1
|
Wiley JL, Owens RA, Lichtman AH. Discriminative Stimulus Properties of Phytocannabinoids, Endocannabinoids, and Synthetic Cannabinoids. Curr Top Behav Neurosci 2018; 39:153-173. [PMID: 27278640 DOI: 10.1007/7854_2016_24] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Psychoactive cannabinoids from the marijuana plant (phytocannabinoids), from the body (endocannabinoids), and from the research lab (synthetic cannabinoids) produce their discriminative stimulus effects by stimulation of CB1 receptors in the brain. Early discrimination work with phytocannabinoids confirmed that Δ9-tetrahydrocannabinol (Δ9-THC) is the primary psychoactive constituent of the marijuana plant, with more recent work focusing on characterization of the contribution of the major endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), to Δ9-THC-like internal states. Collectively, these latter studies suggest that endogenous increases in both anandamide and 2-AG seem to be optimal for mimicking Δ9-THC's discriminative stimulus effects, although suprathreshold concentrations of anandamide also appear to be Δ9-THC-like in discrimination assays. Recently, increased abuse of synthetic cannabinoids (e.g., "fake marijuana") has spurred discrimination studies to inform regulatory authorities by predicting which of the many synthetic compounds on the illicit market are most likely to share Δ9-THC's abuse liability. In the absence of a reliable model of cannabinoid self-administration (specifically, Δ9-THC self-administration), cannabinoid discrimination represents the most validated and pharmacologically selective animal model of an abuse-related property of cannabinoids - i.e., marijuana's subjective effects. The influx of recent papers in which cannabinoid discrimination is highlighted attests to its continued relevance as a valuable method for scientific study of cannabinoid use and abuse.
Collapse
Affiliation(s)
- Jenny L Wiley
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC, 27709, USA.
| | - R Allen Owens
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA, USA
| |
Collapse
|
2
|
Gauvin DV, Zimmermann ZJ, Baird TJ. Preclinical assessment of abuse liability of biologics: In defense of current regulatory control policies. Regul Toxicol Pharmacol 2015; 73:43-54. [DOI: 10.1016/j.yrtph.2015.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 01/16/2023]
|
3
|
Walentiny DM, Vann RE, Wiley JL. Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice. Neuropharmacology 2015; 93:237-42. [PMID: 25698527 DOI: 10.1016/j.neuropharm.2015.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/05/2014] [Accepted: 02/01/2015] [Indexed: 01/17/2023]
Abstract
A number of studies have examined the ability of the endogenous cannabinoid anandamide to elicit Δ(9)-tetrahydrocannabinol (THC)-like subjective effects, as modeled through the THC discrimination paradigm. In the present study, we compared transgenic mice lacking fatty acid amide hydrolase (FAAH), the enzyme primarily responsible for anandamide catabolism, to wildtype counterparts in a THC discrimination procedure. THC (5.6 mg/kg) served as a discriminative stimulus in both genotypes, with similar THC dose-response curves between groups. Anandamide fully substituted for THC in FAAH knockout, but not wildtype, mice. Conversely, the metabolically stable anandamide analog O-1812 fully substituted in both groups, but was more potent in knockouts. The CB1 receptor antagonist rimonabant dose-dependently attenuated THC generalization in both groups and anandamide substitution in FAAH knockouts. Pharmacological inhibition of monoacylglycerol lipase (MAGL), the primary catabolic enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG), with JZL184 resulted in full substitution for THC in FAAH knockout mice and nearly full substitution in wildtypes. Quantification of brain endocannabinoid levels revealed expected elevations in anandamide in FAAH knockout mice compared to wildtypes and equipotent dose-dependent elevations in 2-AG following JZL184 administration. Dual inhibition of FAAH and MAGL with JZL195 resulted in roughly equipotent increases in THC-appropriate responding in both groups. While the notable similarity in THC's discriminative stimulus effects across genotype suggests that the increased baseline brain anandamide levels (as seen in FAAH knockout mice) do not alter THC's subjective effects, FAAH knockout mice are more sensitive to the THC-like effects of pharmacologically induced increases in anandamide and MAGL inhibition (e.g., JZL184).
Collapse
Affiliation(s)
- D Matthew Walentiny
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Robert E Vann
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jenny L Wiley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA; Research Triangle Institute, Research Triangle Park, NC, USA
| |
Collapse
|
4
|
Makriyannis A. 2012 Division of medicinal chemistry award address. Trekking the cannabinoid road: a personal perspective. J Med Chem 2014; 57:3891-911. [PMID: 24707904 DOI: 10.1021/jm500220s] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
My involvement with the field of cannabinoids spans close to 3 decades and covers a major part of my scientific career. It also reflects the robust progress in this initially largely unexplored area of biology. During this period of time, I have witnessed the growth of modern cannabinoid biology, starting from the discovery of its two receptors and followed by the characterization of its endogenous ligands and the identification of the enzyme systems involved in their biosynthesis and biotransformation. I was fortunate enough to start at the beginning of this new era and participate in a number of the new discoveries. It has been a very exciting journey. With coverage of some key aspects of my work during this period of "modern cannabinoid research," this Award Address, in part historical, intends to give an account of how the field grew, the key discoveries, and the most promising directions for the future.
Collapse
Affiliation(s)
- Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Järbe TUC, LeMay BJ, Halikhedkar A, Wood J, Vadivel SK, Zvonok A, Makriyannis A. Differentiation between low- and high-efficacy CB1 receptor agonists using a drug discrimination protocol for rats. Psychopharmacology (Berl) 2014; 231:489-500. [PMID: 24005529 PMCID: PMC3947118 DOI: 10.1007/s00213-013-3257-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE The "subjective high" from marijuana ingestion is likely due to Δ(9)-tetrahydrocannabinol (THC) activating the central cannabinoid receptor type 1 (CB1R) of the endocannabinoid signaling system. THC is a weak partial agonist according to in vitro assays, yet THC mimics the behavioral effects induced by more efficacious cannabinergics. This distinction may be important for understanding similarities and differences in the dose-effect spectra produced by marijuana/THC and designer cannabimimetics ("synthetic marijuana"). OBJECTIVE We evaluated if drug discrimination is able to functionally detect/differentiate between a full, high-efficacy CB1R agonist [(±)AM5983] and the low-efficacy agonist THC in vivo. MATERIALS AND METHODS Rats were trained to discriminate between four different doses of AM5983 (0.10 to 0.56 mg/kg), and vehicle and dose generalization curves were determined for both ligands at all four training doses of AM5983. The high-efficacy WIN55,212-2 and the lower-efficacy (R)-(+)-methanandamide were examined at some AM5983 training conditions. Antagonism tests involved rimonabant and WIN55,212-2 and AM5983. The separate (S)- and (R)-isomers of (±)AM5983 were tested at one AM5983 training dose (0.30 mg/kg). The in vitro cyclic adenosine monophosphate (cAMP) assay examined AM5983 and the known CB1R agonist CP55,940. RESULTS Dose generalization ed50 values increased as a function of the training dose of AM5983, but more so for the partial agonists. The order of potency was (R)-isomer > (±)AM5983 > (S)-isomer and AM5983 > WIN55,212-2 ≥ THC > (R)-(+)-methanandamide. Surmountable antagonism of AM5983 and WIN55,212-2 occurred with rimonabant. The cAMP assay confirmed the cannabinergic nature of AM5983 and CP55,940. CONCLUSIONS Drug discrimination using different training doses of a high-efficacy, full CB1R agonist differentiated between low- and high-efficacy CB1R agonists.
Collapse
|
6
|
Abstract
Drug discrimination has been an important technique in behavioural pharmacology for at least 40 years. The characteristics of drug-produced discriminative stimuli are influenced by behavioural and pharmacological variables, including the doses used to establish discriminations. This review covers studies on the effects of varying the training dose of a drug in a search for general principles that are applicable across different drug classes and methodological approaches. With respect to quantitative changes, relationships between training dose and the rate of acquisition or magnitude of stimulus control were found for most drug classes. Acquisition accelerated with dose up to a point beyond which drug-induced impairments of performance had a deleterious impact. Sensitivity to the training drug as measured by ED(50) values typically increased when the training dose was reduced. Qualitative changes were more complex and appeared to fall into three categories: (a) changes in profiles of generalization between partial and full agonists; (b) reduced specificity of some discriminations at small training doses; and (c) changes in the relative salience of actions mediated through different neurotransmitter systems or from central and peripheral sites. Three-lever discrimination procedures incorporating 'drug versus drug' or 'dose versus dose' contingencies enabled detection of more subtle differences than the simple 'drug versus no drug' approach when applied to the opioid, hallucinogen and barbiturate classes of drugs. These conclusions have implications for the interpretation of data from studies that use either within-subject or between-subject designs for studying the discriminative stimulus effects of drugs.
Collapse
|
7
|
Serrano A, Parsons LH. Endocannabinoid influence in drug reinforcement, dependence and addiction-related behaviors. Pharmacol Ther 2011; 132:215-41. [PMID: 21798285 PMCID: PMC3209522 DOI: 10.1016/j.pharmthera.2011.06.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 12/12/2022]
Abstract
The endogenous cannabinoid system is an important regulatory system involved in physiological homeostasis. Endocannabinoid signaling is known to modulate neural development, immune function, metabolism, synaptic plasticity and emotional state. Accumulating evidence also implicates brain endocannabinoid signaling in the etiology of drug addiction which is characterized by compulsive drug seeking, loss of control in limiting drug intake, emergence of a negative emotional state in the absence of drug use and a persistent vulnerability toward relapse to drug use during protracted abstinence. In this review we discuss the effects of drug intake on brain endocannabinoid signaling, evidence implicating the endocannabinoid system in the motivation for drug consumption, and drug-induced alterations in endocannabinoid function that may contribute to various aspects of addiction including dysregulated synaptic plasticity, increased stress responsivity, negative affective states, drug craving and relapse to drug taking. Current knowledge of genetic variants in endocannabinoid signaling associated with addiction is also discussed.
Collapse
Affiliation(s)
- Antonia Serrano
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
8
|
Wiley JL, Matthew Walentiny D, Vann RE, Baskfield CY. Dissimilar cannabinoid substitution patterns in mice trained to discriminate Δ(9)-tetrahydrocannabinol or methanandamide from vehicle. Behav Pharmacol 2011; 22:480-8. [PMID: 21712709 PMCID: PMC3155614 DOI: 10.1097/fbp.0b013e328348eced] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Δ(9)-Tetrahydrocannabinol (THC) discrimination in rodents is a behavioral assay that has been used to probe differences among classes of cannabinoids in rats. The purpose of this study was to determine whether traditional and anandamide-like cannabinoids were distinguishable in cannabinoid discrimination procedures in mice. Male mice were trained to discriminate 30 mg/kg THC or 70 mg/kg methanandamide from vehicle in a two-lever milk-reinforced drug discrimination procedure. After acquisition, agonist tests with THC, methanandamide, CP 55940, and anandamide were conducted, as were antagonism tests with rimonabant. Substitution (agonism) and antagonism tests were also carried out in female mice trained to discriminate THC. THC and CP 55940 fully substituted in THC-trained mice of both sexes. Further, THC substitution was rimonabant reversible. In contrast, mice injected with methanandamide or anandamide failed to respond substantially on the THC lever, even up to doses that decreased overall responding. In methanandamide-trained mice, methanandamide fully generalized to the methanandamide training dose. Rimonabant did not reverse this generalization. Although THC, CP 55940, and anandamide also increased responding on the methanandamide lever, the magnitude of substitution was less than for methanandamide. These results suggest incomplete overlap in the underlying mechanisms mediating endocannabinoid pharmacology and marijuana intoxication. Further, they suggest that methanandamide discrimination may involve a non-CB(1) receptor mechanism that is particularly prominent at higher doses.
Collapse
Affiliation(s)
- Jenny L Wiley
- RTI International, Research Triangle Park, North Carolina 27709-2194, USA.
| | | | | | | |
Collapse
|
9
|
Järbe TUC, LeMay BJ, Vemuri VK, Vadivel SK, Zvonok A, Makriyannis A. Central mediation and differential blockade by cannabinergics of the discriminative stimulus effects of the cannabinoid CB1 receptor antagonist rimonabant in rats. Psychopharmacology (Berl) 2011; 216:355-65. [PMID: 21369753 PMCID: PMC3727221 DOI: 10.1007/s00213-011-2226-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 02/06/2011] [Indexed: 10/18/2022]
Abstract
RATIONALE Discovery of an endocannabinoid signaling system launched the development of the blocker rimonabant, a cannabinoid CB1 receptor (CB(1)R) antagonist/inverse agonist. Due to untoward effects, this medication was withdrawn and efforts have been directed towards discovering chemicals with more benign profiles. OBJECTIVE This study aims to comparatively evaluate new ligands using a rimonabant discriminated drinking aversion procedure. METHODS Rats discriminated between rimonabant (5.6 mg/kg) and vehicle. The 30 min saccharin (0.1%) drinking after rimonabant pretreatment was followed by injection of lithium chloride (120 mg/kg) in the experimental animals. After vehicle pretreatment, experimental animals were given i.p. NaCl (10 ml/kg). Postdrinking treatment for controls was NaCl, irrespective of pretreatment condition (rimonabant or vehicle). RESULTS The centrally acting neutral CB(1)R antagonist AM4113, but not the limited brain penetrating CB(1)R neutral antagonist AM6545, substituted for rimonabant. The CB(1)R agonists THC (1-10 mg/kg), AM1346 (1-10 mg/kg) did not substitute. The rimonabant-induced conditioned suppression of saccharin drinking was attenuated when CB(1)R agonists AM5983 (0.01-1 mg/kg) and THC (10 mg/kg), but not the CB(1)R agonist AM1346 (0.1-18 mg/kg), were combined with rimonabant (5.6 mg/kg). By varying the injection-to-test interval, we gauged the relative duration of the cueing effects of rimonabant, and the in vivo functional half-life was estimated to be approximately 1.5 h. CONCLUSION A neutral CB(1)R antagonist (AM4113) produced cueing effects similar to those of rimonabant and generalization likely was centrally mediated. The functional cueing effects of rimonabant are relatively short-acting, pharmacologically selective, and differentially blocked by cannabinergics.
Collapse
|
10
|
Järbe TUC, Gifford RS, Makriyannis A. Antagonism of ∆⁹-THC induced behavioral effects by rimonabant: time course studies in rats. Eur J Pharmacol 2010; 648:133-8. [PMID: 20854804 PMCID: PMC2954612 DOI: 10.1016/j.ejphar.2010.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 08/11/2010] [Accepted: 09/06/2010] [Indexed: 01/09/2023]
Abstract
The objective was to examine the time course of the cannabinoid 1 receptor antagonist/inverse agonist rimonabant's ability to antagonize in vivo cannabinergic agonist effects. We used two behavioral procedures sensitive to the effects of ∆⁹-tetrahydrocannabinol (∆⁹-THC): rat drug discrimination (EXP-1) and suppression of fixed-ratio responding (FR) for food reinforcement (EXP-2). Two training doses of ∆⁹-THC (1.8 and 3 mg/kg) served as discriminative cues in two groups discriminating ∆⁹-THC from vehicle; injections were i.p. 20 min before session onset. Tests assessed the dose-response functions of ∆⁹-THC and the time course for rimonabant in its ability to block the discriminative stimulus effects of ∆⁹-THC. For antagonism testing, the training doses of ∆⁹-THC were used and the rimonabant dose was 1mg/kg. Tests were 20, 60, 120, and 240 min post rimonabant administration; ∆⁹-THC was always administered 20 min prior to testing. For EXP-2, only one response lever was activated and every 10th (FR-10) press on that lever resulted in food delivery. Once the response rate stabilized, tests occurred with ∆⁹-THC, rimonabant and combinations of the drugs. The ED(50) estimates for the dose-response functions were 0.38 (±0.28-0.51) and 0.50 (±0.40-0.63) mg/kg for the training doses of 1.8 and 3 mg/kg ∆⁹-THC, respectively. The time course studies suggested functional half-life estimates of 128.4 (±95.7-172.2) and 98.4 (±64.2-150.7) min by rimonabant for the two groups in EXP-1, respectively. Similarly, the functional half-life of rimonabant was 118.9 (±66.1-213.9) min in EXP-2. Thus, antagonism of ∆⁹-THC by rimonabant is relatively short lasting.
Collapse
Affiliation(s)
- Torbjörn U C Järbe
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| | | | | |
Collapse
|
11
|
Solinas M, Tanda G, Wertheim CE, Goldberg SR. Dopaminergic augmentation of delta-9-tetrahydrocannabinol (THC) discrimination: possible involvement of D(2)-induced formation of anandamide. Psychopharmacology (Berl) 2010; 209:191-202. [PMID: 20179908 PMCID: PMC2834964 DOI: 10.1007/s00213-010-1789-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 01/31/2010] [Indexed: 11/26/2022]
Abstract
RATIONAL Although delta-9-tetreahydrocannabinol (THC)-induced elevations in accumbal dopamine levels are believed to play an important role in the abuse-related effects of cannabis, little direct evidence has been provided that the dopaminergic system is involved in the psychotropic effects of THC. OBJECTIVE The objective of this study is to investigate whether drugs activating or blocking the dopaminergic system modulate the discriminative effects of THC. METHODS AND RESULTS In rats that had learned to discriminate 3 mg/kg of THC from vehicle injections, the indirect dopaminergic agonists cocaine and amphetamine, the D(1)-receptor agonist SKF-38393, and the D(2)-receptor agonists quinpirole and apomorphine did not produce significant THC-like discriminative effects. However, both cocaine and amphetamine and D(2)-, but not the D(1)-, receptor agonists, augmented THC discrimination. Neither the D(1)-receptor antagonist SCH-23390 nor the D(2)-receptor antagonist raclopride reduced the discriminative effects of THC, even at doses that significantly depressed baseline operant responding. However, the D(2)-, but not the D(1)-, antagonist counteracted the augmentation of THC's discriminative effects produced by cocaine and amphetamine. We hypothesized that release of anandamide by activation of D(2) receptors was responsible for the observed augmentation of THC discrimination. This hypothesis was supported by two findings. First, the cannabinoid CB(1)-receptor antagonist rimonabant blocked quinpirole-induced augmentation of THC discrimination. Second, inhibition of anandamide degradation by blockade of fatty acid amide hydrolase augmented the THC-like effects of quinpirole. CONCLUSIONS Dopamine does not play a major role in THC discrimination. However, activation of the dopaminergic system positively modulates the discriminative effects of THC, possibly through D(2)-induced elevations in brain levels of anandamide.
Collapse
MESH Headings
- Amidohydrolases/antagonists & inhibitors
- Amidohydrolases/metabolism
- Animals
- Arachidonic Acids/metabolism
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
- Conditioning, Operant/drug effects
- Discrimination, Psychological/drug effects
- Dopamine/metabolism
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Dose-Response Relationship, Drug
- Dronabinol/pharmacology
- Endocannabinoids
- Enzyme Inhibitors/pharmacology
- Male
- Polyunsaturated Alkamides/metabolism
- Psychotropic Drugs/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Marcello Solinas
- Laboratoire de Biologie et Physiologie Cellulaires, CNRS-6187, University of Poitiers, 40 Avenue du Recteur Pineau, 86022, Poitiers, France.
| | | | | | | |
Collapse
|
12
|
Järbe TUC, Li C, Vadivel SK, Makriyannis A. Discriminative stimulus functions of methanandamide and delta(9)-THC in rats: tests with aminoalkylindoles (WIN55,212-2 and AM678) and ethanol. Psychopharmacology (Berl) 2010; 208:87-98. [PMID: 19902182 PMCID: PMC3727230 DOI: 10.1007/s00213-009-1708-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 10/22/2009] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of the study was to characterize in vivo the aminoalkylindoles WIN55,212-2 (WIN) and AM678 (naphthalen-1-yl(1-pentyl-1H-indol-3-yl)methanone) as cannabinoid receptor (CB(1)R) ligands using drug discrimination. Tests also involved delta(9)-tetrahydrocannabinol (THC) and R-(+)-methanandamide (mAEA), a metabolically stable analog of the endogenous ligand anandamide, as well as the CB(1)R selective antagonist/inverse agonist rimonabant; tests with ethanol assessed pharmacological specificity. We used two different drug discriminations (mAEA and THC) allowing us to explore potential differences in CB(1)R activation which could be attributed to variations in their respective CB(1)R signaling mechanisms. METHODS There were two concurrently trained groups of rats. One group discriminated between i.p. injected vehicle and 10 mg/kg mAEA. The other group was trained to discriminate between vehicle and 1.8 mg/kg THC. RESULTS Dose generalization curves for AM678, WIN55,212-2, THC, and mAEA suggested the following rank order of potency: AM678 > WIN55,212-2 > or = THC > mAEA in both drug discrimination groups. Challenge by 1 mg/kg rimonabant resulted in shifts to the right of the generalization curves for the two aminoalkylindoles (4.4-fold for AM678 and 11.3-fold for WIN in the mAEA group, whereas for the THC group, the corresponding values were 13 and 2.6, respectively), suggesting surmountable antagonism. Ethanol did not generalize in either of the two groups, suggesting pharmacological specificity. CONCLUSION Data are congruent with the general observation that there is substantial overlap in the discriminative stimulus effects of CB(1)R ligands across different chemical classes. However, the quantitative differences in the interactions between the two aminoalkylindoles and rimonabant in the two discrimination groups suggest subtle variations in the ligand-receptor activation(s).
Collapse
Affiliation(s)
- Torbjörn U C Järbe
- Department of Psychology, Temple University, 265-67 Weiss Hall, 1701 North 13th Street, Philadelphia, PA 19122, USA.
| | | | | | | |
Collapse
|