1
|
Brown CR, Foster JD. Modulation of autism-associated serotonin transporters by palmitoylation: Insights into the molecular pathogenesis and targeted therapies for autism spectrum disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642908. [PMID: 40161745 PMCID: PMC11952500 DOI: 10.1101/2025.03.12.642908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Autism spectrum disorder (ASD) is a developmental disorder of the nervous system characterized by a deficiency in interpersonal communication skills, a pathologic tendency for repetitive behaviors, and highly restrictive interests. The spectrum is a gradient-based construct used to categorize the widely varying degrees of ASD phenotypes, and has been linked to a genetic etiology in 25% of cases. Prior studies have revealed that 30% of ASD patients exhibit hyperserotonemia, or elevated whole blood serotonin, implicating the serotonergic system in the pathogenesis of ASD. Likewise, escitalopram, a selective-serotonin reuptake inhibitor (SSRI), has been demonstrated to improve aberrant behavior and irritability in ASD patients, potentially by modulating abnormal brain activation. Prior studies have uncovered proband patients with rare mutations in the human serotonin transporter (hSERT) that manifest enhanced surface expression and transport capacity, suggesting that abnormal enhancement of hSERT function may be involved in the pathogenesis of ASD. Methods HEK-293 cells stably expressing WT, C109A, I425L, F465L, L550V, or K605N hSERT were subject to analysis for palmitoylation via Acyl-Biotin Exchange followed with hSERT immunoblotting. F465L functional enhancement was confirmed by surface analysis via biotinylation and saturation analysis via 5HT transport. F465L palmitoylation, surface expression and transport capacity were then assessed following treatment with 2-bromopalmitate or escitalopram. Results Here, we reveal that palmitoylation is enhanced in the ASD hSERT F465L and L550V coding variants, and confirm prior reports of enhanced kinetic activity and surface expression of F465L. Subsequently, treatment of F465L with the irreversible palmitoyl acyl-transferase inhibitor, 2-bromopalmitate (2BP), or escitalopram, rectified enhanced F465L palmitoylation, surface expression, and transport capacity to basal WT levels. Limitations Tests assessing L550V for surface expression, transport capacity, and reactivity to inhibition of palmitoylation was not assessed. In addition, further characterization is necessary for internalization rates, degradative mechanisms, the impact of cysteine-mediated substitutions, and other SSRIs on these processes. Conclusions Overall, our results implicate disordered hSERT palmitoylation in the pathogenesis of serotonergic ASD subtypes, with basal recovery of these processes following escitalopram providing insight into its molecular utility as an ASD therapeutic.
Collapse
Affiliation(s)
- Christopher R. Brown
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037
| | - James D. Foster
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037
| |
Collapse
|
2
|
Hart XM, Spangemacher M, Defert J, Uchida H, Gründer G. Update Lessons from PET Imaging Part II: A Systematic Critical Review on Therapeutic Plasma Concentrations of Antidepressants. Ther Drug Monit 2024; 46:155-169. [PMID: 38287888 DOI: 10.1097/ftd.0000000000001142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/29/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND Compared with antipsychotics, the relationship between antidepressant blood (plasma or serum) concentrations and target engagement is less well-established. METHODS We have discussed the literature on the relationship between plasma concentrations of antidepressant drugs and their target occupancy. Antidepressants reviewed in this work are citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine, sertraline, venlafaxine, duloxetine, milnacipran, tricyclic antidepressants (amitriptyline, nortriptyline, and clomipramine), bupropion, tranylcypromine, moclobemide, and vortioxetine. Four electronic databases were systematically searched. RESULTS We included 32 articles published 1996-2022. A strong relationship between serotonin transporter (SERT) occupancy and drug concentration is well established for selective serotonin reuptake inhibitors. Lower limits of recommended therapeutic reference ranges largely corroborate with the findings from positron emission tomography studies (80% SERT occupancy). Only a few novel studies have investigated alternative targets, that is, norepinephrine transporters (NETs), dopamine transporters (DATs), or monoamine oxidase A (MAO-A). For certain classes of drugs, positron emission tomography study data are inconclusive. Low DAT occupancy after bupropion treatment speculates its discussed mechanism of action. For MAO inhibitors, a correlation between drug concentration and MAO-A occupancy could not be established. CONCLUSIONS Neuroimaging studies are critical in TDM-guided therapy for certain antidepressants, whereas for bupropion and MAO inhibitors, the available evidence offers no further insight. Evidence for selective serotonin reuptake inhibitors is strong and justifies a titration toward suggested ranges. For SNRIs, duloxetine, and venlafaxine, NETs are sufficiently occupied, well above the SERT efficacy threshold. For these drugs, a titration toward higher concentrations (within the recommended range) should be considered in case of no response at lower concentrations.
Collapse
Affiliation(s)
- Xenia M Hart
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; and
| | - Moritz Spangemacher
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Julie Defert
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; and
| | - Gerhard Gründer
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
3
|
Bhatia V, Dhingra AK, Chopra B, Guarve K. A Review of Clinical Studies Assessing the Therapeutic Efficacy of Escitalopram: A Step Towards Development. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:41-50. [PMID: 35232356 DOI: 10.2174/1871527321666220301122807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Major depression is a debilitating, sometimes fatal disorder, deteriorating the quality of life and well-being. Escitalopram showed highly selective and dose-dependent inhibitory activity on human serotonin transport. Selective serotonin reuptake inhibitors (SSRIs) are the first-line drugs to manage major depressive disorder (MDD). OBJECTIVE The objective of this study is to explore the therapeutic potential of escitalopram, a clinically approved drug to manage MDD and panic disorders. METHODS It emphasizes comparative and clinical trial studies with several pharmacological targets reviewed from the data available on PubMed, Science Direct, Clinicaltrails.gov, and from many reputed foundations. RESULTS To highlight the clinical efficacy, safety, recent development, and stable formulation of escitalopram with an increased bioavailability profile. Evidence-based on the available clinical and pharmacoeconomic data, escitalopram represents an effective first-line treatment option for MDD patients. CONCLUSION The present review highlights the placebo-controlled clinical studies and the recent development that can be helpful for further research perspectives.
Collapse
Affiliation(s)
- Vishal Bhatia
- Guru Gobind Singh College of Pharmacy, City Center Road, Yamuna Nagar-135001, Haryana, India
| | - Ashwani K Dhingra
- Guru Gobind Singh College of Pharmacy, City Center Road, Yamuna Nagar-135001, Haryana, India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, City Center Road, Yamuna Nagar-135001, Haryana, India
| | - Kumar Guarve
- Guru Gobind Singh College of Pharmacy, City Center Road, Yamuna Nagar-135001, Haryana, India
| |
Collapse
|
4
|
Zsido RG, Molloy EN, Cesnaite E, Zheleva G, Beinhölzl N, Scharrer U, Piecha FA, Regenthal R, Villringer A, Nikulin VV, Sacher J. One‐week escitalopram intake alters the excitation–inhibition balance in the healthy female brain. Hum Brain Mapp 2022; 43:1868-1881. [PMID: 35064716 PMCID: PMC8933318 DOI: 10.1002/hbm.25760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/11/2022] Open
Affiliation(s)
- Rachel G. Zsido
- Emotion Neuroimaging Lab Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- International Max Planck Research School NeuroCom Leipzig Germany
- Max Planck School of Cognition Leipzig Germany
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Eóin N. Molloy
- Emotion Neuroimaging Lab Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- International Max Planck Research School NeuroCom Leipzig Germany
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- University Clinic for Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg Magdeburg Germany
| | - Elena Cesnaite
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Gergana Zheleva
- Emotion Neuroimaging Lab Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Nathalie Beinhölzl
- Emotion Neuroimaging Lab Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Ulrike Scharrer
- Emotion Neuroimaging Lab Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- Clinic for Cognitive Neurology Leipzig University Leipzig Germany
| | - Fabian A. Piecha
- Emotion Neuroimaging Lab Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf Boehm Institute of Pharmacology and Toxicology Leipzig University Leipzig Germany
| | - Arno Villringer
- International Max Planck Research School NeuroCom Leipzig Germany
- Max Planck School of Cognition Leipzig Germany
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- Clinic for Cognitive Neurology Leipzig University Leipzig Germany
- Berlin School of Mind and Brain Berlin Germany
| | - Vadim V. Nikulin
- International Max Planck Research School NeuroCom Leipzig Germany
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Julia Sacher
- Emotion Neuroimaging Lab Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- International Max Planck Research School NeuroCom Leipzig Germany
- Max Planck School of Cognition Leipzig Germany
- Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- Clinic for Cognitive Neurology Leipzig University Leipzig Germany
| |
Collapse
|
5
|
Eichentopf L, Hiemke C, Conca A, Engelmann J, Gerlach M, Havemann-Reinecke U, Hefner G, Florio V, Kuzin M, Lieb K, Reis M, Riemer TG, Serretti A, Schoretsanitis G, Zernig G, Gründer G, Hart XM. Systematic review and meta-analysis on the therapeutic reference range for escitalopram: Blood concentrations, clinical effects and serotonin transporter occupancy. Front Psychiatry 2022; 13:972141. [PMID: 36325531 PMCID: PMC9621321 DOI: 10.3389/fpsyt.2022.972141] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION A titration within a certain therapeutic reference range presupposes a relationship between the blood concentration and the therapeutic effect of a drug. However, this has not been systematically investigated for escitalopram. Furthermore, the recommended reference range disagrees with mean steady state concentrations (11-21 ng/ml) that are expected under the approved dose range (10-20 mg/day). This work systematically investigated the relationships between escitalopram dose, blood levels, clinical effects, and serotonin transporter occupancy. METHODS Following our previously published methodology, relevant articles were systematically searched and reviewed for escitalopram. RESULTS Of 1,032 articles screened, a total of 30 studies met the eligibility criteria. The included studies investigated escitalopram blood levels in relationship to clinical effects (9 studies) or moderating factors on escitalopram metabolism (12 studies) or serotonin transporter occupancy (9 studies). Overall, the evidence for an escitalopram concentration/effect relationship is low (level C). CONCLUSION Based on our findings, we propose a target range of 20-40 ng/ml for antidepressant efficacy of escitalopram. In maintenance treatment, therapeutic response is expected, when titrating patients above the lower limit. The lower concentration threshold is strongly supported by findings from neuroimaging studies. The upper limit for escitalopram's reference range rather reflects a therapeutic maximum than a tolerability threshold, since the incidence of side effects in general is low. Concentrations above 40 ng/ml should not necessarily result in dose reductions in case of good clinical efficacy and tolerability. Dose-related escitalopram concentrations in different trials were more than twice the expected concentrations from guideline reports. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=215873], identifier [CRD42020215873].
Collapse
Affiliation(s)
- Luzie Eichentopf
- Department of Molecular Neuroimaging, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Mainz, Mainz, Germany.,Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP)-Work Group "Therapeutic Drug Monitoring", Nürnberg, Germany
| | - Andreas Conca
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP)-Work Group "Therapeutic Drug Monitoring", Nürnberg, Germany.,Department of Psychiatry, Central Hospital, Sanitary Agency of South Tyrol, Bolzano, Italy
| | - Jan Engelmann
- Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
| | - Manfred Gerlach
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP)-Work Group "Therapeutic Drug Monitoring", Nürnberg, Germany.,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Ursula Havemann-Reinecke
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP)-Work Group "Therapeutic Drug Monitoring", Nürnberg, Germany.,Department of Psychiatry and Psychosomatics, University of Göttingen, Göttingen, Germany
| | - Gudrun Hefner
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP)-Work Group "Therapeutic Drug Monitoring", Nürnberg, Germany.,Vitos Clinic for Forensic Psychiatry, Forensic Psychiatry, Eltville, Germany
| | - Vincenzo Florio
- Department of Psychiatry, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Maxim Kuzin
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP)-Work Group "Therapeutic Drug Monitoring", Nürnberg, Germany.,Clienia Schlössli AG, Psychiatric and Psychotherapeutic Private Clinic, Academic Teaching Hospital of the University of Zurich, Oetwil am See, Switzerland
| | - Klaus Lieb
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| | - Margareta Reis
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Sweden
| | - Thomas G Riemer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Berlin, Germany
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Georgios Schoretsanitis
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP)-Work Group "Therapeutic Drug Monitoring", Nürnberg, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,Department of Psychiatry, Behavioral Health Pavilion, Northwell Health, The Zucker Hillside Hospital, Glen Oaks, NY, United States.,Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, United States
| | - Gerald Zernig
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP)-Work Group "Therapeutic Drug Monitoring", Nürnberg, Germany.,Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.,Private Practice for Psychotherapy and Court-Certified Witness, Hall in Tirol, Austria
| | - Gerhard Gründer
- Department of Molecular Neuroimaging, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP)-Work Group "Therapeutic Drug Monitoring", Nürnberg, Germany
| | - Xenia M Hart
- Department of Molecular Neuroimaging, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany.,Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP)-Work Group "Therapeutic Drug Monitoring", Nürnberg, Germany
| |
Collapse
|
6
|
Sørensen A, Ruhé HG, Munkholm K. The relationship between dose and serotonin transporter occupancy of antidepressants-a systematic review. Mol Psychiatry 2022; 27:192-201. [PMID: 34548628 PMCID: PMC8960396 DOI: 10.1038/s41380-021-01285-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/11/2021] [Accepted: 08/25/2021] [Indexed: 11/09/2022]
Abstract
Brain imaging techniques enable the visualization of serotonin transporter (SERT) occupancy as a measure of the proportion of SERT blocked by an antidepressant at a given dose. We aimed to systematically review the evidence on the relationship between antidepressant dose and SERT occupancy. We searched PubMed and Embase (last search 20 May 2021) for human in vivo, within-subject PET, or SPECT studies measuring SERT occupancy at any dose of any antidepressant with highly selective radioligands ([11C]-DASB, [123I]-ADAM, and [11C]-MADAM). We summarized and visualized the dose-occupancy relationship for antidepressants across studies, overlaying the plots with a curve based on predicted values of a standard 2-parameter Michaelis-Menten model fitted using the observed data. We included seventeen studies of 10 different SSRIs, SNRIs, and serotonin modulators comprising a total of 294 participants, involving 309 unique occupancy measures. Overall, following the Michaelis-Menten equation, SERT occupancy increased with a higher dose in a hyperbolic relationship, with occupancy increasing rapidly at lower doses and reaching a plateau at approximately 80% at the usual minimum recommended dose. All the studies were small, only a few investigated the same antidepressant, dose, and brain region, and few reported information on factors that may influence SERT occupancy. The hyperbolic dose-occupancy relationship may provide mechanistic insight of relevance to the limited clinical benefit of dose-escalation in antidepressant treatment and the potential emergence of withdrawal symptoms. The evidence is limited by non-transparent reporting, lack of standardized methods, small sample sizes, and short treatment duration. Future studies should standardize the imaging and reporting procedures, measure occupancy at lower antidepressant doses, and investigate the moderators of the dose-occupancy relationship.
Collapse
Affiliation(s)
- Anders Sørensen
- Nordic Cochrane Centre, Rigshospitalet, Copenhagen, Denmark.
| | - Henricus G. Ruhé
- grid.10417.330000 0004 0444 9382Department of Psychiatry, Radboudumc, Nijmegen, The Netherlands ,grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Klaus Munkholm
- grid.10825.3e0000 0001 0728 0170Centre for Evidence-Based Medicine Odense (CEBMO) and Cochrane Denmark, Department of Clinical Research, University of Southern Denmark, Odense, Denmark ,grid.7143.10000 0004 0512 5013Open Patient data Exploratory Network (OPEN), Odense University Hospital, Odense, Denmark
| |
Collapse
|
7
|
Eap CB, Gründer G, Baumann P, Ansermot N, Conca A, Corruble E, Crettol S, Dahl ML, de Leon J, Greiner C, Howes O, Kim E, Lanzenberger R, Meyer JH, Moessner R, Mulder H, Müller DJ, Reis M, Riederer P, Ruhe HG, Spigset O, Spina E, Stegman B, Steimer W, Stingl J, Suzen S, Uchida H, Unterecker S, Vandenberghe F, Hiemke C. Tools for optimising pharmacotherapy in psychiatry (therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests): focus on antidepressants. World J Biol Psychiatry 2021; 22:561-628. [PMID: 33977870 DOI: 10.1080/15622975.2021.1878427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objectives: More than 40 drugs are available to treat affective disorders. Individual selection of the optimal drug and dose is required to attain the highest possible efficacy and acceptable tolerability for every patient.Methods: This review, which includes more than 500 articles selected by 30 experts, combines relevant knowledge on studies investigating the pharmacokinetics, pharmacodynamics and pharmacogenetics of 33 antidepressant drugs and of 4 drugs approved for augmentation in cases of insufficient response to antidepressant monotherapy. Such studies typically measure drug concentrations in blood (i.e. therapeutic drug monitoring) and genotype relevant genetic polymorphisms of enzymes, transporters or receptors involved in drug metabolism or mechanism of action. Imaging studies, primarily positron emission tomography that relates drug concentrations in blood and radioligand binding, are considered to quantify target structure occupancy by the antidepressant drugs in vivo. Results: Evidence is given that in vivo imaging, therapeutic drug monitoring and genotyping and/or phenotyping of drug metabolising enzymes should be an integral part in the development of any new antidepressant drug.Conclusions: To guide antidepressant drug therapy in everyday practice, there are multiple indications such as uncertain adherence, polypharmacy, nonresponse and/or adverse reactions under therapeutically recommended doses, where therapeutic drug monitoring and cytochrome P450 genotyping and/or phenotyping should be applied as valid tools of precision medicine.
Collapse
Affiliation(s)
- C B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Lausanne, Switzerland, Geneva, Switzerland
| | - G Gründer
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - P Baumann
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - N Ansermot
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - A Conca
- Department of Psychiatry, Health Service District Bolzano, Bolzano, Italy.,Department of Child and Adolescent Psychiatry, South Tyrolean Regional Health Service, Bolzano, Italy
| | - E Corruble
- INSERM CESP, Team ≪MOODS≫, Service Hospitalo-Universitaire de Psychiatrie, Universite Paris Saclay, Le Kremlin Bicetre, France.,Service Hospitalo-Universitaire de Psychiatrie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - S Crettol
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M L Dahl
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J de Leon
- Eastern State Hospital, University of Kentucky Mental Health Research Center, Lexington, KY, USA
| | - C Greiner
- Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany
| | - O Howes
- King's College London and MRC London Institute of Medical Sciences (LMS)-Imperial College, London, UK
| | - E Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - J H Meyer
- Campbell Family Mental Health Research Institute, CAMH and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - R Moessner
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - H Mulder
- Department of Clinical Pharmacy, Wilhelmina Hospital Assen, Assen, The Netherlands.,GGZ Drenthe Mental Health Services Drenthe, Assen, The Netherlands.,Department of Pharmacotherapy, Epidemiology and Economics, Department of Pharmacy and Pharmaceutical Sciences, University of Groningen, Groningen, The Netherlands.,Department of Psychiatry, Interdisciplinary Centre for Psychopathology and Emotion Regulation, University of Groningen, Groningen, The Netherlands
| | - D J Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Reis
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Sweden
| | - P Riederer
- Center of Mental Health, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany.,Department of Psychiatry, University of Southern Denmark Odense, Odense, Denmark
| | - H G Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - O Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - E Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - B Stegman
- Institut für Pharmazie der Universität Regensburg, Regensburg, Germany
| | - W Steimer
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Munich, Germany
| | - J Stingl
- Institute for Clinical Pharmacology, University Hospital of RWTH Aachen, Germany
| | - S Suzen
- Department of Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - H Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - S Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - F Vandenberghe
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
8
|
Baumann P, Bertschy G, Ramseier F, Nil R. Plasma Concentrations and Cardiovascular Effects of Citalopram Enantiomers After Oral Versus Infusion Citalopram Therapy in Dextromethorphan-Mephenytoin-Phenotyped Patients With Major Depression. Ther Drug Monit 2021; 43:436-442. [PMID: 33060488 DOI: 10.1097/ftd.0000000000000824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/21/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Authors compared plasma concentrations of citalopram (CIT) enantiomers and their metabolites in patients with depression administered either intravenously (IV) or as oral racemic CIT. Then, plasma concentrations were related to the metabolism of probes used for phenotyping patients with depression for CYP2C19 and CYP2D6 activity and cardiovascular functions. METHODS Dextromethorphan-mephenytoin-phenotyped patients with depression were administered racemic CIT (days 1 and 2: 20 mg/d; days 3-10: 40 mg/d) either orally or as a slow-drop infusion for 10 days and were then orally administered the drug for another 32 days. Blood probes were collected at the time of minimal and maximal concentrations on day 10, immediately before and 2 hours after drug administration, and on days 21 and 42. Plasma CIT and its metabolites were assayed by stereoselective high-performance liquid chromatography. RESULTS The following concentrations (ng/mL) were noted in the group receiving active IV infusion (IV-POS group, n = 27) of racemic CIT on day 10, before drug administration: escitalopram (S-CIT): 24 ± 10.2; R-citalopram (R-CIT): 45 ± 14.5; S-desmethyl-CIT: 13 ± 4.4; and R-desmethyl-CIT: 17 ± 8.2. In patients receiving oral administration (POS-POS group, n = 25), the values were 30 ± 12.7, 51 ± 17.4, 13 ± 4.6, and 17 ± 7.9 ng/mL, respectively. In the IV-POS group, 3 patients were poor dextromethorphan (CYP2D6) metabolizers; in the POS-POS group, one was a poor mephenytoin (CYP2C19) metabolizer. On day 10, before CIT treatment, S/R-CIT and S/R-mephenytoin ratios were significantly correlated, determined at baseline. Overall, CIT reduced the heart rate but did not significantly modify QTc. No relationship was found between any cardiovascular parameters and pharmacokinetic and pharmacogenetic data. CONCLUSIONS Owing to CIT's high bioavailability, the plasma concentrations of its enantiomers remained largely independent on the administration route. CYP2C19 preferentially demethylated S-CIT after CIT therapy.
Collapse
Affiliation(s)
- Pierre Baumann
- Department of Psychiatry, University Hospital of Lausanne (DP-CHUV), Prilly-Lausanne, Switzerland
| | - Gilles Bertschy
- Service de Psychiatrie II, University of Strasbourg, Strasbourg, France
| | - Fritz Ramseier
- Praxengemeinschaft Zürcherstrasse, Rheinfelden, Switzerland; and
| | - Rico Nil
- Consultant, Clinical Research, Uerikon, Switzerland
| |
Collapse
|
9
|
The Effect of Escitalopram on Central Serotonergic and Dopaminergic Systems in Patients with Cervical Dystonia, and Its Relationship with Clinical Treatment Effects: A Double-Blind Placebo-Controlled Trial. Biomolecules 2020; 10:biom10060880. [PMID: 32521736 PMCID: PMC7355711 DOI: 10.3390/biom10060880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/04/2020] [Indexed: 12/02/2022] Open
Abstract
Purpose: The pathophysiology of cervical dystonia (CD) is thought to be related to changes in dopamine and serotonin levels in the brain. We performed a double-blind trial with escitalopram (selective serotonin reuptake inhibitor; SSRI) in patients with CD. Here, we report on changes in dopamine D2/3 receptor (D2/3R), dopamine transporter (DAT) and serotonin transporter (SERT) binding potential (BPND) after a six-week treatment course with escitalopram or placebo. Methods: CD patients had [123I]FP-CIT SPECT (I-123 fluoropropyl carbomethoxy-3 beta-(4-iodophenyltropane) single-photon emission computed tomography) scans, to quantify extrastriatal SERT and striatal DAT, and [123I]IBZM SPECT (I-123 iodobenzamide SPECT) scans to quantify striatal D2/3R BPND before and after six weeks of treatment with either escitalopram or placebo. Treatment effect was evaluated with the Clinical Global Impression scale for dystonia, jerks and psychiatric symptoms, both by physicians and patients. Results: In both patients treated with escitalopram and placebo there were no significant differences after treatment in SERT, DAT or D2/3R BPND. Comparing scans after treatment with escitalopram (n = 8) to placebo (n = 8) showed a trend (p = 0.13) towards lower extrastriatal SERT BPND in the SSRI group (median SERT occupancy of 64.6%). After treatment with escitalopram, patients who reported a positive effect on dystonia or psychiatric symptoms had significantly higher SERT occupancy compared to patients who did not experience an effect. Conclusion: Higher extrastriatal SERT occupancy after treatment with escitalopram is associated with a trend towards a positive subjective effect on dystonia and psychiatric symptoms in CD patients.
Collapse
|
10
|
von Linstow CU, Waider J, Grebing M, Metaxas A, Lesch KP, Finsen B. Serotonin augmentation therapy by escitalopram has minimal effects on amyloid-β levels in early-stage Alzheimer's-like disease in mice. ALZHEIMERS RESEARCH & THERAPY 2017; 9:74. [PMID: 28899417 PMCID: PMC5596844 DOI: 10.1186/s13195-017-0298-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
Background Dysfunction of the serotonergic (5-HTergic) system has been implicated in the cognitive and behavioural symptoms of Alzheimer’s disease (AD). Accumulation of toxic amyloid-β (Aβ) species is a hallmark of AD and an instigator of pathology. Serotonin (5-HT) augmentation therapy by treatment with selective serotonin reuptake inhibitors (SSRIs) in patients with AD has had mixed success in improving cognitive function, whereas SSRI administration to mice with AD-like disease has been shown to reduce Aβ pathology. The objective of this study was to investigate whether an increase in extracellular levels of 5-HT induced by chronic SSRI treatment reduces Aβ pathology and whether 5-HTergic deafferentation of the cerebral cortex could worsen Aβ pathology in the APPswe/PS1ΔE9 (APP/PS1) mouse model of AD. Methods We administered a therapeutic dose of the SSRI escitalopram (5 mg/kg/day) in the drinking water of 3-month-old APP/PS1 mice to increase levels of 5-HT, and we performed intracerebroventricular injections of the neurotoxin 5,7-dihydroxytryptamine (DHT) to remove 5-HTergic afferents. We validated the effectiveness of these interventions by serotonin transporter autoradiography (neocortex 79.7 ± 7.6%) and by high-performance liquid chromatography for 5-HT (neocortex 64% reduction). After 6 months of escitalopram treatment or housing after DHT-induced lesion, we evaluated brain tissue by mesoscale multiplex analysis and sections by IHC analysis. Results Amyloid-β-containing plaques had formed in the neocortex and hippocampus of 9-month-old APP/PS1 mice after 6 months of escitalopram treatment and 5-HTergic deafferentation. Unexpectedly, levels of insoluble Aβ42 were unaffected in the neocortex and hippocampus after both types of interventions. Levels of insoluble Aβ40 increased in the neocortex of SSRI-treated mice compared with those treated with vehicle control, but they were unaffected in the hippocampus. 5-HTergic deafferentation was without effect on the levels of insoluble/soluble Aβ42 and Aβ40 in both the neocortex and hippocampus. However, levels of soluble amyloid precursor protein α were reduced in the neocortex after 5-HTergic deafferentation. Conclusions Because this study shows that modulation of the 5-HTergic system has either no effect or increases levels of insoluble/soluble Aβ42 and Aβ40 in the cerebral cortex of APP/PS1 mice, our observations do not support 5-HT augmentation therapy as a preventive strategy for reducing Aβ pathology. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0298-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Ulrich von Linstow
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark
| | - Jonas Waider
- Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Würzburg, Fuechsleinstrasse 15, 97080, Würzburg, Germany
| | - Manuela Grebing
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark
| | - Athanasios Metaxas
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark
| | - Klaus Peter Lesch
- Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Würzburg, Fuechsleinstrasse 15, 97080, Würzburg, Germany.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Bente Finsen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5000, Odense C, Denmark.
| |
Collapse
|
11
|
Yahata M, Chiba K, Watanabe T, Sugiyama Y. Possibility of Predicting Serotonin Transporter Occupancy From the In Vitro Inhibition Constant for Serotonin Transporter, the Clinically Relevant Plasma Concentration of Unbound Drugs, and Their Profiles for Substrates of Transporters. J Pharm Sci 2017; 106:2345-2356. [PMID: 28501470 DOI: 10.1016/j.xphs.2017.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/20/2017] [Accepted: 05/02/2017] [Indexed: 01/16/2023]
Abstract
Accurate prediction of target occupancy facilitates central nervous system drug development. In this review, we discuss the predictability of serotonin transporter (SERT) occupancy in human brain estimated from in vitro Ki values for human SERT and plasma concentrations of unbound drug (Cu,plasma), as well as the impact of drug transporters in the blood-brain barrier. First, the geometric means of in vitro Ki values were compared with the means of in vivo Ki values (Ki,u,plasma) which were calculated as Cu,plasma values at 50% occupancy of SERT obtained from previous clinical positron emission tomography/single photon emission computed tomography imaging studies for 6 selective serotonin transporter reuptake inhibitors and 3 serotonin norepinephrine reuptake inhibitors. The in vitro Ki values for 7 drugs were comparable to their in vivo Ki,u,plasma values within 3-fold difference. SERT occupancy was overestimated for 5 drugs (P-glycoprotein substrates) and underestimated for 2 drugs (presumably uptake transporter substrates, although no evidence exists as yet). In conclusion, prediction of human SERT occupancy from in vitro Ki values and Cu,plasma was successful for drugs that are not transporter substrates and will become possible in future even for transporter substrates, once the transporter activities will be accurately estimated from in vitro experiments.
Collapse
Affiliation(s)
- Masahiro Yahata
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Company, Ltd., Osaka, Japan.
| | - Koji Chiba
- Laboratory of Clinical Pharmacology, Yokohama University of Pharmacy, Yokohama, Japan
| | - Takao Watanabe
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Company, Ltd., Osaka, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Yokohama, Japan
| |
Collapse
|
12
|
Matthäus F, Haddjeri N, Sánchez C, Martí Y, Bahri S, Rovera R, Schloss P, Lau T. The allosteric citalopram binding site differentially interferes with neuronal firing rate and SERT trafficking in serotonergic neurons. Eur Neuropsychopharmacol 2016; 26:1806-1817. [PMID: 27665061 DOI: 10.1016/j.euroneuro.2016.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/10/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
Abstract
Citalopram is a clinically applied selective serotonin re-uptake inhibitor for antidepressant pharmacotherapy. It consists of two enantiomers, S-citalopram (escitalopram) and R-citalopram, of which escitalopram exerts the antidepressant therapeutic effect and has been shown to be one of the most efficient antidepressants, while R-citalopram antagonizes escitalopram via an unknown molecular mechanism that may depend on binding to a low-affinity allosteric binding site of the serotonin transporter. However, the precise mechanism of antidepressant regulation of the serotonin transporter by citalopram enantiomers still remains elusive. Here we investigate escitalopram׳s acute effect on (1) serotonergic neuronal firing in transgenic mice that express the human serotonin transporter without and with a mutation that disables the allosteric binding site, and (2) regulation of the serotonin transporter׳s cell surface localization in stem cell-derived serotonergic neurons. Our results demonstrate that escitalopram inhibited neuronal firing less potently in the mouse line featuring a mutation that abolishes the function of the allosteric binding site and induced serotonin transporter internalization independently of the allosteric binding site mechanism. Furthermore, citalopram enantiomers dose-dependently induced serotonin transporter internalization. In conclusion, this study provides new insight into antidepressant effects exerted by citalopram enantiomers in presence and absence of a functional allosteric binding site.
Collapse
Affiliation(s)
- Friederike Matthäus
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Department Psychiatry and Psychotherapy, Biochemical Laboratory, Mannheim, Germany
| | - Nasser Haddjeri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Connie Sánchez
- Sourcing and Scientific Excellence at Lundbeck Research USA, Inc., Paramus, NJ, USA
| | - Yasmina Martí
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Department Psychiatry and Psychotherapy, Biochemical Laboratory, Mannheim, Germany
| | - Senda Bahri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Renaud Rovera
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Patrick Schloss
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Department Psychiatry and Psychotherapy, Biochemical Laboratory, Mannheim, Germany
| | - Thorsten Lau
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Department Psychiatry and Psychotherapy, Biochemical Laboratory, Mannheim, Germany.
| |
Collapse
|
13
|
Sagud M, Nikolac Perkovic M, Vuksan-Cusa B, Maravic A, Svob Strac D, Mihaljevic Peles A, Zivkovic M, Kusevic Z, Pivac N. A prospective, longitudinal study of platelet serotonin and plasma brain-derived neurotrophic factor concentrations in major depression: effects of vortioxetine treatment. Psychopharmacology (Berl) 2016; 233:3259-67. [PMID: 27356518 DOI: 10.1007/s00213-016-4364-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/18/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Various antidepressants occupy brain serotonin transporter (SERT), decrease platelet serotonin (5-HT) concentration, and normalize reduced plasma brain-derived neurotrophic factor (BDNF) concentrations in depressed patients. Vortioxetine is a recently introduced antidepressant with a multimodal mechanism of action. In addition to SERT inhibition, vortioxetine acts via different 5-HT receptors. To further elucidate its mechanism of action, we have investigated the effects of vortioxetine on platelet 5-HT and plasma BDNF concentrations in patients with major depression. METHODS Platelet 5-HT and plasma BDNF concentrations were determined in 44 healthy subjects at baseline and in 44 depressed patients before and after 4 weeks of treatment with vortioxetine (5-15 mg daily). Platelet 5-HT concentration was determined using the ortho-phthalaldehyde-enhanced fluorometric method, and plasma BDNF concentration using a commercial enzyme-linked immunosorbent assay (Quantikine ELISA, R&D Systems). RESULTS At baseline, platelet 5-HT concentrations did not differ between depressed and control subjects, but plasma BDNF values were lower (p = 0.011; ω = 0.80) in depressed patients than in healthy subjects. Vortioxetine treatment significantly (p < 0.0001; ω = 0.80) decreased platelet 5-HT concentration and significantly (p = 0.004; ω = 0.80) increased plasma BDNF concentration in depressed patients compared to their baseline values. Age, gender, and smoking were not significantly associated with platelet 5-HT and plasma BDNF concentrations. CONCLUSION Despite a novel mechanism of action, vortioxetine shares some common effects with other antidepressants. This study is the first to show that, in addition to clinical improvement, 4 weeks of treatment with vortioxetine (5-15 mg daily), decreased platelet 5-HT and increased plasma BDNF concentrations in depressed patients.
Collapse
Affiliation(s)
- Marina Sagud
- Department of Psychiatry, School of Medicine, Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10 000, Zagreb, Croatia
| | - Bjanka Vuksan-Cusa
- Department of Psychiatry, School of Medicine, Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia.,Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | | | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10 000, Zagreb, Croatia
| | - Alma Mihaljevic Peles
- Department of Psychiatry, School of Medicine, Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | | | - Zorana Kusevic
- Department of Psychiatry, School of Medicine, Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10 000, Zagreb, Croatia.
| |
Collapse
|
14
|
Arakawa R, Tateno A, Kim W, Sakayori T, Ogawa K, Okubo Y. Time-course of serotonin transporter occupancy by single dose of three SSRIs in human brain: A positron emission tomography study with [(11)C]DASB. Psychiatry Res Neuroimaging 2016; 251:1-6. [PMID: 27082864 DOI: 10.1016/j.pscychresns.2016.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/15/2016] [Accepted: 03/23/2016] [Indexed: 11/18/2022]
Abstract
Sixteen healthy volunteers were enrolled and divided into four groups according to the single administration of 10mg or 20mg escitalopram, 50mg sertraline, or 20mg paroxetine. Four positron emission tomography scans with [(11)C]DASB were performed on each subject, the first prior to taking the drug, followed by the others at 4, 24, and 48h after. Serotonin transporter occupancies of the drugs at each time point were calculated. All drugs showed maximum occupancy at 4h after dosing and then decreasing occupancies with time. Escitalopram and sertraline showed high occupancies of 69.1-77.9% at 4h, remaining at 52.8-57.8% after 48h. On the other hand, paroxetine showed relatively low occupancy of 44.6%, then decreasing to 10.3% at 48h. Escitalopram (both 10mg and 20mg) and sertraline (50mg) showed high and sustained occupancy. Paroxetine (20mg) showed relatively low and rapidly decreasing occupancy, possibly due to the low plasma concentration by single dosing schedule. Applying the reported concentration of multiple dosing, 20mg paroxetine will induce over 80% occupancy. The present study suggested that these drugs and doses would be sufficient for the treatment of depression.
Collapse
Affiliation(s)
- Ryosuke Arakawa
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - Amane Tateno
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - WooChan Kim
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - Takeshi Sakayori
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - Kohei Ogawa
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan
| | - Yoshiro Okubo
- Department of Neuropsychiatry, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
15
|
Qiao H, Zhang Y, Wu Z, Zhu L, Choi SR, Ploessl K, Kung HF. One-step preparation of [(18)F]FPBM for PET imaging of serotonin transporter (SERT) in the brain. Nucl Med Biol 2016; 43:470-7. [PMID: 27236282 DOI: 10.1016/j.nucmedbio.2016.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/16/2016] [Accepted: 04/14/2016] [Indexed: 01/27/2023]
Abstract
Serotonin transporters (SERT) in the brain play an important role in normal brain function. Selective serotonin reuptake inhibitors such as fluoxetine, sertraline, paroxetine, escitalopram, etc., specifically target SERT binding in the brain. Development of SERT imaging agents may be useful for studying the function of SERT by in vivo imaging. A one-step preparation of [(18)F]FPBM, 2-(2'-(dimethylamino)methyl)-4'-(3-([(18)F]fluoropropoxy)phenylthio)benzenamine, for positron emission tomography (PET) imaging of SERT binding in the brain was achieved. An active OTs intermediate, 9, was reacted with [(18)F]F(-)/K222 to produce [(18)F]FPBM in one step and in high radiochemical yield. This labeling reaction was evaluated and optimized under different temperatures, bases, solvents, and varying amounts of precursor 9. The radiolabeling reaction led to the desired [(18)F]FPBM in one step and the crude product was purified by HPLC purification to give no-carrier-added [(18)F]FPBM (radiochemical yield, 24-33%, decay corrected; radiochemical purity >99%). PET imaging studies in normal monkeys (n=4) showed fast, pronounced uptakes in the midbrain and thalamus, regions known to be rich in SERT binding sites. A displacement experiment with escitalopram (5mg/kg iv injection at 30min after [(18)F]FPBM injection) showed a rapid and complete reversal of SERT binding, suggesting that binding by [(18)F]FPBM was highly specific and reversible. A one-step radiolabeling method coupled with HPLC purification for preparation of [(18)F]FPBM was developed. Imaging studies suggest that it is feasible to use this method to prepare [(18)F]FPBM for in vivo PET imaging of SERT binding in the brain.
Collapse
Affiliation(s)
- Hongwen Qiao
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yan Zhang
- Key Laboratory of Radiopharmaceuticals, Beijing Normal University, Ministry of Education, Beijing, 100875, China
| | - Zehui Wu
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lin Zhu
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China; Key Laboratory of Radiopharmaceuticals, Beijing Normal University, Ministry of Education, Beijing, 100875, China; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Seok Rye Choi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karl Ploessl
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hank F Kung
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Maron E, Wall M, Norbury R, Godlewska B, Terbeck S, Cowen P, Matthews P, Nutt DJ. Effect of short-term escitalopram treatment on neural activation during emotional processing. J Psychopharmacol 2016; 30:33-9. [PMID: 26645207 DOI: 10.1177/0269881115620462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent functional magnetic resonance (fMRI) imaging studies have revealed that subchronic medication with escitalopram leads to significant reduction in both amygdala and medial frontal gyrus reactivity during processing of emotional faces, suggesting that escitalopram may have a distinguishable modulatory effect on neural activation as compared with other serotonin-selective antidepressants. In this fMRI study we aimed to explore whether short-term medication with escitalopram in healthy volunteers is associated with reduced neural response to emotional processing, and whether this effect is predicted by drug plasma concentration. The neural response to fearful and happy faces was measured before and on day 7 of treatment with escitalopram (10mg) in 15 healthy volunteers and compared with those in a control unmedicated group (n=14). Significantly reduced activation to fearful, but not to happy facial expressions was observed in the bilateral amygdala, cingulate and right medial frontal gyrus following escitalopram medication. This effect was not correlated with plasma drug concentration. In accordance with previous data, we showed that escitalopram exerts its rapid direct effect on emotional processing via attenuation of neural activation in pathways involving medial frontal gyrus and amygdala, an effect that seems to be distinguishable from that of other SSRIs.
Collapse
Affiliation(s)
- Eduard Maron
- Research and Development Service, and Department of Psychiatry, North Estonia Medical Centre, Tallinn, Estonia Department of Psychiatry, University of Tartu, Tartu, Estonia Faculty of Medicine, Division of Brain Sciences, Imperial College London, London, UK
| | - Matt Wall
- Faculty of Medicine, Division of Brain Sciences, Imperial College London, London, UK
| | - Ray Norbury
- University of Roehampton, Whitelands College, London, UK
| | - Beata Godlewska
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Sylvia Terbeck
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Philip Cowen
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Paul Matthews
- Faculty of Medicine, Division of Brain Sciences, Imperial College London, London, UK
| | - David J Nutt
- Faculty of Medicine, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
17
|
Jacobsen PL, Mahableshwarkar AR, Chen Y, Chrones L, Clayton AH. Effect of Vortioxetine vs. Escitalopram on Sexual Functioning in Adults with Well-Treated Major Depressive Disorder Experiencing SSRI-Induced Sexual Dysfunction. J Sex Med 2015; 12:2036-48. [PMID: 26331383 DOI: 10.1111/jsm.12980] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Sexual dysfunction is common with serotonergic antidepressants, including selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs), and does not resolve in most patients. Vortioxetine, an antidepressant with a multimodal mechanism of action, has shown low rates of sexual dysfunction in previous major depressive disorder (MDD) trials. AIM This study compared the effects of vortioxetine and escitalopram on sexual functioning in adults with well-treated MDD experiencing treatment-emergent sexual dysfunction (TESD). METHODS Participants treated with, and responding to, citalopram, paroxetine, or sertraline were randomized to switch to either vortioxetine (10/20 mg; n = 225) or escitalopram (10/20 mg; n = 222) for 8 weeks. Sexual function was assessed using the Changes in Sexual Functioning Questionnaire Short Form (CSFQ-14), and antidepressant efficacy was assessed using the Montgomery-Åsberg Depression Rating Scale (MADRS), Clinical Global Impressions (CGI) scale, and Profile of Mood States brief form (POMS-brief). Safety and tolerability were also assessed. MAIN OUTCOME MEASURES The primary endpoint was change from baseline in the CSFQ-14 total score after 8 weeks of treatment. The MADRS, CGI, and POMS-brief were used to assess antidepressant efficacy. Safety was assessed via adverse events, vital signs, electrocardiograms, laboratory values, weight, and physical examination findings. RESULTS Vortioxetine showed significantly greater improvements in CSFQ-14 total score (8.8 ± 0.64, mean ± standard error) vs. escitalopram (6.6 ± 0.64; P = 0.013). Benefits vs. escitalopram were significant on four of five dimensions and all three phases of sexual functioning assessed by the CSFQ-14 (P < 0.05). Antidepressant efficacy continued in both groups, with similar, but slight, improvements in MADRS and CGI scores. Vortioxetine and escitalopram had similar clinical efficacy profiles in this study, with safety profiles similar to previous trials. Nausea (n = 9, 4.0%) was the most common treatment-emergent adverse event leading to discontinuation of vortioxetine. CONCLUSION Switching antidepressant therapy to vortioxetine may be beneficial for patients experiencing sexual dysfunction during antidepressant therapy with SSRIs.
Collapse
Affiliation(s)
| | | | - Yinzhong Chen
- Takeda Development Center Americas, Deerfield, IL, USA
| | | | | |
Collapse
|
18
|
Spies M, Knudsen GM, Lanzenberger R, Kasper S. The serotonin transporter in psychiatric disorders: insights from PET imaging. Lancet Psychiatry 2015; 2:743-755. [PMID: 26249305 DOI: 10.1016/s2215-0366(15)00232-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 01/09/2023]
Abstract
Over the past 20 years, psychotropics affecting the serotonergic system have been used extensively in the treatment of psychiatric disorders. Molecular imaging, in particular PET, has allowed for elucidation of the essential contribution of the serotonin transporter to the pathophysiology of various psychiatric disorders and their treatment. We review studies that use PET to measure cerebral serotonin transporter activity in psychiatric disorders, focusing on major depressive disorder and antidepressant treatment. We also discuss opportunities and limitations in the application of this neuroimaging method in clinical practice. Although results from individual studies diverge, meta-analysis indicates a trend towards reduced serotonin transporter availability in patients with major depressive disorder. Inconsistencies in results might suggest symptom heterogeneity in major depressive disorder and might therefore be relevant for stratification of patients into clinical subsets. PET has enabled the elucidation of mechanisms of response to selective serotonin reuptake inhibitors (SSRIs) and hence provides a basis for rational pharmacological treatment of major depressive disorder. Such imaging studies have also suggested that the pattern of serotonin transporter binding before treatment might predict response to antidepressant treatment, which could potentially be clinically useful in the future. Additionally, this Review discusses PET studies investigating the serotonin transporter in anxiety, obsessive-compulsive disorder, and eating disorders. Few studies have shown changes in serotonin transporter activity in schizophrenia and attention deficit hyperactivity disorder. By showing the scarcity of data in these psychiatric disorders, we highlight the potential for further investigation in this field.
Collapse
Affiliation(s)
- Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Sladky R, Spies M, Hoffmann A, Kranz G, Hummer A, Gryglewski G, Lanzenberger R, Windischberger C, Kasper S. (S)-citalopram influences amygdala modulation in healthy subjects: a randomized placebo-controlled double-blind fMRI study using dynamic causal modeling. Neuroimage 2014; 108:243-50. [PMID: 25536499 DOI: 10.1016/j.neuroimage.2014.12.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/15/2014] [Indexed: 02/04/2023] Open
Abstract
Citalopram and Escitalopram are gold standard pharmaceutical treatment options for affective, anxiety, and other psychiatric disorders. However, their neurophysiologic function on cortico-limbic circuits is incompletely characterized. Here we studied the neuropharmacological influence of Citalopram and Escitalopram on cortico-limbic regulatory processes by assessing the effective connectivity between orbitofrontal cortex (OFC) and amygdala using dynamic causal modeling (DCM) applied to functional MRI data. We investigated a cohort of 15 healthy subjects in a randomized, crossover, double-blind design after 10days of Escitalopram (10mg/d (S)-citalopram), Citalopram (10mg/d (S)-citalopram and 10mg/d (R)-citalopram), or placebo. Subjects performed an emotional face discrimination task, while undergoing functional magnetic resonance imaging (fMRI) scanning at 3 Tesla. As hypothesized, the OFC, in the context of the emotional face discrimination task, exhibited a down-regulatory effect on amygdala activation. This modulatory effect was significantly increased by (S)-citalopram, but not (R)-citalopram. For the first time, this study shows that (1) the differential effects of the two enantiomers (S)- and (R)-citalopram on cortico-limbic connections can be demonstrated by modeling effective connectivity methods, and (2) one of their mechanisms can be linked to an increased inhibition of amygdala activation by the orbitofrontal cortex.
Collapse
Affiliation(s)
- Ronald Sladky
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Andre Hoffmann
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Georg Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Allan Hummer
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Windischberger
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
20
|
Jacobsen JP, Plenge P, Sachs BD, Pehrson AL, Cajina M, Du Y, Roberts W, Rudder ML, Dalvi P, Robinson TJ, O’Neill SP, Khoo KS, Morillo CS, Zhang X, Caron MG. The interaction of escitalopram and R-citalopram at the human serotonin transporter investigated in the mouse. Psychopharmacology (Berl) 2014; 231:4527-40. [PMID: 24810106 PMCID: PMC4346315 DOI: 10.1007/s00213-014-3595-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 04/18/2014] [Indexed: 12/12/2022]
Abstract
RATIONALE Escitalopram appears to be a superior antidepressant to racemic citalopram. It has been hypothesized that binding of R-citalopram to the serotonin transporter (SERT) antagonizes escitalopram binding to and inhibition of the SERT, there by curtailing the elevation of extracellular 5-hydroxytryptamine (5-HTExt), and hence anti-depressant efficacy. Further, it has been suggested that a putative allosteric binding site is important for binding of escitalopram to the primary, orthosteric, site, and for R-citalopram's inhibition here of. OBJECTIVES Primary: Investigate at the human (h)SERT, at clinical relevant doses, whether R-citalopram antagonizes escitalopram-induced 5-HTExt elevation. Secondary: Investigate whether abolishing the putative allosteric site affects escitalopram-induced 5-HTExt elevation and/or modulates the effect of R-citalopram. METHODS Recombinant generation of hSERT transgenic mice; in vivo microdialysis; SERT binding; pharmacokinetics; 5-HT sensitive behaviors (tail suspension, marble burying). RESULTS We generated mice expressing either the wild-type human SERT (hSERT(WT)) or hSERT carrying amino acid substitutions (A505V, L506F, I507L, S574T and I575T) collectively abolishing the putative allosteric site (hSERT(ALI/VFL+SI/TT)). One mg/kg escitalopram yielded clinical relevant plasma levels and brain levels consistent with therapeutic SERT occupancy. The hSERT mice showed normal basal 5-HTExt levels. Escitalopram-induced 5-HTExt elevation was not decreased by R-citalopram co-treatment and was unaffected by loss of the allosteric site. The behavioral effects of the clinically relevant escitalopram dose were small and tended to be enhanced by R-citalopram co-administration. CONCLUSIONS We find no evidence that R-citalopram directly antagonizes escitalopram or that the putative allosteric site is important for hSERT inhibition by escitalopram.
Collapse
Affiliation(s)
| | - Per Plenge
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin D. Sachs
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | | | | | - Yunzhi Du
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Wendy Roberts
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Meghan L. Rudder
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Prachiti Dalvi
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Taylor J. Robinson
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Sharon P. O’Neill
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | - King S. Khoo
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | | | - Xiaodong Zhang
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Corresponding Author: Dr. Marc G. Caron, James B. Duke Professor, Department of Cell Biology, Duke University Medical Center, PO Box 3287, Durham, NC 27710, USA., Tel: +1 919 684 5433, Fax: +1 919 681 8641,
| |
Collapse
|
21
|
Antonini A, Isaias IU. Single photon-emission computed tomography imaging in early Parkinson’s disease. Expert Rev Neurother 2014; 8:1853-64. [DOI: 10.1586/14737175.8.12.1853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Pastoor D, Gobburu J. Clinical pharmacology review of escitalopram for the treatment of depression. Expert Opin Drug Metab Toxicol 2013; 10:121-8. [PMID: 24289655 DOI: 10.1517/17425255.2014.863873] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Depression is a serious and debilitating psychiatric condition with serious societal health and economic implications. Escitalopram , the S-enantiomer of racemic citalopram, is an effective treatment for major depressive disorder. AREAS COVERED This review covers the clinical pharmacology of escitalopram, with emphasis on regulatory approval. Its pharmacokinetics, pharmacodynamics and clinical efficacy for major depressive disorder are evaluated, along with data regarding safety and tolerability. EXPERT OPINION Drug development of escitalopram was heavily guided by prior approval of citalopram. Select safety and efficacy studies for escitalopram in combination with supportive evidence from the results of prior citalopram studies allowed for regulatory approval for acute and maintenance claims in both adults and adolescents, while minimizing burden on the sponsor. Escitalopram has been shown to have better efficacy and safety profile than other selective serotonin reuptake inhibitor and serotonin norepinephrine reuptake inhibitor drugs, including racemic citalopram. The first generic escitalopram was approved in 2012, along with Abbreviated New Drug Applications. The associated cost savings have helped reduce the burden of weighing the benefits of escitalopram over less-expensive alternatives.
Collapse
Affiliation(s)
- Devin Pastoor
- University of Maryland, School of Pharmacy , N531, 20 N Pine Street, Baltimore, MD 21201 , USA
| | | |
Collapse
|
23
|
Kraus C, Ganger S, Losak J, Hahn A, Savli M, Kranz GS, Baldinger P, Windischberger C, Kasper S, Lanzenberger R. Gray matter and intrinsic network changes in the posterior cingulate cortex after selective serotonin reuptake inhibitor intake. Neuroimage 2013; 84:236-44. [PMID: 23988273 DOI: 10.1016/j.neuroimage.2013.08.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/24/2013] [Accepted: 08/16/2013] [Indexed: 01/31/2023] Open
Abstract
Preclinical studies have demonstrated that serotonin (5-HT) challenge changes neuronal circuitries and microarchitecture. However, evidence in human subjects is missing. Pharmacologic magnetic resonance imaging (phMRI) applying selective 5-HT reuptake inhibitors (SSRIs) and high-resolution structural and functional brain assessment is able to demonstrate the impact of 5-HT challenge on neuronal network morphology and functional activity. To determine how SSRIs induce changes in gray matter and neuronal activity, we conducted a longitudinal study using citalopram and escitalopram. Seventeen healthy subjects completed a structural and functional phMRI study with randomized, cross-over, placebo-controlled, double-blind design. Significant gray matter increases were observed (among other regions) in the posterior cingulate cortex (PCC) and the ventral precuneus after SSRI intake of 10days, while decreases were observed within the pre- and postcentral gyri (all P<0.05, family-wise error [FWE] corrected). Furthermore, enhanced resting functional connectivity (rFC) within the ventral precuneus and PCC was associated with gray matter increases in the PCC (all FWE Pcorr<0.05). Corroborating these results, whole-brain connectivity density, measuring the brain's functional network hubs, was significantly increased after SSRI-intake in the ventral precuneus and PCC (all FWE Pcorr<0.05). Short-term administration of SSRIs changes gray matter structures, consistent with previous work reporting enhancement of neuroplasticity by serotonergic neurotransmission. Furthermore, increased gray matter in the PCC is associated with increased functional connectivity in one of the brain's metabolically most active regions. Our novel findings provide convergent evidence for dynamic alterations of brain structure and function associated with SSRI pharmacotherapy.
Collapse
Affiliation(s)
- Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Functional, Molecular and Translational Neuroimaging Lab - PET & MRI, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lanzenberger R, Kranz GS, Haeusler D, Akimova E, Savli M, Hahn A, Mitterhauser M, Spindelegger C, Philippe C, Fink M, Wadsak W, Karanikas G, Kasper S. Prediction of SSRI treatment response in major depression based on serotonin transporter interplay between median raphe nucleus and projection areas. Neuroimage 2012; 63:874-81. [PMID: 22828162 DOI: 10.1016/j.neuroimage.2012.07.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 01/01/2023] Open
Abstract
Recent mathematical models suggest restored serotonergic burst-firing to underlie the antidepressant effect of selective serotonin reuptake inhibitors (SSRI), resulting from down-regulated serotonin transporters (SERT) in terminal regions. This mechanism possibly depends on the interregional balance between SERTs in the raphe nuclei and in terminal regions before treatment. To evaluate these hypotheses on a systems level in humans in vivo, we investigated SERT availability and occupancy longitudinally in patients with major depressive disorder using positron emission tomography (PET) and the radioligand [11C]DASB. Measurements were performed before and after a single oral dose, as well as after three weeks (mean 24.73±3.3 days) of continuous oral treatment with either escitalopram (10 mg/day) or citalopram (20 mg/day). Data were analyzed using voxel-wise linear regression and ANOVA to evaluate SERT binding, occupancy and binding ratios (SERT binding of the entire brain compared to SERT binding in the dorsal and median raphe nuclei) in relation to treatment outcome. Regression analysis revealed that treatment response was predicted by pre-treatment SERT binding ratios, i.e., SERT binding in key regions of depression including bilateral habenula, amygdala-hippocampus complex and subgenual cingulate cortex in relation to SERT binding in the median but not dorsal raphe nucleus (p<0.05 FDR-corrected). Similar results were observed in the direct comparison of responders and non-responders. Our data provide a first proof-of-concept for recent modeling studies and further underlie the importance of the habenula and subgenual cingulate cortex in the etiology of and recovery from major depression. These findings may indicate a promising molecular predictor of treatment response and stimulate new treatment approaches based on regional differences in SERT binding.
Collapse
Affiliation(s)
- Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kirino E. Escitalopram for the management of major depressive disorder: a review of its efficacy, safety, and patient acceptability. Patient Prefer Adherence 2012; 6:853-61. [PMID: 23271894 PMCID: PMC3526882 DOI: 10.2147/ppa.s22495] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Escitalopram (escitalopram oxalate; Cipralex(®), Lexapro(®)) is a selective serotonin reuptake inhibitor (SSRI) used for the treatment of major depressive disorder (MDD) and anxiety disorder. This drug exerts a highly selective, potent, and dose-dependent inhibitory effect on the human serotonin transport. By inhibiting the reuptake of serotonin into presynaptic nerve endings, this drug enhances the activity of serotonin in the central nervous system. Escitalopram also has allosteric activity. Moreover, the possibility of interacting with other drugs is considered low. This review covers randomized, controlled studies that enrolled adult patients with MDD to evaluate the efficacy of escitalopram based on the Montgomery-Asberg Depression Rating Scale and the Hamilton Depression Rating Scale. The results showed that escitalopram was superior to placebo, and nearly equal or superior to other SSRIs (eg, citalopram, paroxetine, fluoxetine, sertraline) and serotonin-noradrenaline reuptake inhibitors (eg, duloxetine, sustained-release venlafaxine). In addition, with long-term administration, escitalopram has shown a preventive effect on MDD relapse and recurrence. Escitalopram also showed favorable tolerability, and associated adverse events were generally mild and temporary. Discontinuation symptoms were milder with escitalopram than with paroxetine. In view of the patient acceptability of escitalopram, based on both a meta-analysis and a pooled analysis, this drug was more favorable than other new antidepressants. The findings indicate that escitalopram achieved high continuity in antidepressant drug therapy.
Collapse
Affiliation(s)
- Eiji Kirino
- Department of Psychiatry, Juntendo University Shizuoka Hospital, Shizuoka, Japan
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
- Correspondence: Eiji Kirino, Juntendo University Shizuoka Hospital, 1129 Nagaoka Izunokunishi Shizuoka 4102211 Japan, Tel +81 55 948 3111, Fax +81 55 948 5088, Email
| |
Collapse
|
26
|
Castro VM, Gallagher PJ, Clements CC, Murphy SN, Gainer VS, Fava M, Weilburg JB, Churchill SE, Kohane IS, Iosifescu DV, Smoller JW, Perlis RH. Incident user cohort study of risk for gastrointestinal bleed and stroke in individuals with major depressive disorder treated with antidepressants. BMJ Open 2012; 2:e000544. [PMID: 22466034 PMCID: PMC3330255 DOI: 10.1136/bmjopen-2011-000544] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To examine the association between exposure to newer antidepressants and risk of gastrointestinal (GI) and other bleeding complications among individuals with major depressive disorder (MDD). DESIGN This study uses an incident user cohort design to compare associations between incidence of vascular/bleeding events and the relative affinity (low, moderate or high) of the antidepressant for the serotonin transporter during an exposure risk period for each patient. SETTING New England healthcare system electronic medical record database. PARTICIPANTS 36 389 individuals with a diagnosis of MDD and monotherapy with a selective serotonin reuptake inhibitor, serotonin-norepinephrine reuptake inhibitor or other new-generation antidepressant were identified from among 3.1 million patients in a New England healthcare system. PRIMARY AND SECONDARY OUTCOME MEASURES Rates of bleeding or other vascular complications, including acute liver failure, acute renal failure, asthma, breast cancer and hip fractures. RESULTS 601 GI bleeds were observed in the 21 462 subjects in the high-affinity group versus 333 among the 14 927 subjects in the lower affinity group (adjusted RR: 1.17, 95% CI 1.02 to 1.34). Similarly, 776 strokes were observed in the high-affinity group versus 434 in the lower affinity treatment group (adjusted RR: 1.18, 95% CI 1.06 to 1.32). No significant association with risk for a priori negative control outcomes, including acute liver failure, acute renal failure, asthma, breast cancer and hip fractures, was identified. CONCLUSIONS Use of antidepressants with high affinity for the serotonin transporter may confer modestly elevated risk for GI and other bleeding complications. While multiple methodologic limitations must be considered, these results suggest that antidepressants with lower serotonin receptor affinity may be preferred in patients at greater risk for such complications.
Collapse
Affiliation(s)
- Victor M Castro
- Partners Research Computing, Partners HealthCare System, Boston, MA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Switching antidepressant class does not improve response or remission in treatment-resistant depression. J Clin Psychopharmacol 2011; 31:512-6. [PMID: 21694617 DOI: 10.1097/jcp.0b013e3182228619] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The management of treatment-resistant depression is a much debated issue. In particular, the evidence supporting the commonly suggested sequential use of antidepressants from 2 different pharmacological classes is weak. This retrospective study was undertaken to investigate whether there is a better response in nonresponders switched to a different class of antidepressants (across-class) compared with nonresponders switched to an antidepressant from the same class (within-class). METHODS Three hundred forty patients with primary major depressive disorder were recruited in the context of a European multicenter project. Subjects whose current depressive episode had failed to respond to a first antidepressant trial of adequate dose and duration were included. RESULTS There was no significant difference in response or remission rates between the across-class and within-class groups after controlling for possible confounders. CONCLUSIONS In depressed nonresponders to a previous antidepressant treatment, switching to a different class of antidepressants was not associated with a better response or remission rate.
Collapse
|
28
|
Paterson LM, Kornum BR, Nutt DJ, Pike VW, Knudsen GM. 5-HT radioligands for human brain imaging with PET and SPECT. Med Res Rev 2011; 33:54-111. [PMID: 21674551 DOI: 10.1002/med.20245] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists for the 5-HT(1A), 5-HT(1B), 5-HT(2A), and 5-HT(4) receptors, and for SERT. Here we describe the evolution of these radioligands, along with the attempts made to develop radioligands for additional serotonergic targets. We describe the properties needed for a radioligand to become successful and the main caveats. The success of a PET or SPECT radioligand can ultimately be assessed by its frequency of use, its utility in humans, and the number of research sites using it relative to its invention date, and so these aspects are also covered. In conclusion, the development of PET and SPECT radioligands to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging.
Collapse
Affiliation(s)
- Louise M Paterson
- Neuropsychopharmacology Unit, Division of Experimental Medicine, Imperial College London, Burlington Danes Building, Du Cane Road, London, United Kingdom
| | | | | | | | | |
Collapse
|
29
|
Escitalopram enhances the association of serotonin-1A autoreceptors to heteroreceptors in anxiety disorders. J Neurosci 2010; 30:14482-9. [PMID: 20980606 DOI: 10.1523/jneurosci.2409-10.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) represent one of the most common treatment options in major depression and anxiety disorders. By blocking the serotonin transporter, SSRIs modulate serotonergic neurotransmission as well as the function of autoreceptors and heteroreceptors. However, treatment-induced changes on a network level primarily remain unknown. Thus, we evaluated the association between serotonin-1A (5-HT1A) autoreceptors and heteroreceptors before and after SSRIs. Twenty-one patients with anxiety disorders underwent positron emission tomography using [carbonyl-11C]WAY-100635 before and after 12 weeks of escitalopram treatment; 15 of them completed the study protocol. Additionally, 36 drug-naive healthy controls were measured once. The 5-HT1A receptor binding potential (BPND) was quantified for the dorsal raphe nucleus (DRN) using a region-of-interest approach and for the entire brain by calculating parametric maps. Voxel-wise linear regression was applied between DRN autoreceptor and whole-brain heteroreceptor 5-HT1A BPND. Consistent with previous observations, healthy subjects showed widespread positive correlations of 5-HT1A BPND between autoreceptors and heteroreceptors. Comparing patients before versus after escitalopram treatment revealed enhanced associations of autoreceptor-to-heteroreceptor 5-HT1A BPND within the amygdala and hippocampus (R2=0.21-0.28 vs 0.49-0.81; p<0.05-0.001). In contrast, no significant SSRI-induced changes were found for correlations of heteroreceptor-to-heteroreceptor 5-HT1A BPND between several limbic regions. This interregional approach suggests a treatment-induced reinforcement of the association of 5-HT1A binding between autoreceptors and heteroreceptors specifically in areas involved in anxiety disorders. These findings provide complementary information about treatment effects on a network level and confirm the central role of the DRN as a prime regulatory area.
Collapse
|
30
|
Garnock-Jones KP, McCormack PL. Escitalopram: a review of its use in the management of major depressive disorder in adults. CNS Drugs 2010; 24:769-96. [PMID: 20806989 DOI: 10.2165/11204760-000000000-00000] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Escitalopram (escitalopram oxalate; Cipralex, Lexapro), a selective serotonin reuptake inhibitor (SSRI) indicated for the treatment of major depressive disorder (MDD), demonstrates a highly selective and potent, dose-dependent inhibition of the human serotonin transporter, inhibiting serotonin reuptake into presynaptic nerve terminals and thus increasing serotonergic activity in the CNS. With regard to primary endpoints (such as improved scores on the Montgomery-Asberg Depression Rating Scale [MADRS] and the Hamilton Depression Rating Scale [HAM-D]), escitalopram was generally more effective than placebo, at least as effective as citalopram, and generally at least as effective as other comparator drugs, including the SSRIs fluoxetine, paroxetine and sertraline, the serotonin-noradrenaline (norepinephrine) reuptake inhibitors (SNRIs) venlafaxine extended release and duloxetine, and the aminoketone bupropion in adult patients with MDD in short-term, well designed trials. Moreover, it demonstrated a rapid onset of antidepressant action. Escitalopram was also found to be cost effective in several studies, dominating other SSRIs and venlafaxine extended release. Maintenance therapy is commonly required to prevent recurrence of depression. Long-term trials corroborated short-term results, with escitalopram demonstrating greater efficacy than placebo in relapse prevention. Additionally, escitalopram was at least as effective as citalopram, paroxetine and duloxetine in long-term comparative trials. Escitalopram has a predictable tolerability profile with generally mild to moderate and transient adverse events, and a low propensity for drug interactions. Sexual dysfunction with escitalopram treatment appeared to occur to a similar or lower extent to that with paroxetine (another SSRI), to a similar or greater extent to that with the SNRI duloxetine, and to a greater extent than that with the aminoketone bupropion. Thus, escitalopram is an effective and generally well tolerated treatment for moderate to severe MDD. Escitalopram, like other SSRIs, is an effective first-line option in the management of patients with MDD.
Collapse
|
31
|
Nutt DJ, Feetam CL. What one hand giveth the other taketh away: some unpredicted effects of enantiomers in psychopharmacology. J Psychopharmacol 2010; 24:1137-41. [PMID: 20663810 DOI: 10.1177/0269881110374782] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is well known that many medicines are a mixture of two enantiomers, or mirror-image molecules. Two enantiomers occur when a molecule has a single chiral centre and the two mirror images, called S or L (left handed) and R or D (right handed), are usually found in equal amounts in the parent (racemic) mixture. While for many compounds used in clinical practice the active moiety is found in one of the two enantiomers with the other being seen as an unnecessary and redundant component of the racemic mixture, the difference between enantiomers can mean a difference between therapeutic and adverse effects, as well as in beneficial pharmacological effect and potency.
Collapse
Affiliation(s)
- David J Nutt
- Neuropsychopharmacology Unit, Centre for Pharmacology and Therapeutics, Imperial College London, Hammersmith Hospital, London, UK.
| | | |
Collapse
|
32
|
Leonard B, Taylor D. Escitalopram--translating molecular properties into clinical benefit: reviewing the evidence in major depression. J Psychopharmacol 2010; 24:1143-52. [PMID: 20147575 PMCID: PMC2923415 DOI: 10.1177/0269881109349835] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The majority of currently marketed drugs contain a mixture of enantiomers; however, recent evidence suggests that individual enantiomers can have pharmacological properties that differ importantly from enantiomer mixtures. Escitalopram, the S-enantiomer of citalopram, displays markedly different pharmacological activity to the R-enantiomer. This review aims to evaluate whether these differences confer any significant clinical advantage for escitalopram over either citalopram or other frequently used antidepressants. Searches were conducted using PubMed and EMBASE (up to January 2009). Abstracts of the retrieved studies were reviewed independently by both authors for inclusion. Only those studies relating to depression or major depressive disorder were included. The search identified over 250 citations, of which 21 studies and 18 pooled or meta-analyses studies were deemed suitable for inclusion. These studies reveal that escitalopram has some efficacy advantage over citalopram and paroxetine, but no consistent advantage over other selective serotonin reuptake inhibitors. Escitalopram has at least comparable efficacy to available serotonin-norepinephrine reuptake inhibitors, venlafaxine XR and duloxetine, and may offer some tolerability advantages over these agents. This review suggests that the mechanistic advantages of escitalopram over citalopram translate into clinical efficacy advantages. Escitalopram may have a favourable benefit-risk ratio compared with citalopram and possibly with several other antidepressant agents.
Collapse
Affiliation(s)
- Brian Leonard
- Department of Pharmacology, National University of Ireland, Galway, Ireland.,Department of Psychiatry and Psychotherapy, Ludwig Maximilians University, Munich, Germany
| | - David Taylor
- Division of Pharmaceutical Sciences, King’s College, London, UK.,Maudsley Hospital, London, UK.,David Taylor, Maudsley Hospital, Denmark Hill, London SE5 8AZ, UK.
| |
Collapse
|
33
|
Wang JL, Deutsch EC, Oya S, Kung HF. FlipADAM: a potential new SPECT imaging agent for the serotonin transporter. Nucl Med Biol 2010; 37:577-86. [DOI: 10.1016/j.nucmedbio.2010.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/09/2010] [Accepted: 02/27/2010] [Indexed: 10/19/2022]
|
34
|
Yilmaz Z, Ceschi A, Rauber-Lüthy C, Sauer O, Stedtler U, Prasa D, Seidel C, Hackl E, Hoffmann-Walbeck P, Gerber-Zupan G, Bauer K, Kupferschmidt H, Kullak-Ublick GA, Wilks M. Escitalopram causes fewer seizures in human overdose than citalopram. Clin Toxicol (Phila) 2010; 48:207-12. [PMID: 20170390 DOI: 10.3109/15563650903585937] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Seizures are a recognized complication of acute overdose with the racemic (1:1 ratio of R- and S-enantiomers) selective serotonin reuptake inhibitor antidepressant citalopram. OBJECTIVE We tested the hypothesis that escitalopram (the therapeutically active S-enantiomer of citalopram) causes fewer seizures in overdose than citalopram at comparable doses of the S-enantiomer. METHODS Multicenter retrospective review of cases with citalopram and escitalopram overdose reported to German, Austrian, and Swiss Poisons Centers between 1997 and 2006. RESULTS 316 citalopram and 63 escitalopram cases were analyzed. Somnolence, nausea, vomiting, tachycardia, QT prolongation, and tremor occurred with similar frequency in both groups. There was a striking difference in the frequency of single and multiple seizures: 43 cases (13.5%) in the citalopram group and 1 case (1.6%) with a single seizure in the escitalopram group (p=0.0065). DISCUSSION AND CONCLUSIONS At comparable ingested doses of the S-enantiomer, the symptom profile for citalopram and escitalopram intoxications is similar except for seizures that occur more frequently in citalopram than in escitalopram poisoning.
Collapse
Affiliation(s)
- Zeynep Yilmaz
- Swiss Toxicological Information Centre, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
van de Giessen E, Booij J. The SPECT tracer [123I]ADAM binds selectively to serotonin transporters: a double-blind, placebo-controlled study in healthy young men. Eur J Nucl Med Mol Imaging 2010; 37:1507-11. [PMID: 20309682 PMCID: PMC2914869 DOI: 10.1007/s00259-010-1424-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 02/18/2010] [Indexed: 12/03/2022]
Abstract
Purpose The tracer 123I-2-([2-({dimethylamino}methyl)phenyl]thio)-5-iodophenylamine ([123I]ADAM) has been developed to image serotonin transporters (SERTs) with SPECT. Preclinical studies have shown that [123I]ADAM binds selectively to SERTs. Moreover, initial human studies have shown that [123I]ADAM binding could be blocked by selective serotonin reuptake inhibitors (SSRIs). However, in humans it has not been proven that [123I]ADAM binds selectively to SERTs. Methods We examined the in vivo availability of SERTs in 12 healthy young volunteers 5 h after bolus injection of [123I]ADAM. To evaluate the selectivity of binding, four participants were pretreated (double-blinded design) with placebo, four with paroxetine (20 mg) and four with the dopamine/norepinephrine blocker methylphenidate (20 mg). SPECT studies were performed on a brain-dedicated system (Neurofocus), and the SPECT images were coregistered with individual MR scans of the brain. ADAM binding in SERT-rich brain areas and cerebellar cortex (representing non-specific binding) was assessed by drawing regions of interest (ROIs) on the individual MR images. Specific to non-specific ratios were used as the outcome measure. Results We found that specific to non-specific ratios were statistically significantly lower in paroxetine-pretreated participants than in placebo- or methylphenidate-pretreated participants. No such difference was found between groups pretreated with placebo or methylphenidate. Conclusion Our preliminary findings suggest that [123I]ADAM binds selectively to SERTs in human brain.
Collapse
Affiliation(s)
- Elsmarieke van de Giessen
- Graduate School Neurosciences Amsterdam, Department of Nuclear Medicine, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
36
|
Effect of escitalopram on the processing of emotional faces. ACTA ACUST UNITED AC 2010; 43:285-9. [PMID: 20209375 DOI: 10.1590/s0100-879x2010005000007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 02/03/2010] [Indexed: 11/22/2022]
Abstract
Serotonin has been implicated in the neurobiology of depressive and anxiety disorders, but little is known about its role in the modulation of basic emotional processing. The aim of this study was to determine the effect of the selective serotonin reuptake inhibitor, escitalopram, on the perception of facial emotional expressions. Twelve healthy male volunteers completed two experimental sessions each, in a randomized, balanced order, double-blind design. A single oral dose of escitalopram (10 mg) or placebo was administered 3 h before the task. Participants were presented to a task composed of six basic emotions (anger, disgust, fear, happiness, sadness, and surprise) that were morphed between neutral and each standard emotion in 10% steps. Escitalopram facilitated the recognition of sadness and inhibited the recognition of happiness in male, but not female faces. No drug effect on subjective measures was detected. These results confirm that serotonin modulates the recognition of emotional faces, and suggest that the gender of the face can have a role in this modulation. Further studies including female volunteers are needed.
Collapse
|
37
|
Edelmuth RCL, Nitsche MA, Battistella L, Fregni F. Why do some promising brain-stimulation devices fail the next steps of clinical development? Expert Rev Med Devices 2010; 7:67-97. [PMID: 20021241 DOI: 10.1586/erd.09.64] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interest in techniques of noninvasive brain stimulation (NIBS) has been growing exponentially in the last decade. Recent studies have shown that some of these techniques induce significant neurophysiological and clinical effects. Although recent results are promising, there are several techniques that have been abandoned despite positive initial results. In this study, we performed a systematic review to identify NIBS methods with promising preliminary clinical results that were not fully developed and adopted into clinical practice, and discuss its clinical, research and device characteristics. We identified five devices (transmeatal cochlear laser stimulation, transcranial micropolarization, transcranial electrostimulation, cranial electric stimulation and stimulation with weak electromagnetic fields) and compared them with two established NIBS devices (transcranial magnetic stimulation and transcranial direct current stimulation) and with well-known drugs used in neuropsychiatry (pramipexole and escitalopram) in order to understand the reasons why they failed to reach clinical practice and further steps of research development. Finally, we also discuss novel NIBS devices that have recently showed promising results: brain ultrasound and transcranial high-frequency random noise stimulation. Our results show that some of the reasons for the failure of NIBS devices with promising clinical findings are the difficulty to disseminate results, lack of controlled studies, duration of research development, mixed results and lack of standardization.
Collapse
Affiliation(s)
- Rodrigo C L Edelmuth
- Laboratory of Neuromodulation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
38
|
Drueke B, Baetz J, Boecker M, Moeller O, Hiemke C, Gründer G, Gauggel S. Differential effects of escitalopram on attention: a placebo-controlled, double-blind cross-over study. Psychopharmacology (Berl) 2009; 207:213-23. [PMID: 19756527 DOI: 10.1007/s00213-009-1649-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 08/17/2009] [Indexed: 11/29/2022]
Abstract
RATIONALE The role of serotonin (5-HT) in attention is not fully understood yet. OBJECTIVE We aimed to investigate whether attention is modulated after treatment with escitalopram, a selective serotonin reuptake inhibitor (SSRI). METHODS We administered 10 mg of escitalopram to 20 healthy subjects in a placebo-controlled, double-blind cross-over design for 1 day or to another 20 participants for a period of 7 days. Attention was assessed at time of plasma peak escitalopram concentration using the computerised Attention Network Test (ANT), which is a combined flanker and cued reaction time task. RESULTS The results showed differential effects of serotonergic manipulation on attention depending on sequence of intake. For the acute treatment, we found significant differences between escitalopram and placebo for all warning conditions dependent of sequence of intake: participants receiving escitalopram as first treatment showed significant slower reaction times in all warning conditions as compared with placebo while participants receiving escitalopram as second treatment showed significant faster reaction times as compared with placebo. For the sub-chronic treatment, we found significant differences between escitalopram and placebo depending on sequence of intake, but only for the flanker condition: participants receiving escitalopram first had significant slower reaction times in incongruent trials with escitalopram as compared with placebo while participants starting with placebo had significant shorter reaction times in incongruent trials with escitalopram. CONCLUSIONS Thus, the results showed a differential effect of escitalopram in cognition, especially in attention, and are discussed with regard to an interaction between serotonin and familiarity with the attention test.
Collapse
Affiliation(s)
- Barbara Drueke
- Department of Medical Psychology and Medical Sociology, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Area-specific modulation of neural activation comparing escitalopram and citalopram revealed by pharmaco-fMRI: a randomized cross-over study. Neuroimage 2009; 49:1161-70. [PMID: 19833214 DOI: 10.1016/j.neuroimage.2009.10.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/30/2009] [Accepted: 10/06/2009] [Indexed: 11/21/2022] Open
Abstract
Area-specific and stimulation-dependent changes of human brain activation by selective serotonin reuptake inhibitors (SSRI) are an important issue for improved understanding of treatment mechanisms, given the frequent prescription of these drugs in depression and anxiety disorders. The aim of this neuroimaging study was to investigate differences in BOLD-signal caused by administration of the SSRIs escitalopram and citalopram using pharmacological functional magnetic resonance imaging (pharmaco-fMRI). Eighteen healthy subjects participated in a placebo-controlled, randomized, double-blind study in cross-over repeated measures design. Each volunteer performed facial emotional discrimination and a sensorimotor control paradigm during three scanning sessions. Citalopram (20 mg/d), escitalopram (10 mg/d) and placebo were administered for 10 days each with a drug-free period of at least 21 days. Significant pharmacological effects on BOLD-signal were found in the amygdala, medial frontal gyrus, parahippocampal, fusiform and middle temporal gyri. Post-hoc t-tests revealed decreased BOLD-signal in the right amygdala and left parahippocampal gyrus in both pharmacological conditions, compared to placebo. Escitalopram, compared to citalopram, induced a decrease of BOLD-signal in the medial frontal gyrus and an increase in the right fusiform and left parahippocampal gyri. Drug effects were concentrated in brain regions with dense serotonergic projections. Both escitalopram and citalopram attenuated BOLD-signal in the amygdala and parahippocampal cortex to emotionally significant stimuli compared to control stimuli. We believe that reduced reactivity in the medial frontal gyrus found for escitalopram compared to citalopram administration might explain the response differences between study drugs as demonstrated in previous clinical trials.
Collapse
|
40
|
Simmons AN, Arce E, Lovero KL, Stein MB, Paulus MP. Subchronic SSRI administration reduces insula response during affective anticipation in healthy volunteers. Int J Neuropsychopharmacol 2009; 12:1009-20. [PMID: 19545475 PMCID: PMC2846821 DOI: 10.1017/s1461145709990149] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The anterior cingulate cortex (ACC) and insula are important neural substrates for the integration of cognitive, emotional, and physiological information, as well as the coordination of responses to anticipated stimuli. Increased neural activation within these structures has been observed in individuals with anxiety and depressive disorders. Selective serotonin reuptake inhibitors (SSRIs) are among the most effective and frequently prescribed anxiolytic agents, yet it is not known whether ACC or insula underlie the effects of these drugs. We examined whether subchronic administration of a SSRI to healthy volunteers attenuates activation in ACC or insula during anticipation, an important emotional process underlying anxiety. Support for this hypothesis would help to understand where and by what process SSRIs may exert beneficial effects as anxiolytics and would provide further mechanistic evidence for functional magnetic resonance imaging (fMRI) as a biomarker for the development of anxiolytics. Fifteen volunteers participated in a double-blind, placebo-controlled, randomized cross-over study. Participants completed a pleasant and aversive picture-cued anticipation task during fMRI after taking either escitalopram (10 mg) or placebo for 21 d. We found that escitalopram significantly decreased activation in bilateral posterior and middle insula during the anticipation condition irrespective of stimulus valence and in medial prefrontal and ACC during anticipation of aversive vs. pleasant images. Reduced insular and ACC activation in healthy controls during anticipation may be integral to the therapeutic efficacy of SSRIs and may provide a mechanistic approach for the use of pharmaco-fMRI in the identification of novel pharmacotherapeutic agents in patient populations.
Collapse
Affiliation(s)
- Alan N Simmons
- University of California, San Diego, CA 92161-0151B, USA.
| | | | | | | | | |
Collapse
|
41
|
Maron E, Tammiste A, Kallassalu K, Eller T, Vasar V, Nutt DJ, Metspalu A. Serotonin transporter promoter region polymorphisms do not influence treatment response to escitalopram in patients with major depression. Eur Neuropsychopharmacol 2009; 19:451-6. [PMID: 19272758 DOI: 10.1016/j.euroneuro.2009.01.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 01/30/2009] [Indexed: 11/26/2022]
Abstract
Several studies and meta-analyses have implicated a polymorphism in the promoter region of the serotonin transporter (5-HTT) gene, 5-HTTLPR in treatment outcomes of selective serotonin re-uptake inhibitors in patients with major depression. In this study we investigated the impact of 5-HTTLPR and a functional SNP rs25531 on the treatment outcomes to escitalopram in depressive patients. The study sample consisted of 135 outpatients with major depressive disorder (mean age 31.1+/-11.6 years, 68% females) treated with escitalopram 10-20 mg/day for 12 weeks. There were no significant associations between 5-HTT promoter region polymorphisms and response rate or mean change of depressive symptoms during escitalopram treatment. However we showed that patients carrying S allele of 5-HTTLPR may have increased risk for some side effects, including headache, induced by escitalopram medication.
Collapse
Affiliation(s)
- Eduard Maron
- Research Department of Mental Health, North Estonia Medical Centre Foundation, Psychiatry Clinic, Tallinn, Estonia.
| | | | | | | | | | | | | |
Collapse
|
42
|
Differences in the dynamics of serotonin reuptake transporter occupancy may explain superior clinical efficacy of escitalopram versus citalopram. Int Clin Psychopharmacol 2009; 24:119-25. [PMID: 19367152 DOI: 10.1097/yic.0b013e32832a8ec8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Escitalopram the S-enantiomer of the racemate citalopram, is clinically more effective than citalopram in the treatment of major depressive disorder. However, the precise mechanism by which escitalopram achieves superiority over citalopram is yet to be determined. It has been hypothesized that the therapeutically inactive R-enantiomer competes with the serotonin-enhancing S-enantiomer at a low-affinity allosteric site on serotonin reuptake transporters (SERTs), and reduces the effectiveness of the S-enantiomer at the primary, high-affinity serotonin-binding site. This study summarizes the results of two recent single-photon emission computerized tomography studies measuring SERT occupancy in citalopram-treated and escitalopram-treated healthy volunteers, after a single dose and multiple doses (i.e. under steady-state conditions). The single-dose study showed no attenuating effect of R-citalopram. After multiple dosing, however, SERT occupancy was significantly reduced in the presence of R-citalopram. Under steady-state conditions, R-enantiomer concentrations were greater than for the S-enantiomer because of slower clearance of R-citalopram. A pooled analysis suggests that build-up of the R-enantiomer after repeated citalopram dosing may lead to increased inhibition of S-enantiomer occupancy of SERT. This review adds to the growing body of evidence regarding differences in the dynamics of SERT occupancy, that is, molecular mechanisms underlying the often-observed superior clinical efficacy of escitalopram compared with citalopram in major depressive disorder.
Collapse
|
43
|
Pjrek E, Konstantinidis A, Assem-Hilger E, Praschak-Rieder N, Willeit M, Kasper S, Winkler D. Therapeutic effects of escitalopram and reboxetine in seasonal affective disorder: a pooled analysis. J Psychiatr Res 2009; 43:792-7. [PMID: 19230909 DOI: 10.1016/j.jpsychires.2008.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/05/2008] [Accepted: 11/07/2008] [Indexed: 10/21/2022]
Abstract
The monoaminergic neurotransmitters serotonin and noradrenaline have both been implicated in the pathogenesis of seasonal affective disorder (SAD). However, the differential therapeutic value of selective serotonin reuptake inhibitors (SSRI) and selective noradrenaline reuptake inhibitors (NARI) in SAD has not been assessed until now. This study compares data from two open-label trials with similar methodology investigating the SSRI escitalopram and the NARI reboxetine. 20 SAD patients were treated with escitalopram (10-20mg) and 15 patients received treatment with reboxetine (fixed dosage: 8mg) over 6 weeks. Ratings included the structured interview guide for the Hamilton depression rating scale, SAD version (SIGH-SAD), the clinical global impression of severity (CGI-S) and improvement (CGI-I) and the UKU side effect rating scale. Treatment led to a significant reduction in SIGH-SAD score, CGI-S and CGI-I after one week in the reboxetine group and after two weeks in the escitalopram group. SIGH-SAD score was significantly lower in the reboxetine group at weeks 1, 2 and 4 but not at the end of the study. The response rate (SIGH-SAD <50% of baseline value) and the remission rate (SIGH-SAD <8) were not significantly different after 6 weeks of treatment, but the time to response and to remission was significantly shorter in the reboxetine group. The number and severity of side effects were higher in patients treated with reboxetine at all time points. Thus escitalopram and reboxetine were equally effective in treating SAD on all primary and secondary outcome measures. Reboxetine displayed a faster onset of action, but was associated with more pronounced side effects. Further studies comparing SSRI and NARI in SAD are warranted.
Collapse
Affiliation(s)
- Edda Pjrek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
44
|
Chou YH, Yang BH, Chung MY, Chen SP, Su TP, Chen CC, Wang SJ. Imaging the serotonin transporter using (123)I-ADAM in the human brain. Psychiatry Res 2009; 172:38-43. [PMID: 19239985 DOI: 10.1016/j.pscychresns.2008.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Revised: 11/12/2008] [Accepted: 12/28/2008] [Indexed: 11/25/2022]
Abstract
The aim of this study was to examine the feasibility of (123)I-ADAM to image the serotonin transporter (SERT) in Asian (Taiwanese) subjects. Single photon emission computed tomography (SPECT) scans were performed on nine healthy volunteers who were s-allele carriers at the polymorphism within the serotonin transporter promoter region (SERTPR) after intravenous bolus injection of (123)I-ADAM. Quantification of (123)I-ADAM binding was performed using the ratio equilibrium method (REM) with specific uptake ratio (SUR) and a simplified reference tissue model (SRTM). Curve-fitting techniques were used to obtain the peak equilibrium point from 241 to 301 min (average 264+/-20 min) after injection of (123)I-ADAM for the midbrain and from 215 to 270 min (average 235+/-18 min) after injection of (123)I-ADAM for the striatum. Two sets of SUR were obtained by either curve fitting (estimated values) or integrated period from 240 to 270 min (observed values). The estimated values of SUR were 2.11+/-0.51 for the midbrain and 1.50+/-0.44 for the striatum, whereas the observed values were 2.11+/-0.83 for the midbrain and 1.24+/-0.31 for the striatum. The SRTM showed that the binding potential (BP) was 2.10+/-0.66 for the midbrain and 1.35+/-0.25 for the striatum. There was a good correlation between estimated SUR, observed SUR and SRTM in the midbrain but not in the striatum. The optimal scanning duration for both the midbrain and the striatum should be 220 to 280 min similar to that suggested by previous studies in Caucasians. However, due to the low signal-to-noise ratio in the striatum, (123)I-ADAM could be an ideal tracer for imaging SERT in the midbrain but not in the striatum.
Collapse
Affiliation(s)
- Yuan-Hwa Chou
- Department of Psychiatry, Taipei Veterans General Hospital & National Yang Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
45
|
Kasper S, Baldwin DS, Larsson Lönn S, Boulenger JP. Superiority of escitalopram to paroxetine in the treatment of depression. Eur Neuropsychopharmacol 2009; 19:229-37. [PMID: 19185467 DOI: 10.1016/j.euroneuro.2008.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 12/01/2008] [Accepted: 12/09/2008] [Indexed: 01/01/2023]
Abstract
Post-hoc pooled analysis of data from two 6-month randomised controlled trials in patients with major depressive disorder (MDD) revealed superior efficacy and tolerability of escitalopram when compared with paroxetine. Escitalopram (n=394) produced a significantly (p<0.01) greater mean treatment difference of 2.0 points in primary endpoints, judged using the Montgomery-Asberg Depression Rating Scale (MADRS) total score, compared with paroxetine (n=383). Significant differences were also observed in Clinical Global Impression (CGI)--severity (escitalopram, 2.1; paroxetine, 2.4; p<0.01) and CGI--improvement (escitalopram, 1.8; paroxetine, 2.0: p<0.01). In the sub-group of severely depressed patients (baseline MADRS> or = 30), escitalopram showed further improved efficacy compared with paroxetine in all scores. This analysis supports previous observations of superior efficacy and tolerability of long-term escitalopram treatment (10 to 20 mg/day) compared with paroxetine (20 to 40 mg/day). Escitalopram is a good therapeutic option for the long-term treatment of MDD, particularly in severely depressed patients.
Collapse
Affiliation(s)
- Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| | | | | | | |
Collapse
|
46
|
Evidence why paroxetine dose escalation is not effective in major depressive disorder: a randomized controlled trial with assessment of serotonin transporter occupancy. Neuropsychopharmacology 2009; 34:999-1010. [PMID: 18830236 DOI: 10.1038/npp.2008.148] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dose escalation is often used in depressed patients who fail to respond to standard doses of selective serotonin reuptake inhibitors, but clinical efficacy is equivocal. We aimed to reassess the efficacy of paroxetine dose escalation and quantify whether paroxetine dose escalation increases occupancy of the serotonin transporter (SERT) more than placebo dose escalation in a randomized controlled trial. We recruited 107 nonpsychotic, unipolar depressed outpatients (18-70 years; Hamilton Depression Rating Scale (HDRS(17)) >18) from primary care and psychiatric outpatient departments. After 6 weeks, open-label paroxetine 20 mg per day (T0), nonresponding patients (HDRS(17) decrease <50%; n=60) were randomized to double-blind paroxetine (30-50 mg per day as tolerable) or placebo dose escalation (paroxetine 20 mg per day+placebo). Patients were followed until 6 weeks after randomization (T1). Forty-nine patients, drug free at study entry, underwent single-photon emission-computed tomography (SPECT) scanning before treatment and were scanned repeatedly at T0 and T1. Paroxetine serum concentrations and SERT occupancy were determined at T0 and T1 (n=32). We terminated the dose-escalation trial after an interim analysis. Thirty nonresponding patients were randomized to paroxetine (46.7+/-5.5 mg per day), 27 to placebo dose escalation. Response rates were 10/30 (33.3%) and 10/27 (37.0%), respectively. Repeated measurement analyses showed no significant effect for treatment (p=0.88, exceeding a priori stopping rules for futility (p>0.5)). Overall dropout was higher for placebo (26.7%) than paroxetine (3.3%; p=0.03). Paroxetine dose escalation increased paroxetine serum concentrations (p<0.001). SPECT measurements (12 patients randomized to paroxetine (46.9+/-4.8 mg) and 14 to placebo dose escalation) showed no significant increase of midbrain SERT occupancy (2.5+/-26.4%, paroxetine; 3.1+/-25.8% placebo; p=0.687) nor in diencephalon (p=0.529). Paroxetine dose escalation in depressed patients has no clinical benefit over placebo dose escalation. This is explained by the absence of significant increases of SERT occupancy by paroxetine dose escalation, despite increased paroxetine serum concentrations (ISRCTN44111488).
Collapse
|
47
|
Prediction of clinical response based on pharmacokinetic/pharmacodynamic models of 5-hydroxytryptamine reuptake inhibitors in mice. Br J Pharmacol 2008; 155:276-84. [PMID: 18552871 DOI: 10.1038/bjp.2008.243] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Bridging the gap between preclinical research and clinical trials is vital for drug development. Predicting clinically relevant steady-state drug concentrations (Css) in serum from preclinical animal models may facilitate this transition. Here we used a pharmacokinetic/pharmacodynamic (PK/PD) modelling approach to evaluate the predictive validity of 5-hydroxytryptamine (5-HT; serotonin) transporter (SERT) occupancy and 5-hydroxytryptophan (5-HTP)-potentiated behavioral syndrome induced by 5-HT reuptake inhibitor (SRI) antidepressants in mice. EXPERIMENTAL APPROACH Serum and whole brain drug concentrations, cortical SERT occupancy and 5-HTP-potentiated behavioral syndrome were measured over 6 h after a single subcutaneous injection of escitalopram, paroxetine or sertraline. [(3)H]2-(2-dimethylaminomethylphenylsulphanyl)-5-methyl-phenylamine ([(3)H]MADAM) was used to assess SERT occupancy. For PK/PD modelling, an effect-compartment model was applied to collapse the hysteresis and predict the steady-state relationship between drug exposure and PD response. KEY RESULTS The predicted Css for escitalopram, paroxetine and sertraline at 80% SERT occupancy in mice are 18 ng mL(-1), 18 ng mL(-1) and 24 ng mL(-1), respectively, with corresponding responses in the 5-HTP behavioral model being between 20-40% of the maximum. CONCLUSIONS AND IMPLICATIONS Therapeutically effective SERT occupancy for SRIs in depressed patients is approximately 80%, and the corresponding plasma Css are 6-21 ng mL(-1), 21-95 ng mL(-1) and 20-48 ng mL(-1) for escitalopram, paroxetine and sertraline, respectively. Thus, PK/PD modelling using SERT occupancy and 5-HTP-potentiated behavioral syndrome as response markers in mice may be a useful tool to predict clinically relevant plasma Css values.
Collapse
|
48
|
Höschl C, Svestka J. Escitalopram for the treatment of major depression and anxiety disorders. Expert Rev Neurother 2008; 8:537-52. [PMID: 18416657 DOI: 10.1586/14737175.8.4.537] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Escitalopram is the S-enantiomer of the selective serotonin reuptake inhibitor (SSRI) citalopram, which contains equal amounts of the S- and R-forms in a racemic mixture. Escitalopram is the most selective SSRI, with almost no significant affinity to other tested receptors. It has been demonstrated that it is escitalopram that carries the therapeutic potential of citalopram, and has statistically superior and clinically relevant properties compared with citalopram. Escitalopram is at least as effective in the treatment of depression and anxiety as other SSRIs, as well as venlafaxine, bupropion and duloxetine. Owing to multiple metabolic degrading pathways, the clinically relevant interactions of escitalopram with other drugs are minimal. Compared with other antidepressants, escitalopram is generally better tolerated, its onset of action is relatively fast, and its use may have cost-effectiveness and cost-utility advantages. Escitalopram is an effective first-line option in the management of patients with major depression, including severe forms, and various anxiety disorders.
Collapse
Affiliation(s)
- Cyril Höschl
- Prague Psychiatric Centre, Ustavni 91, 181 03 Praha 8, Czech Republic.
| | | |
Collapse
|
49
|
Frokjaer VG, Pinborg LH, Madsen J, de Nijs R, Svarer C, Wagner A, Knudsen GM. Evaluation of the Serotonin Transporter Ligand 123I-ADAM for SPECT Studies on Humans. J Nucl Med 2008; 49:247-54. [PMID: 18199621 DOI: 10.2967/jnumed.107.046102] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Imaging serotonin transporters in the living human brain is important in several fields, such as normal psychophysiology, mood disorders, eating disorders, and neurodegenerative disorders. The aim of this study was to compare different kinetic and semiquantitative methods for assessing serotonin transporters using (123)I-labeled 2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine (ADAM) in humans: an arterial plasma input model, simplified and Logan reference tissue models, and standardized uptake value ratios. METHODS Nine subjects were scanned with dynamic (123)I-ADAM SPECT (mean age, 31 y; range, 24-43 y), and metabolite-corrected arterial input was measured. Tissue reference models (simplified reference tissue model, Logan reference tissue model, and ratio method) were validated against the outcome of a 1-tissue-compartment model, and performance with decreasing scan length was evaluated. The specificity of (123)I-ADAM binding was investigated in a blocking experiment. RESULTS Binding estimates from the simplified reference tissue and Logan reference tissue models correlated tightly with full kinetic modeling when based on a 240- or 360-min dynamic acquisition (r = 0.99); however, there were slight underestimations (3%-5%), especially in high-binding regions. Application of the ratio method to data from 200 to 240 min overestimated specific binding (on average, by 10% +/- 28%) and correlated only moderately with estimates from the 1-tissue-compartment model (r = 0.94). With an acquisition time of 0-120 min, the Logan model still yielded an acceptable outcome when a fixed clearance rate constant (k2') from the cerebellum was applied. Intravenously injected citalopram was not associated with a decrease in cerebellar binding. A lipophilic metabolite that did not seem to bind specifically to serotonin transporter was seen in 2 of 7 subjects. CONCLUSION Serotonin transporter binding with (123)I-ADAM SPECT can be assessed with the Logan model based on a 120-min acquisition when a constant k2' is applied. This model, because it allows for more accurate and less biased binding estimates and thus reduces the required sample size, is advantageous over the ratio method used in clinical studies so far. A single blocking experiment supported the use of the cerebellum as a reference region.
Collapse
Affiliation(s)
- Vibe G Frokjaer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|