1
|
Flintoff JM, Alexander S, Kesby JP, Burne TH. The dynamic strategy shifting task: Optimisation of an operant task for assessing cognitive flexibility in rats. Front Psychiatry 2024; 15:1303728. [PMID: 39006823 PMCID: PMC11240049 DOI: 10.3389/fpsyt.2024.1303728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Although schizophrenia is associated with a broad range of symptoms including hallucinations, delusions, and reduced motivation, measures of cognitive dysfunction, including cognitive flexibility and executive function, are the strongest predictors of functional outcomes. Antipsychotic medications are useful for reducing psychotic symptoms, but they are ineffective at improving cognitive deficits. Despite extensive investment by industry, the transition from preclinical to clinical trials has not been successful for developing precognitive medications for individuals with schizophrenia. Here, we describe the optimisation of a novel dynamic strategy shifting task (DSST) using standard operant chambers to investigate the optimal stimuli required to limit the extensive training times required in previous tasks. Methods We determined that optimal learning by male and female Sprague Dawley rats for the flexibility task incorporated dynamic strategy shifts between spatial rules, such as following a visual cue or responding at one location, and non-spatial rules, such as responding to a central visual or auditory cue. A minimum of 6 correct consecutive responses were required to make a within-session change in the behavioural strategies. As a proof of concept, we trained and tested 84 Sprague Dawley rats on the DSST, and then assessed their cognitive flexibility using a within-subject design after an acute dose of ketamine (0, 3, 10 mg/kg). Rats made fewer premature and more perseverant responses to initiate a trial following ketamine. The effects of ketamine on trials to criterion was dependent on the rule. Results Ketamine induced a significant improvement on the reversal of a non-spatial visual discrimination rule. There was no significant effect of ketamine on the spatial visual or response discrimination rules. Discussion The DSST is a novel assay for studying distinct forms of cognitive flexibility and offers a rapid and adaptable means of assessing the ability to shift between increasingly challenging rule conditions. The DSST has potential utility in advancing our understanding of cognitive processes and the underlying neurobiological mechanisms related to flexibility in neuropsychiatric and neurological conditions where executive dysfunctions occur.>.
Collapse
Affiliation(s)
| | - Suzy Alexander
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | - James Paul Kesby
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | - Thomas Henry Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| |
Collapse
|
2
|
Sun J, Jia K, Sun M, Zhang X, Chen J, Zhu G, Li C, Lian B, Du Z, Sun H, Sun L. The GluA1-Related BDNF Pathway Is Involved in PTSD-Induced Cognitive Flexibility Deficit in Attentional Set-Shifting Tasks of Rats. J Clin Med 2022; 11:jcm11226824. [PMID: 36431303 PMCID: PMC9694369 DOI: 10.3390/jcm11226824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Post-Traumatic Stress Disorder (PTSD) is a severe psychological disorder characterized by intrusive thoughts, heightened arousal, avoidance, and flashbacks. Cognitive flexibility dysfunction has been linked with the emergence of PTSD, including response inhibition deficits and impaired attentional switching, which results in difficulties for PTSD patients when disengaging attention from trauma-related stimuli. However, the molecular mechanisms of cognitive flexibility deficits remain unclear. Methods: The animals were exposed to a single prolonged stress and electric foot shock (SPS&S) procedure to induce PTSD-like features. Once the model was established, the changes in cognitive flexibility were assessed using an attentional set-shifting task (ASST) in order to investigate the effects of traumatic stress on cognitive flexibility. Additionally, the molecular alterations of certain proteins (AMPA Receptor 1 (GluA1), brain-derived neurotrophic factor (BDNF), and Postsynaptic density protein 95 (PSD95) in the medial prefrontal cortex (mPFC) were measured using Western blot and immunofluorescence. Results: The SPS&S model exhibited PTSD-like behaviors and induced reversal learning and set-shifting ability deficit in the ASST. These behavioral changes are accompanied by decreased GluA1, BDNF, and PSD95 protein expression in the mPFC. Further analysis showed a correlative relationship between the behavioral and molecular alterations. Conclusions: The SPS&S model induced cognitive flexibility deficits, and the potential underlying mechanism could be mediated by GluA1-related BDNF signaling in the mPFC.
Collapse
Affiliation(s)
- Jiaming Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Keli Jia
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Mingtao Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Xianqiang Zhang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Jinhong Chen
- College of Extended Education, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Guohui Zhu
- Mental Health Centre of Weifang City, Weifang 261071, China
| | - Changjiang Li
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Bo Lian
- Department of Bioscience and Technology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Zhongde Du
- Cerebral Center, Sunshine Union Hospital, 9000# Yingqian Street, Weifang 261205, China
| | - Hongwei Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
- Correspondence: (H.S.); (L.S.)
| | - Lin Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
- Correspondence: (H.S.); (L.S.)
| |
Collapse
|
3
|
Cartágenes SDC, da Silveira CCSDM, Pinheiro BG, Fernandes LMP, Farias SV, Kobayashi NHC, de Souza PHFS, do Prado AF, Ferreira MKM, Lima RR, de Oliveira EHC, de Luna FCF, Burbano RMR, Fontes-Júnior EA, Maia CDSF. “K-Powder” Exposure during Adolescence Elicits Psychiatric Disturbances Associated with Oxidative Stress in Female Rats. Pharmaceuticals (Basel) 2022; 15:ph15111373. [PMID: 36355545 PMCID: PMC9698848 DOI: 10.3390/ph15111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Ketamine, also called ‘K-powder’ by abusers, an analog of phencyclidine, primarily acts as an antagonist of N-methyl-D-aspartic acid (NMDA) receptors, therapeutically used as an anesthetic agent. Ketamine also stimulates the limbic system, inducing hallucinations and dissociative effects. At sub-anesthetic doses, ketamine also displays hallucinatory and dissociative properties, but not loss of consciousness. These behavioral consequences have elicited its recreational use worldwide, mainly at rave parties. Ketamine is generally a drug of choice among teenagers and young adults; however, the harmful consequences of its recreational use on adolescent central nervous systems are poorly explored. Thus, the aim of the present study was to characterize the behavioral and biochemical consequences induced by one binge-like cycle of ketamine during the early withdrawal period in adolescent female rats. Adolescent female Wistar rats (n = 20) received intraperitoneally administered ketamine (10 mg/kg/day) for 3 consecutive days. Twenty-four hours after the last administration of ketamine, animals were submitted to behavioral tests in an open field, elevated plus-maze, and forced swimming test. Then, animals were intranasally anesthetized with 2% isoflurane and euthanized to collect prefrontal cortex and hippocampus to assess lipid peroxidation, antioxidant capacity against peroxyl radicals, reactive oxygen species, reduced glutathione, and brain-derived neurotrophic factor (BDNF) levels. Our results found that 24 h after recreational ketamine use, emotional behavior disabilities, such as anxiety- and depression-like profiles, were detected. In addition, spontaneous ambulation was reduced. These negative behavioral phenotypes were associated with evidence of oxidative stress on the prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Sabrina de Carvalho Cartágenes
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | | | - Bruno Gonçalves Pinheiro
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Luanna Melo Pereira Fernandes
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
- Physiological and Morphological Sciences Department, Biological and Health Science Centre, State University of Pará, Belém 66087-662, PA, Brazil
| | - Sarah Viana Farias
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Natália Harumi Correa Kobayashi
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Pablo Henrique Franco Santos de Souza
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Alejandro Ferraz do Prado
- Laboratory of Pharmacology and Toxicology of Cardiovascular System, Institute of Biological Science, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Edivaldo Herculano Correa de Oliveira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil
| | - Francisco Canindé Ferreira de Luna
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil
| | | | - Enéas Andrade Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
- Correspondence:
| |
Collapse
|
4
|
Identification of Molecular Markers of Clozapine Action in Ketamine-Induced Cognitive Impairment: A GPCR Signaling PathwayFinder Study. Int J Mol Sci 2021; 22:ijms222212203. [PMID: 34830086 PMCID: PMC8621432 DOI: 10.3390/ijms222212203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Cognitive disorders associated with schizophrenia are closely linked to prefrontal cortex (PFC) dysfunction. Administration of the non-competitive NMDA receptor antagonist ketamine (KET) induces cognitive impairment in animals, producing effects similar to those observed in schizophrenic patients. In a previous study, we showed that KET (20 mg/kg) induces cognitive deficits in mice and that administration of clozapine (CLZ) reverses this effect. To identify biochemical mechanisms related to CLZ actions in the context of KET-induced impairment, we performed a biochemical analysis using the same experimental paradigm—acute and sub-chronic administration of these drugs (0.3 and 1 mg/kg). Methods: Since the effect of CLZ mainly depends on G-protein-related receptors, we used the Signaling PathwayFinder Kit to identify 84 genes involved in GPCR-related signal transduction and then verified the genes that were statistically significantly different on a larger group of mice using RT-PCR and Western blot analyses after the administration of acute and sub-chronic drugs. Results: Of the 84 genes involved in GPCR-related signal transduction, the expression of six, βarrestin1, βarrestin2, galanin receptor 2 (GalR2), dopamine receptor 2 (DRD2), metabotropic glutamate receptor 1 (mGluR1), and metabotropic glutamate receptor 5 (mGluR5), was significantly altered. Since these genes affect the levels of other signaling proteins, e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), G protein-coupled receptor kinase 2 (Grk2), and G protein-gated inwardly rectifying potassium 3 (Girk3), we determined their levels in PFC using Western blot. Most of the observed changes occurred after acute treatment with 0.3 mg/kg CLZ. We showed that acute treatment with CLZ at a lower dose significantly increased βarrestin1 and ERK1/2. KET treatment induced the upregulation of βarrestin1. Joint administration of these drugs had no effect on the βarrestin1 level. Conclusion: The screening kit we used to study the expression of GPCR-related signal transduction allowed us to select several important genes affected by CLZ. However, the obtained data do not explain the mechanism of action of CLZ that is responsible for reversing KET-induced cognitive impairment.
Collapse
|
5
|
Mahmoud GS, Hosny G, Sayed SA. The protective effect of olanzapine on ketamine induced cognitive deficit and increased NR1 expression in rat model of schizophrenia. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2021; 13:22-35. [PMID: 34093963 PMCID: PMC8166812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Impaired cognitive flexibility is the core manifestation of schizophrenia (SZ). Previous literature raised a claim against the effect of atypical antipsychotic drugs (AAD) on cognitive and executive functions whose cause needs further investigation. Attention set-shifting task (ASST) tests the prefrontal cortex's (PFC) executive and flexibility functions. GOALS To examine Olanzapine (OLZ) effect on ASST, expression of N-methyl-D-aspartate receptor 1 (NMDR-NR1) in prefrontal cortex (PFC), and metabolic comorbidity in ketamine (KET) model of SZ. METHODS Sixty-two male rats were divided into three groups: 8 for ASST and 30 for open field, ELISA and immunohistochemistry sub-chronic study, and 24 for regular serological and histopathological examination. Rats treated with V: vehicle; K: KET and KO: OLZ plus KET. RESULTS KET caused significant increase in time, trials, and errors to reach criterion. OLZ co-administration reversed effects of KET in ASST with no reduction of locomotor activity. OLZ normalized KET-induced rise of NR1 expression and protected against KET-induced degenerative changes in hippocampus and PFC. Significant increase in serum liver enzymes, total bilirubin, and lipids with chronic compared to sub-chronic OLZ administration. In contrast, insignificant difference between sub-chronic OLZ and vehicle was found. CONCLUSIONS Current study demonstrated the efficacy of OLZ to reverse KET-induced cognitive deficits in ASST with neither reduction in NR1 expression in PFC nor metabolic malfunction in the sub-chronic study. It also showed the protective effect of OLZ on KET induced neuronal degeneration and necrosis. We suggest that chronic OLZ treatment-induced-metabolic malfunction might be the cause of time-dependent cognitive deterioration.
Collapse
Affiliation(s)
- Ghada S Mahmoud
- Department of Medical Physiology, Faculty of Medicine, Assiut UniversityAssiut, Egypt
| | - Ghada Hosny
- Department of Pathology, Faculty of Medicine, Assiut UniversityAssiut, Egypt
| | - Sally A Sayed
- Department of Medical Physiology, Faculty of Medicine, Assiut UniversityAssiut, Egypt
| |
Collapse
|
6
|
Ang MJ, Lee S, Kim JC, Kim SH, Moon C. Behavioral Tasks Evaluating Schizophrenia-like Symptoms in Animal Models: A Recent Update. Curr Neuropharmacol 2021; 19:641-664. [PMID: 32798374 PMCID: PMC8573744 DOI: 10.2174/1570159x18666200814175114] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Schizophrenia is a serious mental illness that affects more than 21 million people worldwide. Both genetics and the environment play a role in its etiology and pathogenesis. Symptoms of schizophrenia are mainly categorized into positive, negative, and cognitive. One major approach to identify and understand these diverse symptoms in humans has been to study behavioral phenotypes in a range of animal models of schizophrenia. OBJECTIVE We aimed to provide a comprehensive review of the behavioral tasks commonly used for measuring schizophrenia-like behaviors in rodents together with an update of the recent study findings. METHODS Articles describing phenotypes of schizophrenia-like behaviors in various animal models were collected through a literature search in Google Scholar, PubMed, Web of Science, and Scopus, with a focus on advances over the last 10 years. RESULTS Numerous studies have used a range of animal models and behavioral paradigms of schizophrenia to develop antipsychotic drugs for improved therapeutics. In establishing animal models of schizophrenia, the candidate models were evaluated for schizophrenia-like behaviors using several behavioral tasks for positive, negative, and cognitive symptoms designed to verify human symptoms of schizophrenia. Such validated animal models were provided as rapid preclinical avenues for drug testing and mechanistic studies. CONCLUSION Based on the most recent advances in the field, it is apparent that a myriad of behavior tests are needed to confirm and evaluate the congruency of animal models with the numerous behaviors and clinical signs exhibited by patients with schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | - Changjong Moon
- Address correspondence to this author at the Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea, Tel: +82-62-530-2838; E-mail:
| |
Collapse
|
7
|
Durairaja A, Fendt M. Orexin deficiency modulates cognitive flexibility in a sex-dependent manner. GENES BRAIN AND BEHAVIOR 2020; 20:e12707. [PMID: 33070452 DOI: 10.1111/gbb.12707] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022]
Abstract
Cognitive flexibility is an important executive function and refers to the ability to adapt behaviors in response to changes in the environment. Of note, many brain disorders are associated with impairments in cognitive flexibility. Several classical neurotransmitter systems including dopamine, acetylcholine and noradrenaline are shown to be important for cognitive flexibility, however, there is not much known about the role of neuropeptides. The neuropeptide orexin, which is brain-widely released by neurons in the lateral hypothalamus, is a major player in maintaining sleep/wake cycle, feeding behavior, arousal, and motivational behavior. Recent studies showed a role of orexin in attention, cognition and stress-induced attenuation of cognitive flexibility by disrupting orexin signaling locally or systemically. However, it is not known so far whether brain-wide reduction or loss of orexin affects cognitive flexibility. We investigated this question by testing male and female orexin-deficient mice in the attentional set shifting task (ASST), an established paradigm of cognitive flexibility. We found that orexin deficiency impaired the intra-dimensional shift phase of the ASST selectively in female homozygous orexin-deficient mice and improved the first reversal learning phase selectively in male homozygous orexin-deficient mice. We also found that these orexin-mediated sex-based modulations of cognitive flexibility were not correlated with trait anxiety, narcoleptic episodes, and reward consumption. Our findings highlight a sexually dimorphic role of orexin in regulating cognitive flexibility and the need for further investigations of sex-specific functions of the orexin circuitry.
Collapse
Affiliation(s)
- Archana Durairaja
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany.,Center of Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
8
|
Zoratto F, Franchi F, Macrì S, Laviola G. Methylphenidate administration promotes sociability and reduces aggression in a mouse model of callousness. Psychopharmacology (Berl) 2019; 236:2593-2611. [PMID: 30955107 DOI: 10.1007/s00213-019-05229-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/18/2019] [Indexed: 01/06/2023]
Abstract
RATIONALE Deficits in empathy constitute a distinctive feature of several psychopathologies, including conduct disorder (CD). The co-occurrence of callous-unemotional (CU) traits, excess rates of aggression and violation of societal norms confers specific risk for adult psychopathy. To date, the off-label use of methylphenidate (MPH) constitutes the drug treatment of choice. OBJECTIVES Herein, we tested the therapeutic potential of MPH in a recently devised mouse model recapitulating the core phenotypic abnormalities of CD. METHODS Two subgroups of BALB/cJ male mice exhibiting opposite profiles of emotional contagion (i.e. socially transmitted adoption of another's emotional states) were investigated for reactive aggression, sociability, attention control, anxiety-related behaviours and locomotor activity, in response to MPH administration (0.0, 3.0 or 6.0 mg/kg). RESULTS Our data indicate that mice selected for excess callousness exhibit phenotypic abnormalities isomorphic to the symptoms of CD: stability of the low emotional contagion trait, increased aggression and reduced sociability. In accordance with our predictions, MPH reduced aggression and increased sociability in callous mice; yet, it failed to restore the low responsiveness to the emotions of a conspecific in pain, isomorphic to CU traits. CONCLUSIONS Although our data support the notion that MPH may contribute to the management of excess aggression in CD patients, additional studies shall identify specific treatments to target the callousness domain. The latter, unaffected by MPH in our experimental model, demands focused consideration whereby it constitutes a specifier associated with a worse prognosis.
Collapse
Affiliation(s)
- Francesca Zoratto
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161, Rome, Italy.
| | - Francesca Franchi
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161, Rome, Italy
| | - Simone Macrì
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161, Rome, Italy
| | - Giovanni Laviola
- Reference Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161, Rome, Italy.
| |
Collapse
|
9
|
de Carvalho Cartágenes S, Fernandes LMP, Carvalheiro TCVS, de Sousa TM, Gomes ARQ, Monteiro MC, de Oliveira Paraense RS, Crespo-López ME, Lima RR, Fontes-Júnior EA, Prediger RD, Maia CSF. "Special K" Drug on Adolescent Rats: Oxidative Damage and Neurobehavioral Impairments. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5452727. [PMID: 31001375 PMCID: PMC6437740 DOI: 10.1155/2019/5452727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 12/19/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022]
Abstract
Ketamine is used in clinical practice as an anesthetic that pharmacologically modulates neurotransmission in postsynaptic receptors, such as NMDA receptors. However, widespread recreational use of ketamine in "party drug" worldwide since the 1990s quickly spread to the Asian orient region. Thus, this study aimed at investigating the behavioral and oxidative effects after immediate withdrawal of intermittent administration of ketamine in adolescent female rats. For this, twenty female Wistar rats were randomly divided into two groups: control and ketamine group (n = 10/group). Animals received ketamine (10 mg/kg/day) or saline intraperitoneally for three consecutive days. Three hours after the last administration, animals were submitted to open field, elevated plus-maze, forced swim tests, and inhibitory avoidance paradigm. Twenty-four hours after behavioral tests, the blood and hippocampus were collected for the biochemical analyses. Superoxide dismutase, catalase, nitrite, and lipid peroxidation (LPO) were measured in the blood samples. Nitrite and LPO were measured in the hippocampus. The present findings demonstrate that the early hours of ketamine withdrawal induced oxidative biochemistry unbalance in the blood samples, with elevated levels of nitrite and LPO. In addition, we showed for the first time that ketamine withdrawal induced depressive- and anxiety-like profile, as well as short-term memory impairment in adolescent rodents. The neurobehavioral deficits were accompanied by the hippocampal nitrite and LPO-elevated levels.
Collapse
Affiliation(s)
- Sabrina de Carvalho Cartágenes
- Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Luanna Melo Pereira Fernandes
- Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | | | - Thais Miranda de Sousa
- Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Antônio Rafael Quadros Gomes
- Laboratory of Microbiology and Immunology of Teaching and Research, Pharmacy Faculty, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Marta Chagas Monteiro
- Laboratory of Microbiology and Immunology of Teaching and Research, Pharmacy Faculty, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | | | - Maria Elena Crespo-López
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Enéas Andrade Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rui Daniel Prediger
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cristiane Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
10
|
Cadinu D, Grayson B, Podda G, Harte MK, Doostdar N, Neill JC. NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update. Neuropharmacology 2018; 142:41-62. [DOI: 10.1016/j.neuropharm.2017.11.045] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/28/2017] [Accepted: 11/27/2017] [Indexed: 01/05/2023]
|
11
|
Morris-Schaffer K, Sobolewski M, Welle K, Conrad K, Yee M, O'Reilly MA, Cory-Slechta DA. Cognitive flexibility deficits in male mice exposed to neonatal hyperoxia followed by concentrated ambient ultrafine particles. Neurotoxicol Teratol 2018; 70:51-59. [PMID: 30316930 DOI: 10.1016/j.ntt.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/07/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023]
Abstract
Epidemiological evidence indicates an association between early-life exposure to air pollution and preterm birth. Thus, it is essential to address the subsequent vulnerability of preterm infants, who are exposed to unique factors at birth including hyperoxia, and subsequently to air pollution. Health effects of air pollution relate to particle size and the ultrafine particulate component (<100 nm) is considered the most reactive. We previously reported neonatal mice exposed to hyperoxia (60% oxygen), mimicking preterm oxygen supplementation, for the first 4 days of life, followed by exposure to concentrated ambient ultrafine particles (CAPS) from postnatal day (PND) 4-7 and 10-13 exhibited deficits in acquisition of performance on a fixed interval (FI) schedule of reinforcement, a behavioral paradigm rewarding the first response at the end of a fixed interval of time. Specifically, mice exposed to hyperoxia followed by CAPS continued to respond earlier in the interval than controls, suggesting deficits in acquisition of timing of the interval. To further examine the extent of cognitive deficits produced by hyperoxia and CAPs exposures, performance under an intra- extradimensional shift discrimination paradigm was implemented, requiring the ability to respond to shifting rules for reward. Under these conditions, developmental exposure to hyperoxia and CAPS increased errors on both the reversal and extradimensional (ED) tasks in males but not females. Furthermore it altered the ratio of glutamate and GABA neurotransmitters in the frontal cortex, a region known to mediate cognitive flexibility, were observed immediately following neonatal hyperoxia and CAPS exposure on post-natal day 14 but not following behavioral experience. Collectively, the findings from this study suggests that combined developmental exposures to hyperoxia and CAPS leads to protracted and enhanced learning deficits consistent with cognitive inflexibility in males exclusively.
Collapse
Affiliation(s)
- Keith Morris-Schaffer
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States of America.
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States of America
| | - Kevin Welle
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY 14642, United States of America
| | - Katherine Conrad
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States of America
| | - Min Yee
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, United States of America
| | - Michael A O'Reilly
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, United States of America
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States of America
| |
Collapse
|
12
|
Strong C, Kabbaj M. On the safety of repeated ketamine infusions for the treatment of depression: Effects of sex and developmental periods. Neurobiol Stress 2018; 9:166-175. [PMID: 30450382 PMCID: PMC6236511 DOI: 10.1016/j.ynstr.2018.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/23/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022] Open
Abstract
In this review, we will discuss the safety of repeated treatments with ketamine for patients with treatment-resistant depression (TRD), a condition in which patients with major depression do not show any clinical improvements following treatments with at least two antidepressant drugs. We will discuss the effects of these treatments in both sexes at different developmental periods. Numerous small clinical studies have shown that a single, low-dose ketamine infusion can rapidly alleviate depressive symptoms and thoughts of suicidality in patients with TRD, and these effects can last for about one week. Interestingly, the antidepressant effects of ketamine can be prolonged with intermittent, repeated infusion regimens and produce more robust therapeutic effects when compared to a single infusion. The safety of such repeated treatments with ketamine has not been thoroughly investigated. Although more studies are needed, some clinical and preclinical reports indicated that repeated infusions of low doses of ketamine may have addictive properties, and suggested that adolescent and adult female subjects may be more sensitive to ketamine's addictive effects. Additionally, during ketamine infusions, many TRD patients report hallucinations and feelings of dissociation and depersonalization, and therefore the effects of repeated treatments of ketamine on cognition must be further examined. Some clinical reports indicated that, compared to women, men are more sensitive to the psychomimetic effects of ketamine. Preclinical studies extended these findings to both adolescent and adult male rodents and showed that male rodents at both developmental periods are more sensitive to ketamine's cognitive-altering effects. Accordingly, in this review we shall focus our discussion on the potential addictive and cognitive-impairing effects of repeated ketamine infusions in both sexes at two important developmental periods: adolescence and adulthood. Although more work about the safety of ketamine is warranted, we hope this review will bring some answers about the safety of treating TRD with repeated ketamine infusions.
Collapse
Affiliation(s)
| | - Mohamed Kabbaj
- Corresponding author. Florida State University, 3300-H, 1115 W. Call St, Tallahassee, FL, 32306, USA.
| |
Collapse
|
13
|
Rampino A, Taurisano P, Fanelli G, Attrotto M, Torretta S, Antonucci LA, Miccolis G, Pergola G, Ursini G, Maddalena G, Romano R, Masellis R, Di Carlo P, Pignataro P, Blasi G, Bertolino A. A Polygenic Risk Score of glutamatergic SNPs associated with schizophrenia predicts attentional behavior and related brain activity in healthy humans. Eur Neuropsychopharmacol 2017; 27:928-939. [PMID: 28651857 DOI: 10.1016/j.euroneuro.2017.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/13/2017] [Accepted: 06/10/2017] [Indexed: 11/17/2022]
Abstract
Multiple genetic variations impact on risk for schizophrenia. Recent analyses by the Psychiatric Genomics Consortium (PGC2) identified 128 SNPs genome-wide associated with the disorder. Furthermore, attention and working memory deficits are core features of schizophrenia, are heritable and have been associated with variation in glutamatergic neurotransmission. Based on this evidence, in a sample of healthy volunteers, we used SNPs associated with schizophrenia in PGC2 to construct a Polygenic-Risk-Score (PRS) reflecting the cumulative risk for schizophrenia, along with a Polygenic-Risk-Score including only SNPs related to genes implicated in glutamatergic signaling (Glu-PRS). We performed Factor Analysis for dimension reduction of indices of cognitive performance. Furthermore, both PRS and Glu-PRS were used as predictors of cognitive functioning in the domains of Attention, Speed of Processing and Working Memory. The association of the Glu-PRS on brain activity during the Variable Attention Control (VAC) task was also explored. Finally, in a second independent sample of healthy volunteers we sought to confirm the association between the Glu-PRS and both performance in the domain of Attention and brain activity during the VAC.We found that performance in Speed of Processing and Working Memory was not associated with any of the Polygenic-Risk-Scores. The Glu-PRS, but not the PRS was associated with Attention and brain activity during the VAC. The specific effects of Glu-PRS on Attention and brain activity during the VAC were also confirmed in the replication sample.Our results suggest a pathway specificity in the relationship between genetic risk for schizophrenia, the associated cognitive dysfunction and related brain processing.
Collapse
Affiliation(s)
- Antonio Rampino
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Paolo Taurisano
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giuseppe Fanelli
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Mariateresa Attrotto
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy; Psychiatry Unit - Bari University Hospital, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Silvia Torretta
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Linda Antonella Antonucci
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Grazia Miccolis
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Gianluca Ursini
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, 21205 Baltimore, MD, USA
| | - Giancarlo Maddalena
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy; Psychiatry Unit - Bari University Hospital, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Raffaella Romano
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Rita Masellis
- Psychiatry Unit - Bari University Hospital, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Pasquale Di Carlo
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Patrizia Pignataro
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giuseppe Blasi
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy; Psychiatry Unit - Bari University Hospital, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs - University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy; Psychiatry Unit - Bari University Hospital, Piazza Giulio Cesare 11, 70124 Bari, Italy.
| |
Collapse
|
14
|
Dauvermann MR, Lee G, Dawson N. Glutamatergic regulation of cognition and functional brain connectivity: insights from pharmacological, genetic and translational schizophrenia research. Br J Pharmacol 2017. [PMID: 28626937 DOI: 10.1111/bph.13919] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pharmacological modulation of glutamatergic neurotransmission to improve cognitive function has been a focus of intensive research, particularly in relation to the cognitive deficits seen in schizophrenia. Despite this effort, there has been little success in the clinical use of glutamatergic compounds as procognitive drugs. Here, we review a selection of the drugs used to modulate glutamatergic signalling and how they impact on cognitive function in rodents and humans. We highlight how glutamatergic dysfunction, and NMDA receptor hypofunction in particular, is a key mechanism contributing to the cognitive deficits observed in schizophrenia and outline some of the glutamatergic targets that have been tested as putative procognitive targets for this disorder. Using translational research in this area as a leading exemplar, namely, models of NMDA receptor hypofunction, we discuss how the study of functional brain network connectivity can provide new insight into how the glutamatergic system impacts on cognitive function. Future studies characterizing functional brain network connectivity will increase our understanding of how glutamatergic compounds regulate cognition and could contribute to the future success of glutamatergic drug validation. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc.
Collapse
Affiliation(s)
- Maria R Dauvermann
- School of Psychology, National University of Ireland, Galway, Ireland.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Graham Lee
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
15
|
Schifani C, Sukhanov I, Dorofeikova M, Bespalov A. Novel reinforcement learning paradigm based on response patterning under interval schedules of reinforcement. Behav Brain Res 2017; 331:276-281. [PMID: 28457882 DOI: 10.1016/j.bbr.2017.04.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 11/19/2022]
Abstract
There is a need to develop cognitive tasks that address valid neuropsychological constructs implicated in disease mechanisms and can be used in animals and humans to guide novel drug discovery. Present experiments aimed to characterize a novel reinforcement learning task based on a classical operant behavioral phenomenon observed in multiple species - differences in response patterning under variable (VI) vs fixed interval (FI) schedules of reinforcement. Wistar rats were trained to press a lever for food under VI30s and later weekly test sessions were introduced with reinforcement schedule switched to FI30s. During the FI30s test session, post-reinforcement pauses (PRPs) gradually grew towards the end of the session reaching 22-43% of the initial values. Animals could be retrained under VI30s conditions, and FI30s test sessions were repeated over a period of several months without appreciable signs of a practice effect. Administration of the non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 ((5S,10R)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate) prior to FI30s sessions prevented adjustment of PRPs associated with the change from VI to FI schedule. This effect was most pronounced at the highest tested dose of MK-801 and appeared to be independent of the effects of this dose on response rates. These results provide initial evidence for the possibility to use different response patterning under VI and FI schedules with equivalent reinforcement density for studying effects of drug treatment on reinforcement learning.
Collapse
Affiliation(s)
- Christin Schifani
- Department of Pharmacology, Neuroscience Research, AbbVie, Ludwigshafen, Germany.
| | - Ilya Sukhanov
- Institute of Pharmacology, Pavlov Medical University, St. Petersburg, Russia
| | - Mariia Dorofeikova
- Institute of Pharmacology, Pavlov Medical University, St. Petersburg, Russia
| | - Anton Bespalov
- Department of Pharmacology, Neuroscience Research, AbbVie, Ludwigshafen, Germany; Institute of Pharmacology, Pavlov Medical University, St. Petersburg, Russia
| |
Collapse
|
16
|
Szlachta M, Pabian P, Kuśmider M, Solich J, Kolasa M, Żurawek D, Dziedzicka-Wasylewska M, Faron-Górecka A. Effect of clozapine on ketamine-induced deficits in attentional set shift task in mice. Psychopharmacology (Berl) 2017; 234:2103-2112. [PMID: 28405711 PMCID: PMC5486929 DOI: 10.1007/s00213-017-4613-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/24/2017] [Indexed: 01/26/2023]
Abstract
RATIONALE Clozapine (CLZ) is an effective treatment for schizophrenia, producing improvements in both negative symptoms and cognitive impairments. Cognitive impairments can be modelled in animals by ketamine (KET) and assessed using the attentional set-shift task (ASST). OBJECTIVE Our first aim was to determine whether CLZ improves cognitive function and reverses KET-induced cognitive impairments using the ASST. Our second aim was to assess dose dependency of these effects. RESULTS Our findings demonstrate that acute as well as sub-chronic administration of KET cause cognitive deficits observed as increase in number of trails and errors to reach the criterion in the EDS phase. CLZ 0.3 mg/kg reversed the effects of both acute and sub-chronic KET, with no effects on locomotor activity. However, clozapine's effect after sub-chronic administration of dose 0.3 mg/kg was not as explicit as in the case of acute treatment. Moreover, administration of 1 mg/kg CLZ to KET-treated mice induced or enhanced deficits in the extra-dimensional shift phase compared to 1 mg/kg CLZ administration to mice not receiving KET. Locomotor activity test showed sedation effects of CLZ 1 mg/kg after acute treatment; therefore, effect of CLZ 1 mg/kg on KET-induced cognitive deficits was not evaluated in the attentional set-shift task (ASST) test. CONCLUSIONS The present findings support dose-dependent effects of CLZ to reverse KET-induced cognitive deficits. The observed dose dependency may be mediated by activation of different receptors, including monomers and/or heterodimers.
Collapse
Affiliation(s)
- M Szlachta
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - P Pabian
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - M Kuśmider
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - J Solich
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - M Kolasa
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - D Żurawek
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - M Dziedzicka-Wasylewska
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - A Faron-Górecka
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.
| |
Collapse
|
17
|
Cieślak PE, Llamosas N, Kos T, Ugedo L, Jastrzębska K, Torrecilla M, Rodriguez Parkitna J. The role of NMDA receptor-dependent activity of noradrenergic neurons in attention, impulsivity and exploratory behaviors. GENES BRAIN AND BEHAVIOR 2017; 16:812-822. [PMID: 28383797 DOI: 10.1111/gbb.12383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 01/18/2017] [Accepted: 04/03/2017] [Indexed: 11/29/2022]
Abstract
Activity of the brain's noradrenergic (NA) neurons plays a major role in cognitive processes, including the ability to adapt behavior to changing environmental circumstances. Here, we used the NR1DbhCre transgenic mouse strain to test how NMDA receptor-dependent activity of NA neurons influenced performance in tasks requiring sustained attention, attentional shifting and a trade-off between exploration and exploitation. We found that the loss of NMDA receptors caused irregularity in activity of NA cells in the locus coeruleus and increased the number of neurons with spontaneous burst firing. On a behavioral level, this was associated with increased impulsivity in the go/no-go task and facilitated attention shifts in the attentional set-shifting task. Mutation effects were also observed in the two-armed bandit task, in which mutant mice were generally more likely to employ an exploitative rather than exploratory decision-making strategy. At the same time, the mutation had no appreciable effects on locomotor activity or anxiety-like behavior in the open field. Taken together, these data show that NMDA receptor-dependent activity of brain's NA neurons influences behavioral flexibility.
Collapse
Affiliation(s)
- P E Cieślak
- Laboratory of Transgenic Models, Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - N Llamosas
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - T Kos
- Department of Behavioral Neuroscience & Drug Development, Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - L Ugedo
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - K Jastrzębska
- Laboratory of Transgenic Models, Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - M Torrecilla
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - J Rodriguez Parkitna
- Laboratory of Transgenic Models, Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
18
|
Trans-generation enrichment of clozapine-responsiveness trait in mice using a subchronic hypo-glutamatergic model of schizophrenia:A preliminary study. Behav Brain Res 2017; 323:141-145. [DOI: 10.1016/j.bbr.2017.01.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 11/19/2022]
|
19
|
Yates JR, Gunkel BT, Rogers KK, Hughes MN, Prior NA. Effects of N-methyl-D-aspartate receptor ligands on sensitivity to reinforcer magnitude and delayed reinforcement in a delay-discounting procedure. Psychopharmacology (Berl) 2017; 234:461-473. [PMID: 27837332 PMCID: PMC5226882 DOI: 10.1007/s00213-016-4469-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 11/02/2016] [Indexed: 11/26/2022]
Abstract
RATIONALE The N-methyl-D-aspartate (NMDA) receptor has been recently identified as an important mediator of impulsive choice, as assessed in delay discounting. Although discounting is independently influenced by sensitivity to reinforcer magnitude and delayed reinforcement, few studies have examined how NMDA receptor ligands differentially affect these parameters. OBJECTIVES The current study examined the effects of various NMDA receptor ligands on sensitivity to reinforcer magnitude and delayed reinforcement in a delay-discounting procedure. METHODS Following behavioral training, rats received treatments of the following NMDA receptor ligands: the uncompetitive antagonists ketamine (0, 1.0, 5.0, or 10.0 mg/kg; i.p.), MK-801 (0, 0.003, 0.01, or 0.03 mg/kg; s.c.), and memantine (0, 2.5, 5.0, or 10.0 mg/kg; i.p.), the competitive antagonist CGS 19755 (0, 5.0, 10.0, or 20.0 mg/kg; s.c.), the non-competitive NR2B subunit-selective antagonist ifenprodil (0, 1.0, 3.0, or 10.0 mg/kg; i.p), and the partial agonist D-cycloserine (0, 3.25, 15.0, or 30.0 mg/kg; s.c.). RESULTS When an exponential model was used to describe discounting, CGS 19755 (5.0 mg/kg) increased impulsive choice without altering sensitivity to reinforcer magnitude. Conversely, ketamine (10.0 mg/kg), memantine (5.0 mg/kg), and ifenprodil (10.0 mg/kg) decreased sensitivity to reinforcer magnitude without altering impulsive choice. MK-801 and D-cycloserine did not alter delay-discounting performance, although two-way ANOVA analyses indicated D-cycloserine (15.0 mg/kg) decreased impulsive choice. CONCLUSIONS The behavioral changes observed in delay discounting following administration of NMDA receptor antagonists do not always reflect an alteration in impulsive choice. These results emphasize the utility in employing quantitative methods to assess drug effects in delay discounting.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA.
| | - Benjamin T Gunkel
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA
| | - Katherine K Rogers
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA
| | - Mallory N Hughes
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA
| | - Nicholas A Prior
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA
| |
Collapse
|
20
|
Ketamine decreases sensitivity of male rats to misleading negative feedback in a probabilistic reversal-learning task. Psychopharmacology (Berl) 2017; 234:613-620. [PMID: 27933365 PMCID: PMC5263208 DOI: 10.1007/s00213-016-4497-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/26/2016] [Indexed: 12/15/2022]
Abstract
RATIONALE Depression is characterized by an excessive attribution of value to negative feedback. This imbalance in feedback sensitivity can be measured using the probabilistic reversal-learning (PRL) task. This task was initially designed for clinical research, but introduction of its rodent version provides a new and much needed translational paradigm to evaluate potential novel antidepressants. OBJECTIVES In the present study, we aimed at evaluating the effects of a compound showing clear antidepressant properties-ketamine (KET)-on the sensitivity of rats to positive and negative feedback in the PRL paradigm. METHODS We trained healthy rats in an operant version of the PRL task. For successful completion of the task, subjects had to learn to ignore infrequent and misleading feedback, arising from the probabilistic (80:20) nature of the discrimination. Subsequently, we evaluated the effect of KET (5, 10, and 20 mg/kg) on feedback sensitivity 1, 24, and 48 h after administration. RESULTS We report that acute administration of the highest dose of KET (20 mg/kg) rapidly and persistently decreases the proportion of lose-shift responses made by rats after receiving negative feedback. CONCLUSION Present results suggest that KET decreases negative feedback sensitivity and that changes in this basic neurocognitive function might be one of the factors responsible for its antidepressant action.
Collapse
|
21
|
Examination of clozapine and haloperidol in improving ketamine-induced deficits in an incremental repeated acquisition procedure in BALB/c mice. Psychopharmacology (Berl) 2016; 233:485-98. [PMID: 26514554 DOI: 10.1007/s00213-015-4120-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 10/15/2015] [Indexed: 02/02/2023]
Abstract
RATIONALE Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, causes locomotor hyperactivity, aberrant prepulse inhibition and impaired reversal learning among other deficits. There are numerous clinical and pre-clinically uses of NMDAR antagonists and a growing need to characterize their neurobehavioral effects. OBJECTIVES The present study was designed to characterize 1) ketamine's effect on incremental repeated acquisition (IRA), a procedure that taps multiple neurobehavioral functions and has performance measures correlated with IQ in humans, and 2) the extent to which clozapine (CLZ) and haloperidol (HAL) block ketamine's detrimental effects. METHODS AND RESULTS In experiment 1 (Exp. 1), BALB/c mice nose-poked under an IRA procedure for sucrose pellets. Systemic ketamine (1-30 mg/kg) dose-dependently decreased measures of cognitive and motor function. CLZ pretreatment (CLZ 0.1-4.0 mg/kg) dose-dependently attenuated ketamine-induced (30 mg/kg) deficits; the effective dose range of CLZ was 0.3-1.0 mg/kg. HAL pretreatment (0.01-0.1 mg/kg) did not attenuate any ketamine-induced deficits. In experiment 2 (Exp. 2), BALB/c mice lever-pressed under an IRA procedure for sweetened condensed milk. Ketamine (30 mg/kg) produced a global impairment in the IRA procedure and CLZ pretreatment (0.3-1.0 mg/kg) dose-dependently attenuated that impairment; motor-based performance recovered to a greater extent than cognitive performance. When tested alone, these doses of CLZ had little effect on IRA performance. CONCLUSIONS These findings support the notion that CLZ is more effective than HAL at blocking ketamine-induced deficits. The IRA procedure may be beneficial for distinguishing the efficacy of drugs that seek to alleviate deficits in complex behavior that result from acute NMDAR antagonism.
Collapse
|
22
|
Negative Allosteric Modulators Selective for The NR2B Subtype of The NMDA Receptor Impair Cognition in Multiple Domains. Neuropsychopharmacology 2016; 41:568-77. [PMID: 26105137 PMCID: PMC5130132 DOI: 10.1038/npp.2015.184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/28/2015] [Accepted: 06/11/2015] [Indexed: 01/16/2023]
Abstract
Antidepressant activity of N-methyl-D-aspartate (NMDA) receptor antagonists and negative allosteric modulators (NAMs) has led to increased investigation of their behavioral pharmacology. NMDA antagonists, such as ketamine, impair cognition in multiple species and in multiple cognitive domains. However, studies with NR2B subtype-selective NAMs have reported mixed results in rodents including increased impulsivity, no effect on cognition, impairment or even improvement of some cognitive tasks. To date, the effects of NR2B-selective NAMs on cognitive tests have not been reported in nonhuman primates. The current study evaluated two selective NR2B NAMs, CP101,606 and BMT-108908, along with the nonselective NMDA antagonists, ketamine and AZD6765, in the nonhuman primate Cambridge Neuropsychological Test Automated Battery (CANTAB) list-based delayed match to sample (list-DMS) task. Ketamine and the two NMDA NR2B NAMs produced selective impairments in memory in the list-DMS task. AZD6765 impaired performance in a non-specific manner. In a separate cohort, CP101,606 impaired performance of the nonhuman primate CANTAB visuo-spatial Paired Associates Learning (vsPAL) task with a selective impairment at more difficult conditions. The results of these studies clearly show that systemic administration of a selective NR2B NAM can cause transient cognitive impairment in multiple cognitive domains.
Collapse
|
23
|
Thompson SM, Josey M, Holmes A, Brigman JL. Conditional loss of GluN2B in cortex and hippocampus impairs attentional set formation. Behav Neurosci 2015; 129:105-12. [PMID: 25798630 DOI: 10.1037/bne0000045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability to attend to appropriate stimuli, to plan actions and then alter those actions when environmental conditions change, is essential for an organism to thrive. There is increasing evidence that these executive control processes are mediated in part by N-methyl-D-aspartate receptors (NMDAR). NMDAR subunits confer different physiological properties to the receptor, interact with distinct intracellular postsynaptic scaffolding and signaling molecules and are differentially expressed during development. Recent findings have suggested that the GluN2B subunit may play a unique role in both the acquisition of adaptive choice and the behavioral flexibility required to shift between choices. Here we investigated the role of GluN2B containing NMDARs in the ability to learn, reverse and shift between stimulus dimensions. Mutant mice (floxed-GluN2B x CaMKII-Cre) lacking GluN2B in the dorsal CA1 of the hippocampus and throughout the cortex were tested on an attentional set-shifting task. To explore the role that alterations in motor behavior may have on these behaviors, gross and fine motor behaviors were analyzed in mutant and floxed-control mice. Results show that corticohippocampal loss of GluN2B selectively impaired an initial reversal in a stimulus specific manner and impaired the ability of mutant mice to form an attentional set. Further, GluN2B mice showed normal motor behavior in both overall movement and individual limb behaviors. Together, these results further support the role of NMDAR, and GluN2B in particular, in aspects of executive control including behavioral flexibility and attentional processes.
Collapse
Affiliation(s)
- Shannon M Thompson
- Department of Neurosciences, University of New Mexico School of Medicine
| | - Megan Josey
- Department of Neurosciences, University of New Mexico School of Medicine
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institutes of Health
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine
| |
Collapse
|
24
|
Janitzky K, Lippert MT, Engelhorn A, Tegtmeier J, Goldschmidt J, Heinze HJ, Ohl FW. Optogenetic silencing of locus coeruleus activity in mice impairs cognitive flexibility in an attentional set-shifting task. Front Behav Neurosci 2015; 9:286. [PMID: 26582980 PMCID: PMC4631833 DOI: 10.3389/fnbeh.2015.00286] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/12/2015] [Indexed: 12/30/2022] Open
Abstract
The locus coeruleus (LC) is the sole source of noradrenergic projections to the cortex and essential for attention-dependent cognitive processes. In this study we used unilateral optogenetic silencing of the LC in an attentional set-shifting task (ASST) to evaluate the influence of the LC on prefrontal cortex-dependent functions in mice. We expressed the halorhodopsin eNpHR 3.0 to reversibly silence LC activity during task performance, and found that silencing selectively impaired learning of those parts of the ASST that most strongly rely on cognitive flexibility. In particular, extra-dimensional set-shifting (EDS) and reversal learning was impaired, suggesting an involvement of the medial prefrontal cortex (mPFC) and the orbitofrontal cortex. In contrast, those parts of the task that are less dependent on cognitive flexibility, i.e., compound discrimination (CD) and the intra-dimensional shifts (IDS) were not affected. Furthermore, attentional set formation was unaffected by LC silencing. Our results therefore suggest a modulatory influence of the LC on cognitive flexibility, mediated by different frontal networks.
Collapse
Affiliation(s)
- Kathrin Janitzky
- Department of Neurology, University of Magdeburg Magdeburg, Germany ; Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany
| | - Michael T Lippert
- Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany
| | - Achim Engelhorn
- Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany
| | - Jennifer Tegtmeier
- Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany
| | - Jürgen Goldschmidt
- Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, University of Magdeburg Magdeburg, Germany ; Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| | - Frank W Ohl
- Systems Physiology of Learning, Leibniz Institute of Neurobiology Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany ; Systems Physiology, Institute of Biology, University of Magdeburg Magdeburg, Germany
| |
Collapse
|
25
|
Bondi CO, Semple BD, Noble-Haeusslein LJ, Osier ND, Carlson SW, Dixon CE, Giza CC, Kline AE. Found in translation: Understanding the biology and behavior of experimental traumatic brain injury. Neurosci Biobehav Rev 2015; 58:123-46. [PMID: 25496906 PMCID: PMC4465064 DOI: 10.1016/j.neubiorev.2014.12.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/26/2014] [Accepted: 12/02/2014] [Indexed: 12/14/2022]
Abstract
The aim of this review is to discuss in greater detail the topics covered in the recent symposium entitled "Traumatic brain injury: laboratory and clinical perspectives," presented at the 2014 International Behavioral Neuroscience Society annual meeting. Herein, we review contemporary laboratory models of traumatic brain injury (TBI) including common assays for sensorimotor and cognitive behavior. New modalities to evaluate social behavior after injury to the developing brain, as well as the attentional set-shifting test (AST) as a measure of executive function in TBI, will be highlighted. Environmental enrichment (EE) will be discussed as a preclinical model of neurorehabilitation, and finally, an evidence-based approach to sports-related concussion will be considered. The review consists predominantly of published data, but some discussion of ongoing or future directions is provided.
Collapse
Affiliation(s)
- Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bridgette D Semple
- Neurological Surgery and the Graduate Program in Physical Medicine & Rehabilitation Science, University of California, San Francisco, San Francisco, CA, United States; Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC, Australia
| | - Linda J Noble-Haeusslein
- Neurological Surgery and the Graduate Program in Physical Medicine & Rehabilitation Science, University of California, San Francisco, San Francisco, CA, United States
| | - Nicole D Osier
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shaun W Carlson
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - C Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Christopher C Giza
- Pediatric Neurology and Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States; UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
26
|
Kim DH, Choi BR, Jeon WK, Han JS. Impairment of intradimensional shift in an attentional set-shifting task in rats with chronic bilateral common carotid artery occlusion. Behav Brain Res 2015; 296:169-176. [PMID: 26365458 DOI: 10.1016/j.bbr.2015.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/25/2015] [Accepted: 09/07/2015] [Indexed: 01/08/2023]
Abstract
Studies of rats with chronic bilateral common carotid artery occlusion (BCCAo), an animal model for vascular dementia (VaD), have reported hippocampus-dependent memory impairment and associated neuropathologies. Patients with VaD also experience attentional shifting dysfunction. However, animal models of VaD have not been used to study attentional function. Therefore, the present study examined attentional function in rats with BCCAo, using attentional set-shifting task (ASST) that required rats to choose a food-baited pot from 2 possible pots. ASST included 6 consecutive sessions including simple discrimination, compound discrimination, intradimensional shifting, extradimensional shifting, and reversals. The BCCAo rats were significantly slower at learning the intradimensional set-shifting task compared to control rats. Previous studies have demonstrated that the cingulate cortex and medial prefrontal cortex are critical to intradimensional and extradimensional set-shifting, respectively. Additionally, inflammatory responses and neuronal dysfunction were observed in rats with chronic BCCAo. In addition, OX-6 positive microglia significantly increased in the forceps minor white matter of BCCAo rats, and glutamate decarboxylase signals co-localized with NeuN were reduced in the anterior cingulate cortex of BCCAo rats, compared to control rats. Impaired neuronal and GABAergic neuronal integrity in the anterior cingulate cortex, damage to white matter, and attentional impairments observed in BCCAo rats suggest dysfunction of brain structures that are associated with attentional impairments observed in patients with VaD.
Collapse
Affiliation(s)
- Dong-Hee Kim
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Bo-Ryoung Choi
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
27
|
Jett JD, Boley AM, Girotti M, Shah A, Lodge DJ, Morilak DA. Antidepressant-like cognitive and behavioral effects of acute ketamine administration associated with plasticity in the ventral hippocampus to medial prefrontal cortex pathway. Psychopharmacology (Berl) 2015; 232:3123-33. [PMID: 25986748 PMCID: PMC4536154 DOI: 10.1007/s00213-015-3957-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/05/2015] [Indexed: 12/14/2022]
Abstract
RATIONALE Acute low-dose administration of the N-methyl-D-aspartate (NMDA) receptor antagonist, ketamine, produces rapid and sustained antidepressant-like effects in humans and rodents. Recently, we found that the long-lasting effect of ketamine on the forced swim test requires ventral hippocampal (vHipp) activity at the time of drug administration. The medial prefrontal cortex (mPFC), a target of the vHipp dysregulated in depression, is important for cognitive flexibility and response strategy selection. Deficits in cognitive flexibility, the ability to modify thoughts and behaviors in response to changes in the environment, are associated with depression. We have shown that chronic stress impairs cognitive flexibility on the attentional set-shifting test (AST) and induces a shift from active to passive response strategies on the shock-probe defensive burying test (SPDB). OBJECTIVE In this study, we tested the effects of ketamine on chronic stress-induced changes in cognitive flexibility and coping behavior on the AST and SPDB, respectively. Subsequently, we investigated vHipp-mPFC plasticity as a potential mechanism of ketamine's therapeutic action. RESULTS Ketamine reversed deficits in cognitive flexibility and restored active coping behavior in chronically stressed rats. Further, high frequency stimulation in the vHipp replicated ketamine's antidepressant-like effects on the forced swim test and AST, but not on the SPDB. CONCLUSION These results show that ketamine restores cognitive flexibility and coping response strategy compromised by stress. Activity in the vHipp-mPFC pathway may represent a neural substrate for some of the antidepressant-like behavioral effects of ketamine, including cognitive flexibility, but other circuits may mediate the effects of ketamine on coping response strategy.
Collapse
Affiliation(s)
- Julianne D Jett
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX, 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
28
|
Heisler JM, Morales J, Donegan JJ, Jett JD, Redus L, O'Connor JC. The attentional set shifting task: a measure of cognitive flexibility in mice. J Vis Exp 2015. [PMID: 25741905 DOI: 10.3791/51944] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cognitive impairment, particularly involving dysfunction of circuitry within the prefrontal cortex (PFC), represents a core feature of many neuropsychiatric and neurodevelopmental disorders, including depression, post-traumatic stress disorder, schizophrenia and autism spectrum disorder. Deficits in cognitive function also represent the most difficult symptom domain to successfully treat, as serotonin reuptake inhibitors and tricyclic antidepressants have only modest effects. Functional neuroimaging studies and postmortem analysis of human brain tissue implicate the PFC as being a primary region of dysregulation in patients with these disorders. However, preclinical behavioral assays used to assess these deficits in mouse models which can be readily manipulated genetically and could provide the basis for studies of new treatment avenues have been underutilized. Here we describe the adaptation of a behavioral assay, the attentional set shifting task (AST), to be performed in mice to assess prefrontal cortex mediated cognitive deficits. The neural circuits underlying behavior during the AST are highly conserved across humans, nonhuman primates and rodents, providing excellent face, construct and predictive validity.
Collapse
Affiliation(s)
- Jillian M Heisler
- Department of Pharmacology, University of Texas Health Science Center at San Antonio
| | - Juan Morales
- Department of Pharmacology, University of Texas Health Science Center at San Antonio
| | - Jennifer J Donegan
- Department of Pharmacology, University of Texas Health Science Center at San Antonio
| | - Julianne D Jett
- Department of Pharmacology, University of Texas Health Science Center at San Antonio
| | - Laney Redus
- Department of Pharmacology, University of Texas Health Science Center at San Antonio
| | - Jason C O'Connor
- Department of Pharmacology, University of Texas Health Science Center at San Antonio; Audie L. Murphy VA Hospital, South Texas Veteran's Health Care System;
| |
Collapse
|
29
|
Szczurowska E, Mareš P. Different action of a specific NR2B/NMDA antagonist Ro 25-6981 on cortical evoked potentials and epileptic afterdischarges in immature rats. Brain Res Bull 2015; 111:1-8. [DOI: 10.1016/j.brainresbull.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 01/13/2023]
|
30
|
Ketamine administration during the second postnatal week induces enduring schizophrenia-like behavioral symptoms and reduces parvalbumin expression in the medial prefrontal cortex of adult mice. Behav Brain Res 2015; 282:165-75. [PMID: 25591475 DOI: 10.1016/j.bbr.2015.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/24/2014] [Accepted: 01/06/2015] [Indexed: 12/14/2022]
Abstract
Dysfunctions in the GABAergic system are considered a core feature of schizophrenia. Pharmacological blockade of NMDA receptors (NMDAR), or their genetic ablation in parvalbumin (PV)-expressing GABAergic interneurons can induce schizophrenia-like behavior in animals. NMDAR-mediated currents shape the maturation of GABAergic interneurons during a critical period of development, making transient blockade of NMDARs during this period an attractive model for the developmental changes that occur in the course of schizophrenia's pathophysiology. Here, we examined whether developmental administration of the non-competitive NMDAR antagonist ketamine results in persistent deficits in PFC-dependent behaviors in adult animals. Mice received injections of ketamine (30mg/kg) on postnatal days (PND) 7, 9 and 11, and then tested on a battery of behavioral experiments aimed to mimic major symptoms of schizophrenia in adulthood (between PND 90 and 120). Ketamine treatment reduced the number of cells that expressed PV in the PFC by ∼60% as previously described. Ketamine affected performance in an attentional set-shifting task, impairing the ability of the animals to perform an extradimensional shift to acquire a new strategy. Ketamine-treated animals showed deficits in latent inhibition, novel-object recognition and social novelty detection compared to their SAL-treated littermates. These deficits were not a result of generalized anxiety, as both groups performed comparably on an elevated plus maze. Ketamine treatment did not cause changes in amphetamine-induced hyperlocomotion that are often taken as measures for the positive-like symptoms of the disorder. Thus, ketamine administration during development appears to be a useful model for inducing cognitive and negative symptoms of schizophrenia.
Collapse
|
31
|
Walter M, Li S, Demenescu LR. Multistage drug effects of ketamine in the treatment of major depression. Eur Arch Psychiatry Clin Neurosci 2014; 264 Suppl 1:S55-65. [PMID: 25217177 DOI: 10.1007/s00406-014-0535-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 01/17/2023]
Abstract
A substantial number of patients diagnosed with major depression disorder show poor or no response to standard antidepressive drugs. Recent studies showed that ketamine promotes a rapid and sustained antidepressive effect in treatment-resistant depression. Importantly, after a single dose, such antidepressant action appears very fast, reaching maximum efficacy after 1-2 days before it slowly decays after 3-7 days. This temporal pattern is especially interesting since most effects are investigated following single, subanesthetic doses. This means that effects are observed at time points when the blood levels have long fallen below any active threshold. Mechanisms of action thus may be sought either in secondary or compensatory processes, which develop after acute systemic derangement or in molecular downstream mechanisms of action, which after initiation do not require the presence of active drug levels. We here review acute and delayed effects of subanesthetic ketamine infusion and discuss potential origins of antidepressant drug action. We will provide evidences that both acute effects on abnormal network configuration and delayed effects at the level of homeostatic synaptic plasticity may be necessary for antidepressant action. We further argue that such effects should be followed by a temporally well-defined exploitation of these transient changes by therapeutic processes, aiming at sustained changes of network configuration via psychotherapeutic or other methods.
Collapse
Affiliation(s)
- Martin Walter
- Clinical Affective Neuroimaging Laboratory (CANLAB), Otto-von-Guericke-University, ZENIT, Leipziger Str. 44, 39120, Magdeburg, Germany,
| | | | | |
Collapse
|
32
|
Marquardt K, Saha M, Mishina M, Young JW, Brigman JL. Loss of GluN2A-containing NMDA receptors impairs extra-dimensional set-shifting. GENES BRAIN AND BEHAVIOR 2014; 13:611-7. [PMID: 25059550 DOI: 10.1111/gbb.12156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/08/2014] [Accepted: 07/21/2014] [Indexed: 11/28/2022]
Abstract
Glutamate neurotransmission via the N-methyl-D-aspartate receptor (NMDAR) is thought to mediate the synaptic plasticity underlying learning and memory formation. There is increasing evidence that deficits in NMDAR function are involved in the pathophysiology of cognitive dysfunction seen in neuropsychiatric disorders and addiction. NMDAR subunits confer different physiological properties to the receptor, interact with distinct intracellular postsynaptic scaffolding and signaling molecules, and are differentially expressed during development. Despite these known differences, the relative contribution of individual subunit composition to synaptic plasticity and learning is not fully elucidated. We have previously shown that constitutive deletion of GluN2A subunit in the mouse impairs discrimination and re-learning phase of reversal when exemplars are complex picture stimuli, but spares acquisition and extinction of non-discriminative visually cued instrumental response. To investigate the role of GluN2A containing NMDARs in executive control, we tested GluN2A knockout (GluN2A(KO) ), heterozygous (GluN2A(HET) ) and wild-type (WT) littermates on an attentional set-shifting task using species-specific stimulus dimensions. To further explore the nature of deficits in this model, mice were tested on a visual discrimination reversal paradigm using simplified rotational stimuli. GluN2A(KO) were not impaired on discrimination or reversal problems when tactile or olfactory stimuli were used, or when visual stimuli were sufficiently easy to discriminate. GluN2A(KO) showed a specific and significant impairment in ventromedial prefrontal cortex-mediated set-shifting. Together these results support a role for GluN2A containing NMDAR in modulating executive control that can be masked by overlapping deficits in attentional processes during high task demands.
Collapse
Affiliation(s)
- K Marquardt
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | | | | | | |
Collapse
|
33
|
Bondi CO, Cheng JP, Tennant HM, Monaco CM, Kline AE. Old dog, new tricks: the attentional set-shifting test as a novel cognitive behavioral task after controlled cortical impact injury. J Neurotrauma 2014; 31:926-37. [PMID: 24397572 DOI: 10.1089/neu.2013.3295] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cognitive impairment associated with prefrontal cortical dysfunction is a major component of disability in traumatic brain injury (TBI) survivors. Specifically, deficits of cognitive flexibility and attentional set-shifting are present across all levels of injury severity. Though alterations in spatial learning have been extensively described in experimental models of TBI, studies investigating more complex cognitive deficits are relatively scarce. Hence, the aim of this preclinical study was to expand on this important issue by evaluating the effect of three injury levels on executive function and behavioral flexibility performance as assessed using an attentional set-shifting test (AST). Isoflurane-anesthetized male rats received a controlled cortical impact (CCI) injury (2.6, 2.8, and 3.0 mm cortical depth at 4 m/sec) or sham injury, whereas an additional group had no surgical manipulation (naïve). Four weeks postsurgery, rats were tested on the AST, which involved a series of discriminative tasks of increasing difficulty, such as simple and compound discriminations, stimulus reversals, and intra- and extradimensional (ED) shifts. TBI produced accompanying impact depth-dependent increases in cortical lesion volumes, with the 3.0-mm cortical depth group displaying significantly larger injury volumes than the 2.6-mm group (p=0.05). Further, injury severity-induced deficits in ED set-shifting and stimulus reversals, as well as increases in total response error rates and total set loss errors, were observed. These novel findings demonstrate executive function and behavioral flexibility deficits in our animal model of CCI injury and provide the impetus to integrate the AST in the standard neurotrauma behavioral battery to further evaluate cognitive dysfunction after TBI. Ongoing experiments in our laboratory are assessing AST performance after pharmacological and rehabilitative therapies post-TBI, as well as elucidating possible mechanisms underlying the observed neuropsychological deficits.
Collapse
Affiliation(s)
- Corina O Bondi
- 1 Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | | | | | | |
Collapse
|
34
|
Nikiforuk A, Popik P. Ketamine prevents stress-induced cognitive inflexibility in rats. Psychoneuroendocrinology 2014; 40:119-22. [PMID: 24485483 DOI: 10.1016/j.psyneuen.2013.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 10/26/2022]
Abstract
Chronic stress produces both morphological and functional alternations of the rat medial prefrontal cortex (mPFC). N-methyl-d-aspartic acid (NMDA) glutamate receptor inhibition may alleviate such stress-induced dendritic reorganization in the mPFC. However, it is unknown whether administration of a NMDAR antagonist would also prevent alterations in PFC-mediated cognitive functions. Here, we investigated whether administration of ketamine, the noncompetitive antagonist of NMDA receptors before each stress session would prevent cognitive impairments in a rat model of prefrontal cortex (PFC)-dependent attentional set-shifting task (ASST), a measure of cognitive flexibility. Repeated restraint stress (1h daily for 7 days) significantly and specifically impaired extra-dimensional (ED) set-shifting ability of rats. Pretreatment with ketamine (10mg/kg, IP) completely and specifically prevented this stress-induced cognitive inflexibility. The present study demonstrates procognitive efficacy of ketamine in an animal stress model, which confirms and extends the role of the NMDA receptors in mediating stress-evoked prefrontal dysfunctions.
Collapse
Affiliation(s)
- Agnieszka Nikiforuk
- Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
35
|
Blot K, Kimura SI, Bai J, Kemp A, Manahan-Vaughan D, Giros B, Tzavara E, Otani S. Modulation of Hippocampus-Prefrontal Cortex Synaptic Transmission and Disruption of Executive Cognitive Functions by MK-801. Cereb Cortex 2013; 25:1348-61. [DOI: 10.1093/cercor/bht329] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
36
|
Bissonette GB, Bae MH, Suresh T, Jaffe DE, Powell EM. Prefrontal cognitive deficits in mice with altered cerebral cortical GABAergic interneurons. Behav Brain Res 2013; 259:143-51. [PMID: 24211452 DOI: 10.1016/j.bbr.2013.10.051] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/25/2013] [Accepted: 10/30/2013] [Indexed: 12/26/2022]
Abstract
Alterations of inhibitory GABAergic neurons are implicated in multiple psychiatric and neurological disorders, including schizophrenia, autism and epilepsy. In particular, interneuron deficits in prefrontal areas, along with presumed decreased inhibition, have been reported in several human patients. The majority of forebrain GABAergic interneurons arise from a single subcortical source before migrating to their final regional destination. Factors that govern the interneuron populations have been identified, demonstrating that a single gene mutation may globally affect forebrain structures or a single area. In particular, mice lacking the urokinase plasminogen activator receptor (Plaur) gene have decreased GABAergic interneurons in frontal and parietal, but not caudal, cortical regions. Plaur assists in the activation of hepatocyte growth factor/scatter factor (HGF/SF), and several of the interneuron deficits are correlated with decreased levels of HGF/SF. In some cortical regions, the interneuron deficit can be remediated by endogenous overexpression of HGF/SF. In this study, we demonstrate decreased parvalbumin-expressing interneurons in the medial frontal cortex, but not in the hippocampus or basal lateral amygdala in the Plaur null mouse. The Plaur null mouse demonstrates impaired medial frontal cortical function in extinction of cued fear conditioning and the inability to form attentional sets. Endogenous HGF/SF overexpression increased the number of PV-expressing cells in medial frontal cortical areas to levels greater than found in wildtype mice, but did not remediate the behavioral deficits. These data suggest that proper medial frontal cortical function is dependent upon optimum levels of inhibition and that a deficit or excess of interneuron numbers impairs normal cognition.
Collapse
Affiliation(s)
- Gregory B Bissonette
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Mihyun H Bae
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tejas Suresh
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David E Jaffe
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Elizabeth M Powell
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
37
|
Temporally distinct cognitive effects following acute administration of ketamine and phencyclidine in the rat. Eur Neuropsychopharmacol 2013; 23:1414-22. [PMID: 23561394 DOI: 10.1016/j.euroneuro.2013.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/07/2013] [Accepted: 03/06/2013] [Indexed: 01/30/2023]
Abstract
Non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonists such as phencyclidine (PCP) and ketamine are commonly and interchangeably used to model aspects of schizophrenia in animals. We compared here the effects of acute administration of these compounds over a range of pre-treatment times in tests of instrumental responding (VI 30s response schedule), simple reaction time (SRT) and cognitive flexibility (reversal learning and attentional set shifting digging task) in rats. At standard pre-treatment times (15-30 min), both ketamine and PCP produced overall response suppression in VI 30 and increased reaction times in SRT suggesting that any concomitant cognitive performance deficits are likely to be confounded by motor and/or motivational changes. However, the use of extended pre-treatment times produced deficits in cognitive flexibility measured up to 4h after drug administration in the absence of motor/motivational impairment. Generally, PCP increased impulsive responding in the SRT indicating a possible loss of inhibitory response control that may have contributed to deficits observed in reversal learning and attentional set-shifting. In contrast to PCP, ketamine did not have the same effect on impulsive responding, and possibly as a consequence produced more subtle cognitive deficits in attentional set-shifting. In summary, acute treatment with NMDAR antagonists can produce cognitive deficits in rodents that are relevant to schizophrenia, provided that motor and/or motivational effects are allowed to dissipate. The use of longer pre-treatment times than commonly employed might be advantageous. Also, ketamine, which is more frequently used in clinical settings, did not produce as extensive cognitive deficits as PCP.
Collapse
|
38
|
Hou Y, Zhang H, Xie G, Cao X, Zhao Y, Liu Y, Mao Z, Yang J, Wu C. Neuronal injury, but not microglia activation, is associated with ketamine-induced experimental schizophrenic model in mice. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45:107-16. [PMID: 23603358 DOI: 10.1016/j.pnpbp.2013.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/21/2013] [Accepted: 04/03/2013] [Indexed: 01/08/2023]
Abstract
Schizophrenia is a chronic debilitating psychiatric disorder affecting as many as 1% of the population worldwide. Unfortunately, its etiology and pathophysiology are poorly defined. Previous studies have shown that neuronal injury and microglia activation were observed in the schizophrenic patients. The present study aims to evaluate the role of neurons and microglia in ketamine-induced experimental schizophrenic model to further understand its pathophysiology. Firstly, ketamine was used to simulate the behavior abnormalities associated with schizophrenia. The effects of ketamine on mouse locomotor activity, Y-maze task, novel object recognition, and forced swimming test were studied. The results showed that ketamine (25, 50, and 100mg/kg i.p.) administered acutely or repeatedly (for 7 days) can increase the locomotor number significantly. In Y-maze task, ketamine (25, 50, and 100mg/kg) impaired spontaneous alternation after both acute and repeated treatments. In novel object recognition test, acute or chronic ketamine treatment showed no significant effect on mouse exploratory preference behavior. In forced swimming test, repeated treatment of ketamine (100mg/kg) enhanced the immobility duration. Secondly, immunohistochemical method was used to study the changes of neurons and microglia. The results showed that acute treatment of ketamine (100mg/kg) had no effect on neurons in the prefrontal cortex or hippocampus (1, 3, 5, and 7 days after the treatment). In contrast, repeated treatment of ketamine caused neuronal impairment in mouse hippocampus (3rd day, 5th day and 7th day after the final administration). The results of immunohistochemistry demonstrated that microglia in the prefrontal cortex and hippocampus were not affected after acute or repeated administration of ketamine. Finally, the neuronal impairment caused by repeated administration of ketamine was further investigated from the oxidative stress aspects. The results showed that repeated administration of ketamine increased nitric oxide (NO) and nitric oxide synthase (NOS) in prefrontal cortex, hippocampus and serum, while decreased SOD in hippocampus and serum. In summary, chronic ketamine treatment to mice successfully mimics the core behavioral deficits in schizophrenia. It is demonstrated for the first time that neuronal injury was associated with the chronic ketamine-induced experimental schizophrenic model, while microglial cells may play little role in this model. Oxidative stress may contribute to the significant neuronal injury in mouse brain induced by chronic ketamine treatment.
Collapse
Affiliation(s)
- Yue Hou
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Brigman JL, Daut R, Wright T, Gunduz-Cinar O, Graybeal C, Davis MI, Jiang Z, Saksida L, Jinde S, Pease M, Bussey TJ, Lovinger DM, Nakazawa K, Holmes A. GluN2B in corticostriatal circuits governs choice learning and choice shifting. Nat Neurosci 2013; 16:1101-10. [PMID: 23831965 PMCID: PMC3725191 DOI: 10.1038/nn.3457] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/31/2013] [Indexed: 12/11/2022]
Abstract
A choice that reliably produces a preferred outcome can be automated to liberate cognitive resources for other tasks. Should an outcome become less desirable, behavior must adapt in parallel or it becomes perseverative. Corticostriatal systems are known to mediate choice learning and flexibility, but the molecular mechanisms of these processes are not well understood. We integrated mouse behavioral, immunocytochemical, in vivo electrophysiological, genetic and pharmacological approaches to study choice. We found that the dorsal striatum (DS) was increasingly activated with choice learning, whereas reversal of learned choice engaged prefrontal regions. In vivo, DS neurons showed activity associated with reward anticipation and receipt that emerged with learning and relearning. Corticostriatal or striatal deletion of Grin2b (encoding the NMDA-type glutamate receptor subunit GluN2B) or DS-restricted GluN2B antagonism impaired choice learning, whereas cortical Grin2b deletion or OFC GluN2B antagonism impaired shifting. Our convergent data demonstrate how corticostriatal GluN2B circuits govern the ability to learn and shift choice behavior.
Collapse
MESH Headings
- Adaptation, Psychological/physiology
- Animals
- Anticipation, Psychological/physiology
- Choice Behavior/physiology
- Conditioning, Operant/physiology
- Corpus Striatum/physiology
- Decision Making/physiology
- Discrimination Learning/physiology
- Excitatory Amino Acid Antagonists/pharmacology
- Gene Deletion
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Nerve Net/physiology
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neuronal Plasticity
- Patch-Clamp Techniques
- Pattern Recognition, Visual/physiology
- Phenols/pharmacology
- Piperidines/pharmacology
- Prefrontal Cortex/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/deficiency
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/physiology
- Reward
Collapse
Affiliation(s)
- Jonathan L. Brigman
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), NIH
| | - Rachel Daut
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), NIH
| | - Tara Wright
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), NIH
| | - Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), NIH
| | - Carolyn Graybeal
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), NIH
| | | | - Zhihong Jiang
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, NIH
| | - Lisa Saksida
- Department of Experimental Psychology, University of Cambridge, Cambridge, Medical Research Council and Wellcome Trust Behavioral and Clinical Neuroscience Institute, UK
| | - Seiichiro Jinde
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, NIH
| | - Matthew Pease
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), NIH
| | - Timothy J. Bussey
- Department of Experimental Psychology, University of Cambridge, Cambridge, Medical Research Council and Wellcome Trust Behavioral and Clinical Neuroscience Institute, UK
| | | | - Kazu Nakazawa
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, NIH
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), NIH
| |
Collapse
|
40
|
Morris MJ, Mahgoub M, Na ES, Pranav H, Monteggia LM. Loss of histone deacetylase 2 improves working memory and accelerates extinction learning. J Neurosci 2013; 33:6401-11. [PMID: 23575838 PMCID: PMC3773986 DOI: 10.1523/jneurosci.1001-12.2013] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 02/21/2013] [Accepted: 02/26/2013] [Indexed: 01/08/2023] Open
Abstract
Histone acetylation and deacetylation can be dynamically regulated in response to environmental stimuli and play important roles in learning and memory. Pharmacological inhibition of histone deacetylases (HDACs) improves performance in learning tasks; however, many of these classical agents are "pan-HDAC" inhibitors, and their use makes it difficult to determine the roles of specific HDACs in cognitive function. We took a genetic approach using mice lacking the class I HDACs, HDAC1 or HDAC2, in postmitotic forebrain neurons to investigate the specificity or functional redundancy of these HDACs in learning and synaptic plasticity. We show that selective knock-out of Hdac2 led to a robust acceleration of the extinction rate of conditioned fear responses and a conditioned taste aversion as well as enhanced performance in an attentional set-shifting task. Hdac2 knock-out had no impact on episodic memory or motor learning, suggesting that the effects are task-dependent, with the predominant impact of HDAC2 inhibition being an enhancement in an animal's ability to rapidly adapt its behavioral strategy as a result of changes in associative contingencies. Our results demonstrate that the loss of HDAC2 improves associative learning, with no effect in nonassociative learning tasks, suggesting a specific role for HDAC2 in particular types of learning. HDAC2 may be an intriguing target for cognitive and psychiatric disorders that are characterized by an inability to inhibit behavioral responsiveness to maladaptive or no longer relevant associations.
Collapse
Affiliation(s)
- Michael J. Morris
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070
| | - Melissa Mahgoub
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070
| | - Elisa S. Na
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070
| | - Heena Pranav
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070
| | - Lisa M. Monteggia
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070
| |
Collapse
|
41
|
Huang YJ, Lin CH, Lane HY, Tsai GE. NMDA Neurotransmission Dysfunction in Behavioral and Psychological Symptoms of Alzheimer's Disease. Curr Neuropharmacol 2012; 10:272-285. [PMID: 23450042 PMCID: PMC3468881 DOI: 10.2174/157015912803217288] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/04/2012] [Accepted: 07/09/2012] [Indexed: 01/06/2023] Open
Abstract
Dementia has become an all-important disease because the population is aging rapidly and the cost of health care associated with dementia is ever increasing. In addition to cognitive function impairment, associated behavioral and psychological symptoms of dementia (BPSD) worsen patient's quality of life and increase caregiver's burden. Alzheimer's disease is the most common type of dementia and both behavioral disturbance and cognitive impairment of Alzheimer's disease are thought to be associated with the N-methyl-D-aspartate (NMDA) dysfunction as increasing evidence of dysfunctional glutamatergic neurotransmission had been reported in behavioral changes and cognitive decline in Alzheimer's disease. We review the literature regarding dementia (especially Alzheimer's disease), BPSD and relevant findings on glutamatergic and NMDA neurotransmission, including the effects of memantine, a NMDA receptor antagonist, and NMDA-enhancing agents, such as D-serine and D-cycloserine. Literatures suggest that behavioral disturbance and cognitive impairment of Alzheimer's disease may be associated with excitatory neurotoxic effects which result in impairment of neuronal plasticity and degenerative processes. Memantine shows benefits in improving cognition, function, agitation/aggression and delusion in Alzheimer's disease. On the other hand, some NMDA modulators which enhance NMDA function through the co-agonist binding site can also improve cognitive function and psychotic symptoms. We propose that modulating NMDA neurotransmission is effective in treating behavioral and psychological symptoms of Alzheimer's disease. Prospective study using NMDA enhancers in patients with Alzheimer's disease and associated behavioral disturbance is needed to verify this hypothesis.
Collapse
Affiliation(s)
- Yu-Jhen Huang
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Chieh-Hsin Lin
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital – Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsien-Yuan Lane
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Guochuan E Tsai
- Department of Psychiatry, Harbor-UCLA Medical Center, Torrance, California, and Los Angeles Biomedical Research Institute
| |
Collapse
|
42
|
Badanich KA, Becker HC, Woodward JJ. Effects of chronic intermittent ethanol exposure on orbitofrontal and medial prefrontal cortex-dependent behaviors in mice. Behav Neurosci 2012; 125:879-91. [PMID: 22122149 DOI: 10.1037/a0025922] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In humans, stroke or trauma-induced damage to the orbitofrontal cortex (OFC) or medial prefrontal cortex (mPFC) results in impaired cognitive flexibility. Alcoholics also exhibit similar deficits in cognitive flexibility, suggesting that the OFC and mPFC are susceptible to alcohol-induced dysfunction. The present experiments investigated this issue using an attention set-shifting assay in ethanol dependent adult male C57BL/6J mice. Ethanol dependence was induced by exposing mice to repeated cycles of chronic intermittent ethanol (CIE) vapor inhalation. Behavioral testing was conducted 72 hours or 10 days following CIE exposure to determine whether ethanol-induced changes in OFC-dependent (reversal learning) and mPFC-dependent (set-shifting) behaviors are long lasting. During early ethanol abstinence (72 hrs), CIE mice showed reduced reversal learning performance as compared to controls. Reversal learning deficits were revealed as greater number of trials to criterion, more errors made, and a greater difficulty in performing a reversal learning task relative to baseline performance. Furthermore, the magnitude of the impairment was greater during reversal of a simple discrimination rather than reversal of an intra-dimensional shift. Reversal learning deficits were no longer present when mice were tested 10 days after CIE exposure, suggesting that ethanol-induced changes in OFC function can recover. Unexpectedly, performance on the set-shifting task was not impaired during abstinence from ethanol. These data suggest reversal learning, but not attention set-shifting, is transiently disrupted during short-term abstinence from CIE. Given that reversal learning requires an intact OFC, these findings support the idea that the OFC may be vulnerable to the cognitive impairing actions of ethanol.
Collapse
Affiliation(s)
- Kimberly A Badanich
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
43
|
Bissonette GB, Lande MD, Martins GJ, Powell EM. Versatility of the mouse reversal/set-shifting test: effects of topiramate and sex. Physiol Behav 2012; 107:781-6. [PMID: 22677721 DOI: 10.1016/j.physbeh.2012.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/19/2012] [Accepted: 05/21/2012] [Indexed: 11/19/2022]
Abstract
The ability to learn a rule to guide behavior is crucial for cognition and executive function. However, in a constantly changing environment, flexibility in terms of learning and changing rules is paramount. Research suggests there may be common underlying causes for the similar rule learning impairments observed in many psychiatric disorders. One of these common anatomical manifestations involves deficits to the GABAergic system, particularly in the frontal cerebral cortical regions. Many common anti-epileptic drugs and mood stabilizers activate the GABA system with the reported adverse side effects of cognitive dysfunction. The mouse reversal/set-shifting test was used to evaluate effects in mice given topiramate, which is reported to impair attention in humans. Here we report that in mice topiramate prevents formation of the attentional set, but does not alter reversal learning. Differences in the GABA system are also found in many neuropsychiatric disorders that are more common in males, including schizophrenia and autism. Initial findings with the reversal/set-shifting task excluded female subjects. In this study, female mice tested on the standard reversal/set-shifting task showed similar reversal learning, but were not able to form the attentional set. The behavioral paradigm was modified and when presented with sufficient discrimination tasks, female mice performed the same as male mice, requiring the same number of trials to reach criterion and form the attentional set. The notable difference was that female mice had an extended latency to complete the trials for all discriminations. In summary, the reversal/set-shifting test can be used to screen for cognitive effects of potential therapeutic compounds in both male and female mice.
Collapse
Affiliation(s)
- Gregory B Bissonette
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
44
|
Bissonette GB, Powell EM. Reversal learning and attentional set-shifting in mice. Neuropharmacology 2012; 62:1168-74. [PMID: 21439304 PMCID: PMC3130808 DOI: 10.1016/j.neuropharm.2011.03.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 11/16/2022]
Abstract
Schizophrenia is a complex developmental disorder that presents challenges to modern neuroscience in terms of discovering etiology and aiding in effective treatment of afflicted humans. One approach is to divide the constellation of symptoms of human neuropsychiatric disorders into discrete units for study. Multiple animal models are used to study brain ontogeny, response to psychoactive compounds, substrates of defined behaviors. Frontal cortical areas have been found to have abnormal anatomy and neurotransmitter levels in postmortem brains from schizophrenic patients. The mouse model has the advantage of rather straightforward genetic manipulation and offers numerous genetic variations within the same species. However, until recently, the behavioral analyses in the mice lagged behind the primate and rat, especially with respect to testing of frontal cortical regions. Current reports of mouse prefrontal anatomy and function advocate the mouse as a feasible animal model to study prefrontal cortical function. This review highlights the most recent developments from behavioral paradigms for testing orbital and medial prefrontal cortical function in pharmacological and genetic models of human schizophrenia.
Collapse
Affiliation(s)
- Gregory B. Bissonette
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland, Baltimore, MD, USA
| | - Elizabeth M. Powell
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, University of Maryland, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
45
|
Graybeal C, Kiselycznyk C, Holmes A. Stress-induced impairments in prefrontal-mediated behaviors and the role of the N-methyl-D-aspartate receptor. Neuroscience 2012; 211:28-38. [PMID: 22414923 DOI: 10.1016/j.neuroscience.2012.02.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 12/31/2022]
Abstract
The prefrontal cortex (PFC) mediates higher-order cognitive and executive functions that subserve various complex, adaptable behaviors, such as cognitive flexibility, attention, and working memory. Deficits in these functions typify multiple neuropsychiatric disorders that are caused or exacerbated by exposure to psychological stress. Here we review recent evidence examining the effects of stress on executive and cognitive functions in rodents and discuss an emerging body of evidence that implicates the N-methyl-D-aspartate receptor (NMDAR) as a potentially critical molecular mechanism mediating these effects. Future work in this area could open up new avenues for developing pharmacotherapies for ameliorating cognitive dysfunction in neuropsychiatric disease.
Collapse
Affiliation(s)
- C Graybeal
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892-9304, USA.
| | | | | |
Collapse
|
46
|
Nikiforuk A, Popik P. Effects of quetiapine and sertindole on subchronic ketamine-induced deficits in attentional set-shifting in rats. Psychopharmacology (Berl) 2012; 220:65-74. [PMID: 21918808 PMCID: PMC3276756 DOI: 10.1007/s00213-011-2487-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/10/2011] [Indexed: 01/13/2023]
Abstract
RATIONALE Prefrontal cortical dysfunctions, including an impaired ability to shift perceptual attentional set, are core features of schizophrenia. Nevertheless, the effectiveness of second-generation antipsychotic drugs in treating specific prefrontal dysfunctions remains equivocal. OBJECTIVES To model schizophrenia-like cognitive inflexibility in rats, we evaluated the effects of repeated administration of ketamine, the noncompetitive antagonist of the N-methyl-D: -aspartate receptor, after a washout period of 14 days in the attentional set-shifting task (ASST). Next, we investigated whether the atypical antipsychotics quetiapine and sertindole would alleviate the ketamine-induced set-shifting impairment. METHODS Ketamine (30 mg/kg) was administered intraperitoneally to rats once daily for 5 or 10 consecutive days to assess its efficacy in producing cognitive impairment. The ASST was performed 14 days following the final drug administration. Quetiapine (0.63, 1.25 or 2.5 mg/kg) or sertindole (2.5 mg/kg) was administered per os 120 min before testing. RESULTS The results of the present study demonstrate that ketamine treatment for 10 but not 5 days significantly and specifically impaired rats' performance in the extra-dimensional shift (EDs) stage of the ASST. This cognitive inflexibility was reversed by acute administration of sertindole or quetiapine. Quetiapine also promoted set-shifting in cognitively unimpaired control animals. CONCLUSION The data presented here show that subchronic administration of ketamine induces cognitive inflexibility after a washout period. This cognitive deficit likely reflects clinically relevant aspects of cognitive dysfunction encountered in schizophrenic patients. The beneficial effects of quetiapine on set-shifting may have therapeutic implications for the treatment of schizophrenia and other disorders associated with frontal-dependent cognitive impairments.
Collapse
Affiliation(s)
- Agnieszka Nikiforuk
- Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland.
| | | |
Collapse
|
47
|
Jocoy EL, André VM, Cummings DM, Rao SP, Wu N, Ramsey AJ, Caron MG, Cepeda C, Levine MS. Dissecting the contribution of individual receptor subunits to the enhancement of N-methyl-d-aspartate currents by dopamine D1 receptor activation in striatum. Front Syst Neurosci 2011; 5:28. [PMID: 21617735 PMCID: PMC3095815 DOI: 10.3389/fnsys.2011.00028] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 04/28/2011] [Indexed: 11/13/2022] Open
Abstract
Dopamine, via activation of D1 receptors, enhances N-methyl-d-aspartate (NMDA) receptor-mediated responses in striatal medium-sized spiny neurons. However, the role of specific NMDA receptor subunits in this enhancement remains unknown. Here we used genetic and pharmacological tools to dissect the contribution of NR1 and NR2A/B subunits to NMDA responses and their modulation by dopamine receptors. We demonstrate that D1 enhancement of NMDA responses does not occur or is significantly reduced in mice with genetic knock-down of NR1 subunits, indicating a critical role of these subunits. Interestingly, spontaneous and evoked α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA) receptor-mediated responses were significantly enhanced in NR1 knock-down animals, probably as a compensatory mechanism for the marked reduction in NMDA receptor function. The NMDA receptor subunits NR2A and NR2B played differential roles in D1 modulation. Whereas genetic deletion or pharmacological blockade of NR2A subunits enhanced D1 potentiation of NMDA responses, blockade of NR2B subunits reduced this potentiation, suggesting that these regulatory subunits of the NMDA receptor counterbalance their respective functions. In addition, using D1 and D2 receptor EGFP-expressing mice, we demonstrate that NR2A subunits contribute more to NMDA responses in D1-MSSNs, whereas NR2B subunits contribute more to NMDA responses in D2 cells. The differential contribution of discrete receptor subunits to NMDA responses and dopamine modulation in the striatum has important implications for synaptic plasticity and selective neuronal vulnerability in disease states.
Collapse
Affiliation(s)
- Emily L Jocoy
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|