quantitative real-time polymerase chain reaction. RESULTS Administration of crocin-I at a dosage of 40 mg/kg significantly reduced pulmonary fibrosis, as indicated by decreased collagen deposition. Furthermore, treatment with crocin-I enhanced the expression of SIRT3 and FOXO3a, leading to altered levels of EMT-associated markers, specifically decreased E-cadherin and increased vimentin and α-SMA. CONCLUSION These findings suggest that crocin-I activates the SIRT3/FOXO3a pathway and alleviates DQ-induced pulmonary fibrosis, highlighting its potential as a therapeutic agent for lung injury and paving the way for further research into its clinical applications.
Collapse
Affiliation(s)
- Shuangyun Xi
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, Guizhou, China; School of Forensic Medcine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiuli Li
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, Guizhou, China; School of Forensic Medcine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Weijun Chen
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, Guizhou, China; School of Forensic Medcine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yong Cao
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, Guizhou, China; School of Forensic Medcine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yong Ke
- Center of Forensic Expertise, Affiliated hospital of Zunyi Medical University, Zunyi, Guizhou, China; School of Forensic Medcine, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
3
|
You AJ, Park J, Shin JM, Kim TH. Oxidative Stress and Dietary Antioxidants in Head and Neck Cancer. Antioxidants (Basel) 2025; 14:508. [PMID: 40427390 PMCID: PMC12108201 DOI: 10.3390/antiox14050508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Oxidative stress serves as both a driver and result of redox metabolism across diverse physiological and pathological states, including cancer. Head and neck squamous cell carcinoma (HNSCC), the sixth most prevalent malignancy worldwide, is no exception. HNSCC is strongly linked to modifiable external risk factors such as tobacco smoking, alcohol consumption, and high-risk human papilloma (HR-HPV) infection. These risk factors are associated with elevated oxidative stress, which contributes to carcinogenesis through DNA damage, chronic inflammation, and dysregulation of cell signaling pathways. Current treatment options for HNSCC have limitations and burden of side effects. Studies have been conducted on potent dietary antioxidants for the prevention and adjunctive treatment of HNSCC. This review aims to explore the contribution of oxidative stress to carcinogenesis in general and the three major risk factors for HNSCC. We evaluate latest evidence for nine dietary antioxidants such as vitamin C, vitamin E, carotenoids, epigallocatechin-3-gallate (EGCG), and curcumin, that have shown promise in preclinical and clinical studies. We discuss how these compounds mitigate ROS, influence cancer-related signaling pathways, and modulate tumor microenvironment. Despite encouraging findings, current clinical data remain limited and inconclusive, highlighting the need for further research on possible dietary antioxidants for HNSCC.
Collapse
Affiliation(s)
- A Jeong You
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (A.J.Y.); (J.P.); (J.-M.S.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Jaehyung Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (A.J.Y.); (J.P.); (J.-M.S.)
| | - Jae-Min Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (A.J.Y.); (J.P.); (J.-M.S.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea; (A.J.Y.); (J.P.); (J.-M.S.)
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Liang Y, Liu T, Wang D, Liu Q. Exploring the antimicrobial, anti-inflammatory, antioxidant, and immunomodulatory properties of Chrysanthemum morifolium and Chrysanthemum indicum: a narrow review. Front Pharmacol 2025; 16:1538311. [PMID: 40176916 PMCID: PMC11963160 DOI: 10.3389/fphar.2025.1538311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Infectious diseases continue to be a major global public health concern, which is exacerbated by the increasing prevalence of antimicrobial resistance. This review investigates the potential of herbal medicine, particularly Chrysanthemum morifolium (CM) and Chrysanthemum indicum (CI), in addressing these challenges. Both herbs, documented in traditional Chinese medicine (TCM) and the Pharmacopoeia of the People's Republic of China (2020 edition), are renowned for their heat-clearing and detoxifying properties. Phytochemical studies reveal that these botanicals contain diverse bioactive compounds, including flavonoids, terpenoids, and phenylpropanoids, which exhibit antimicrobial, anti-inflammatory, and antioxidant properties, among other effects. Comparative analysis reveals that distinct compound profiles and differential concentrations of core phytochemicals between CM and CI may lead to differentiated therapeutic advantages in anti-infective applications. By systematically examining their ethnopharmacological origins, phytochemical fingerprints, and pharmacological mechanisms, this review highlights their synergistic potential with conventional antimicrobial therapies through multi-target mechanisms, proposing novel integrative approaches for global health challenges.
Collapse
Affiliation(s)
- Yuqing Liang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tengwen Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, China
| |
Collapse
|
5
|
Zhou Z, Zhang D, Ning X, Jin L, Lin Y, Liang C, Wen X, Huang T, Zhou J, Zhang Y. An antibacterial, antioxidant and hemostatic hydrogel accelerates infectious wound healing. J Nanobiotechnology 2025; 23:49. [PMID: 39871272 PMCID: PMC11773726 DOI: 10.1186/s12951-025-03148-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/22/2025] [Indexed: 01/29/2025] Open
Abstract
Hydrogel drug-delivery system that can effectively load antibacterial drugs, realize the in-situ drug release in the microenvironment of wound infection to promote wound healing. In this study, a multifunctional hydrogel drug delivery system (HA@TA-Okra) was constructed through the integration of hyaluronic acid methacrylate (HAMA) matrix with tannic acid (TA) and okra extract. The composition and structural characteristics of HA@TA-Okra system and its unique advantages in the treatment of diverse wounds were systematically evaluated. TA, due to its unique chemical structure, is able to anchor within the HAMA network through interactions and cross-linking, conferring exceptional mechanical strength and stability to the hydrogel. Both TA and okra extract possess antioxidant and antibacterial properties, and when they two acts synergistically they can effectively scavenge free radicals, enhance antibacterial action, diminishing the risk of wound infection. In vitro experiments revealed that HA@TA-Okra system has superior properties, such as rapid gel response, remarkable swelling regulation, and potent antioxidant ability. Furthermore, the HA@TA-Okra system significantly outperformed conventional dressings in terms of hemostatic performance in a rat hemorrhage model. We further evaluated the repair role of HA@TA-Okra system in vivo by establishing an animal model of full-thickness skin defects and a model of infected total skin defects. The results confirmed its positive effects in fighting bacterial infection, reducing inflammation and promoting wound healing. In summary, the HA@TA-Okra system exhibits comprehensive properties such as antibacterial, antioxidant and hemostatic properties, which has a potential application in the field of tissue repair medicine.
Collapse
Affiliation(s)
- Ziyi Zhou
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Dengjun Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xuchao Ning
- Department of Plastic Surgery, Cheeloo College of Medicine, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266035, China
| | - Linbo Jin
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yijing Lin
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Chen Liang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xin Wen
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Tianhao Huang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Junli Zhou
- Department of Burn and Plastic surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, China.
| | - Yiming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
6
|
Kim S, Jung UJ, Kim SR. The Crucial Role of the Blood-Brain Barrier in Neurodegenerative Diseases: Mechanisms of Disruption and Therapeutic Implications. J Clin Med 2025; 14:386. [PMID: 39860392 PMCID: PMC11765772 DOI: 10.3390/jcm14020386] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The blood-brain barrier (BBB) is a crucial structure that maintains brain homeostasis by regulating the entry of molecules and cells from the bloodstream into the central nervous system (CNS). Neurodegenerative diseases such as Alzheimer's and Parkinson's disease, as well as ischemic stroke, compromise the integrity of the BBB. This leads to increased permeability and the infiltration of harmful substances, thereby accelerating neurodegeneration. In this review, we explore the mechanisms underlying BBB disruption, including oxidative stress, neuroinflammation, vascular dysfunction, and the loss of tight junction integrity, in patients with neurodegenerative diseases. We discuss how BBB breakdown contributes to neuroinflammation, neurotoxicity, and the abnormal accumulation of pathological proteins, all of which exacerbate neuronal damage and facilitate disease progression. Furthermore, we discuss potential therapeutic strategies aimed at preserving or restoring BBB function, such as anti-inflammatory treatments, antioxidant therapies, and approaches to enhance tight junction integrity. Given the central role of the BBB in neurodegeneration, maintaining its integrity represents a promising therapeutic approach to slow or prevent the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
7
|
Han C, Zhu M, Liu Y, Yang Y, Cheng J, Li P. Regulation of Vascular Injury and Repair by P21-Activated Kinase 1 and P21-Activated Kinase 2: Therapeutic Potential and Challenges. Biomolecules 2024; 14:1596. [PMID: 39766303 PMCID: PMC11674331 DOI: 10.3390/biom14121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
The PAK (p21-activated kinases) family is a class of intracellular signal transduction protein kinases that regulate various cellular functions, mainly through their interactions with small GTP enzymes. PAK1 and PAK2 in the PAK kinase family are key signal transduction molecules that play important roles in various biological processes, including morphological changes, migration, proliferation, and apoptosis, and are involved in the progression of many diseases. Abnormal expression or dysregulation of PAK1 and PAK2 may be associated with several diseases, including cancer, neurological diseases, etc. The current research mainly focuses on studying the role of PAK and PAK inhibitors in the regulation of cancer progression, but relatively few reports are available that explore their potential role in cardiovascular diseases. Vascular injury and repair are complex processes involved in many cardiovascular conditions, including atherosclerosis, restenosis, and hypertension. Emerging research suggests that PAK1 and PAK2 have pivotal roles in vascular endothelial cell functions, including migration, proliferation, and angiogenesis. These kinases also modulate vascular smooth muscle relaxation, vascular permeability, and structural alterations, which are critical in the development of atherosclerosis and vascular inflammation. By targeting these activities, PAK proteins are essential for both normal vascular physiology and the pathogenesis of vascular diseases, highlighting their potential as therapeutic targets for vascular health. This review focuses on recent studies that offer experimental insights into the mechanisms by which PAK1 and PAK2 regulate the biological processes of vascular injury and repair and the therapeutic potential of the current existing PAK inhibitors in vascular-related diseases. The limitations of treatment with some PAK inhibitors and the ways that future development can overcome these challenges are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Pengyun Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; (C.H.); (M.Z.); (Y.L.); (Y.Y.); (J.C.)
| |
Collapse
|