1
|
Saito A, Murata H, Niitani K, Nagasaki J, Otoda A, Chujo Y, Yanagida J, Nishitani N, Deyama S, Kaneda K. Social defeat stress enhances the rewarding effects of cocaine through α 1A adrenoceptors in the medial prefrontal cortex of mice. Neuropharmacology 2024; 242:109757. [PMID: 37839511 DOI: 10.1016/j.neuropharm.2023.109757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Various stressors potentiate the rewarding effects of cocaine and contribute to cocaine cravings. However, it remains unclear whether psychosocial stress enhances the rewarding effects of cocaine. Accordingly, this study employed a cocaine-conditioned place preference (CPP) paradigm combined with social defeat (SD) exposure to investigate the effects of acute SD stress on cocaine reward in male mice. We found that SD stress immediately before the posttest significantly increased cocaine CPP, and systemic blockade of α1 adrenoceptors, but not β adrenoceptors, suppressed this increase. Fiber photometry recordings with GRABNE1m sensors revealed increased noradrenaline (NA) levels in the medial prefrontal cortex (mPFC) in test mice in response to attacks by aggressor mice during SD. Moreover, the SD stress-induced enhancement of CPP was effectively suppressed by intra-mPFC infusion of an α1 adrenoceptor antagonist. In vitro whole-cell recordings demonstrated that silodosin, an α1A, but not α1B or α1D, adrenoceptor antagonist, inhibited NA-induced depolarizing currents and facilitation of excitatory synaptic transmissions. Consistently, intra-mPFC silodosin infusion significantly suppressed the SD stress-induced CPP enhancement. Conversely, intra-mPFC infusion of α1A adrenoceptor agonist augmented cocaine CPP in the absence of stress exposure. Additionally, intranasal silodosin administration attenuated the SD stress-induced enhancement of CPP, and chemogenetic inhibition of mPFC excitatory neurons also suppressed the SD stress-induced CPP enhancement. Together, these findings suggest that NA stimulation of α1A adrenoceptors and the subsequent activation of mPFC pyramidal cells may contribute to SD stress-induced amplification of the rewarding effects of cocaine, and intranasal silodosin administration may hold therapeutic potential for mitigating stress-associated cocaine craving.
Collapse
Affiliation(s)
- Atsushi Saito
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Haruka Murata
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Kazuhei Niitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Junpei Nagasaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Atsuki Otoda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yusuke Chujo
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Junko Yanagida
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
2
|
Pourhamzeh M, Moravej FG, Arabi M, Shahriari E, Mehrabi S, Ward R, Ahadi R, Joghataei MT. The Roles of Serotonin in Neuropsychiatric Disorders. Cell Mol Neurobiol 2022; 42:1671-1692. [PMID: 33651238 PMCID: PMC11421740 DOI: 10.1007/s10571-021-01064-9] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022]
Abstract
The serotonergic system extends throughout the central nervous system (CNS) and the gastrointestinal (GI) tract. In the CNS, serotonin (5-HT, 5-hydroxytryptamine) modulates a broad spectrum of functions, including mood, cognition, anxiety, learning, memory, reward processing, and sleep. These processes are mediated through 5-HT binding to 5-HT receptors (5-HTRs), are classified into seven distinct groups. Deficits in the serotonergic system can result in various pathological conditions, particularly depression, schizophrenia, mood disorders, and autism. In this review, we outlined the complexity of serotonergic modulation of physiologic and pathologic processes. Moreover, we provided experimental and clinical evidence of 5-HT's involvement in neuropsychiatric disorders and discussed the molecular mechanisms that underlie these illnesses and contribute to the new therapies.
Collapse
Affiliation(s)
- Mahsa Pourhamzeh
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ghasemi Moravej
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Arabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Radiology and Medical Physics, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Shahriari
- Faculty of Medicine, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Richard Ward
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taghi Joghataei
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Impact of fasting on stress systems and depressive symptoms in patients with major depressive disorder: a cross-sectional study. Sci Rep 2022; 12:7642. [PMID: 35538177 PMCID: PMC9091273 DOI: 10.1038/s41598-022-11639-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
Major depressive disorder (MDD) is frequently associated with poor response to treatment. Common antidepressants target neurotransmission and neuronal plasticity, which require adequate energy supply. As imaging studies indicate disturbances in central energy metabolism, and caloric restriction improves neuroplasticity and impacts mood and cognition, correction of energy status might increase the effectiveness of antidepressant treatments and reduce the psychopathological symptoms of depression. Metabolic parameters, stress hormones, and brain-derived neurotrophic factor (BDNF) levels were assessed in serum of depressed inpatients (MDD, N = 21) and healthy volunteers (Ctrl, N = 28) before and after a 72 h fasting period during which only water was consumed. Depression severity was assessed by Beck's Depression Inventory (BDI)-2 sum-score and cognitive-affective and somatic sub-scores. Fasting similarly impacted metabolic parameters and stress systems in both groups. Fasting elevated BDI-2 sum-scores and somatic sub-scores in Ctrl. In MDD, fasting increased somatic-, but decreased cognitive-affective symptoms. Sub-group analyses based on BDI-2 sum-scores pre-fasting showed that cognitive-affective symptoms decreased in patients with moderate/severe but not in those with mild symptoms. This was associated with differential changes in BDNF levels. In conclusion, fasting improved cognitive-affective sub-scores in MDD patients with moderate/severe symptoms that had not responded to prior therapy. Interventions that modulate energy metabolism might directly improve cognitive-affective symptoms and/or augment therapeutic efficacy in moderate-to-severely depressed patients.
Collapse
|
4
|
5-HT Receptors and the Development of New Antidepressants. Int J Mol Sci 2021; 22:ijms22169015. [PMID: 34445721 PMCID: PMC8396477 DOI: 10.3390/ijms22169015] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Serotonin modulates several physiological and cognitive pathways throughout the human body that affect emotions, memory, sleep, and thermal regulation. The complex nature of the serotonergic system and interactions with other neurochemical systems indicate that the development of depression may be mediated by various pathomechanisms, the common denominator of which is undoubtedly the disturbed transmission in central 5-HT synapses. Therefore, the deliberate pharmacological modulation of serotonergic transmission in the brain seems to be one of the most appropriate strategies for the search for new antidepressants. As discussed in this review, the serotonergic system offers great potential for the development of new antidepressant therapies based on the combination of SERT inhibition with different pharmacological activity towards the 5-HT system. The aim of this article is to summarize the search for new antidepressants in recent years, focusing primarily on the possibility of benefiting from interactions with various 5-HT receptors in the pharmacotherapy of depression.
Collapse
|
5
|
Duan KM, Fang C, Yang SQ, Yang ST, Xiao JD, Chang H, Lin GX, Zhang LB, Peng MC, Liu ZQ, Wang SY. Genetic Polymorphism of rs13306146 Affects α2AAR Expression and Associated With Postpartum Depressive Symptoms in Chinese Women Who Received Cesarean Section. Front Genet 2021; 12:675386. [PMID: 34306020 PMCID: PMC8294467 DOI: 10.3389/fgene.2021.675386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/17/2021] [Indexed: 01/20/2023] Open
Abstract
Postpartum depressive symptom (PDS) is a common psychological and mental disorder after giving birth. Our previous studies showing the application of dexmedetomidine, an α2-AR agonist, can significantly improve maternal sleep, as well as relieve and reduce the incidence of PDS. This study investigated the association between α2 A AR gene polymorphisms and PDS. A total of 568 cesarean section patients were enrolled; the incidence of PDS is 18.13% (103 with PDS, 465 with non-PDS). The Edinburgh Postpartum Depression Scale score ≥10 was used to diagnose PDS at 42 days after delivery. The single-nucleotide polymorphisms of α2AR were sequenced by pyrosequencing. The effect of rs13306146 A > G polymorphism on α2AR transcription and the regulation of miR-646 on α2AR expression were assessed by dual luciferase reporter assays or gene transfection. Increased stress during pregnancy, poor relationship between mother-in-law and daughter-in-law, spousal relationship, domestic violence, antenatal depression, self-harm ideation, and stressful life events were all associated with increased PDS incidence (p < 0.05). The logistic regression analysis found that the α2AAR rs13306146 polymorphism was associated with PDS after adjusting confounding variables. The transcriptional function of the α2AAR rs13306146 A allele was decreased compared with the G allele, and the α2AAR expression level was correspondingly decreased (p < 0.05), as the strongest binding ability of miR-646 to the α2AAR rs13306146 AA genotype. The effect of α2AAR rs13306146 A > G polymorphism may change the binding ability of miR-646 at the 3'UTR of the α2AAR gene, affecting the expression of α2AAR. This study supports the involvement of the norepinephrine system in the pathogenesis of PDS. Genotypes of α2AAR may be novel and useful biomarkers for PDS.
Collapse
Affiliation(s)
- Kai Ming Duan
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Chao Fang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China.,Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Si Qi Yang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Shu Ting Yang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ji Dong Xiao
- Department of Ultrasonography, Third Xiangya Hospital of Central South University, Changsha, China
| | - Huang Chang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Guo Xin Lin
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Liang Bin Zhang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ming Chao Peng
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhao Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Sai Ying Wang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
6
|
Żmudzka E, Sałaciak K, Sapa J, Pytka K. Serotonin receptors in depression and anxiety: Insights from animal studies. Life Sci 2018; 210:106-124. [PMID: 30144453 DOI: 10.1016/j.lfs.2018.08.050] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
Abstract
Serotonin regulates many physiological processes including sleep, appetite, and mood. Thus, serotonergic system is an important target in the treatment of psychiatric disorders, such as major depression and anxiety. This natural neurotransmitter interacts with 7 families of its receptors (5-HT1-7), which cause a variety of pharmacological effects. Using genetically modified animals and selective or preferential agonists and antagonist, numerous studies demonstrated the involvement of almost all serotonin receptor subtypes in antidepressant- or anxiolytic-like effects. In this review, based on animal studies, we discuss the possible involvement of serotonin receptor subtypes in depression and anxiety.
Collapse
Affiliation(s)
- Elżbieta Żmudzka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek Sapa
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
7
|
Tritschler L, Gaillard R, Gardier AM, David DJ, Guilloux JP. [Consequences of the monoaminergic systems cross-talk in the antidepressant activity]. Encephale 2018; 44:264-273. [PMID: 29801770 DOI: 10.1016/j.encep.2018.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the most prescribed antidepressant treatment for treat major depressive disorders. Despite their effectiveness, only 30% of SSRI-treated patients reach remission of depressive symptoms. SSRIs by inhibiting the serotonin transporter present some limits with residual symptoms. Increasing not only serotonin but also norepinephrine and dopamine levels in limbic areas seems to improve remission. Anatomical relationships across serotoninergic, dopaminergic and noradrenergic systems suggest tight reciprocal regulations among them. This review attempts to present, from acute to chronic administration the consequences of SSRI administration on monoaminergic neurotransmission. The serotonin neurons located in the raphe nucleus (RN) are connected to the locus coeruleus (locus coeruleus), the key structure of norepinephrine synthesis, through GABAergic-inhibiting interneurons. Activation of the 5-HT2A receptors expressed on GABAergic interneurons following SERT-inhibition induces an increase in serotonin leading to inhibitory effect on NE release. Similarly, the serotonin neurons exert negative regulation on dopaminergic neurons from the ventral tegmental area (VTA) through a GABAergic interneuron. These interneurons express the 5-HT2C and 5-HT3 receptors inducing an inhibitory effect of 5-HT on DA release. Positive reciprocal connections are also observed through direct projections from the locus coeruleus to the RN and from the VTA to the RN through α1 and D2 receptors respectively, both stimulating the serotoninergic activity. Acute SSRI treatment induces only a slight increase in 5-HT levels in limbic areas due to the activation of presynaptic 5-HT1A and 5-HT1B autoreceptors counteracting the effects of the transporter blockade. No change in NE levels and a small decrease in the dopaminergic neurotransmission is also observed. These weak changes in monoamine in the limbic areas after acute SSRI treatment seems to be one of key point involved in the onset of action. Following desensitization of the 5-HT1A and 5-HT1B autoreceptors, chronic SSRI treatment induces a large increase in the 5-HT neurotransmission. Changes in 5-HT levels at the limbic areas results in a decrease in NE transmission and an increase in DA transmission through an increase in the post-synaptic D2 receptors sensitivity and not from a change in DA levels, which is mainly due to a desensitization of the 5-HT2A receptor. The observed decrease of NE neurotransmission could explain some limits of the SSRI therapy and the interest to activate NE system for producing more robust effects. On the other hand, the D2 sensitization, especially in the nucleus accumbens, stimulates the motivation behavior as well as remission of anhedonia considering the major role of DA release in this structure. Finally, we need to take into account the key role of each monoaminergic neurotransmission to reach remission. Targeting only one system will limit the therapeutic effectiveness. Clinical evidences, including the STAR*D studies, confirmed this by an increase of the remission rate following the mobilization of several monoaminergic transmissions. However, these combinations cannot constitute first line of treatment considering the observed increase of side effects. Such an approach should be adapted to each patient in regard to its particular symptoms as well as clinical history. The next generation of antidepressant therapy will need to take into consideration the interconnections and the interrelation between the monoaminergic systems.
Collapse
Affiliation(s)
- L Tritschler
- CESP, Inserm UMRS1178, faculté de pharmacie, université Paris-Saclay, université Paris-Sud, 92296 Chatenay-Malabry, France
| | - R Gaillard
- Inserm UMR 894, centre de psychiatrie & neurosciences, CNRS GDR 3557, institut de psychiatrie, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France; Service hospitalo-universitaire, centre hospitalier Sainte-Anne, 75015 Paris, France
| | - A M Gardier
- CESP, Inserm UMRS1178, faculté de pharmacie, université Paris-Saclay, université Paris-Sud, 92296 Chatenay-Malabry, France
| | - D J David
- CESP, Inserm UMRS1178, faculté de pharmacie, université Paris-Saclay, université Paris-Sud, 92296 Chatenay-Malabry, France.
| | - J-P Guilloux
- CESP, Inserm UMRS1178, faculté de pharmacie, université Paris-Saclay, université Paris-Sud, 92296 Chatenay-Malabry, France.
| |
Collapse
|
8
|
Hama S, Murakami T, Yamashita H, Onoda K, Yamawaki S, Kurisu K. Neuroanatomic pathways associated with monoaminergic dysregulation after stroke. Int J Geriatr Psychiatry 2017; 32:633-642. [PMID: 27251297 DOI: 10.1002/gps.4503] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 04/10/2016] [Accepted: 04/12/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE We examined the complex relationship between lesion location, symptoms of depression (affective and apathetic), and monoamine dysfunction after stroke. METHODS Magnetic resonance imaging was performed on 48 post-stroke patients that had been assessed for affective and apathetic symptoms using the Hospital Anxiety and Depression Scale and the Apathy Scale, respectively. Noradrenalin (NA), dopamine (DA), their metabolites, and a metabolite of serotonin (5-HT) were measured using 24-h urine samples, and 5-HT and 3-methoxy-4-hydroxyphenylglycol were measured using blood samples. We developed a statistical parametric map that displayed the associations between lesion location and both positive and negative alterations of monoamines and their metabolites. RESULTS Multivariate analysis indicated that basal ganglia lesions and 5-HT showed relationships with affective symptoms, whereas homovanillic acid was related to apathetic symptoms. Univariate analysis showed no such relationships. However, decreases in NA and DA and increases in NA and DA turnover were related to lesions in the brainstem, whereas increases in NA and DA as well as decreases in NA and DA turnover were related to cortical and/or striatum lesions. 5-HT turnover data showed a pattern opposite to that seen for NA and DA turnover. CONCLUSIONS Monoaminergic neuronal pathways are controlled by both receptor-mediated feedback mechanisms and turnover; thus, depletion of monoamines is not the only cause of depression and apathy. Moreover, the monoamine neuronal network might be divided into two branches, catecholamine (NA and DA) and 5-HT, both of which are anatomically and functionally interconnected and could respectively influence apathetic and affective symptoms of depression.
Collapse
Affiliation(s)
- Seiji Hama
- Department of Rehabilitation, Hibino Hospital, Hiroshima, Japan.,Department of Neurosurgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Taro Murakami
- Department of Neurosurgery, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Hidehisa Yamashita
- Department of Psychiatry and Neuroscience, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Keiichi Onoda
- Department of Neurology, Shimane University, Izumo-shi, Shimane, Japan
| | - Shigeto Yamawaki
- Department of Psychiatry and Neuroscience, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Kaoru Kurisu
- Department of Neurosurgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
9
|
Fernández-Pastor B, Ortega JE, Grandoso L, Castro E, Ugedo L, Pazos Á, Meana JJ. Chronic citalopram administration desensitizes prefrontal cortex but not somatodendritic α 2-adrenoceptors in rat brain. Neuropharmacology 2016; 114:114-122. [PMID: 27908769 DOI: 10.1016/j.neuropharm.2016.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/18/2016] [Accepted: 11/26/2016] [Indexed: 12/27/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) regulate brain noradrenergic neurotransmission both at somatodendritic and nerve terminal areas. Previous studies have demonstrated that noradrenaline (NA) reuptake inhibitors are able to desensitize α2-adrenoceptor-mediated responses. The present study was undertaken to elucidate the effects of repeated treatment with the SSRI citalopram on the α2-adrenoceptor sensitivity in locus coeruleus (LC) and prefrontal cortex (PFC), by using in vivo microdialysis and electrophysiological techniques, and in vitro stimulation of [35S]GTPγS binding autoradiography. Repeated, but not acute, treatment with citalopram (5 mg/kg, i.p., 14 days) increased extracellular NA concentration selectively in PFC. The α2-adrenoceptor agonist clonidine (0.3 mg/kg, i.p.), administered to saline-treated animals (1 ml/kg i.p., 14 days) induced NA decrease in LC (Emax = -44 ± 4%; p < 0.001) and in PFC (Emax = -61 ± 5%, p < 0.001). In citalopram chronically-treated rats, clonidine administration exerted a lower decrease of NA (Emax = -25 ± 7%; p < 0.001) in PFC whereas the effect in LC was not different to controls (Emax = -36 ± 4%). Clonidine administration (0.625-20 μg/kg, i.v.) evoked a dose-dependent decrease of the firing activity of LC noradrenergic neurons in both citalopram- (ED50 = 3.2 ± 0.4 μg/kg) and saline-treated groups (ED50 = 2.6 ± 0.5 μg/kg). No significant differences between groups were found in ED50 values. The α2-adrenoceptor agonist UK14304 stimulated specific [35S]GTPγS binding in brain sections containing LC (144 ± 14%) and PFC (194 ± 32%) of saline-treated animals. In citalopram-treated animals, this increase did not differ from controls in LC (146 ± 22%) but was lower in PFC (141 ± 8%; p < 0.05). Taken together, long-term citalopram treatment induces a desensitization of α2-adrenoceptors acting as axon terminal autoreceptors in PFC without changes in somatodendritic α2-adrenoceptor sensitivity.
Collapse
Affiliation(s)
| | - Jorge E Ortega
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain; BioCruces Health Research Institute, Bizkaia, Spain.
| | - Laura Grandoso
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| | - Elena Castro
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain; Department of Physiology and Pharmacology, Institute of Biomedicine & Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC-IDICAN, Santander, Cantabria, Spain
| | - Luisa Ugedo
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| | - Ángel Pazos
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain; Department of Physiology and Pharmacology, Institute of Biomedicine & Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC-IDICAN, Santander, Cantabria, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain; BioCruces Health Research Institute, Bizkaia, Spain
| |
Collapse
|
10
|
Kurosawa N, Shimizu K, Seki K. The development of depression-like behavior is consolidated by IL-6-induced activation of locus coeruleus neurons and IL-1β-induced elevated leptin levels in mice. Psychopharmacology (Berl) 2016; 233:1725-37. [PMID: 26385227 DOI: 10.1007/s00213-015-4084-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 09/10/2015] [Indexed: 12/17/2022]
Abstract
RATIONALE Many studies have supported the cytokine hypothesis as the underlying pathophysiology of depressive disorder. OBJECTIVES We previously reported that lipopolysaccharide (LPS)-induced depression-like behavior is abrogated by the α1-adrenoceptor antagonist prazosin. Since cytokines are involved in LPS effects on the brain, we investigated the effects of cytokines on noradrenergic neurons in the locus coeruleus (LC) and whether central α1-adrenoceptors can cause the development of depression-like behavior. METHODS Adult male CD1 mice were treated with LPS (1 mg/kg, i.p.) or saline and sacrificed 2 h later for immunofluorescence studies of c-fos and tyrosine hydroxylase (TH) expression in LC neurons. Serum cytokines were measured using enzyme-linked immunosorbent assay (ELISA). Another group of mice were implanted with intracerebroventricular (i.c.v.) cannulae and given artificial cerebrospinal fluid (CSF) (control), interleukin (IL)-1β (0.5 μg), IL-6 (1 μg), or tumor necrosis factor (TNF)-α (1 μg), and sacrificed 2 h later for c-fos and TH immunofluorescence analysis. Serum samples were analyzed for leptin levels. In addition, tail suspension test (TST), forced swimming test (FST), and sucrose preference (SP) test were conducted in a separate group of mice treated i.c.v. with cytokines, recombinant mouse leptin (5 μg) or phenylephrine (40 μg). These effects were countered by i.c.v. administration of prazosin and a leptin antagonist. RESULTS LPS increased c-fos expression in TH-positive neurons. Central administration of IL-6 and IL-1β increased c-fos immunoreactivity and serum leptin levels. Phenylephrine, an α1-adrenoceptor agonist, given i.c.v., increased the immobility time during FST and decreased SP, but had no effect on TST. Central leptin administration increased immobility time during FST but did not affect TST or SP. The combination of phenylephrine and leptin increased immobility time during FST and TST, and decreased SP. Induction of depression-like behavior by co-administration of IL-1β and IL-6 was prevented by pretreatment with prazosin alone. CONCLUSION These results suggest that IL-6-dependent LC neuronal activation induced depression-like behavior and IL-1β-induced increase in leptin levels enhanced α1-adrenoceptor-mediated depression-like behavior.
Collapse
Affiliation(s)
- Natsuki Kurosawa
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan
| | - Koh Shimizu
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan
| | - Kenjiro Seki
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan.
| |
Collapse
|
11
|
Lin CC, Tung CS, Liu YP. Escitalopram reversed the traumatic stress-induced depressed and anxiety-like symptoms but not the deficits of fear memory. Psychopharmacology (Berl) 2016; 233:1135-46. [PMID: 26740318 DOI: 10.1007/s00213-015-4194-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022]
Abstract
RATIONALE Posttraumatic stress disorder (PTSD) is a trauma-induced mental disorder characterised by fear extinction dysfunction in which fear circuit monoamines are possibly associated. PTSD often coexists with depressive/anxiety symptoms, and selective serotonin reuptake inhibitors (SSRIs) are recommended to treat PTSD. However, therapeutic mechanisms of SSRIs underlying the PTSD fear symptoms remain unclear. OBJECTIVES Using a rodent PTSD model, we examined the effects of early SSRI intervention in mood and fear dysfunctions with associated changes of monoamines within the fear circuit areas. METHODS A 14-day escitalopram (ESC) regimen (5 mg/kg/day) was undertaken in two separate experiments in rats which previously received a protocol of single prolonged stress (SPS). In experiment 1, sucrose preference and elevated T-maze were used to index anhedonia depression and avoidance/escape anxiety profiles. In experiment 2, the percentage of freezing time was measured in a 3-day fear conditioning paradigm. At the end of our study, tissue levels of serotonin (5-HT) in the medial prefrontal cortex, amygdala, hippocampus, and striatum were measured in experiment 1, and the efflux levels of infralimbic (IL) monoamines were measured in experiment 2. RESULTS In experiment 1, ESC corrected both behavioural (depression/anxiety) and neurochemical (reduced 5-HT tissue levels in amygdala/hippocampus) abnormalities. In experiment 2, ESC was unable to correct the SPS-impaired retrieval of fear extinction. In IL, ESC increased the efflux level of 5-HT but failed to reverse SPS-reduced dopamine (DA) and noradrenaline (NA). CONCLUSIONS PTSD-induced mood dysfunction is psychopathologically different from PTSD-induced fear disruption in terms of disequilibrium of monoamines within the fear circuit areas.
Collapse
Affiliation(s)
- Chen-Cheng Lin
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Che-Se Tung
- Division of Medical Research and Education, Cheng Hsin General Hospital, Taipei, 11220, Taiwan
| | - Yia-Ping Liu
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, 11490, Taiwan.
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
12
|
Kaneko F, Kawahara Y, Kishikawa Y, Hanada Y, Yamada M, Kakuma T, Kawahara H, Nishi A. Long-Term Citalopram Treatment Alters the Stress Responses of the Cortical Dopamine and Noradrenaline Systems: the Role of Cortical 5-HT1A Receptors. Int J Neuropsychopharmacol 2016; 19:pyw026. [PMID: 27029212 PMCID: PMC5006198 DOI: 10.1093/ijnp/pyw026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/23/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cortical dopamine and noradrenaline are involved in the stress response. Citalopram, a selective serotonin reuptake inhibitor, has direct and indirect effects on the serotonergic system. Furthermore, long-term treatment with citalopram affects the dopamine and noradrenaline systems, which could contribute to the therapeutic action of antidepressants. METHODS The effects of long-term treatment with citalopram on the responses of the dopamine and noradrenaline systems in the rat prefrontal cortex to acute handling stress were evaluated using in vivo microdialysis. RESULTS Acute handling stress increased dopamine and noradrenaline levels in the prefrontal cortex. The dopamine and noradrenaline responses were suppressed by local infusion of a 5-HT1A receptor agonist, 7-(Dipropylamino)-5,6,7,8-tetrahydronaphthalen-1-ol;hydrobromide, into the prefrontal cortex. The dopamine response was abolished by long-term treatment with citalopram, and the abolished dopamine response was reversed by local infusion of a 5-HT1A receptor antagonist, (Z)-but-2-enedioic acid;N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-ylcyclohexanecarboxamide into the prefrontal cortex. On the other hand, long-term treatment with citalopram reduced the basal noradrenaline levels (approximately 40% of the controls), but not the basal dopamine levels. The noradrenaline response was maintained despite the low basal noradrenaline levels. Signaling from the 5-HT1A receptors and α2-adrenoceptors was not involved in the decrease in the basal noradrenaline levels but partially affected the noradrenaline response. CONCLUSIONS Chronic citalopram treatment differentially suppresses the dopamine and noradrenaline systems in the prefrontal cortex, and the dopamine stress response was preferentially controlled by upregulating 5-HT1A receptor signaling. Our findings provide insight into how antidepressants modulate the dopamine and noradrenaline systems to overcome acute stress.
Collapse
Affiliation(s)
| | - Yukie Kawahara
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, Japan (Ms Kaneko and Drs Kawahara, Kishikawa, Hanada, and Nishi); Department of Psychiatry, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan (Dr Yamada); Biostatistics Center, Kurume University, Kurume, Fukuoka, Japan (Dr Kakuma); Department of Dental Anesthesiology, School of Dentistry, Tsurumi University, Tsurumi-ku, Yokohama, Kanagawa, Japan (Dr Kawahara).
| | | | | | | | | | | | | |
Collapse
|
13
|
Long-term administration of the antidepressant vilazodone modulates rat brain monoaminergic systems. Neuropharmacology 2015; 99:696-704. [DOI: 10.1016/j.neuropharm.2015.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/26/2015] [Accepted: 09/05/2015] [Indexed: 11/23/2022]
|
14
|
Fidalgo C, Ko WKD, Tronci E, Li Q, Stancampiano R, Chuan Q, Bezard E, Carta M. Effect of serotonin transporter blockade on L-DOPA-induced dyskinesia in animal models of Parkinson's disease. Neuroscience 2015; 298:389-96. [PMID: 25907446 DOI: 10.1016/j.neuroscience.2015.04.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 12/18/2022]
Abstract
Serotonin transporter blockade with selective serotonin reuptake inhibitors (SSRIs) was recently shown to counteract L-DOPA-induced dyskinesia in 6-hydroxydopamine (6-OHDA)-lesioned rats. However, this effect has never been described in Parkinson's disease (PD) patients, despite that they often receive SSRIs for the treatment of depression. In the present study, we investigated the efficacy of the SSRI citalopram against dyskinesia in two experimental models of PD, the 6-OHDA-lesioned rat and 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine (MPTP)-treated macaque. First, we studied the acute and chronic effect of citalopram, given at different time points before L-DOPA, in L-DOPA-primed parkinsonian rats. Moreover, the acute effect of citalopram was also evaluated in dyskinetic MPTP-treated macaques. In L-DOPA-primed rats, a significant and long-lasting reduction of L-DOPA-induced dyskinesia (LID) was observed only when citalopram was given 30 min before L-DOPA, suggesting that the time of injection relative to L-DOPA is a key factor for the efficacy of the treatment. Interestingly, an acute challenge with the 5-HT1A/1B receptor agonist eltoprazine, given at the end of the chronic study, was equally effective in reducing LID in rats previously chronically treated with L-DOPA or L-DOPA plus citalopram, suggesting that no auto-receptor desensitization was induced by chronic citalopram treatment. In MPTP-treated macaques, citalopram produced a striking suppression of LID but at the expense of L-DOPA therapeutic efficacy, which represents a concern for possible clinical application.
Collapse
Affiliation(s)
- C Fidalgo
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, SS554 km 4.5, 09042 Monserrato, Italy
| | - W K D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; Motac Neuroscience, Manchester, UK
| | - E Tronci
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, SS554 km 4.5, 09042 Monserrato, Italy
| | - Q Li
- Motac Neuroscience, Manchester, UK; Institute of Lab Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - R Stancampiano
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, SS554 km 4.5, 09042 Monserrato, Italy
| | - Q Chuan
- Institute of Lab Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - E Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; Motac Neuroscience, Manchester, UK; Institute of Lab Animal Sciences, China Academy of Medical Sciences, Beijing, China
| | - M Carta
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, SS554 km 4.5, 09042 Monserrato, Italy.
| |
Collapse
|
15
|
Abstract
It is now accepted that major depressive disorder (MDD) is not a single pathophysiological entity. It is therefore not surprising that remission rates to a first antidepressant trial are low. In addition, antidepressants may target various neuronal elements for which there are gene polymorphisms, such as the serotonin (5-HT) reuptake transporter, which may modulate response. Acting on a single monoaminergic target, such as inhibiting the 5-HT transporter, may confer efficacy in MDD, but other targets may be used and/or combined in treatment-resistant patients. These include the blockade of norepinephrine transporters, monoamine oxidase, 5-HT(2A), 5-HT(1B) and 5-HT7 receptors, and the activation of 5-HT(1A) and dopamine 2 receptors. While antidepressants may have more than one of these properties, so do atypical antipsychotics. When using the latter medications, however, their regimens should be below those effective in treating psychosis to avoid dopamine 2 antagonism, which could be counter-productive in MDD. In some patients, combining medications from treatment initiation may also provide additional therapeutic benefits.
Collapse
|
16
|
Upregulation of the dorsal raphe nucleus-prefrontal cortex serotonin system by chronic treatment with escitalopram in hyposerotonergic Wistar-Kyoto rats. Neuropharmacology 2013; 72:169-78. [DOI: 10.1016/j.neuropharm.2013.04.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 11/16/2022]
|
17
|
Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems. Int J Neuropsychopharmacol 2013; 16:459-70. [PMID: 22717062 DOI: 10.1017/s1461145712000387] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Vagus nerve stimulation (VNS) is an adjunctive treatment for resistant epilepsy and depression. Electrophysiological recordings in the rat brain have already shown that chronic VNS increases norepinephrine (NE) neuronal firing activity and, subsequently, that of serotonin (5-HT) neurons through an activation of their excitatory α1-adrenoceptors. Long-term VNS was shown to increase the tonic activation of post-synaptic 5-HT1A receptors in the hippocampus. This study was aimed at examining the effect of VNS on extracellular 5-HT, NE and dopamine (DA) levels in different brain areas using in vivo microdialysis, on NE transmission in the hippocampus, and DA neuronal firing activity using electrophysiology. Rats were implanted with a VNS device and stimulated for 14 d with standard parameters used in treatment-resistant depression (0.25 mA, 20 Hz, 500 μs, 30 s on-5 min off). The results of the present study revealed that 2-wk VNS significantly increased extracellular NE levels in the prefrontal cortex and the hippocampus and enhanced the tonic activation of post-synaptic α2-adrenoceptors on pyramidal neurons. The electrophysiological experiments revealed a significant decrease in ventral tegmental area DA neuronal firing rate after long-term VNS; extracellular DA levels were nevertheless increased in the prefrontal cortex and nucleus accumbens. Chronic VNS significantly increased extracellular 5-HT levels in the dorsal raphe but not in the hippocampus and prefrontal cortex. In conclusion, the effect of VNS in increasing the transmission of monoaminergic systems targeted in the treatment of resistant depression should be involved, at least in part, in its antidepressant properties observed in patients not responding to many antidepressant strategies.
Collapse
|
18
|
Blier P, El Mansari M. Serotonin and beyond: therapeutics for major depression. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120536. [PMID: 23440470 PMCID: PMC3638389 DOI: 10.1098/rstb.2012.0536] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The serotonin (5-HT, 5-hydroxytryptamine) system has been implicated in the pathogenesis of major depressive disorder (MDD). The case for its contribution to the therapeutic efficacy of a wide variety of antidepressant treatments is, however, much stronger. All antidepressant strategies have been shown to enhance 5-HT transmission in the brain of laboratory animals. Catecholamines, norepinephrine (NE) and dopamine (DA) can also play a pivotal role in the mechanism of action of certain antidepressant strategies. The enhancement of 5-HT transmission by selective serotonin reuptake inhibitors, which leads to a dampening of the activity of NE and DA neurons, may account in part for the low remission rate achieved with these medications and/or the residuals symptoms after remission is achieved. The functional connectivity between the 5-HT, NE and DA systems can be used to understand the mechanism of action of a wide variety of augmentation strategies in treatment-resistant MDD. Proof-of-concept studies have shown that antidepressant medications with complementary mechanisms of action on monoaminergic systems can double the remission rate achieved in a trial of standard duration. Novel approaches are also being used to treat MDD, which also appear to involve the monoaminergic system(s) to a varying extent.
Collapse
Affiliation(s)
- Pierre Blier
- Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada.
| | | |
Collapse
|
19
|
Salerian AJ, Altar CA. The prefrontal cortex influence over subcortical and limbic regions governs antidepressant response by N=H/(M+R). Psychiatry Res 2012; 204:1-12. [PMID: 23022274 DOI: 10.1016/j.pscychresns.2012.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 11/26/2022]
Abstract
We review the evidence for relationships between metabolic activity of cortical, subcortical and limbic brain regions in depression and the efficacy of antidepressant agents. The influence of these regions can be described by an algebraic equation, N=H/(M+R), where N represents a homeostatic level of executive function, H represents prefrontal (Brodmann areas 9, 10, 11, 12; 46) and cingulate cortex activity (24, 25; 32), M represents subcortical (hippocampus, parahippocampal gyrus) influences, and R represents limbic (amygdala) influences. This hypothesis is based on depressed prefrontal cortex and enhanced amygdala and hippocampal metabolism in major depressive disorder, and the remission of these changes by most antidepressant interventions. The therapeutic efficacy of antidepressant strategies may depend less on their presumptive molecular mechanisms of action and more on their ability to restore the predominant metabolic and executive functions of the prefrontal cortex, and dampen excessive subcortical and limbic influences.
Collapse
Affiliation(s)
- Alen Johannes Salerian
- Salerian Center for Neuroscience and Pain, 5028 Wisconsin Avenue NW, Suite 220, Washington, DC 20016, USA
| | | |
Collapse
|
20
|
Nakazato T. Dual modes of extracellular serotonin changes in the rat ventral striatum modulate adaptation to a social stress environment, studied with wireless voltammetry. Exp Brain Res 2012; 230:583-96. [DOI: 10.1007/s00221-012-3168-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 06/25/2012] [Indexed: 02/03/2023]
|
21
|
Effect of paroxetine and bupropion on human resting brain perfusion: An arterial spin labeling study. Neuroimage 2012; 61:773-9. [DOI: 10.1016/j.neuroimage.2012.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/25/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022] Open
|
22
|
Abstract
Despite being a first-line treatment for adolescent depression and anxiety, antidepressant drugs appear to have questionable efficacy and carry an increased risk of adverse effects in this population. The neural mechanisms underlying this phenomenon are currently unknown. Recent research into the neural effects of alcohol and recreational drugs suggests that the developmental trajectory of the adolescent brain may be particularly vulnerable to pharmacological disturbance. It is therefore important to consider whether prescription psychotropic drugs may have analogous effects. This article reviews the contribution of recent preclinical, clinical and pharmacogenetic literature to current knowledge on the short-term and enduring neural effects of antidepressants on the adolescent brain, with a particular focus on the major neurotransmitter systems and neuroplasticity.
Collapse
Affiliation(s)
- Emily Karanges
- School of Psychology A18, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|
23
|
Calugi S, Cassano GB, Litta A, Rucci P, Benvenuti A, Miniati M, Lattanzi L, Mantua, Lombardi, Fagiolini A, Frank E. Does psychomotor retardation define a clinically relevant phenotype of unipolar depression? J Affect Disord 2011; 129:296-300. [PMID: 20833434 PMCID: PMC3387566 DOI: 10.1016/j.jad.2010.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 12/17/2022]
Abstract
BACKGROUND The recognition and assessment of psychomotor retardation may have implications for better definition of the clinical phenotypes of depression. The aim of this study was to assess the clinical correlates of psychomotor retardation endorsed at any time during the patients' lifetime (LPR). METHODS The study sample included 291 patients with non-psychotic major depressive disorder (MDD) participating in the clinical trial, "Depression: The Search for Treatment-Relevant Phenotypes." Psychomotor retardation was measured using a factor derived from the Mood Spectrum Self-Report (MOODS-SR) assessment. Using a pre-defined cut-off score on the lifetime psychomotor retardation (LPR) factor of the MOODS-SR, participants were classified into high and low scorers. Logistic regression analysis was used to evaluate the relationship between LPR and subthreshold bipolarity. RESULTS Compared to low scorers, participants with high scores on the LPR factor had greater severity of depression and more bipolarity indicators. CONCLUSIONS The MOODS-SR appears to be helpful to identify clinical phenotypes of unipolar depression and to highlight the usefulness of a lifetime approach to the assessment of psychopathology in the characterisation of patients with unipolar depression.
Collapse
Affiliation(s)
- S Calugi
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, School of Medicine, University of Pisa
| | - GB Cassano
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, School of Medicine, University of Pisa
| | - A Litta
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, School of Medicine, University of Pisa
| | - P Rucci
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - A Benvenuti
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, School of Medicine, University of Pisa
| | - M Miniati
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, School of Medicine, University of Pisa
| | - L Lattanzi
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, School of Medicine, University of Pisa
| | - Mantua
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, School of Medicine, University of Pisa
| | - Lombardi
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, School of Medicine, University of Pisa
| | - A Fagiolini
- Department of Neuroscience, University of Siena School of Medicine
| | - E Frank
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
24
|
Blier P, Briley M. The noradrenergic symptom cluster: clinical expression and neuropharmacology. Neuropsychiatr Dis Treat 2011; 7:15-20. [PMID: 21750624 PMCID: PMC3131097 DOI: 10.2147/ndt.s19613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Indexed: 11/23/2022] Open
Abstract
Signs and symptoms of depression can be linked to one or more monoaminergic systems, specifically the norepinephrine (NE), the dopamine (DA), and the serotonin (5-HT) systems. In particular, the modulation of energy, vigilance, and arousal can be directly linked to the NE system. There is, however, a great deal of overlap in the modulation of the symptoms of depression between these monoaminergic systems. There are considerable reciprocal interactions between the NE, DA, and the 5-HT systems. When using a selective serotonin reuptake inhibitor (SSRI), for example, 5-HT transmission is enhanced, but at the same time there is a dampening of the activity of NE and DA neurons through inhibitory 5-HT(2A) and 5-HT(2C) receptors, respectively. This could explain the residual symptoms of fatigue, lack of energy, and anhedonia, often seen after patients present an overall positive response to a SSRI. Using a dual 5-HT and NE reuptake inhibitor (SNRI), such as milnacipran, would result in an additional increase in NE activity. Futhermore, inhibiting NE reuptake increases DA availability in the frontal cortex since DA is mainly cleared by the NE transporters in several brain regions. A risk inherent in increased NE activity is that of provoking anxiety. This is avoided however by the attenuation of the phasic reactivity of the firing of NE neurons through prolonged administration of SSRI and SNRI.
Collapse
Affiliation(s)
- Pierre Blier
- Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
25
|
Abstract
Meta-analysis was conducted to examine dropout predictors and differences between SSRIs and placebo in randomized clinical trials (RCTs) of PTSD. Studies systematically located were SSRI versus placebo double blind RCTs of PTSD DSM diagnosis published between 1991 and 2008. Fourteen RCTs (n = 2815) met the inclusion criteria with an average duration of 10.8 weeks. Dropout rates were: 331 of 1111 (29.8%) among placebo arm and 513 of 1704 (30.3%) among SSRI participants. Random effects modeling showed that the dropout rates of SSRIs and placebo did not differ (OR = 1.05, 95% CI = 0.82-1.34), although favored SSRIs among civilian traumas (OR = 2.52, 95% CI = 1.11-5.7). Mixed effects modeling showed dropout was predicted by mixed trauma in the placebo arms, and duration and mean dose across treatments. With the exception of civilian trauma, SSRIs dropout rates were slightly lower than those of placebo. Formulae are available to guide the prediction of dropout.
Collapse
|
26
|
Honig G, Jongsma ME, van der Hart MCG, Tecott LH. Chronic citalopram administration causes a sustained suppression of serotonin synthesis in the mouse forebrain. PLoS One 2009; 4:e6797. [PMID: 19710918 PMCID: PMC2728775 DOI: 10.1371/journal.pone.0006797] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/04/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Serotonin (5-HT) is a neurotransmitter with important roles in the regulation of neurobehavioral processes, particularly those regulating affect in humans. Drugs that potentiate serotonergic neurotransmission by selectively inhibiting the reuptake of serotonin (SSRIs) are widely used for the treatment of psychiatric disorders. Although the regulation of serotonin synthesis may be an factor in SSRI efficacy, the effect of chronic SSRI administration on 5-HT synthesis is not well understood. Here, we describe effects of chronic administration of the SSRI citalopram (CIT) on 5-HT synthesis and content in the mouse forebrain. METHODOLOGY/PRINCIPAL FINDINGS Citalopram was administered continuously to adult male C57BL/6J mice via osmotic minipump for 2 days, 14 days or 28 days. Plasma citalopram levels were found to be within the clinical range. 5-HT synthesis was assessed using the decarboxylase inhibition method. Citalopram administration caused a suppression of 5-HT synthesis at all time points. CIT treatment also caused a reduction in forebrain 5-HIAA content. Following chronic CIT treatment, forebrain 5-HT stores were more sensitive to the depleting effects of acute decarboxylase inhibition. CONCLUSIONS/SIGNIFICANCE Taken together, these results demonstrate that chronic citalopram administration causes a sustained suppression of serotonin synthesis in the mouse forebrain. Furthermore, our results indicate that chronic 5-HT reuptake inhibition renders 5-HT brain stores more sensitive to alterations in serotonin synthesis. These results suggest that the regulation of 5-HT synthesis warrants consideration in efforts to develop novel antidepressant strategies.
Collapse
Affiliation(s)
- Gerard Honig
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA.
| | | | | | | |
Collapse
|
27
|
Kawahara Y, Kawahara H, Kaneko F, Yamada M, Nishi Y, Tanaka E, Nishi A. Peripherally administered ghrelin induces bimodal effects on the mesolimbic dopamine system depending on food-consumptive states. Neuroscience 2009; 161:855-64. [DOI: 10.1016/j.neuroscience.2009.03.086] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/11/2009] [Accepted: 03/28/2009] [Indexed: 12/01/2022]
|
28
|
Todder D, Fox M, Baune BT. Body temperature in patients with panic disorder treated with escitalopram. Clin Auton Res 2009; 19:255-8. [PMID: 19479302 DOI: 10.1007/s10286-009-0017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 05/06/2009] [Indexed: 11/24/2022]
Abstract
The aim of the study was to investigate the influence of escitalopram on peripheral body temperature (PBT) in panic disorder. In a 4 week case-control study (N = 12 female patients; N = 12 matched healthy controls), the daytime PBT declined compared to night time PBT in patients. The prospective relationship between PBT and panic disorder shows a decline of daytime PBT compared to the night time PBT in panic disorder from week 2 of treatment with escitalopram onwards. The effect of escitalopram on daytime PBT may have occurred through an activation of the sympathetic system.
Collapse
Affiliation(s)
- Doron Todder
- Beer Sheva Mental Health Center, Ben Gurion University, Beer Sheva, Israel
| | | | | |
Collapse
|
29
|
Ghanbari R, El Mansari M, Shahid M, Blier P. Electrophysiological characterization of the effects of asenapine at 5-HT(1A), 5-HT(2A), alpha(2)-adrenergic and D(2) receptors in the rat brain. Eur Neuropsychopharmacol 2009; 19:177-87. [PMID: 19116183 DOI: 10.1016/j.euroneuro.2008.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/23/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
Abstract
Asenapine is a psychopharmacologic agent being developed for schizophrenia and bipolar disorder. This study electrophysiologically characterized the in vivo effects of asenapine at dorsal raphe nucleus (DRN) and hippocampus serotonin-1A (5-HT(1A)), ventral tegmental area D(2), locus coeruleus 5-HT(2A,) and alpha(2)-adrenergic receptors in anesthetized rats. Asenapine displayed potent antagonistic activity at alpha(2)-adrenoceptors (ED(50), 85+/-2 microg/kg), 5-HT(2A) (ED(50), 75+/-2 microg/kg) and D(2) receptors (ED(50), 40+/-2 microg/kg) as evidenced by its reversal of clonidine-, DOI-, and apomorphine-induced inhibition of norepinephrine and dopamine neurons. In contrast, asenapine acted as a partial agonist at 5-HT(1A) receptors in DRN and hippocampus, as indicated by blockade of its inhibitory effect on neuronal firing by the 5-HT(1A) antagonist WAY 100635 and the partial inhibition of the suppressant action of 5-HT when co-applied by microiontophoresis. These results confirm that asenapine displays potent antagonistic activity at 5-HT(2A), D(2), alpha(2)-adrenergic receptors and provide evidence to support its 5-HT(1A) partial agonistic activity.
Collapse
Affiliation(s)
- Ramez Ghanbari
- University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, Ontario K1Z7K4, Canada.
| | | | | | | |
Collapse
|