1
|
Lipina TV, Giang H, Thacker JS, Wetsel WC, Caron MG, Beaulieu JM, Salahpour A, Ramsey AJ. Combination of Haloperidol With UNC9994, β-arrestin-Biased Analog of Aripiprazole, Ameliorates Schizophrenia-Related Phenotypes Induced by NMDAR Deficit in Mice. Int J Neuropsychopharmacol 2024; 27:pyae060. [PMID: 39612588 DOI: 10.1093/ijnp/pyae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Glutamatergic system dysfunction contributes to a full spectrum of schizophrenia-like symptoms, including the cognitive and negative symptoms that are resistant to treatment with antipsychotic drugs (APDs). Aripiprazole, an atypical APD, acts as a dopamine partial agonist, and its combination with haloperidol (a typical APD) has been suggested as a potential strategy to improve schizophrenia. Recently, an analog of aripiprazole, UNC9994, was developed. UNC9994 does not affect dopamine 2 receptor (D2R)-mediated Gi/o protein signaling but acts as a partial agonist for D2R/β-arrestin interactions. Hence, one of our objectives was to probe the behavioral effects of co-administrating haloperidol with UNC9994 in the N-methyl-D-aspartate receptor (NMDAR) mouse models of schizophrenia. The biochemical mechanisms underlying the neurobiological effects of dual haloperidol × UNC9994 action are currently missing. Hence, we aimed to explore D2R- and NMDAR-dependent signaling mechanisms that could underlie the effects of dual drug treatments. METHODS NMDAR hypofunction was induced pharmacologically by acute injection of MK-801 (NMDAR pore blocker; 0.15 mg/kg) and genetically by knockdown of Grin1 gene expression in mice, which have a 90% reduction in NMDAR levels (Grin1 knockdown [Grin1-KD]). After intraperitoneal injections of vehicle, haloperidol (0.15 mg/kg), UNC9994 (0.25 mg/kg), or their combination, mice were tested in open field, prepulse inhibition (PPI), Y-maze, and Puzzle box. Biochemical effects on the phosphorylation of Akt, glycogen synthase kinase-3 (GSK-3), and CaMKII in the prefrontal cortex (PFC) and striatum of MK-801-treated mice were assessed by western blotting. RESULTS Our findings indicate that low dose co-administration of UNC9994 and haloperidol reduces hyperactivity in MK-801-treated animals and in Grin1-KD mice. Furthermore, this dual administration effectively reverses PPI deficits, repetitive/rigid behavior in the Y-maze, and deficient executive function in the Puzzle box in both animal models. Pharmacological inhibition of NMDAR by MK-801 induced the opposite effects in the PFC and striatum on pAkt-S473 and pGSK3β-Ser9. Dual injection of haloperidol with UNC9994 reversed MK-801-induced effects on pAkt-S473 but not on pGSK3β-Ser9 in both brain structures. CONCLUSIONS The dual administration of haloperidol with UNC9994 at low doses represents a promising approach to ameliorate symptoms of schizophrenia. The combined drug regimen elicits synergistic effects specifically on pAkt-S473, suggesting it as a potential biomarker for antipsychotic actions.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Huy Giang
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan S Thacker
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada
| | - William C Wetsel
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
- Mouse Behavioral and Neuroendocrine, Analysis Core Facility, Duke University Medical Center, Durham, North Carolina, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Marc G Caron
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
- Mouse Behavioral and Neuroendocrine, Analysis Core Facility, Duke University Medical Center, Durham, North Carolina, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jean Martin Beaulieu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ali Salahpour
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Amy J Ramsey
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Hsiao YT, Chang CY, Lee TY, Liao WT, Lai WS, Chang FC. Effects of Sarcosine (N-methylglycine) on NMDA (N-methyl-D-aspartate) Receptor Hypofunction Induced by MK801: In Vivo Calcium Imaging in the CA1 Region of the Dorsal Hippocampus. Brain Sci 2024; 14:1150. [PMID: 39595913 PMCID: PMC11592077 DOI: 10.3390/brainsci14111150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Hypofunction of the glutamate system in the brain is one of the pathophysiological hypotheses for schizophrenia. Accumulating animal and clinical studies show that sarcosine (N-methylglycine), a glycine transporter-1 inhibitor, is effective in ameliorating the negative and cognitive symptoms of schizophrenia. The aims of the present study were to observe the effects of sarcosine on neuronal activity in the dorsal CA1 (dCA1) hippocampal neurons within an NMDA receptor hypofunction model induced by MK801. METHODS We applied in vivo calcium imaging to observe the dynamics of fluorescence from the dCA1 hippocampal neurons when the mice were exploring in an open field. Using this tool, we directly measured and compared neuronal properties between sarcosine-treated and untreated mice. At the same time, the physiological function of the neurons was also quantified by measuring their place fields. RESULTS Our data demonstrated that MK-801 (0.2 mg/kg) diminished the fluorescence intensity of dCA1 neurons that had been genetically modified with a calcium indicator. MK-801 also significantly increased the correlation coefficient between the fluorescence dynamics of pairs of cells, a feature that may be linked to the symptom of disorganization in human patients with schizophrenia. The spatial correlations of place fields in the mice were impaired by MK-801 as well. Injected sarcosine (500 mg or 1000 mg/kg) significantly alleviated the abovementioned abnormalities. CONCLUSIONS Our data provide evidence to support the use of sarcosine to alleviate symptoms of schizophrenia, especially hippocampus-related functions.
Collapse
Affiliation(s)
- Yi-Tse Hsiao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (Y.-T.H.); (C.-Y.C.); (T.-Y.L.); (W.-T.L.)
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan;
| | - Ching-Yuan Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (Y.-T.H.); (C.-Y.C.); (T.-Y.L.); (W.-T.L.)
| | - Ting-Yen Lee
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (Y.-T.H.); (C.-Y.C.); (T.-Y.L.); (W.-T.L.)
| | - Wan-Ting Liao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (Y.-T.H.); (C.-Y.C.); (T.-Y.L.); (W.-T.L.)
| | - Wen-Sung Lai
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan;
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Fang-Chia Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (Y.-T.H.); (C.-Y.C.); (T.-Y.L.); (W.-T.L.)
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan;
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung City 40402, Taiwan
- Department of Medicine, College of Medicine, China Medical University, Taichung City 404333, Taiwan
| |
Collapse
|
3
|
de Bartolomeis A, Vellucci L, Austin MC, De Simone G, Barone A. Rational and Translational Implications of D-Amino Acids for Treatment-Resistant Schizophrenia: From Neurobiology to the Clinics. Biomolecules 2022; 12:biom12070909. [PMID: 35883465 PMCID: PMC9312470 DOI: 10.3390/biom12070909] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia has been conceptualized as a neurodevelopmental disorder with synaptic alterations and aberrant cortical–subcortical connections. Antipsychotics are the mainstay of schizophrenia treatment and nearly all share the common feature of dopamine D2 receptor occupancy, whereas glutamatergic abnormalities are not targeted by the presently available therapies. D-amino acids, acting as N-methyl-D-aspartate receptor (NMDAR) modulators, have emerged in the last few years as a potential augmentation strategy in those cases of schizophrenia that do not respond well to antipsychotics, a condition defined as treatment-resistant schizophrenia (TRS), affecting almost 30–40% of patients, and characterized by serious cognitive deficits and functional impairment. In the present systematic review, we address with a direct and reverse translational perspective the efficacy of D-amino acids, including D-serine, D-aspartate, and D-alanine, in poor responders. The impact of these molecules on the synaptic architecture is also considered in the light of dendritic spine changes reported in schizophrenia and antipsychotics’ effect on postsynaptic density proteins. Moreover, we describe compounds targeting D-amino acid oxidase and D-aspartate oxidase enzymes. Finally, other drugs acting at NMDAR and proxy of D-amino acids function, such as D-cycloserine, sarcosine, and glycine, are considered in the light of the clinical burden of TRS, together with other emerging molecules.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
- Correspondence: ; Tel.: +39-081-7463673 or +39-081-7463884 or +39-3662745592; Fax: +39-081-7462644
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Mark C. Austin
- Clinical Psychopharmacology Program, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA;
| | - Giuseppe De Simone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| |
Collapse
|
4
|
Sawahata M, Asano H, Nagai T, Ito N, Kohno T, Nabeshima T, Hattori M, Yamada K. Microinjection of Reelin into the mPFC prevents MK-801-induced recognition memory impairment in mice. Pharmacol Res 2021; 173:105832. [PMID: 34450306 DOI: 10.1016/j.phrs.2021.105832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
Reelin, a large extracellular matrix protein, helps to regulate neuronal plasticity and cognitive function. Several studies have shown that Reelin dysfunction, resulting from factors such as mutations in gene RELN or low Reelin expression, is associated with schizophrenia (SCZ). We previously reported that microinjection of Reelin into cerebral ventricle prevents phencyclidine-induced cognitive and sensory-motor gating deficits. However, it remains unclear whether and how Reelin ameliorates behavioral abnormalities in the animal model of SCZ. In the present study, we evaluated the effect of recombinant Reelin microinjection into the medial prefrontal cortex (mPFC) on abnormal behaviors induced by MK-801, an N-methyl-D-aspartate receptor antagonist. Microinjection of Reelin into the mPFC prevented impairment of recognition memory of MK-801-treated mice in the novel object recognition test (NORT). On the other hand, the same treatment had no effect on deficits in sensory-motor gating and short-term memory in the pre-pulse inhibition and Y-maze tests, respectively. To establish the neural substrates that respond to Reelin, the number of c-Fos-positive cells in the mPFC was determined. A significant increase in c-Fos-positive cells in the mPFC of MK-801-treated mice was observed when compared with saline-treated mice, and this change was suppressed by microinjection of Reelin into the mPFC. A K2360/2467A Reelin that cannot bind to its receptor failed to ameliorate MK-801-induced cognitive deficits in NORT. These results suggest that Reelin prevents MK-801-induced recognition memory impairment by acting on its receptors to suppress neural activity in the mPFC of mice.
Collapse
Affiliation(s)
- Masahito Sawahata
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan; Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroki Asano
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan; Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Japan
| | - Norimichi Ito
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, 467-8603, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Sciences, Fujita Health University, Toyoake 470-1192, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, 467-8603, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan.
| |
Collapse
|
5
|
Pei JC, Luo DZ, Gau SS, Chang CY, Lai WS. Directly and Indirectly Targeting the Glycine Modulatory Site to Modulate NMDA Receptor Function to Address Unmet Medical Needs of Patients With Schizophrenia. Front Psychiatry 2021; 12:742058. [PMID: 34658976 PMCID: PMC8517243 DOI: 10.3389/fpsyt.2021.742058] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
Schizophrenia is a severe mental illness that affects ~1% of the world's population. It is clinically characterized by positive, negative, and cognitive symptoms. Currently available antipsychotic medications are relatively ineffective in improving negative and cognitive deficits, which are related to a patient's functional outcomes and quality of life. Negative symptoms and cognitive deficits are unmet by the antipsychotic medications developed to date. In recent decades, compelling animal and clinical studies have supported the NMDA receptor (NMDAR) hypofunction hypothesis of schizophrenia and have suggested some promising therapeutic agents. Notably, several NMDAR-enhancing agents, especially those that function through the glycine modulatory site (GMS) of NMDAR, cause significant reduction in psychotic and cognitive symptoms in patients with schizophrenia. Given that the NMDAR-mediated signaling pathway has been implicated in cognitive/social functions and that GMS is a potential therapeutic target for enhancing the activation of NMDARs, there is great interest in investigating the effects of direct and indirect GMS modulators and their therapeutic potential. In this review, we focus on describing preclinical and clinical studies of direct and indirect GMS modulators in the treatment of schizophrenia, including glycine, D-cycloserine, D-serine, glycine transporter 1 (GlyT1) inhibitors, and D-amino acid oxidase (DAO or DAAO) inhibitors. We highlight some of the most promising recently developed pharmacological compounds designed to either directly or indirectly target GMS and thus augment NMDAR function to treat the cognitive and negative symptoms of schizophrenia. Overall, the current findings suggest that indirectly targeting of GMS appears to be more beneficial and leads to less adverse effects than direct targeting of GMS to modulate NMDAR functions. Indirect GMS modulators, especially GlyT1 inhibitors and DAO inhibitors, open new avenues for the treatment of unmet medical needs for patients with schizophrenia.
Collapse
Affiliation(s)
- Ju-Chun Pei
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Da-Zhong Luo
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Shiang-Shin Gau
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Chia-Yuan Chang
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
A single psychotomimetic dose of ketamine decreases thalamocortical spindles and delta oscillations in the sedated rat. Schizophr Res 2020; 222:362-374. [PMID: 32507548 DOI: 10.1016/j.schres.2020.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/18/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND In patients with psychotic disorders, sleep spindles are reduced, supporting the hypothesis that the thalamus and glutamate receptors play a crucial etio-pathophysiological role, whose underlying mechanisms remain unknown. We hypothesized that a reduced function of NMDA receptors is involved in the spindle deficit observed in schizophrenia. METHODS An electrophysiological multisite cell-to-network exploration was used to investigate, in pentobarbital-sedated rats, the effects of a single psychotomimetic dose of the NMDA glutamate receptor antagonist ketamine in the sensorimotor and associative/cognitive thalamocortical (TC) systems. RESULTS Under the control condition, spontaneously-occurring spindles (intra-frequency: 10-16 waves/s) and delta-frequency (1-4 Hz) oscillations were recorded in the frontoparietal cortical EEG, in thalamic extracellular recordings, in dual juxtacellularly recorded GABAergic thalamic reticular nucleus (TRN) and glutamatergic TC neurons, and in intracellularly recorded TC neurons. The TRN cells rhythmically exhibited robust high-frequency bursts of action potentials (7 to 15 APs at 200-700 Hz). A single administration of low-dose ketamine fleetingly reduced TC spindles and delta oscillations, amplified ongoing gamma-(30-80 Hz) and higher-frequency oscillations, and switched the firing pattern of both TC and TRN neurons from a burst mode to a single AP mode. Furthermore, ketamine strengthened the gamma-frequency band TRN-TC connectivity. The antipsychotic clozapine consistently prevented the ketamine effects on spindles, delta- and gamma-/higher-frequency TC oscillations. CONCLUSION The present findings support the hypothesis that NMDA receptor hypofunction is involved in the reduction in sleep spindles and delta oscillations. The ketamine-induced swift conversion of ongoing TC-TRN activities may have involved at least both the ascending reticular activating system and the corticothalamic pathway.
Collapse
|
7
|
Hossain MR, Jamal M, Tanoue Y, Ojima D, Takahashi H, Kubota T, Ansary TM, Ito A, Tanaka N, Kinoshita H, Kishimoto Y, Yamamoto T. MDGA1-deficiency attenuates prepulse inhibition with alterations of dopamine and serotonin metabolism: An ex vivo HPLC-ECD analysis. Neurosci Lett 2020; 716:134677. [PMID: 31812551 DOI: 10.1016/j.neulet.2019.134677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
MDGA1 (MAM domain-containing glycosylphosphatidylinositol anchor) has recently been linked to schizophrenia and bipolar disorder. Dysregulation of dopamine (DA) and serotonin (5-HT) systems has long been associated with schizophrenia and other neuropsychiatric disorders. Here, we measured prepulse inhibition (PPI) of the startle response and ex vivo tissue content of monoamines and their metabolites in the frontal cortex, striatum and hippocampus of Mdga1 homozygous (Mdga1-KO), Mdga1 heterozygous (Mdga1-HT) and wild-type (WT) male mice. We found that Mdga1-KO mice exhibited statistically significant impairment of PPI, and had higher levels of homovanillic acid in all three brain regions studied compared with Mdga1-HT and WT mice (P < 0.05), while levels of norepinephrine, DA and its metabolites 3,4-dihydroxyphenylacetic acid and 3-methoxytyramine remained unchanged. Mdga1-KO mice also had a lower 5-hydroxyindoleacetic acid level in the striatum (P < 0.05) compared with WT mice. 5-HT levels remained unchanged with the exception of a significant increase in the level in the cortex. These data are the first evidence suggesting that MDGA1 deficiency leads to a pronounced deficit in PPI and plays an important role in perturbation of DA and 5-HT metabolism in mouse brain; such changes may contribute to a range of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Md Razib Hossain
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Mostofa Jamal
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Yu Tanoue
- Department of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, Japan
| | - Daiki Ojima
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kubota
- Department of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, Japan
| | - Tuba M Ansary
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Asuka Ito
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Naoko Tanaka
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroshi Kinoshita
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yasushi Kishimoto
- Department of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, Japan
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| |
Collapse
|
8
|
de Bartolomeis A, Manchia M, Marmo F, Vellucci L, Iasevoli F, Barone A. Glycine Signaling in the Framework of Dopamine-Glutamate Interaction and Postsynaptic Density. Implications for Treatment-Resistant Schizophrenia. Front Psychiatry 2020; 11:369. [PMID: 32477178 PMCID: PMC7240307 DOI: 10.3389/fpsyt.2020.00369] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) or suboptimal response to antipsychotics affects almost 30% of schizophrenia (SCZ) patients, and it is a relevant clinical issue with significant impact on the functional outcome and on the global burden of disease. Among putative novel treatments, glycine-centered therapeutics (i.e. sarcosine, glycine itself, D-Serine, and bitopertin) have been proposed, based on a strong preclinical rationale with, however, mixed clinical results. Therefore, a better appraisal of glycine interaction with the other major players of SCZ pathophysiology and specifically in the framework of dopamine - glutamate interactions is warranted. New methodological approaches at cutting edge of technology and drug discovery have been applied to study the role of glycine in glutamate signaling, both at presynaptic and post-synaptic level and have been instrumental for unveiling the role of glycine in dopamine-glutamate interaction. Glycine is a non-essential amino acid that plays a critical role in both inhibitory and excitatory neurotransmission. In caudal areas of central nervous system (CNS), such as spinal cord and brainstem, glycine acts as a powerful inhibitory neurotransmitter through binding to its receptor, i.e. the Glycine Receptor (GlyR). However, glycine also works as a co-agonist of the N-Methyl-D-Aspartate receptor (NMDAR) in excitatory glutamatergic neurotransmission. Glycine concentration in the synaptic cleft is finely tuned by glycine transporters, i.e. GlyT1 and GlyT2, that regulate the neurotransmitter's reuptake, with the first considered a highly potential target for psychosis therapy. Reciprocal regulation of dopamine and glycine in forebrain, glycine modulation of glutamate, glycine signaling interaction with postsynaptic density proteins at glutamatergic synapse, and human genetics of glycinergic pathways in SCZ are tackled in order to highlight the exploitation of this neurotransmitters and related molecules in SCZ and TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Federica Marmo
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Licia Vellucci
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| | - Annarita Barone
- Laboratory of Molecular Psychiatry and Translational Psychiatry, Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, University School of Medicine of Napoli Federico II, Naples, Italy
| |
Collapse
|
9
|
Pei JC, Hung WL, Lin BX, Shih MH, Lu LY, Luo DZ, Tai HC, Studer V, Min MY, Lai WS. Therapeutic potential and underlying mechanism of sarcosine (N-methylglycine) in N-methyl-D-aspartate (NMDA) receptor hypofunction models of schizophrenia. J Psychopharmacol 2019; 33:1288-1302. [PMID: 31294644 DOI: 10.1177/0269881119856558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Compelling animal and clinical studies support the N-methyl-D-aspartate receptor (NMDAR) hypofunction hypothesis of schizophrenia and suggest promising pharmacological agents to ameliorate negative and cognitive symptoms of schizophrenia, including sarcosine, a glycine transporter-1 inhibitor. AIMS AND METHODS It is imperative to evaluate the therapeutic potential of sarcosine in animal models, which provide indispensable tools for testing drug effects in detail and elucidating the underlying mechanisms. In this study, a series of seven experiments was conducted to investigate the effect of sarcosine in ameliorating behavioral deficits and the underlying mechanism in pharmacological (i.e., MK-801-induced) and genetic (i.e., serine racemase-null mutant (SR-/-) mice) NMDAR hypofunction models. RESULTS In Experiment 1, the acute administration of 500/1000 mg/kg sarcosine (i.p.) had no adverse effects on motor function and serum biochemical responses. In Experiments 2-4, sarcosine significantly alleviated MK-801-induced (0.2 mg/kg) brain abnormalities and behavioral deficits in MK-801-induced and SR-/- mouse models. In Experiment 5, the injection of sarcosine enhanced CSF levels of glycine and serine in rat brain. In Experiments 6-7, we show for the first time that sarcosine facilitated NMDAR-mediated hippocampal field excitatory postsynaptic potentials and influenced the movement of surface NMDARs at extrasynaptic sites. CONCLUSIONS Sarcosine effectively regulated the surface trafficking of NMDARs, NMDAR-evoked electrophysiological activity, brain glycine levels and MK-801-induced abnormalities in the brain, which contributed to the amelioration of behavioral deficits in mouse models of NMDAR hypofunction.
Collapse
Affiliation(s)
- Ju-Chun Pei
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Wei-Li Hung
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Bei-Xuan Lin
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Min-Han Shih
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Liang-Yin Lu
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Da-Zhong Luo
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Hwan-Ching Tai
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Vincent Studer
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France.,French National Center for Scientific Research (CNRS), Bordeaux, France
| | - Ming-Yuan Min
- Institute of Zoology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Jurek B, Chayka M, Kreye J, Lang K, Kraus L, Fidzinski P, Kornau HC, Dao LM, Wenke NK, Long M, Rivalan M, Winter Y, Leubner J, Herken J, Mayer S, Mueller S, Boehm-Sturm P, Dirnagl U, Schmitz D, Kölch M, Prüss H. Human gestational N-methyl-d-aspartate receptor autoantibodies impair neonatal murine brain function. Ann Neurol 2019; 86:656-670. [PMID: 31325344 DOI: 10.1002/ana.25552] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Maternal autoantibodies are a risk factor for impaired brain development in offspring. Antibodies (ABs) against the NR1 (GluN1) subunit of the N-methyl-d-aspartate receptor (NMDAR) are among the most frequently diagnosed anti-neuronal surface ABs, yet little is known about effects on fetal development during pregnancy. METHODS We established a murine model of in utero exposure to human recombinant NR1 and isotype-matched nonreactive control ABs. Pregnant C57BL/6J mice were intraperitoneally injected on embryonic days 13 and 17 each with 240μg of human monoclonal ABs. Offspring were investigated for acute and chronic effects on NMDAR function, brain development, and behavior. RESULTS Transferred NR1 ABs enriched in the fetus and bound to synaptic structures in the fetal brain. Density of NMDAR was considerably reduced (up to -49.2%) and electrophysiological properties were altered, reflected by decreased amplitudes of spontaneous excitatory postsynaptic currents in young neonates (-34.4%). NR1 AB-treated animals displayed increased early postnatal mortality (+27.2%), impaired neurodevelopmental reflexes, altered blood pH, and reduced bodyweight. During adolescence and adulthood, animals showed hyperactivity (+27.8% median activity over 14 days), lower anxiety, and impaired sensorimotor gating. NR1 ABs caused long-lasting neuropathological effects also in aged mice (10 months), such as reduced volumes of cerebellum, midbrain, and brainstem. INTERPRETATION The data collectively support a model in which asymptomatic mothers can harbor low-level pathogenic human NR1 ABs that are diaplacentally transferred, causing neurotoxic effects on neonatal development. Thus, AB-mediated network changes may represent a potentially treatable neurodevelopmental congenital brain disorder contributing to lifelong neuropsychiatric morbidity in affected children. ANN NEUROL 2019;86:656-670.
Collapse
Affiliation(s)
- Betty Jurek
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Mariya Chayka
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Jakob Kreye
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Katharina Lang
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Larissa Kraus
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Clinical and Experimental Epileptology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Pawel Fidzinski
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Clinical and Experimental Epileptology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Christian Kornau
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.,Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Le-Minh Dao
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Nina K Wenke
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Melissa Long
- Neurocure Cluster of Excellence, Animal Outcome Core Facility, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marion Rivalan
- Neurocure Cluster of Excellence, Animal Outcome Core Facility, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - York Winter
- Neurocure Cluster of Excellence, Animal Outcome Core Facility, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jonas Leubner
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Herken
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Mayer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Susanne Mueller
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Neurocure Cluster of Excellence, Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Neurocure Cluster of Excellence, Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrich Dirnagl
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.,Center for Stroke Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.,Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Einstein Center for Neurosciences, Berlin, Germany
| | - Michael Kölch
- Department for Child and Adolescent Psychiatry, Neurology, Psychosomatics, and Psychotherapy, Universitätsmedizin Rostock, Rostock, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.,Department of Neurology, Center for Autoimmune Encephalitis and Paraneoplastic Neurological Syndromes, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Su T, Lu Y, Geng Y, Lu W, Chen Y. How could N-Methyl-D-Aspartate Receptor Antagonists Lead to Excitation Instead of Inhibition? BRAIN SCIENCE ADVANCES 2019. [DOI: 10.26599/bsa.2018.2018.9050009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are a family of ionotropic glutamate receptors mainly known to mediate excitatory synaptic transmission and plasticity. Interestingly, low-dose NMDAR antagonists lead to increased, instead of decreased, functional connectivity; and they could cause schizophrenia- and/or antidepressant-like behavior in both humans and rodents. In addition, human genetic evidences indicate that NMDAR loss of function mutations underlie certain forms of epilepsy, a disease featured with abnormal brain hyperactivity. Together, they all suggest that under certain conditions, NMDAR activation actually lead to inhibition, but not excitation, of the global neuronal network. Apparently, these phenomena are rather counterintuitive to the receptor's basic role in mediating excitatory synaptic transmission. How could it happen? Recently, this has become a crucial question in order to fully understand the complexity of NMDAR function, particularly in disease. Over the past decades, different theories have been proposed to address this question. These include theories of “NMDARs on inhibitory neurons are more sensitive to antagonism”, or “basal NMDAR activity actually inhibits excitatory synapse”, etc. Our review summarizes these efforts, and also provides an introduction of NMDARs, inhibitory neurons, and their relationships with the related diseases. Advances in the development of novel NMDAR pharmacological tools, particularly positive allosteric modulators, are also included to provide insights into potential intervention strategies.
Collapse
Affiliation(s)
- Tonghui Su
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Geng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Lu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yelin Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Li YX, Yang JY, Alcantara M, Abelian G, Kulkarni A, Staubli U, Foster AC. Inhibitors of the Neutral Amino Acid Transporters ASCT1 and ASCT2 Are Effective in In Vivo Models of Schizophrenia and Visual Dysfunction. J Pharmacol Exp Ther 2018; 367:292-301. [PMID: 30171039 DOI: 10.1124/jpet.118.251116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/27/2018] [Indexed: 03/08/2025] Open
Abstract
The N-methyl-d-aspartate receptor coagonist d-serine is a substrate for the neutral amino acid transporters ASCT1 and ASCT2, which may regulate its extracellular levels in the central nervous system (CNS). We tested inhibitors of ASCT1 and ASCT2 for their effects in rodent models of schizophrenia and visual dysfunction, which had previously been shown to be responsive to d-serine. L-4-fluorophenylglycine (L-4FPG), L-4-hydroxyPG (L-4OHPG), and L-4-chloroPG (L-4ClPG) all showed high plasma bioavailability when administered systemically to rats and mice. L-4FPG showed good brain penetration with brain/plasma ratios of 0.7-1.4; however, values for L-4OHPG and L-4ClPG were lower. Systemically administered L-4FPG potently reduced amphetamine-induced hyperlocomotion in mice, whereas L-4OHPG was 100-fold less effective and L-4ClPG inactive at the doses tested. L-4FPG and L-4OHPG did not impair visual acuity in naive rats, and acute systemic administration of L-4FPG significantly improved the deficit in contrast sensitivity in blue light-treated rats caused by retinal degeneration. The ability of L-4FPG to penetrate the brain makes this compound a useful tool to further evaluate the function of ASCT1 and ASCT2 transporters in the CNS.
Collapse
Affiliation(s)
- Yong-Xin Li
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| | - Jia-Ying Yang
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| | - Miguel Alcantara
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| | - Grigor Abelian
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| | - Ashutosh Kulkarni
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| | - Ursula Staubli
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| | - Alan C Foster
- Department of Biological Sciences, Allergan, Inc., Irvine, California
| |
Collapse
|
13
|
Lipina TV, Beregovoy NA, Tkachenko AA, Petrova ES, Starostina MV, Zhou Q, Li S. Uncoupling DISC1 × D2R Protein-Protein Interactions Facilitates Latent Inhibition in Disc1-L100P Animal Model of Schizophrenia and Enhances Synaptic Plasticity via D2 Receptors. Front Synaptic Neurosci 2018; 10:31. [PMID: 30245624 PMCID: PMC6137395 DOI: 10.3389/fnsyn.2018.00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 08/17/2018] [Indexed: 11/13/2022] Open
Abstract
Both Disrupted-In-Schizophrenia-1 (DISC1) and dopamine receptors D2R have significant contributions to the pathogenesis of schizophrenia. Our previous study demonstrated that DISC1 binds to D2R and such protein-protein interaction is enhanced in patients with schizophrenia and Disc1-L100P mouse model of schizophrenia (Su et al., 2014). By uncoupling DISC1 × D2R interaction (trans-activator of transcription (TAT)-D2pep), the synthesized TAT-peptide elicited antipsychotic-like effects in pharmacological and genetic animal models, without motor side effects as tardive dyskinesia commonly seen with typical antipsychotic drugs (APDs), indicating that the potential of TAT-D2pep of becoming a new APD. Therefore, in the current study, we further explored the APD-associated capacities of TAT-D2pep. We found that TAT-D2pep corrected the disrupted latent inhibition (LI), as a hallmark of schizophrenia associated endophenotype, in Disc1-L100P mutant mice—a genetic model of schizophrenia, supporting further APD’ capacity of TAT-D2pep. Moreover, we found that TAT-D2pep elicited nootropic effects in C57BL/6NCrl inbred mice, suggesting that TAT-D2pep acts as a cognitive enhancer, a desirable feature of APDs of the new generation. Namely, TAT-D2pep improved working memory in T-maze, and cognitive flexibility assessed by the LI paradigm, in C57BL/6N mice. Next, we assessed the impact of TAT-D2pep on hippocampal long-term plasticity (LTP) under basal conditions and upon stimulation of D2 receptors using quinpirole. We found comparable effects of TAT-D2pep and its control TAT-D2pep-scrambled peptide (TAT-D2pep-sc) under basal conditions. However, under stimulation of D2R by quinpirole, LTP was enhanced in hippocampal slices incubated with TAT-D2pep, supporting the notion that TAT-D2pep acts in a dopamine-dependent manner and acts as synaptic enhancer. Overall, our experiments demonstrated implication of DISC1 × D2R protein-protein interactions into mechanisms of cognitive and synaptic plasticity, which help to further understand molecular-cellular mechanisms of APD of the next generation.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Federal State Budgetary Scientific Institution, Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute for the Medicine and Psychology of Novosibirsk State University, Novosibirsk, Russia
| | | | - Alina A Tkachenko
- Federal State Budgetary Scientific Institution, Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute for the Medicine and Psychology of Novosibirsk State University, Novosibirsk, Russia
| | - Ekaterina S Petrova
- Federal State Budgetary Scientific Institution, Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute for the Medicine and Psychology of Novosibirsk State University, Novosibirsk, Russia
| | | | - Qiang Zhou
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Shupeng Li
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| |
Collapse
|
14
|
Tuplin EW, Holahan MR. Aripiprazole, A Drug that Displays Partial Agonism and Functional Selectivity. Curr Neuropharmacol 2017; 15:1192-1207. [PMID: 28412910 PMCID: PMC5725548 DOI: 10.2174/1570159x15666170413115754] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/06/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The treatment of schizophrenia is challenging due to the wide range of symptoms (positive, negative, cognitive) associated with the disease. Typical antipsychotics that antagonize D2 receptors are effective in treating positive symptoms, but extrapyramidal side-effects (EPS) are a common occurrence. Atypical antipsychotics targeting 5-HT2A and D2 receptors are more effective at treating cognitive and negative symptoms compared to typical antipsychotics, but these drugs also result in side-effects such as metabolic syndromes. OBJECTIVE To identify evidence in the literature that elucidates the pharmacological profile of aripiprazole.s. METHODS We searched PubMed for peer reviewed articles on aripiprazole and its clinical efficacy, side-effects, pharmacology, and effects in animal models of schizophrenia symptoms. RESULTS Aripiprazole is a newer atypical antipsychotic that displays a unique pharmacological profile, including partial D2 agonism and functionally selective properties. Aripiprazole is effective at treating the positive symptoms of schizophrenia and has the potential to treat negative and cognitive symptoms at least as well as other atypical antipsychotics. The drug has a favorable side-effect profile and has a low propensity to result in EPS or metabolic syndromes. Animal models of schizophrenia have been used to determine the efficacy of aripiprazole in symptom management. In these instances, aripiprazole resulted in the reversal of deficits in extinction, pre-pulse inhibition, and social withdrawal. Because aripiprazole requires a greater than 90% occupancy rate at D2 receptors to be clinically active and does not produce EPS, this suggests a functionally selective effect on intracellular signaling pathways. CONCLUSION A combination of factors such as dopamine system stabilization via partial agonism, functional selectivity at D2 receptors, and serotonin-dopamine system interaction may contribute to the ability of aripiprazole to successfully manage schizophrenia symptoms. This review examines these mechanisms of action to further clarify the pharmacological actions of aripiprazole.
Collapse
Affiliation(s)
- Erin W. Tuplin
- Department of Neuroscience, Faculty of Science, Carleton University, 3414 Herzberg, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON Canada
| | - Matthew R. Holahan
- Department of Neuroscience, Faculty of Science, Carleton University, 3414 Herzberg, 1125 Colonel By Drive, Ottawa, K1S 5B6, ON Canada
| |
Collapse
|
15
|
Immune activation in lactating dams alters sucklings' brain cytokines and produces non-overlapping behavioral deficits in adult female and male offspring: A novel neurodevelopmental model of sex-specific psychopathology. Brain Behav Immun 2017; 63:35-49. [PMID: 28189716 DOI: 10.1016/j.bbi.2017.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/26/2016] [Accepted: 01/23/2017] [Indexed: 01/04/2023] Open
Abstract
Early immune activation (IA) in rodents, prenatal through the mother or early postnatal directly to the neonate, is widely used to produce behavioral endophenotypes relevant to schizophrenia and depression. Given that maternal immune response plays a crucial role in the deleterious effects of prenatal IA, and lactation is a critical vehicle of immunological support to the neonate, we predicted that immune activation of the lactating dam will produce long-term abnormalities in the sucklings. Nursing dams were injected on postnatal day 4 with the viral mimic poly-I:C (4mg/kg) or saline. Cytokine assessment was performed in dams' plasma and milk 2h, and in the sucklings' hippocampus, 6h and 24h following poly-I:C injection. Male and female sucklings were assessed in adulthood for: a) performance on behavioral tasks measuring constructs considered relevant to schizophrenia (selective attention and executive control) and depression (despair and anhedonia); b) response to relevant pharmacological treatments; c) brain structural changes. Maternal poly-I:C injection caused cytokine alterations in the dams' plasma and milk, as well as in the sucklings' hippocampus. Lactational poly-I:C exposure led to sex-dimorphic (non-overlapping) behavioral abnormalities in the adult offspring, with male but not female offspring exhibiting attentional and executive function abnormalities (manifested in persistent latent inhibition and slow reversal) and hypodopaminergia, and female but not male offspring exhibiting despair and anhedonia (manifested in increased immobility in the forced swim test and reduced saccharine preference) and hyperdopaminergia, mimicking the known sex-bias in schizophrenia and depression. The behavioral double-dissociation predicted distinct pharmacological profiles, recapitulating the pharmacology of negative/cognitive symptoms and depression. In-vivo imaging revealed hippocampal and striatal volume reductions in both sexes, as found in both disorders. This is the first evidence for the emergence of long-term behavioral and brain abnormalities after lactational exposure to an inflammatory agent, supporting a causal link between early immune activation and disrupted neuropsychodevelopment. That such exposure produces schizophrenia- or depression-like phenotype depending on sex, resonates with notions that risk factors are transdiagnostic, and that sex is a susceptibility factor for neurodevelopmental psychopathologies.
Collapse
|
16
|
Feldcamp LA, Boutros PC, Raymond R, Fletcher PJ, Nobrega JN, Wong AHC. Pdxdc1 modulates prepulse inhibition of acoustic startle in the mouse. Transl Psychiatry 2017; 7:e1125. [PMID: 28485732 PMCID: PMC5534953 DOI: 10.1038/tp.2017.85] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 03/11/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Current antipsychotic medications used to treat schizophrenia all target the dopamine D2 receptor. Although these drugs have serious side effects and limited efficacy, no novel molecular targets for schizophrenia treatment have been successfully translated into new medications. To identify novel potential treatment targets for schizophrenia, we searched for previously unknown molecular modulators of acoustic prepulse inhibition (PPI), a schizophrenia endophenotype, in the mouse. We examined six inbred mouse strains that have a range of PPI, and used microarrays to determine which mRNA levels correlated with PPI across these mouse strains. We examined several brain regions involved in PPI and schizophrenia: hippocampus, striatum, and brainstem, found a number of transcripts that showed good correlation with PPI level, and confirmed this with real-time quantitative PCR. We then selected one candidate gene for further study, Pdxdc1 (pyridoxal-dependent decarboxylase domain containing 1), because it is a putative enzyme that could metabolize catecholamine neurotransmitters, and thus might be a feasible target for new medications. We determined that Pdxdc1 mRNA and protein are both strongly expressed in the hippocampus and levels of Pdxdc1 are inversely correlated with PPI across the six mouse strains. Using shRNA packaged in a lentiviral vector, we suppressed Pdxdc1 protein levels in the hippocampus and increased PPI by 70%. Our results suggest that Pdxdc1 may regulate PPI and could be a good target for further investigation as a potential treatment for schizophrenia.
Collapse
Affiliation(s)
- L A Feldcamp
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - P C Boutros
- Ontario Institute for Cancer Research, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - R Raymond
- Neuroimaging Section, The Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - P J Fletcher
- Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - J N Nobrega
- Neuroimaging Section, The Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - A H C Wong
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Xu J, Kurup P, Nairn AC, Lombroso PJ. Synaptic NMDA Receptor Activation Induces Ubiquitination and Degradation of STEP 61. Mol Neurobiol 2017; 55:3096-3111. [PMID: 28466270 DOI: 10.1007/s12035-017-0555-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/12/2017] [Indexed: 01/25/2023]
Abstract
NMDA receptor signaling is critical for the development of synaptic plasticity, learning, and memory, and dysregulation of NMDAR signaling is implicated in a number of neurological disorders including schizophrenia (SZ). Previous work has demonstrated that the STriatal-Enriched protein tyrosine Phosphatase 61 kDa (STEP61) is elevated in human SZ postmortem cortical samples and after administration of psychotomimetics to cultures or mice. Here, we report that activation of synaptic NMDAR by bicuculline or D-serine results in the ubiquitination and proteasomal degradation of STEP61, and increased surface localization of GluN1/GluN2B receptors. Moreover, bicuculline or D-serine treatments rescue the motor and cognitive deficits in MK-801-treated mice and reduce STEP61 in mouse frontal cortex. These results suggest that STEP61 may contribute to the therapeutic effects of D-serine.
Collapse
Affiliation(s)
- Jian Xu
- Child Study Center, Yale University School of Medicine, New Haven, USA
| | - Pradeep Kurup
- Child Study Center, Yale University School of Medicine, New Haven, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, USA
| | - Paul J Lombroso
- Child Study Center, Yale University School of Medicine, New Haven, USA. .,Department of Psychiatry, Yale University School of Medicine, New Haven, USA. .,Department of Neurobiology, Yale University School of Medicine, New Haven, USA.
| |
Collapse
|
18
|
Differential effects of antipsychotic and propsychotic drugs on prepulse inhibition and locomotor activity in Roman high- (RHA) and low-avoidance (RLA) rats. Psychopharmacology (Berl) 2017; 234:957-975. [PMID: 28154892 PMCID: PMC5492384 DOI: 10.1007/s00213-017-4534-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
Abstract
RATIONALE Animal models with predictive and construct validity are necessary for developing novel and efficient therapeutics for psychiatric disorders. OBJECTIVES We have carried out a pharmacological characterization of the Roman high- (RHA-I) and low-avoidance (RLA-I) rat strains with different acutely administered propsychotic (DOI, MK-801) and antipsychotic drugs (haloperidol, clozapine), as well as apomorphine, on prepulse inhibition (PPI) of startle and locomotor activity (activity cages). RESULTS RHA-I rats display a consistent deficit of PPI compared with RLA-I rats. The typical antipsychotic haloperidol (dopamine D2 receptor antagonist) reversed the PPI deficit characteristic of RHA-I rats (in particular at 65 and 70 dB prepulse intensities) and reduced locomotion in both strains. The atypical antipsychotic clozapine (serotonin/dopamine receptor antagonist) did not affect PPI in either strain, but decreased locomotion in a dose-dependent manner in both rat strains. The mixed dopamine D1/D2 agonist, apomorphine, at the dose of 0.05 mg/kg, decreased PPI in RHA-I, but not RLA-I rats. The hallucinogen drug DOI (5-HT2A agonist; 0.1-1.0 mg/kg) disrupted PPI in RLA-I rats in a dose-dependent manner at the 70 dB prepulse intensity, while in RHA-I rats, only the 0.5 mg/kg dose impaired PPI at the 80 dB prepulse intensity. DOI slightly decreased locomotion in both strains. Finally, clozapine attenuated the PPI impairment induced by the NMDA receptor antagonist MK-801 only in RLA-I rats. CONCLUSIONS These results add experimental evidence to the view that RHA-I rats represent a model with predictive and construct validity of some dopamine and 5-HT2A receptor-related features of schizophrenia.
Collapse
|
19
|
Dhami K, MacKay M, Maia-de-Oliveira JP, Hallak J, Todd K, Baker G, Dursun S. Novel Targets for Development of Drugs for Treating Schizophrenia: Focus on Glycine, D-Serine and Nitric Oxide. ACTA ACUST UNITED AC 2016. [DOI: 10.5455/bcp.20130629042437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kamaldeep Dhami
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Marnie MacKay
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Joao Paulo Maia-de-Oliveira
- National Institute of Science and Technology in Translational Medicine, Ribeirao Preto Medical School, Sao Paulo, Brazil
| | - Jaime Hallak
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
- National Institute of Science and Technology in Translational Medicine, Ribeirao Preto Medical School, Sao Paulo, Brazil
| | - Kathryn Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Glen Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
- National Institute of Science and Technology in Translational Medicine, Ribeirao Preto Medical School, Sao Paulo, Brazil
| | - Serdar Dursun
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
- National Institute of Science and Technology in Translational Medicine, Ribeirao Preto Medical School, Sao Paulo, Brazil
| |
Collapse
|
20
|
Lin JC, Chan MH, Lee MY, Chen YC, Chen HH. N,N-dimethylglycine differentially modulates psychotomimetic and antidepressant-like effects of ketamine in mice. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:7-13. [PMID: 27296677 DOI: 10.1016/j.pnpbp.2016.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/04/2016] [Accepted: 06/09/2016] [Indexed: 01/22/2023]
Abstract
Ketamine, a dissociative anesthetic, produces rapid and sustained antidepressant effects at subanesthtic doses. However, it still inevitably induces psychotomimetic side effects. N,N-dimethylglycine (DMG) is a derivative of the amino acid glycine and is used as a dietary supplement. Recently, DMG has been found acting at glycine binding site of the N-methyl-d-aspartate receptor (NMDAR). As blockade of NMDARs is one of the main mechanisms responsible for the action of ketamine on central nervous system, DMG might modulate the behavioral responses to ketamine. The present study determined the effects of DMG on the ketamine-induced psychotomimetic, anesthetic and antidepressant-like effects in mice. DMG pretreatment reversed the ketamine-induced locomotor hyperactivity and impairment in the rotarod performance, novel location and novel object recognition tests, and prepulse inhibition. In addition, DMG alone exhibited antidepressant-like effects in the forced swim test and produced additive effects when combined with ketamine. However, DMG did not affect ketamine-induced anesthesia. These results reveal that DMG could antagonize ketamine's psychotomimetic effects, yet produce additive antidepressant-like effects with ketamine, suggesting that DMG might have antipsychotic potential and be suitable as an add-on therapy to ketamine for patients with treatment-resistant depression.
Collapse
Affiliation(s)
- Jen-Cheng Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Huan Chan
- Institute of Neuroscience, National Chengchi University, 64, Sec. 2, Zhinan Road, Wenshan District, Taipei 11605, Taiwan; Research Center for Mind, Brain, and Learning, National Chengchi University, 64, Sec. 2, Zhinan Road, Wenshan District, Taipei 11605, Taiwan
| | - Mei-Yi Lee
- Department of Pharmacology and Toxicology, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | - Yi-Chyan Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; School of Medicine, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan; Department of Psychiatry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.
| | - Hwei-Hsien Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Institute of Neuroscience, National Chengchi University, 64, Sec. 2, Zhinan Road, Wenshan District, Taipei 11605, Taiwan; Department of Pharmacology and Toxicology, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan; Center for Neuropsychiatric Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan.
| |
Collapse
|
21
|
Betaine enhances antidepressant-like, but blocks psychotomimetic effects of ketamine in mice. Psychopharmacology (Berl) 2016; 233:3223-35. [PMID: 27363702 DOI: 10.1007/s00213-016-4359-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/13/2016] [Indexed: 01/26/2023]
Abstract
Ketamine is emerging as a new hope against depression, but ketamine-associated psychotomimetic effects limit its clinical use. An adjunct therapy along with ketamine to alleviate its adverse effects and even potentiate the antidepressant effects might be an alternative strategy. Betaine, a methyl derivative of glycine and a dietary supplement, has been shown to have antidepressant-like effects and to act like a partial agonist at the glycine site of N-methyl-D-aspartate receptors (NMDARs). Accordingly, betaine might have potential to be an adjunct to ketamine treatment for depression. The antidepressant-like effects of ketamine and betaine were evaluated by forced swimming test and novelty suppressed feeding test in mice. Both betaine and ketamine produced antidepressant-like effects. Furthermore, we determined the effects of betaine on ketamine-induced antidepressant-like and psychotomimetic behaviors, motor incoordination, hyperlocomotor activity, and anesthesia. The antidepressant-like responses to betaine combined with ketamine were stronger than their individual effects. In contrast, ketamine-induced impairments in prepulse inhibition, novel object recognition test, social interaction, and rotarod test were remarkably attenuated, whereas ketamine-induced hyperlocomotion and loss of righting reflex were not affected by betaine. These findings revealed that betaine could enhance the antidepressant-like effects, yet block the psychotomimetic effects of ketamine, suggesting that betaine can be considered as an add-on therapy to ketamine for treatment-resistant depression and suitable for the treatment of depressive symptoms in patients with schizophrenia.
Collapse
|
22
|
Staubli U, Rangel-Diaz N, Alcantara M, Li YX, Yang JY, Zhang KM, Foster AC. Restoration of visual performance by d-serine in models of inner and outer retinal dysfunction assessed using sweep VEP measurements in the conscious rat and rabbit. Vision Res 2016; 127:35-48. [PMID: 27461280 DOI: 10.1016/j.visres.2016.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
The NMDA subtype of glutamate receptor and its co-agonist d-serine play a key role in synaptic function in the central nervous system (CNS), including visual cortex and retina. In retinal diseases such as glaucoma and macular degeneration, a loss of vision arises from malfunction of retinal cells, resulting in a glutamate hypofunctional state along the visual pathway in the affected parts of the visual field. An effective strategy to remedy this loss of function might be to increase extracellular levels of d-serine and thereby boost synaptic NMDA receptor-mediated visual transmission and/or plasticity to compensate for the impairment. We tested this idea in brain slices of visual cortex exhibiting long-term potentiation, and in rodent models of visual dysfunction caused by retinal insults at a time when the injury had stabilized to look for neuroenhancement effects. An essential aspect of the in vivo studies involved adapting sweep VEP technology to conscious rats and rabbits and combining it with intracortical recording while the animals were actively attending to visual information. Using this technology allowed us to establish complete contrast sensitivity function curves. We found that systemic d-serine dose-dependently rescued the contrast sensitivity impairment in rats with blue light-induced visual dysfunction. In rabbits with inner retinal dysfunction, both systemic and intravitreal routes of d-serine provided a rescue of visual function. In sum, we show that co-agonist stimulation of the NMDA receptor via administration of exogenous d-serine might be an effective therapeutic strategy to enhance visual performance and compensate for the loss of vision resulting from retinal disease.
Collapse
Affiliation(s)
- Ursula Staubli
- Department of Biological Sciences, Allergan Inc., 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Natalie Rangel-Diaz
- Department of Biological Sciences, Allergan Inc., 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Miguel Alcantara
- Department of Biological Sciences, Allergan Inc., 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Yong-Xin Li
- Department of Biological Sciences, Allergan Inc., 2525 Dupont Drive, Irvine, CA 92612, USA.
| | - Jia-Ying Yang
- Department of Biological Sciences, Allergan Inc., 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Kai-Ming Zhang
- Department of Biological Sciences, Allergan Inc., 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Alan C Foster
- Department of Biological Sciences, Allergan Inc., 2525 Dupont Drive, Irvine, CA 92612, USA
| |
Collapse
|
23
|
Abstract
Homochirality is fundamental for life. L-Amino acids are exclusively used as substrates for the polymerization and formation of peptides and proteins in living systems. However, D- amino acids were recently detected in various living organisms, including mammals. Of these D-amino acids, D-serine has been most extensively studied. D-Serine was found to play an important role as a neurotransmitter in the human central nervous system (CNS) by binding to the N-methyl- D-aspartate receptor (NMDAr). D-Serine binds with high affinity to a co-agonist site at the NMDAr and, along with glutamate, mediates several vital physiological and pathological processes, including NMDAr transmission, synaptic plasticity and neurotoxicity. Therefore, a key role for D-serine as a determinant of NMDAr mediated neurotransmission in mammalian CNS has been suggested. In this context, we review the known functions of D-serine in human physiology, such as CNS development, and pathology, such as neuro-psychiatric and neurodegenerative diseases related to NMDAr dysfunction.
Collapse
|
24
|
Yamamoto H, Hagino Y, Kasai S, Ikeda K. Specific Roles of NMDA Receptor Subunits in Mental Disorders. Curr Mol Med 2016; 15:193-205. [PMID: 25817860 PMCID: PMC5384360 DOI: 10.2174/1566524015666150330142807] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/28/2015] [Accepted: 03/24/2015] [Indexed: 12/30/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptor plays important roles in learning and memory. NMDA receptors are a tetramer that consists of two glycine-binding subunits GluN1, two glutamate-binding subunits (i.e., GluN2A, GluN2B, GluN2C, and GluN2D), a combination of a GluN2 subunit and glycine-binding GluN3 subunit (i.e., GluN3A or GluN3B), or two GluN3 subunits. Recent studies revealed that the specific expression and distribution of each subunit are deeply involved in neural excitability, plasticity, and synaptic deficits. The present article summarizes reports on the dysfunction of NMDA receptors and responsible subunits in various neurological and psychiatric disorders, including schizophrenia, autoimmune-induced glutamatergic receptor dysfunction, mood disorders, and autism. A key role for the GluN2D subunit in NMDA receptor antagonist-induced psychosis has been recently revealed.
Collapse
Affiliation(s)
| | | | | | - K Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
25
|
Koyama Y. Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target. Front Cell Neurosci 2015. [PMID: 26217185 PMCID: PMC4491615 DOI: 10.3389/fncel.2015.00261] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Astrocytes play an essential role in supporting brain functions in physiological and pathological states. Modulation of their pathophysiological responses have beneficial actions on nerve tissue injured by brain insults and neurodegenerative diseases, therefore astrocytes are recognized as promising targets for neuroprotective drugs. Recent investigations have identified several astrocytic mechanisms for modulating synaptic transmission and neural plasticity. These include altered expression of transporters for neurotransmitters, release of gliotransmitters and neurotrophic factors, and intercellular communication through gap junctions. Investigation of patients with mental disorders shows morphological and functional alterations in astrocytes. According to these observations, manipulation of astrocytic function by gene mutation and pharmacological tools reproduce mental disorder-like behavior in experimental animals. Some drugs clinically used for mental disorders affect astrocyte function. As experimental evidence shows their role in the pathogenesis of mental disorders, astrocytes have gained much attention as drug targets for mental disorders. In this paper, I review functional alterations of astrocytes in several mental disorders including schizophrenia, mood disorder, drug dependence, and neurodevelopmental disorders. The pharmacological significance of astrocytes in mental disorders is also discussed.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University Tondabayashi, Osaka, Japan
| |
Collapse
|
26
|
Popik P, Holuj M, Nikiforuk A, Kos T, Trullas R, Skolnick P. 1-aminocyclopropanecarboxylic acid (ACPC) produces procognitive but not antipsychotic-like effects in rats. Psychopharmacology (Berl) 2015; 232:1025-38. [PMID: 25260339 PMCID: PMC4336651 DOI: 10.1007/s00213-014-3738-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/29/2014] [Indexed: 12/31/2022]
Abstract
RATIONALE In addition to the negative and positive symptoms of schizophrenia, cognitive deficits, including prefrontal cortical dysfunction, are now recognized as core features of this disorder. Compounds increasing the NMDA receptor function via the strychnine-insensitive glycine receptors have been proposed as potential antipsychotics. Depending on the ambient concentrations of glutamate and glycine, 1-aminocyclopropanecarboxylic acid (ACPC) behaves as either a partial agonist or a functional antagonist at the strychnine-insensitive glycine receptors. OBJECTIVES We investigated the procognitive and antipsychotic-like effects of ACPC in rats treated with phencyclidine (PCP) or ketamine (KET), compounds that produce psychotic-like symptoms in humans and laboratory animals. METHODS Cognitive effects were investigated in the novel object recognition (NOR) and attentional set-shifting tests (ASST). In addition, the effects of ACPC were investigated in PCP-induced hyperactivity, conditioned avoidance response (CAR), and prepulse inhibition (PPI) tests. The effects on attention and impulsivity were measured in the five-choice serial reaction time task (5-CSRTT). RESULTS ACPC (200-400 mg/kg) inhibited memory fading in naive rats and like clozapine prevented PCP- and KET-induced amnesia in the NOR. In naive animals, ACPC at 400 but not 200 mg/kg enhanced cognitive flexibility in the ASST, as the animals required fewer trials to reach the criteria during the extra-dimensional phase. In contrast, ACPC did not affect PCP-induced hyperactivity, CAR, and PPI as well as attention and impulsivity in the 5-CSRTT. CONCLUSION The present study demonstrates that ACPC enhanced both object recognition memory and cognitive flexibility dependent on the prefrontal cortex, but did not affect impulsivity nor exhibit an antipsychotic-like profile.
Collapse
Affiliation(s)
- Piotr Popik
- Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Kraków, Poland,
| | - Malgorzata Holuj
- Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Agnieszka Nikiforuk
- Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Tomasz Kos
- Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Ramon Trullas
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS-CSIC, 08036 Barcelona, Spain
| | - Phil Skolnick
- Division of Pharmacotherapies & Medical Consequences of Drug Abuse, NIDA, NIH, Bethesda, MD 20892-9551 USA
| |
Collapse
|
27
|
Suryavanshi PS, Ugale RR, Yilmazer-Hanke D, Stairs DJ, Dravid SM. GluN2C/GluN2D subunit-selective NMDA receptor potentiator CIQ reverses MK-801-induced impairment in prepulse inhibition and working memory in Y-maze test in mice. Br J Pharmacol 2014; 171:799-809. [PMID: 24236947 DOI: 10.1111/bph.12518] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/07/2013] [Accepted: 11/12/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE Despite ample evidence supporting the N-methyl-D-aspartate receptor (NMDAR) hypofunction hypothesis of schizophrenia, progress in the development of effective therapeutics based on this hypothesis has been limited. Facilitation of NMDA receptor function by co-agonists (D-serine or glycine) only partially alleviates the symptoms in schizophrenia; other means to facilitate NMDA receptors are required. NMDA receptor sub-types differ in their subunit composition, with varied GluN2 subunits (GluN2A-GluN2D) imparting different physiological, biochemical and pharmacological properties. CIQ is a positive allosteric modulator that is selective for GluN2C/GluN2D-containing NMDA receptors (Mullasseril et al.). EXPERIMENTAL APPROACH The effect of systemic administration of CIQ was tested on impairment in prepulse inhibition (PPI), hyperlocomotion and stereotypy induced by i.p. administration of MK-801 and methamphetamine. The effect of CIQ was also tested on MK-801-induced impairment in working memory in Y-maze spontaneous alternation test. KEY RESULTS We found that systemic administration of CIQ (20 mg·kg⁻¹, i.p.) in mice reversed MK-801 (0.15 mg·kg⁻¹, i.p.)-induced, but not methamphetamine (3 mg·kg⁻¹, i.p.)-induced, deficit in PPI. MK-801 increased the startle amplitude to pulse alone, which was not reversed by CIQ. In contrast, methamphetamine reduced the startle amplitude to pulse alone, which was reversed by CIQ. CIQ also partially attenuated MK-801- and methamphetamine-induced hyperlocomotion and stereotyped behaviours. Additionally, CIQ reversed the MK-801-induced working memory deficit in spontaneous alternation in a Y-maze. CONCLUSION AND IMPLICATIONS Together, these results suggest that facilitation of GluN2C/GluN2D-containing receptors may serve as an important therapeutic strategy for treating positive and cognitive symptoms in schizophrenia.
Collapse
Affiliation(s)
- P S Suryavanshi
- Department of Pharmacology, Creighton University, Omaha, NE, USA
| | | | | | | | | |
Collapse
|
28
|
O’Callaghan MJ, Bay-Richter C, O’Tuathaigh CMP, Heery DM, Waddington JL, Moran PM. Potentiation of latent inhibition by haloperidol and clozapine is attenuated in Dopamine D2 receptor (Drd-2)-deficient mice: do antipsychotics influence learning to ignore irrelevant stimuli via both Drd-2 and non-Drd-2 mechanisms? J Psychopharmacol 2014; 28:973-7. [PMID: 25122042 PMCID: PMC4230883 DOI: 10.1177/0269881114544774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Whether the dopamine Drd-2 receptor is necessary for the behavioural action of antipsychotic drugs is an important question, as Drd-2 antagonism is responsible for their debilitating motor side effects. Using Drd-2 null mice (Drd2 -/-) it has previously been shown that Drd-2 is not necessary for antipsychotic drugs to reverse D-amphetamine disruption of latent inhibition (LI), a behavioural measure of learning to ignore irrelevant stimuli. Weiner's 'two-headed' model indicates that antipsychotics not only reverse LI disruption, 'disrupted LI', but also potentiate LI when low/absent in controls, 'persistent' LI. We investigated whether antipsychotic drugs haloperidol or clozapine potentiated LI in wild-type controls or Drd2 -/-. Both drugs potentiated LI in wild-type but not in Drd2 -/- mice, suggesting moderation of this effect of antipsychotics in the absence of Drd-2. Haloperidol potentiated LI similarly in both Drd1 -/- and wild-type mice, indicating no such moderation in Drd1 -/-. These data suggest that antipsychotic drugs can have either Drd-2 or non-Drd-2 effects on learning to ignore irrelevant stimuli, depending on how the abnormality is produced. Identification of the non-Drd-2 mechanism may help to identify novel non-Drd2 based therapeutic strategies for psychosis.
Collapse
Affiliation(s)
| | - Cecilie Bay-Richter
- School of Psychology, University of Nottingham, Nottingham, UK,present address: Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Colm MP O’Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland,present address: School of Medicine, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland
| | - David M Heery
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - John L Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paula M Moran
- School of Psychology, University of Nottingham, Nottingham, UK
| |
Collapse
|
29
|
Sawin EA, Murali SG, Ney DM. Differential effects of low-phenylalanine protein sources on brain neurotransmitters and behavior in C57Bl/6-Pah(enu2) mice. Mol Genet Metab 2014; 111:452-61. [PMID: 24560888 PMCID: PMC3995025 DOI: 10.1016/j.ymgme.2014.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 01/30/2014] [Indexed: 11/24/2022]
Abstract
Phenylketonuria (PKU) is an inborn error of metabolism caused by a deficiency of the enzyme phenylalanine hydroxylase, which metabolizes phenylalanine (phe) to tyrosine. A low-phe diet plus amino acid (AA) formula is necessary to prevent cognitive impairment; glycomacropeptide (GMP) contains minimal phe and provides a palatable alternative to the AA formula. Our objective was to assess neurotransmitter concentrations in the brain and the behavioral phenotype of PKU mice (Pah(enu2) on the C57Bl/6 background) and how this is affected by low-phe protein sources. Wild type (WT) and PKU mice, both male and female, were fed high-phe casein, low-phe AA, or low-phe GMP diets between 3 and 18 weeks of age. Behavioral phenotype was assessed using the open field and marble burying tests, and brain neurotransmitter concentrations were measured using HPLC with electrochemical detection system. Data were analyzed by 3-way ANOVA with genotype, sex, and diet as the main treatment effects. Brain mass and the concentrations of catecholamines and serotonin were reduced in PKU mice compared to WT mice; the low-phe AA and GMP diets improved these parameters in PKU mice. Relative brain mass was increased in female PKU mice fed the GMP diet compared to the AA diet. PKU mice exhibited hyperactivity and impaired vertical exploration compared to their WT littermates during the open field test. Regardless of genotype or diet, female mice demonstrated increased vertical activity time and increased total ambulatory and horizontal activity counts compared with male mice. PKU mice fed the high-phe casein diet buried significantly fewer marbles than WT control mice fed casein; this was normalized in PKU mice fed the low-phe AA and GMP diets. In summary, C57Bl/6-Pah(enu2) mice showed an impaired behavioral phenotype and reduced brain neurotransmitter concentrations that were improved by the low-phe AA or GMP diets. These data support lifelong adherence to a low-phe diet for PKU.
Collapse
Affiliation(s)
- Emily A Sawin
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706, USA.
| | - Sangita G Murali
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706, USA.
| | - Denise M Ney
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706, USA.
| |
Collapse
|
30
|
Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat Rev Drug Discov 2014; 12:866-85. [PMID: 24172334 DOI: 10.1038/nrd3893] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycine transporters are endogenous regulators of the dual functions of glycine, which acts as a classical inhibitory neurotransmitter at glycinergic synapses and as a modulator of neuronal excitation mediated by NMDA (N-methyl-D-aspartate) receptors at glutamatergic synapses. The two major subtypes of glycine transporters, GlyT1 and GlyT2, have been linked to the pathogenesis and/or treatment of central and peripheral nervous system disorders, including schizophrenia and related affective and cognitive disturbances, alcohol dependence, pain, epilepsy, breathing disorders and startle disease (also known as hyperekplexia). This Review examines the rationale for the therapeutic potential of GlyT1 and GlyT2 inhibition, and surveys the latest advances in the biology of glycine reuptake and transport as well as the drug discovery and clinical development of compounds that block glycine transporters.
Collapse
|
31
|
Melancon BJ, Tarr JC, Panarese JD, Wood MR, Lindsley CW. Allosteric modulation of the M1 muscarinic acetylcholine receptor: improving cognition and a potential treatment for schizophrenia and Alzheimer's disease. Drug Discov Today 2013; 18:1185-99. [PMID: 24051397 PMCID: PMC3876030 DOI: 10.1016/j.drudis.2013.09.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/02/2013] [Accepted: 09/09/2013] [Indexed: 12/13/2022]
Abstract
Allosteric modulation of AMPA, NR2B, mGlu2, mGlu5 and M1, targeting glutamatergic dysfunction, represents a significant area of research for the treatment of schizophrenia. Of these targets, clinical promise has been demonstrated using muscarinic activators for the treatment of Alzheimer's disease (AD) and schizophrenia. These diseases have inspired researchers to determine the effects of modulating cholinergic transmission in the forebrain, which is primarily regulated by one of five subtypes of muscarinic acetylcholine receptor (mAChR), a subfamily of G-protein-coupled receptors (GPCRs). Of these five subtypes, M1 is highly expressed in brain regions responsible for learning, cognition and memory. Xanomeline, an orthosteric muscarinic agonist with modest selectivity, was one of the first compounds that displayed improvements in behavioral disturbances in AD patients and efficacy in schizophrenics. Since these initial clinical results, many scientists, including those in our laboratories, have strived to elucidate the role of M1 with compounds that display improved selectivity for this receptor by targeting allosteric modes of receptor activation. A survey of selected compounds in this area will be presented.
Collapse
Affiliation(s)
- Bruce J Melancon
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center, 1205 Light Hall, Nashville, TN 37232-6600, USA
| | | | | | | | | |
Collapse
|
32
|
SSR504734 enhances basal expression of prepulse inhibition but exacerbates the disruption of prepulse inhibition by apomorphine. Psychopharmacology (Berl) 2013; 230:309-17. [PMID: 23736281 PMCID: PMC3809335 DOI: 10.1007/s00213-013-3160-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/19/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Inhibition of glycine transporter 1 (GlyT1) elevates extracellular glycine and can thus increase N-methyl-D-aspartate receptor (NMDAR) excitability in the brain. The potent GlyT1 inhibitor, SSR504734, has also been shown to potentiate the behavioral effects of direct and indirect dopamine agonists. Thus, an acute systemic dose of SSR504734 was sufficient to exacerbate the motor-stimulant effect of the dopamine releaser amphetamine in C57BL/6 mice, even though SSR504734 alone exerted no significant effect on motor activity. OBJECTIVES Here, we explore if SSR504734 might modulate dopamine-dependent sensory gating in the paradigm of prepulse inhibition (PPI) of the acoustic startle reflex. METHODS Experiment 1 characterized the effect of SSR504734 (10 and 30 mg/kg i.p.) on PPI expression when administered alone. Experiments 2 and 3 investigated the impact of SSR504734 when administered in conjunction with the dopamine receptor agonist, apomorphine (1 and 2 mg/kg s.c.), which is known to reliably disrupt PPI. RESULTS When administered alone, acute SSR504734 enhanced PPI only at 30 mg/kg--a dose that has been shown to improve cognitive functions including working memory, which has been linked to enhanced NMDAR function resulting from the elevation of extracellular glycine. However, this effect did not allow SSR504734 to antagonize the PPI-disruptive effect of apomorphine. At the lower dose of 10 mg/kg--that was insufficient to enhance PPI when administered alone--SSR504734 even exacerbated the deleterious effect of apomorphine on PPI. CONCLUSIONS The therapeutic potential of GlyT1 inhibition against distinct behavioral/cognitive deficiency might require different magnitudes of GlyT1 inhibition.
Collapse
|
33
|
Sugane T, Tobe T, Hamaguchi W, Shimada I, Maeno K, Miyata J, Suzuki T, Kimizuka T, Sakamoto S, Tsukamoto SI. Atropisomeric 4-Phenyl-4H-1,2,4-triazoles as Selective Glycine Transporter 1 Inhibitors. J Med Chem 2013; 56:5744-56. [DOI: 10.1021/jm400383w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takashi Sugane
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi,
Ibaraki 305-8585, Japan
| | - Takahiko Tobe
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi,
Ibaraki 305-8585, Japan
| | - Wataru Hamaguchi
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi,
Ibaraki 305-8585, Japan
| | - Itsuro Shimada
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi,
Ibaraki 305-8585, Japan
| | - Kyoichi Maeno
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi,
Ibaraki 305-8585, Japan
| | - Junji Miyata
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi,
Ibaraki 305-8585, Japan
| | - Takeshi Suzuki
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi,
Ibaraki 305-8585, Japan
| | - Tetsuya Kimizuka
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi,
Ibaraki 305-8585, Japan
| | - Shuichi Sakamoto
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi,
Ibaraki 305-8585, Japan
| | - Shin-ichi Tsukamoto
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi,
Ibaraki 305-8585, Japan
| |
Collapse
|
34
|
Abstract
Drugs that induce psychosis, such as D-amphetamine (AMP), and those that alleviate it, such as antipsychotics, are suggested to exert behavioral effects via dopamine receptor D2 (D2). All antipsychotic drugs are D2 antagonists, but D2 antagonism underlies the severe and debilitating side effects of these drugs; it is therefore important to know whether D2 is necessary for their behavioral effects. Using D2-null mice (Drd2-/-), we first investigated whether D2 is required for AMP disruption of latent inhibition (LI). LI is a process of learning to ignore irrelevant stimuli. Disruption of LI by AMP models impaired attention and abnormal salience allocation consequent to dysregulated dopamine relevant to schizophrenia. AMP disruption of LI was seen in both wild-type (WT) and Drd2-/-. This was in contrast to AMP-induced locomotor hyperactivity, which was reduced in Drd2-/-. AMP disruption of LI was attenuated in mice lacking dopamine receptor D1 (Drd1-/-), suggesting that D1 may play a role in AMP disruption of LI. Further supporting this possibility, we found that D1 antagonist SKF83566 attenuated AMP disruption of LI in WT. Remarkably, both haloperidol and clozapine attenuated AMP disruption of LI in Drd2-/-. This demonstrates that antipsychotic drugs can attenuate AMP disruption of learning to ignore irrelevant stimuli in the absence of D2 receptors. Data suggest that D2 is not essential either for AMP to disrupt or for antipsychotic drugs to reverse AMP disruption of learning to ignore irrelevant stimuli and further that D1 merits investigation in the mediation of AMP disruption of these processes.
Collapse
|
35
|
Van Horn MR, Sild M, Ruthazer ES. D-serine as a gliotransmitter and its roles in brain development and disease. Front Cell Neurosci 2013; 7:39. [PMID: 23630460 PMCID: PMC3632749 DOI: 10.3389/fncel.2013.00039] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/26/2013] [Indexed: 01/05/2023] Open
Abstract
The development of new techniques to study glial cells has revealed that they are active participants in the development of functional neuronal circuits. Calcium imaging studies demonstrate that glial cells actively sense and respond to neuronal activity. Glial cells can produce and release neurotransmitter-like molecules, referred to as gliotransmitters, that can in turn influence the activity of neurons and other glia. One putative gliotransmitter, D-serine is believed to be an endogenous co-agonist for synaptic N-methyl-D-aspartate receptors (NMDARs), modulating synaptic transmission and plasticity mediated by this receptor. The observation that D-serine levels in the mammalian brain increase during early development, suggests a possible role for this gliotransmitter in normal brain development and circuit refinement. In this review we will examine the data that D-serine and its associated enzyme serine racemase are developmentally regulated. We will consider the evidence that D-serine is actively released by glial cells and examine the studies that have implicated D-serine as a critical player involved in regulating NMDAR-mediated synaptic transmission and neuronal migration during development. Furthermore, we will consider how dysregulation of D-serine may play an important role in the etiology of neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Marion R Van Horn
- Montreal Neurological Institute, McGill University Montreal, QC, Canada
| | | | | |
Collapse
|
36
|
Abstract
Schizophrenia is a severe neuropsychiatric disorder without adequate current treatment. Recent theories of schizophrenia focus on disturbances of glutamatergic neurotransmission particularly at N-methyl-D-aspartate (NMDA)-type glutamate receptors. NMDA receptors are regulated in vivo by the amino acids glycine and D-serine. Glycine levels, in turn, are regulated by glycine type I (GlyT1) transporters, which serve to maintain low subsaturating glycine levels in the vicinity of the NMDA receptor. A proposed approach to treatment of schizophrenia, therefore, is inhibition of GlyT1-mediated transport. Over the past decade, several well tolerated, high affinity GlyT1 inhibitors have been developed and shown to potentiate NMDA receptor-mediated neurotransmission in animal models relevant to schizophrenia. In addition, clinical trials have been conducted with sarcosine (N-methylglycine), a naturally occurring GlyT1 inhibitor, and with the high affinity compound RG1678. Although definitive trials remain ongoing, encouraging results to date have been reported.
Collapse
Affiliation(s)
- Daniel C Javitt
- Nathan S Kline Institute for Psychiatric Research, Columbia University, Orangeburg, NY 10962, USA.
| |
Collapse
|
37
|
Nunes EA, MacKenzie EM, Rossolatos D, Perez-Parada J, Baker GB, Dursun SM. D-serine and schizophrenia: an update. Expert Rev Neurother 2012; 12:801-12. [PMID: 22853788 DOI: 10.1586/ern.12.65] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Considering the lengthy history of pharmacological treatment of schizophrenia, the development of novel antipsychotic agents targeting the glutamatergic system is relatively new. A glutamatergic deficit has been proposed to underlie many of the symptoms typically observed in schizophrenia, particularly the negative and cognitive symptoms (which are less likely to respond to current treatments). D-serine is an important coagonist of the glutamate NMDA receptor, and accumulating evidence suggests that D-serine levels and/or activity may be dysfunctional in schizophrenia and that facilitation of D-serine transmission could provide a significant therapeutic breakthrough, especially where conventional treatments have fallen short. A summary of the relevant animal data, as well as genetic studies and clinical trials examining D-serine as an adjunct to standard antipsychotic therapy, is provided in this article. Together, the evidence suggests that research on the next generation of antipsychotic agents should include studies on increasing brain levels of D-serine or mimicking its action on the NMDA receptor.
Collapse
Affiliation(s)
- Emerson A Nunes
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Balla A, Schneider S, Sershen H, Javitt DC. Effects of novel, high affinity glycine transport inhibitors on frontostriatal dopamine release in a rodent model of schizophrenia. Eur Neuropsychopharmacol 2012; 22:902-10. [PMID: 22561005 PMCID: PMC3882073 DOI: 10.1016/j.euroneuro.2012.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/11/2012] [Accepted: 03/13/2012] [Indexed: 12/26/2022]
Abstract
Dopaminergic hyperactivity within frontostriatal brain systems is a key feature of schizophrenia, and an objective neural correlate of positive schizophrenia symptoms. N-methyl-d-aspartate (NMDA) receptors are known to play a prominent role in regulation of frontostriatal dopamine release. Furthermore, disturbances in glutamatergic function are increasingly being linked to pathophysiology of both positive and negative symptoms of schizophrenia. Prior studies have demonstrated that subchronic continuous administration of the NMDA antagonist phencyclidine (PCP) induces schizophrenia-like hyper-reactivity of frontostriatal dopamine release to amphetamine (AMPH) in rodents, and that effects were reversed by glycine and the prototypic glycine transport inhibitor (GTI) NFPS. The present study investigates effectiveness of the novel, high affinity and well tolerated GTIs, R231857, R231860 and Org29335, to reverse schizophrenia-like enhancement of AMPH-induced DA release, along with effects of the partial glycine-site agonist d-cycloserine. As previously, PCP had no significant effect on basal DA levels, but significantly enhanced AMPH-induced DA release in prefrontal cortex. All GTIs tested, as well as d-cycloserine, significantly reduced PCP-induced enhancement of DA release in prefrontal cortex. Neither PCP nor GTIs significantly affected striatal DA release. Overall, these findings suggest that treatments which target the glycine modulatory site of the NMDA receptor may significantly reverse NMDA receptor antagonist-induced dysregulation of frontal DA systems, consistent with potential beneficial effects on positive-, in addition to negative-, symptoms of schizophrenia.
Collapse
Affiliation(s)
- Andrea Balla
- Translational Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | | | | | | |
Collapse
|
39
|
Morrow JA, Gilfillan R, Neale SA. Glutamatergic Approaches for the Treatment of Schizophrenia. DRUG DISCOVERY FOR PSYCHIATRIC DISORDERS 2012. [DOI: 10.1039/9781849734943-00056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system and plays a key role in most aspects of normal brain function including cognition, learning and memory. Dysfunction of glutamatergic neurotransmission has been implicated in a number of neurological and psychiatric disorders with a growing body of evidence suggesting that hypofunction of glutamatergic neurotransmission via the N-methyl-d-aspartate (NMDA) receptor plays an important role in the pathophysiology of schizophrenia. It thus follows that potentiation of NMDA receptor function via pharmacological manipulation may provide therapeutic utility for the treatment of schizophrenia and a number of different approaches are currently being pursued by the pharmaceutical industry with this aim in mind. These include strategies that target the glycine/d-serine site of the NMDA receptor (glycine transporter GlyT1, d-serine transporter ASC-1 and d-amino acid oxidase (DAAO) inhibitors) together with those aimed at enhancing glutamatergic neurotransmission via modulation of AMPA receptor and metabotropic glutamate receptor function. Such efforts are now beginning to bear fruit with compounds such as the GlyT1 inhibitor RG1678 and mGlu2 agonist LY2140023 proving to have clinical meaningful effects in phase II clinical trials. While more studies are required to confirm long-term efficacy, functional outcome and safety in schizophrenic agents, these agents hold real promise for addressing unmet medical needs, in particular refractory negative and cognitive symptoms, not currently addressed by existing antipsychotic agents.
Collapse
Affiliation(s)
- John A. Morrow
- Neuroscience and Ophthalmology, Merck Research Laboratories 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 USA
| | - Robert Gilfillan
- Discovery Chemistry, Merck Research Laboratories 770 Sumneytown Pike, West Point, Pennsylvania 19486 USA
| | - Stuart A. Neale
- Neurexpert Ltd Ground Floor, 2 Woodberry Grove, North Finchley, London, N12 0DR UK
| |
Collapse
|
40
|
Mihali A, Subramani S, Kaunitz G, Rayport S, Gaisler-Salomon I. Modeling resilience to schizophrenia in genetically modified mice: a novel approach to drug discovery. Expert Rev Neurother 2012; 12:785-99. [PMID: 22853787 PMCID: PMC3509194 DOI: 10.1586/ern.12.60] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Complex psychiatric disorders, such as schizophrenia, arise from a combination of genetic, developmental, environmental and social factors. These vulnerabilities can be mitigated by adaptive factors in each of these domains engendering resilience. Modeling resilience in mice using transgenic approaches offers a direct path to intervention, as resilience mutations point directly to therapeutic targets. As prototypes for this approach, we discuss the three mouse models of schizophrenia resilience, all based on modulating glutamatergic synaptic transmission. This motivates the broader development of schizophrenia resilience mouse models independent of specific pathophysiological hypotheses as a strategy for drug discovery. Three guiding validation criteria are presented. A resilience-oriented approach should identify pharmacologically tractable targets and in turn offer new insights into pathophysiological mechanisms.
Collapse
Affiliation(s)
- Andra Mihali
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
| | - Shreya Subramani
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
| | - Genevieve Kaunitz
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
| | - Inna Gaisler-Salomon
- Department of Psychology, University of Haifa, Psychobiology Labs, Rabin Building 5059, Haifa 31905, Israel
| |
Collapse
|
41
|
Effect of the NMDA antagonist MK-801 on latent inhibition of fear conditioning. Pharmacol Biochem Behav 2012; 102:488-94. [PMID: 22735831 DOI: 10.1016/j.pbb.2012.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/22/2012] [Accepted: 06/19/2012] [Indexed: 11/21/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors seem to play a central role in learning and memory processes involved in Latent Inhibition (LI). In fact, MK-801, a non-competitive NMDA receptor antagonist, has proved its effectiveness as a drug for attenuating LI when administered before or after stimulus preexposure and conditioning stages. This paper presents three experiments designed to analyze the effect of MK-801 on LI when the drug is administered before (Experiment 1A) or after (Experiment 1B) preexposure and conditioning stages with a conditioned emotional response procedure. Additionally, we analyze the effect of the drug when it was administered before preexposure, before conditioning or before both phases (Experiment 2). The results show that the effect of the drug varied as a function of the dose (with only the highest dose being effective), the moment of administration (with only the drug administered before the experimental treatments being effective), and the phase of procedure (reducing LI when the drug was administered only at preexposure, and disrupting fear conditioning when administered at conditioning). These differences may be due to several factors ranging from the role played by NMDA receptors in the processing of stimuli of different sensorial modalities to the molecular processes triggered by drug administration.
Collapse
|
42
|
Hons J, Vasatova M, Cermakova E, Doubek P, Libiger J. Different serine and glycine metabolism in patients with schizophrenia receiving clozapine. J Psychiatr Res 2012; 46:811-8. [PMID: 22502820 DOI: 10.1016/j.jpsychires.2012.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/07/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
Abstract
Dysfunction of the N-methyl-d-aspartate receptor, which is modulated by excitatory amino acids (EAA), is involved in the pathophysiology of schizophrenia. The effects of antipsychotics on EAA metabolism are uncertain. Positive clinical effects of treatment with antipsychotics were not always associated with changes in EAA serum levels in patients with schizophrenia in clinical trials. To examine EAA serum levels in relation to the intensity of psychotic symptoms and the type of medication received we compared these variables among patients with schizophrenia (n = 49) treated with first (FGA) or second (SGA) generation antipsychotics or clozapine. Glutamate, aspartate, glycine, total serine and d-serine serum levels were measured by High Performance Liquid Chromatography. The Positive and Negative Syndrome Scale (PANSS) and the Scale for the Assessment of Negative Symptoms (SANS) were used to assess symptoms of schizophrenia. Lower average levels of glycine and total serine were found in the serum of patients receiving clozapine when compared to the groups of patients treated with FGA or SGA. There were no differences in serum glutamate, aspartate or d-serine levels or in the intensity of schizophrenic symptoms assessed by PANSS or SANS among the groups of patients treated with FGA or SGA or clozapine. Lower glycine and total serine serum levels could be caused by the particular characteristics of the population of patients receiving clozapine rather than as an effect of the clozapine. The results suggest selective deficiency of l-serine synthesis in the patients with resistance to non-clozapine treatment. It might be an unique biochemical and pathophysiological characteristic of the treatment-resistance in schizophrenia.
Collapse
Affiliation(s)
- Jaromir Hons
- Department of Psychiatry, Regional Hospital Liberec, Husova 10, 460 63 Liberec, Czech Republic.
| | | | | | | | | |
Collapse
|
43
|
Haque FN, Lipina TV, Roder JC, Wong AHC. Social defeat interacts with Disc1 mutations in the mouse to affect behavior. Behav Brain Res 2012; 233:337-44. [PMID: 22659396 DOI: 10.1016/j.bbr.2012.05.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/19/2012] [Accepted: 05/22/2012] [Indexed: 02/08/2023]
Abstract
DISC1 (Disrupted-in-schizophrenia 1) is a strong candidate susceptibility gene for psychiatric disease that was originally discovered in a family with a chromosomal translocation severing this gene. Although the family members with the translocation had an identical genetic mutation, their clinical diagnosis and presentation varied significantly. Gene-environment interactions have been proposed as a mechanism underlying the complex heritability and variable phenotype of psychiatric disorders such as major depressive disorder and schizophrenia. We hypothesized that gene-environment interactions would affect behavior in a mutant Disc1 mouse model. We examined the effect of chronic social defeat (CSD) as an environmental stressor in two lines of mice carrying different Disc1 point mutations, on behaviors relevant to psychiatric illness: locomotion in a novel open field (OF), pre-pulse inhibition (PPI) of the acoustic startle response, latent inhibition (LI), elevated plus maze (EPM), forced swim test (FST), sucrose consumption (SC), and the social interaction task for sociability and social novelty (SSN). We found that Disc1-L100P +/- and wild-type mice have similar anxiety responses to CSD, while Q31L +/- mice had a very different response. We also found evidence of significant gene-environment interactions in the OF, EPM and SSN.
Collapse
Affiliation(s)
- F Nipa Haque
- University of Toronto, Department of Pharmacology, Toronto, ON M5S 1A1, Canada
| | | | | | | |
Collapse
|
44
|
Targeting glutamate system for novel antipsychotic approaches: Relevance for residual psychotic symptoms and treatment resistant schizophrenia. Eur J Pharmacol 2012; 682:1-11. [DOI: 10.1016/j.ejphar.2012.02.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/08/2012] [Accepted: 02/15/2012] [Indexed: 01/04/2023]
|
45
|
Wakabayashi C, Numakawa T, Ninomiya M, Chiba S, Kunugi H. Behavioral and molecular evidence for psychotropic effects in L-theanine. Psychopharmacology (Berl) 2012; 219:1099-109. [PMID: 21861094 DOI: 10.1007/s00213-011-2440-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 08/02/2011] [Indexed: 12/24/2022]
Abstract
RATIONALE L-Theanine (N-ethyl-L: -glutamine) is an amino acid uniquely found in green tea and historically considered to be a relaxing agent. It is a glutamate derivative and has an affinity for glutamatergic receptors. However, its psychotropic effects remain unclear. OBJECTIVES To elucidate effects of L: -theanine on psychiatric disease-related behaviors in mice and its molecular basis focusing on brain-derived neurotrophic factor (BDNF) and N-methyl-D: -aspartate (NMDA) receptor. METHODS We examined the effects of L: -theanine on behaviors in mice by using the open-field test (OFT), forced swim test (FST), elevated plus-maze test (EPMT), and prepulse inhibition (PPI) of acoustic startle. By western blot analysis, we looked at the effect of L: -theanine on the expression of BDNF and related proteins in the hippocampus and cerebral cortex. To determine whether L: -theanine has agonistic action on the NMDA receptor, we performed Fluo-3 intracellular Ca(2+) imaging in cultured cortical neurons. RESULTS Single administration of L: -theanine significantly attenuated MK-801-induced deficits in PPI. Subchronic administration (3-week duration) of L: -theanine significantly reduced immobility time in the FST and improved baseline PPI. Western blotting analysis showed increased expression of BDNF protein in the hippocampus after subchronic administration of L: -theanine. In cultured cortical neurons, L: -theanine significantly increased the intracellular Ca(2+) concentration, and this increase was suppressed by competitive and non-competitive NMDA receptor antagonists (AP-5 and MK-801, respectively). CONCLUSIONS Our results suggest that L: -theanine has antipsychotic-like and possibly antidepressant-like effects. It exerts these effects, at least in part, through induction of BDNF in the hippocampus and the agonistic action of L: -theanine on the NMDA receptor.
Collapse
Affiliation(s)
- Chisato Wakabayashi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | |
Collapse
|
46
|
Kargieman L, Riga MS, Artigas F, Celada P. Clozapine Reverses Phencyclidine-Induced Desynchronization of Prefrontal Cortex through a 5-HT(1A) Receptor-Dependent Mechanism. Neuropsychopharmacology 2012; 37:723-33. [PMID: 22012474 PMCID: PMC3260989 DOI: 10.1038/npp.2011.249] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The non-competitive NMDA receptor (NMDA-R) antagonist phencyclidine (PCP)-used as a pharmacological model of schizophrenia-disrupts prefrontal cortex (PFC) activity. PCP markedly increased the discharge rate of pyramidal neurons and reduced slow cortical oscillations (SCO; 0.15-4 Hz) in rat PFC. Both effects were reversed by classical (haloperidol) and atypical (clozapine) antipsychotic drugs. Here we extended these observations to mice brain and examined the potential involvement of 5-HT(2A) and 5-HT(1A) receptors (5-HT(2A)R and 5-HT(1A)R, respectively) in the reversal by clozapine of PCP actions. Clozapine shows high in vitro affinity for 5-HT(2A)R and behaves as partial agonist in vivo at 5-HT(1A)R. We used wild-type (WT) mice and 5-HT(1A)R and 5-HT(2A)R knockout mice of the same background (C57BL/6) (KO-1A and KO-2A, respectively). Local field potentials (LFPs) were recorded in the PFC of WT, KO-1A, and KO-2A mice. PCP (10 mg/kg, intraperitoneally) reduced SCO equally in WT, KO-2A, and KO-1A mice (58±4%, 42±7%, and 63±7% of pre-drug values, n=23, 13, 11, respectively; p<0.0003). Clozapine (0.5 mg/kg, intraperitoneally) significantly reversed PCP effect in WT and KO-2A mice, but not in KO-1A mice nor in WT mice pretreated with the selective 5-HT(1A)R antagonist WAY-100635.The PCP-induced disorganization of PFC activity does not appear to depend on serotonergic function. However, the lack of effect of clozapine in KO-1A mice and the prevention by WAY-100635 indicates that its therapeutic action involves 5-HT(1A)R activation without the need to block 5-HT(2A)R, as observed with clozapine-induced cortical dopamine release.
Collapse
Affiliation(s)
- Lucila Kargieman
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Maurizio S Riga
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesc Artigas
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pau Celada
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 161, 6th floor, Barcelona 08036, Spain, Tel: +349 3363 8314, Fax: +349 3363 8301, E-mail:
| |
Collapse
|
47
|
Moghaddam B, Javitt D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 2012; 37:4-15. [PMID: 21956446 PMCID: PMC3238069 DOI: 10.1038/npp.2011.181] [Citation(s) in RCA: 735] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 12/12/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in mammalian brain. Disturbances in glutamate-mediated neurotransmission have been increasingly documented in a range of neuropsychiatric disorders including schizophrenia, substance abuse, mood disorders, Alzheimer's disease, and autism-spectrum disorders. Glutamatergic theories of schizophrenia are based on the ability of N-methyl-D-aspartate receptor (NMDAR) antagonists to induce schizophrenia-like symptoms, as well as emergent literature documenting disturbances of NMDAR-related gene expression and metabolic pathways in schizophrenia. Research over the past two decades has highlighted promising new targets for drug development based on potential pre- and postsynaptic, and glial mechanisms leading to NMDAR dysfunction. Reduced NMDAR activity on inhibitory neurons leads to disinhibition of glutamate neurons increasing synaptic activity of glutamate, especially in the prefrontal cortex. Based on this mechanism, normalizing excess glutamate levels by metabotropic glutamate group 2/3 receptor agonists has led to potential identification of the first non-monoaminergic target with comparable efficacy as conventional antipsychotic drugs for treating positive and negative symptoms of schizophrenia. In addition, NMDAR has intrinsic modulatory sites that are active targets for drug development, several of which show promise in preclinical/early clinical trials targeting both symptoms and cognition. To date, most studies have been done with orthosteric agonists and/or antagonists at specific sites. However, allosteric modulators, both positive and negative, may offer superior efficacy with less danger of downregulation.
Collapse
Affiliation(s)
- Bita Moghaddam
- Department of Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
48
|
Synthesis and biological evaluation of (4H-1,2,4-triazol-4-yl)isoquinoline derivatives as selective glycine transporter 1 inhibitors. Bioorg Med Chem 2012; 20:34-41. [DOI: 10.1016/j.bmc.2011.11.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 11/19/2022]
|
49
|
Nagai T, Yu J, Kitahara Y, Nabeshima T, Yamada K. D-Serine Ameliorates Neonatal PolyI:C Treatment^|^ndash;Induced Emotional and Cognitive Impairments in Adult Mice. J Pharmacol Sci 2012; 120:213-27. [DOI: 10.1254/jphs.12142fp] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
50
|
The regulatory role of long-term depression in juvenile and adult mouse ocular dominance plasticity. Sci Rep 2011; 1:203. [PMID: 22355718 PMCID: PMC3243757 DOI: 10.1038/srep00203] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/08/2011] [Indexed: 11/22/2022] Open
Abstract
The study of experience-dependent ocular dominance (OD) plasticity has greatly contributed to the understanding of visual development. During the critical period, preventing input from one eye results in a significant impairment of vision, and loss of cortical responsivity via the deprived eye. Residual ocular dominance plasticity has recently been observed in adulthood. Accumulating evidence suggests that OD plasticity involves N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD). Here we report that the administration of a selective LTD antagonist prevented the ocular dominance shift during the critical period. The NMDAR co-agonist D-serine facilitated adult visual cortical LTD and the OD shift in short-term monocularly deprived (MD) adult mice. When combined with reverse suture, D-serine proved effective in restoring a contralaterally-dominated visual input pattern in long-term MD mice. This work suggests LTD as a key mechanism in both juvenile and adult ocular dominance plasticity, and D-serine as a potential therapeutic in human amblyopic subjects.
Collapse
|