1
|
Abdulmalek S, Hardiman G. Genetic and epigenetic studies of opioid abuse disorder - the potential for future diagnostics. Expert Rev Mol Diagn 2023; 23:361-373. [PMID: 37078260 PMCID: PMC10257799 DOI: 10.1080/14737159.2023.2190022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/08/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Opioid use disorder (OUD) is a global problem that often begins with prescribed medications. The available treatment and maintenance plans offer solutions for the consumption rate by individuals leaving the outstanding problem of relapse, which is a major factor hindering the long-term efficacy of treatments. AREAS COVERED Understanding the neurobiology of addiction and relapse would help identifying the core causes of relapse and distinguish vulnerable from resilient individuals, which would lead to more targeted and effective treatment and provide diagnostics to screen individuals who have a propensity to OUD. In this review, we cover the neurobiology of the reward system highlighting the role of multiple brain regions and opioid receptors in the development of the disorder. We also review the current knowledge of the epigenetics of addiction and the available screening tools for aberrant use of opioids. EXPERT OPINION Relapse remains an anticipated limitation in the way of recovery even after long period of abstinence. This highlights the need for diagnostic tools that identify vulnerable patients and prevent the cycle of addiction. Finally, we discuss the limitations of the available screening tools and propose possible solutions for the discovery of addiction diagnostics.
Collapse
Affiliation(s)
- Sarah Abdulmalek
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen’s University Belfast, NI, UK
| | - Gary Hardiman
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen’s University Belfast, NI, UK
- Department of Medicine, Medical University of South Carolina (MUSC), 135 Cannon Street, Charleston, SC 29425
| |
Collapse
|
2
|
Abstract
Pain is complex and is a unique experience for individuals in that no two people will have exactly the same physiological and emotional response to the same noxious stimulus or injury. Pain is composed of two essential processes: a sensory component that allows for discrimination of the intensity and location of a painful stimulus and an emotional component that underlies the affective, motivational, unpleasant, and aversive response to a painful stimulus. Kappa opioid receptor (KOR) activation in the periphery and throughout the neuroaxis modulates both of these components of the pain experience. In this chapter we focus on recent findings that KORs contribute to the emotional, aversive nature of chronic pain, including how expression in the limbic circuitry contributes to anhedonic states and components of opioid misuse disorder. While the primary focus is on preclinical pain models, we also highlight clinical or human research where there is strong evidence for KOR involvement in negative affective states associated with chronic pain and opioid misuse.
Collapse
|
3
|
Ferracane MJ, Brice-Tutt AC, Coleman JS, Simpson GG, Wilson LL, Eans SO, Stacy HM, Murray TF, McLaughlin JP, Aldrich JV. Design, Synthesis, and Characterization of the Macrocyclic Tetrapeptide cyclo[Pro-Sar-Phe-d-Phe]: A Mixed Opioid Receptor Agonist-Antagonist Following Oral Administration. ACS Chem Neurosci 2020; 11:1324-1336. [PMID: 32251585 DOI: 10.1021/acschemneuro.0c00086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Substance abuse remains a serious public health crisis, affecting millions of people worldwide. Macrocyclic tetrapeptides like CJ-15,208 and [d-Trp]CJ-15,208 demonstrate opioid activity shown to attenuate the rewarding effects of cocaine in conditioned place preference assays in mice, making them promising lead compounds for treating substance abuse. In the present study, we report the rational design, synthesis, conformational analysis, and continued pharmacological evaluation of the novel macrocyclic tetrapeptide cyclo[Pro-Sar-Phe-d-Phe] to further explore this unique molecular scaffold. This peptide was rationally designed based on X-ray and NMR structures of related macrocyclic tetrapeptides. Following synthesis, its solution-phase conformations were determined by NMR and molecular modeling. The peptide adopted multiple conformations in polar solvents, but a single conformation in chloroform that is stabilized by intramolecular hydrogen bonding. The peptide is orally bioavailable, producing antinociception and antagonism of kappa opioid receptor (KOR) stimulation following oral administration in a mouse 55 °C warm-water tail-withdrawal assay. Notably, cyclo[Pro-Sar-Phe-d-Phe] blocked both stress- and drug-induced reinstatement of cocaine and morphine conditioned place preference in mice following oral administration, and displayed a decreased side-effect profile compared to morphine. Thus, cyclo[Pro-Sar-Phe-d-Phe] is a promising lead compound for the treatment of substance abuse.
Collapse
Affiliation(s)
- Michael J. Ferracane
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
- Department of Chemistry, University of Redlands, Redlands, California 92373, United States
| | - Ariana C. Brice-Tutt
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Jeremy S. Coleman
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Grant G. Simpson
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Lisa L. Wilson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Shainnel O. Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Heather M. Stacy
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Thomas F. Murray
- Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska 68178, United States
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Jane V. Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
4
|
Kappa opioid agonists reduce oxycodone self-administration in male rhesus monkeys. Psychopharmacology (Berl) 2020; 237:1471-1480. [PMID: 32006048 PMCID: PMC7196516 DOI: 10.1007/s00213-020-05473-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE Combinations of mu and kappa opioid receptor (KOR) agonists have been proposed as potential analgesic formulations with reduced abuse liability. The current studies extend previous work by investigating the typical KOR agonist, salvinorin A, and the atypical KOR agonist, nalfurafine, as deterrents of oxycodone self-administration using a progressive ratio (PR) schedule of reinforcement. METHODS In separate experiments, adult male rhesus monkeys (N = 4/experiment) were trained under a PR schedule of reinforcement to self-administer cocaine (0.1 mg/kg/injection) and saline on alternating days. Oxycodone (0.01-0.1 mg/kg/injection) alone and combined with salvinorin A (experiment 1; 0.006, 0.012 mg/kg/injection) or nalfurafine (experiment 2; 0.0001-0.00032 mg/kg/injection) were tested within the alternating cocaine and saline baseline. The mechanism of nalfurafine's effects on oxycodone self-administration was investigated via pretreatment with the KOR antagonist, nor-binaltorphimine (nor-BNI; 10 mg/kg; i.m.). RESULTS All subjects self-administered oxycodone alone above saline levels at sufficiently large doses, and combining salvinorin A or nalfurafine with oxycodone reduced the mean number of injections per session to saline levels (experiment 1) or to levels that were significantly lower than oxycodone alone (experiment 2). The ability of nalfurafine to reduce oxycodone self-administration was reversed by pretreatment with nor-BNI. CONCLUSIONS These results demonstrate that KOR agonists, including the clinically used KOR agonist, nalfurafine, can punish self-administration of a prescription opioid analgesic, oxycodone, in rhesus monkeys and that nalfurafine's punishing effect is KOR-dependent. Combinations of KOR agonists with prescription opioids may have reduced abuse liability.
Collapse
|
5
|
Karimi-Haghighi S, Haghparast A. Cannabidiol inhibits priming-induced reinstatement of methamphetamine in REM sleep deprived rats. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:307-313. [PMID: 28870635 DOI: 10.1016/j.pnpbp.2017.08.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/27/2022]
Abstract
Methamphetamine (METH) is a widely abused and a severely addictive psychostimulant. Relapse is the main cause of concern when treating addiction. It could manifest after a long period of abstinence. Previous studies showed that there is a strong connection between sleep impairment and relapse. Also, it has been reported that cannabidiol might be a potential treatment for drug craving and relapse. In this study, we used conditioned place preference (CPP) to investigate whether Cannabidiol (CBD), a phytocannabinoid, can prevent METH-induced reinstatement in Rapid Eye Movement Sleep Deprived (RSD) rats. In order to induce CPP, the animals were given METH (1mg/kg; sc) for five days. The effective priming dose of METH (0.5mg/kg, sc) reinstated the extinguished METH-induced CPP. In order to investigate the effect of RSD on METH-induced reinstatement, we used the inverted flowerpot technique to deprive the rats of REM sleep. We found that 24h-RSD could facilitate priming-induced reinstatement of METH. In addition to this, the ICV administration of CBD 10μg/5μl could suppress the METH-induced reinstatement even in RSD rats. In conclusion, the administration of CBD 10μg/5μl effectively prevents METH-induced CPP, even in a condition of stress. CBD can be considered an agent that reduces the risk of the relapse; however, this requires more investigation.
Collapse
Affiliation(s)
- Saeideh Karimi-Haghighi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Jastrzębska J, Frankowska M, Suder A, Wydra K, Nowak E, Filip M, Przegaliński E. Effects of escitalopram and imipramine on cocaine reinforcement and drug-seeking behaviors in a rat model of depression. Brain Res 2017; 1673:30-41. [DOI: 10.1016/j.brainres.2017.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
|
7
|
Rüedi-Bettschen D, Spealman RD, Platt DM. Attenuation of cocaine-induced reinstatement of drug seeking in squirrel monkeys by direct and indirect activation of 5-HT2C receptors. Psychopharmacology (Berl) 2015; 232:2959-68. [PMID: 25877746 PMCID: PMC4515185 DOI: 10.1007/s00213-015-3932-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
RATIONALE 5-Hydroxytryptamine (5-HT) transport inhibitors can attenuate the abuse-related effects of cocaine, and the mechanisms underlying this attenuation may involve activation of 5-HT2C receptors. OBJECTIVES The objective of this study was to investigate the consequences of direct and indirect pharmacological activation of 5-HT2C receptors on reinstatement of cocaine-seeking behavior induced by cocaine priming and a cocaine-paired stimulus. METHODS Monkeys were trained to self-administer cocaine under a second-order schedule in which responding was maintained by i.v. cocaine injections and a cocaine-paired stimulus. Drug seeking was extinguished by replacing cocaine with vehicle and eliminating the cocaine-paired stimulus. During reinstatement tests, the animals received a priming injection of cocaine along with restoration of the cocaine-paired stimulus, but only vehicle was available for self administration. RESULTS Pretreatment with either the 5-HT transport inhibitor fluoxetine (5.6 mg/kg) or the 5-HT2C receptor agonist Ro 60-0175 (1 mg/kg) attenuated reinstatement of drug seeking by cocaine priming. The reinstatement-attenuating effects of both drugs were reversed by the 5-HT2C receptor antagonist SB 242084 (0.03-0.56 mg/kg). Ro 60-0175 (1 mg/kg) attenuated cocaine-induced reinstatement of drug seeking regardless of whether priming injections were or were not accompanied by restoration of the cocaine-paired stimulus. Ro 60-0175 (0.56 mg/kg) was equally effective whether it was administered acutely or chronically. Finally, Ro 60-0175 (0.3-1 mg/kg) had observable behavioral effects suggestive of anxiolytic-like properties. CONCLUSIONS 5-HT2C receptor mechanisms play a key role in the modulation of cocaine-induced reinstatement by fluoxetine and Ro 60-0175. Direct activation of 5-HT2C receptors may offer a novel, tolerance-free therapeutic strategy for the prevention of cocaine relapse.
Collapse
Affiliation(s)
| | - Roger D. Spealman
- Harvard Medical School, New England Primate Research Center, Southborough, MA, USA
| | - Donna M. Platt
- Harvard Medical School, New England Primate Research Center, Southborough, MA, USA
| |
Collapse
|
8
|
Abstract
Drug withdrawal is often conceptualized as an aversive state that motivates drug-seeking and drug-taking behaviors in humans. Stress is more difficult to define, but is also frequently associated with aversive states. Here we describe evidence for the simple theory that drug withdrawal is a stress-like state, on the basis of common effects on behavioral, neurochemical, and molecular endpoints. We also describe data suggesting a more complex relationship between drug withdrawal and stress. As one example, we will highlight evidence that, depending on drug class, components of withdrawal can produce effects that have characteristics consistent with mood elevation. In addition, some stressors can act as positive reinforcers, defined as having the ability to increase the probability of a behavior that produces it. As such, accumulating evidence supports the general principles of opponent process theory, whereby processes that have an affective valence are followed in time by an opponent process that has the opposite valence. Throughout, we identify gaps in knowledge and propose future directions for research. A better understanding of the similarities, differences, and overlaps between drug withdrawal and stress will lead to the development of improved treatments for addiction, as well as for a vast array of neuropsychiatric conditions that are triggered or exacerbated by stress.
Collapse
|
9
|
Howell LL, Cunningham KA. Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder. Pharmacol Rev 2015; 67:176-97. [PMID: 25505168 PMCID: PMC4279075 DOI: 10.1124/pr.114.009514] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder.
Collapse
MESH Headings
- Animals
- Behavior, Addictive/drug therapy
- Behavior, Addictive/metabolism
- Behavior, Addictive/psychology
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Central Nervous System Stimulants/adverse effects
- Cocaine/adverse effects
- Cocaine-Related Disorders/drug therapy
- Cocaine-Related Disorders/metabolism
- Cocaine-Related Disorders/physiopathology
- Cocaine-Related Disorders/psychology
- Disease Models, Animal
- Dopamine/metabolism
- Drug Design
- Humans
- Molecular Targeted Therapy
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2C/drug effects
- Receptor, Serotonin, 5-HT2C/metabolism
- Serotonin Agents/therapeutic use
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- Leonard L Howell
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (L.L.H.); and Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (K.A.C.)
| | - Kathryn A Cunningham
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia (L.L.H.); and Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (K.A.C.)
| |
Collapse
|
10
|
Jupp B, Dalley JW. Convergent pharmacological mechanisms in impulsivity and addiction: insights from rodent models. Br J Pharmacol 2014; 171:4729-66. [PMID: 24866553 PMCID: PMC4209940 DOI: 10.1111/bph.12787] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/02/2014] [Accepted: 05/12/2014] [Indexed: 01/15/2023] Open
Abstract
Research over the last two decades has widely demonstrated that impulsivity, in its various forms, is antecedent to the development of drug addiction and an important behavioural trait underlying the inability of addicts to refrain from continued drug use. Impulsivity describes a variety of rapidly and prematurely expressed behaviours that span several domains from impaired response inhibition to an intolerance of delayed rewards, and is a core symptom of attention deficit hyperactivity disorder (ADHD) and other brain disorders. Various theories have been advanced to explain how impulsivity interacts with addiction both causally and as a consequence of chronic drug abuse; these acknowledge the strong overlaps in neural circuitry and mechanisms between impulsivity and addiction and the seemingly paradoxical treatment of ADHD with stimulant drugs with high abuse potential. Recent years have witnessed unprecedented progress in the elucidation of pharmacological mechanisms underpinning impulsivity. Collectively, this work has significantly improved the prospect for new therapies in ADHD as well as our understanding of the neural mechanisms underlying the shift from recreational drug use to addiction. In this review, we consider the extent to which pharmacological interventions that target impulsive behaviour are also effective in animal models of addiction. We highlight several promising examples of convergence based on empirical findings in rodent-based studies.
Collapse
Affiliation(s)
- B Jupp
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of CambridgeCambridge, UK
- Florey Institute of Neuroscience and Mental Health, University of MelbourneParkville, Australia
| | - J W Dalley
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of CambridgeCambridge, UK
- Department of Psychiatry, University of CambridgeCambridge, UK
| |
Collapse
|
11
|
Perry CJ, Zbukvic I, Kim JH, Lawrence AJ. Role of cues and contexts on drug-seeking behaviour. Br J Pharmacol 2014; 171:4636-72. [PMID: 24749941 PMCID: PMC4209936 DOI: 10.1111/bph.12735] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/04/2014] [Accepted: 04/10/2014] [Indexed: 01/15/2023] Open
Abstract
Environmental stimuli are powerful mediators of craving and relapse in substance-abuse disorders. This review examined how animal models have been used to investigate the cognitive mechanisms through which cues are able to affect drug-seeking behaviour. We address how animal models can describe the way drug-associated cues come to facilitate the development and persistence of drug taking, as well as how these cues are critical to the tendency to relapse that characterizes substance-abuse disorders. Drug-associated cues acquire properties of conditioned reinforcement, incentive motivation and discriminative control, which allow them to influence drug-seeking behaviour. Using these models, researchers have been able to investigate the pharmacology subserving the behavioural impact of environmental stimuli, some of which we highlight. Subsequently, we examine whether the impact of drug-associated stimuli can be attenuated via a process of extinction, and how this question is addressed in the laboratory. We discuss how preclinical research has been translated into behavioural therapies targeting substance abuse, as well as highlight potential developments to therapies that might produce more enduring changes in behaviour.
Collapse
Affiliation(s)
- Christina J Perry
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Isabel Zbukvic
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Jee Hyun Kim
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Andrew J Lawrence
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| |
Collapse
|
12
|
Freeman KB, Naylor JE, Prisinzano TE, Woolverton WL. Assessment of the kappa opioid agonist, salvinorin A, as a punisher of drug self-administration in monkeys. Psychopharmacology (Berl) 2014; 231:2751-8. [PMID: 24481567 PMCID: PMC4074245 DOI: 10.1007/s00213-014-3436-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/05/2014] [Indexed: 02/05/2023]
Abstract
RATIONALE Drugs can function as punishers. However, work on the study of drugs as punishers is limited, as is the range of compounds known to function as punishers. Kappa opioid agonists, which have received much experimental attention as potential therapeutics for drug abuse, reportedly produce aversive effects. However, kappa agonists have yet to be tested as punishers of behavior. OBJECTIVE The goal of the current study was to determine if a kappa agonist could function as a punisher of drug self-administration. METHOD In separate experiments, monkeys were allowed to choose in a two-lever choice design between intravenous injections of equal doses of either cocaine (0.1 mg/kg/injection on each lever) or remifentanil (0.1 μg/kg/injection on each lever) when one of the two options was mixed with various doses of the kappa agonist, salvinorin A. RESULTS Choice for the cocaine and remifentanil options that were combined with salvinorin A decreased as a function of salvinorin A dose in all monkeys. However, operant response rates were not systematically affected by salvinorin A administration. CONCLUSION The present findings demonstrate that the kappa agonist, salvinorin A, can punish self-administration of a psychotimulant, cocaine, and a mu opioid, remifentanil. In consideration of these findings, it may be possible to curtail the abuse of some drugs by contingently delivering kappa agonists (e.g., as combination formularies for prescription medications).
Collapse
Affiliation(s)
- Kevin B Freeman
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, The University of Mississippi Medical Center, Jackson, MS, 39216, USA,
| | | | | | | |
Collapse
|
13
|
The role of serotonin in drug use and addiction. Behav Brain Res 2014; 277:146-92. [PMID: 24769172 DOI: 10.1016/j.bbr.2014.04.007] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/26/2022]
Abstract
The use of psychoactive drugs is a wide spread behaviour in human societies. The systematic use of a drug requires the establishment of different drug use-associated behaviours which need to be learned and controlled. However, controlled drug use may develop into compulsive drug use and addiction, a major psychiatric disorder with severe consequences for the individual and society. Here we review the role of the serotonergic (5-HT) system in the establishment of drug use-associated behaviours on the one hand and the transition and maintenance of addiction on the other hand for the drugs: cocaine, amphetamine, methamphetamine, MDMA (ecstasy), morphine/heroin, cannabis, alcohol, and nicotine. Results show a crucial, but distinct involvement of the 5-HT system in both processes with considerable overlap between psychostimulant and opioidergic drugs and alcohol. A new functional model suggests specific adaptations in the 5-HT system, which coincide with the establishment of controlled drug use-associated behaviours. These serotonergic adaptations render the nervous system susceptible to the transition to compulsive drug use behaviours and often overlap with genetic risk factors for addiction. Altogether we suggest a new trajectory by which serotonergic neuroadaptations induced by first drug exposure pave the way for the establishment of addiction.
Collapse
|
14
|
Bidlack JM. Mixed κ/μ partial opioid agonists as potential treatments for cocaine dependence. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:387-418. [PMID: 24484983 DOI: 10.1016/b978-0-12-420118-7.00010-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cocaine use activates the dopamine reward pathway, leading to the reinforcing effects of dopamine. There is no FDA-approved medication for treating cocaine dependence. Opioid agonists and antagonists have been approved for treating opioid and alcohol dependence. Agonists that activate the μ opioid receptor increase dopamine levels in the nucleus accumbens, while μ receptor antagonists decrease dopamine levels by blocking the effects of endogenous opioid peptides. Activation of the κ opioid receptor decreases dopamine levels and leads to dysphoria. In contrast, inhibition of the κ opioid receptor decreases dopamine levels in the nucleus accumbens. Antagonists acting at the κ receptor reduce stress-mediated behaviors and anxiety. Mixed partial μ/κ agonists have the potential of striking a balance between dopamine levels and attenuating relapse to cocaine. The pharmacological properties of mixed μ/κ opioid receptor agonists will be discussed and results from clinical and preclinical studies will be presented. Results from studies with some of the classical benzomorphans and morphinans will be presented as they lay the foundation for structure-activity relationships. Recent results with other partial opioid agonists, including buprenorphine derivatives and the mixed μ/κ peptide CJ-15,208, will be discussed. The behavioral effects of the mixed μ/κ MCL-741, an aminothiazolomorphinan, in attenuating cocaine-induced locomotor activity will be presented. While not a mixed μ/κ opioid, results obtained with GSK1521498, a μ receptor inverse agonist, will be discussed. Preclinical strategies and successes will lay the groundwork for the further development of mixed μ/κ opioid receptor agonists to treat cocaine dependence.
Collapse
Affiliation(s)
- Jean M Bidlack
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
15
|
Efficacy of buspirone for attenuating cocaine and methamphetamine reinstatement in rats. Drug Alcohol Depend 2013; 129:210-6. [PMID: 23374566 PMCID: PMC3628295 DOI: 10.1016/j.drugalcdep.2013.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/02/2013] [Accepted: 01/02/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND There are no approved pharmacotherapies for preventing psychomotor stimulant relapse. The operant reinstatement model has been suggested as a screen for identifying candidate medications. The present study examined if the anxiolytic buspirone could attenuate reinstatement of extinguished responding in Long-Evans rats that previously self-administered intravenous cocaine or methamphetamine. METHODS Rats were trained in 2-h daily sessions to self-administer 0.5mg/kg cocaine or 0.1mg/kg methamphetamine infusions followed by 12 days of instrumental extinction. Reinstatement was evoked by 17mg/kg i.p. cocaine primes or response-contingent cocaine-paired cues in cocaine-reinforced rats, and by 1mg/kg i.p. methamphetamine primes or response-contingent methamphetamine-paired cues in methamphetamine-reinforced rats. RESULTS Buspirone (1 and 3mg/kg) significantly (p<0.05) attenuated cocaine cue but not cocaine prime reinstatement. Buspirone (1 and 3mg/kg) also significantly attenuated methamphetamine cue reinstatement. Buspirone (3mg/kg) significantly attenuated methamphetamine prime reinstatement. During all reinstatement tests, 3mg/kg buspirone reduced levels of inactive lever pressing relative to those of vehicle, significantly so during the cocaine cue-induced reinstatement tests. CONCLUSIONS Given the complexity of buspirone's neuropharmacology consisting of serotonin 5-HT1A receptor partial agonist activity, and dopamine D2, D3 and D4 receptor antagonist effects, it is uncertain which of these activities or their combination is responsible for the present results. Overall, these results suggest that buspirone may reduce the likelihood of relapse to cocaine and methamphetamine use under some conditions, although this speculation must be interpreted with caution given buspirone's similar potency to attenuate inactive-lever responding.
Collapse
|
16
|
Aldrich JV, Senadheera SN, Ross NC, Ganno ML, Eans SO, McLaughlin JP. The macrocyclic peptide natural product CJ-15,208 is orally active and prevents reinstatement of extinguished cocaine-seeking behavior. JOURNAL OF NATURAL PRODUCTS 2013; 76:433-438. [PMID: 23327691 PMCID: PMC3879116 DOI: 10.1021/np300697k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The macrocyclic tetrapeptide natural product CJ-15,208 (cyclo[Phe-d-Pro-Phe-Trp]) exhibited both dose-dependent antinociception and kappa opioid receptor (KOR) antagonist activity after oral administration. CJ-15,208 antagonized a centrally administered KOR selective agonist, providing strong evidence it crosses the blood-brain barrier to reach KOR in the CNS. Orally administered CJ-15,208 also prevented both cocaine- and stress-induced reinstatement of extinguished cocaine-seeking behavior in the conditioned place preference assay in a time- and dose-dependent manner. Thus, CJ-15,208 is a promising lead compound with a unique activity profile for potential development, particularly as a therapeutic to prevent relapse to drug-seeking behavior in abstinent subjects.
Collapse
Affiliation(s)
- Jane V Aldrich
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Acute SSRI (selective serotonin reuptake inhibitor) treatment has been shown to attenuate the abuse-related effects of cocaine; however, SSRIs have had limited success in clinical trials for cocaine abuse, possibly due to neurobiological changes that occur during chronic administration. In order to better understand the role of serotonin (5HT) in cocaine abuse and treatment, we examined the effects of chronic treatment with the SSRI fluoxetine at clinically relevant serum concentrations on cocaine-related neurobiology and behavior. Rhesus macaques self-administering cocaine underwent a 6-week dosing regimen with fluoxetine designed to approximate serum concentrations observed in humans. Self-administration and reinstatement were monitored throughout the treatment and washout period. In vivo microdiaylsis was used to assess changes in dopaminergic and serotonergic neurochemistry. Positron emission tomography was used to assess changes in the 5HT transporter and 2A receptor binding potential (BP). Functional output of the 5HT system was assessed using prolactin levels. Cocaine-primed reinstatement and cocaine-elicited dopamine overflow were significantly suppressed following chronic fluoxetine treatment. 5HT2A receptor BP was increased in the frontal cortex following treatment while prolactin release was blunted, suggesting desensitization of the 5HT2A receptor. These effects persisted after a 6-week washout period. Measures of pre-synaptic serotonergic function and cocaine self-administration were unaffected. These data demonstrate that acute and chronic fluoxetine treatments exert different effects on cocaine-related behavior. Furthermore, chronic fluoxetine treatment causes alterations in 5HT2A receptors in the frontal cortex that may selectively disrupt cocaine-primed reinstatement. Fluoxetine may not be useful for treatment of ongoing cocaine abuse but may be useful in relapse prevention.
Collapse
|
18
|
Manvich DF, Kimmel HL, Howell LL. Effects of serotonin 2C receptor agonists on the behavioral and neurochemical effects of cocaine in squirrel monkeys. J Pharmacol Exp Ther 2012; 341:424-34. [PMID: 22328576 PMCID: PMC3336818 DOI: 10.1124/jpet.111.186981] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 02/09/2012] [Indexed: 11/22/2022] Open
Abstract
Accumulating evidence indicates that the serotonin system modulates the behavioral and neurochemical effects of cocaine, but the receptor subtypes mediating these effects remain unknown. Recent studies have demonstrated that pharmacological activation of the serotonin 2C receptor (5-HT(2C)R) attenuates the behavioral and neurochemical effects of cocaine in rodents, but such compounds have not been systematically evaluated in nonhuman primates. The present experiments sought to determine the impact of pretreatment with the preferential 5-HT(2C)R agonist m-chlorophenylpiperazine (mCPP) and the selective 5-HT(2C)R agonist Ro 60-0175 [(α-S)-6-chloro-5-fluoro-α-methyl-1H-indole-1-ethanamine fumarate] on the behavioral and neurochemical effects of cocaine in squirrel monkeys. In subjects trained to lever-press according to a 300-s fixed-interval schedule of stimulus termination, pretreatment with either 5-HT(2C)R agonist dose-dependently and insurmountably attenuated the behavioral stimulant effects of cocaine. In subjects trained to self-administer cocaine, both compounds dose-dependently and insurmountably attenuated cocaine-induced reinstatement of previously extinguished responding in an antagonist-reversible manner, and the selective agonist Ro 60-0175 also attenuated the reinforcing effects of cocaine during ongoing cocaine self-administration. It is noteworthy that the selective agonist Ro 60-0175 exhibited behavioral specificity because it did not significantly alter nondrug-maintained responding. Finally, in vivo microdialysis studies revealed that pretreatment with Ro 60-0175 caused a reduction of cocaine-induced dopamine increases within the nucleus accumbens, but not the caudate nucleus. These results suggest that 5-HT(2C)R agonists functionally antagonize the behavioral effects of cocaine in nonhuman primates, possibly via a selective modulation of cocaine-induced dopamine increases within the mesolimbic dopamine system and may therefore represent a novel class of pharmacotherapeutics for the treatment of cocaine abuse.
Collapse
Affiliation(s)
- Daniel F Manvich
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
19
|
Tejeda HA, Shippenberg TS, Henriksson R. The dynorphin/κ-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci 2012; 69:857-96. [PMID: 22002579 PMCID: PMC11114766 DOI: 10.1007/s00018-011-0844-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 10/16/2022]
Abstract
The dynorphin/κ-opioid receptor system has been implicated in the pathogenesis and pathophysiology of several psychiatric disorders. In the present review, we present evidence indicating a key role for this system in modulating neurotransmission in brain circuits that subserve mood, motivation, and cognitive function. We overview the pharmacology, signaling, post-translational, post-transcriptional, transcriptional, epigenetic and cis regulation of the dynorphin/κ-opioid receptor system, and critically review functional neuroanatomical, neurochemical, and pharmacological evidence, suggesting that alterations in this system may contribute to affective disorders, drug addiction, and schizophrenia. We also overview the dynorphin/κ-opioid receptor system in the genetics of psychiatric disorders and discuss implications of the reviewed material for therapeutics development.
Collapse
Affiliation(s)
- H. A. Tejeda
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, 20 Penn St., Baltimore, MD 21201 USA
| | - T. S. Shippenberg
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
| | - R. Henriksson
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Clinical Neuroscience, Karolinska Institutet, CMM, L8:04, 17176 Stockholm, Sweden
| |
Collapse
|
20
|
Overexpression of CREB in the nucleus accumbens shell increases cocaine reinforcement in self-administering rats. J Neurosci 2012; 31:16447-57. [PMID: 22072694 DOI: 10.1523/jneurosci.3070-11.2011] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic exposure to addictive drugs enhances cAMP response element binding protein (CREB)-regulated gene expression in nucleus accumbens (NAc), and these effects are thought to reduce the positive hedonic effects of passive cocaine administration. Here, we used viral-mediated gene transfer to produce short- and long-term regulation of CREB activity in NAc shell of rats engaging in volitional cocaine self-administration. Increasing CREB expression in NAc shell markedly enhanced cocaine reinforcement of self-administration behavior, as indicated by leftward (long-term) and upward (short-term) shifts in fixed ratio dose-response curves. CREB also increased the effort exerted by rats to obtain cocaine on more demanding progressive ratio schedules, an effect highly correlated with viral-induced modulation of BDNF protein in the NAc shell. CREB enhanced cocaine reinforcement when expressed either throughout acquisition of self-administration or when expression was limited to postacquisition tests, indicating a direct effect of CREB independent of reinforcement-related learning. Downregulating endogenous CREB in NAc shell by expressing a short hairpin RNA reduced cocaine reinforcement in similar tests, while overexpression of a dominant-negative CREB(S133A) mutant had no significant effect on cocaine self-administration. Finally, increasing CREB expression after withdrawal from self-administration enhanced cocaine-primed relapse, while reducing CREB levels facilitated extinction of cocaine seeking, but neither altered relapse induced by cocaine cues or footshock stress. Together, these findings indicate that CREB activity in NAc shell increases the motivation for cocaine during active self-administration or after withdrawal from cocaine. Our results also highlight that volitional and passive drug administration can lead to substantially different behavioral outcomes.
Collapse
|
21
|
Paris JJ, Reilley KJ, McLaughlin JP. Kappa Opioid Receptor-Mediated Disruption of Novel Object Recognition: Relevance for Psychostimulant Treatment. ACTA ACUST UNITED AC 2011; S4. [PMID: 22900234 DOI: 10.4172/2155-6105.s4-007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kappa opioid receptor (KOR) agonists are potentially valuable as therapeutics for the treatment of psychostimulant reward as they suppress dopamine signaling in reward circuitry to repress drug seeking behavior. However, KOR agonists are also associated with sedation and cognitive dysfunction. The extent to which learning and memory disruption or hypolocomotion underlie KOR agonists' role in counteracting the rewarding effects of psychostimulants is of interest. C57BL/6J mice were pretreated with vehicle (saline, 0.9%), the KOR agonist (trans)-3,4-dichloro-N-methyl-N-[2-(1- pyrrolidinyl)-cyclohexyl] benzeneacetamide (U50,488), or the peripherally-restricted agonist D-Phe-D-Phe-D-lle-D-Arg- NH(2) (ffir-NH(2)), through central (i.c.v.) or peripheral (i.p.) routes of administration. Locomotor activity was assessed via activity monitoring chambers and rotorod. Cognitive performance was assessed in a novel object recognition task. Prolonged hypolocomotion was observed following administration of 1.0 and 10.0, but not 0.3 mg/kg U50,488. Central, but not peripheral, administration of ffir-NH(2) (a KOR agonist that does not cross the blood-brain barrier) also reduced motor behavior. Systemic pretreatment with the low dose of U50,488 (0.3 mg/kg, i.p.) significantly impaired performance in the novel object recognition task. Likewise, ffir-NH(2) significantly reduced novel object recognition after central (i.c.v.), but not peripheral (i.p.), administration. U50,488- and ffir-NH(2)-mediated deficits in novel object recognition were prevented by pretreatment with KOR antagonists. Cocaine-induced conditioned place preference was subsequently assessed and was reduced by pretreatment with U50,488 (0.3 mg/kg, i.p.). Together, these results suggest that the activation of centrally-located kappa opioid receptors may induce cognitive and mnemonic disruption independent of hypolocomotor effects which may contribute to the KOR-mediated suppression of psychostimulant reward.
Collapse
Affiliation(s)
- Jason J Paris
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | | | | |
Collapse
|
22
|
Abstract
This paper is the thirty-third consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2010 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
23
|
Rodríguez-Arias M, Aguilar MA, Manzanedo C, Miñarro J. Preclinical evidence of new opioid modulators for the treatment of addiction. Expert Opin Investig Drugs 2010; 19:977-94. [PMID: 20629615 DOI: 10.1517/13543784.2010.500612] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE OF THE FIELD Addiction to opiates is one of the most severe forms of substance dependence, and despite a variety of pharmacological approaches to treat it, relapse is observed in a high percentage of subjects. New pharmacological compounds are necessary to improve the outcome of treatments and reduce adverse side effects. Moreover, drugs that act on the opioid system can also be of benefit in the treatment of alcohol or cocaine addiction. AREA COVERED BY THIS REVIEW: Recent preclinical studies of pharmacological agents for the treatment of opiate addiction (2008 to the present date). WHAT THE READER WILL GAIN The reader will be informed of the latest drugs shown in animal models to modify dependence on opiates and the reinforcing effects of these drugs. In addition, reports of the latest studies to test these compounds in models of other drug addictions are reviewed. TAKE HOME MESSAGE The classic clinical pharmacotherapy for opiate dependence, involving mu-opioid receptor agonists or antagonists, has not yielded a high success rate in humans. In pharmacotherapy for opioid dependence, new options are emerging and different pharmacological strategies are now being tested.
Collapse
Affiliation(s)
- Marta Rodríguez-Arias
- Facultad de Psicología, Departamento de Psicobiología, Unidad de Investigación Psicobiología de las Drogodependencias, Universitat de Valencia, Avda. Blasco Ibáñez 21, Valencia, Spain
| | | | | | | |
Collapse
|