1
|
Jiang L, Han X, Wang Y, Ding W, Sun Y, Zhou Y, Lin F. Anterior and posterior cerebral white matter show different patterns of microstructural alterations in young adult smokers. Brain Imaging Behav 2025; 19:195-203. [PMID: 39715889 DOI: 10.1007/s11682-024-00963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Neuroimaging studies revealed that smoking is associated with abnormal white matter (WM) microstructure. However, results are controversial, and the impact of smoking on the WM integrity in young smokers is still unclear. In this study, we used diffusion tensor imaging to investigate the smoking-related WM alterations in young adult smokers. One hundred and twenty-six subjects (60 current smokers and 66 nonsmokers) aged 18-29 years participated in the study. The tract-based spatial statistics with multiple diffusion indices was applied to explore diffusivity patterns associated with smoking. Correlation analysis was performed to evaluate relationships between fractional anisotropy (FA) and smoking-related variables in young adult smokers. Compared with nonsmokers, young adult smokers showed higher FA dominantly in the anterior cerebral WM regions, while lower FA mainly in the posterior cerebral WM areas. The dominant diffusivity pattern for regions with larger FA was characterized by lower radial and axial diffusion (Dr and Da), while in areas with smaller FA, higher Dr without significant difference in Da was the main diffusivity pattern. Moreover, diffusion indices in the genu and body of the corpus callosum were related with smoking-related variables. Our findings indicate that smoking may have differential effects on the WM integrity in the anterior and posterior parts of the brain, and may also accelerate brain aging in young adult smokers.
Collapse
Affiliation(s)
- Lei Jiang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xu Han
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P.R. China
| | - Yao Wang
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P.R. China
| | - Weina Ding
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P.R. China
| | - Yawen Sun
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P.R. China
| | - Yan Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P.R. China.
| | - Fuchun Lin
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
2
|
Francis AN, Sebille S, Whitfield-Gabrieli S, Camprodon JA. Multimodal 7T imaging reveals enhanced functional coupling between salience and frontoparietal networks in young adult tobacco cigarette smokers. Brain Imaging Behav 2024; 18:913-921. [PMID: 38639847 DOI: 10.1007/s11682-024-00882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
Tobacco cigarette smoking is associated with disrupted brain network dynamics in resting brain networks including the Salience (SN) and Fronto parietal (FPN). Unified multimodal methods [Resting state connectivity analysis, Diffusion Tensor Imaging (DTI), neurite orientation dispersion and density imaging (NODDI), and cortical thickness analysis] were employed to test the hypothesis that the impact of cigarette smoking on the balance among these networks is due to alterations in white matter connectivity, microstructural architecture, functional connectivity and cortical thickness (CT) and that these metrics define fundamental differences between people who smoke and nonsmokers. Multimodal analyses of previously collected 7 Tesla MRI data via the Human Connectome Project were performed on 22 people who smoke (average number of daily cigarettes was 10 ± 5) and 22 age- and sex-matched nonsmoking controls. First, functional connectivity analysis was used to examine SN-FPN-DMN interactions between people who smoke and nonsmokers. The anatomy of these networks was then assessed using DTI and CT analyses while microstructural architecture of WM was analyzed using the NODDI toolbox. Seed-based connectivity analysis revealed significantly enhanced within network [p = 0.001 FDR corrected] and between network functional coupling of the salience and R-frontoparietal networks in people who smoke [p = 0.004 FDR corrected]. The network connectivity was lateralized to the right hemisphere. Whole brain diffusion analysis revealed no significant differences between people who smoke and nonsmokers in Fractional Anisotropy, Mean diffusivity and in neurite orienting and density. There were also no significant differences in CT in the hubs of these networks. Our results demonstrate that tobacco cigarette smoking is associated with enhanced functional connectivity, but anatomy is largely intact in young adults. Whether this enhanced connectivity is pre-existing, transient or permanent is not known. The observed enhanced connectivity in resting state networks may contribute to the maintenance of smoking frequency.
Collapse
Affiliation(s)
- Alan N Francis
- Department of Neuroscience, University of Texas, Rio Grande Valley, Edinburg, TX, USA.
| | - Sophie Sebille
- Department of Neuroscience GHU Paris Psychiatrie et Neurosciences, Paris, France
| | | | - Joan A Camprodon
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
3
|
Li X, Ramos-Rolón AP, Kass G, Pereira-Rufino LS, Shifman N, Shi Z, Volkow ND, Wiers CE. Imaging neuroinflammation in individuals with substance use disorders. J Clin Invest 2024; 134:e172884. [PMID: 38828729 PMCID: PMC11142750 DOI: 10.1172/jci172884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Increasing evidence suggests a role of neuroinflammation in substance use disorders (SUDs). This Review presents findings from neuroimaging studies assessing brain markers of inflammation in vivo in individuals with SUDs. Most studies investigated the translocator protein 18 kDa (TSPO) using PET; neuroimmune markers myo-inositol, choline-containing compounds, and N-acetyl aspartate using magnetic resonance spectroscopy; and fractional anisotropy using MRI. Study findings have contributed to a greater understanding of neuroimmune function in the pathophysiology of SUDs, including its temporal dynamics (i.e., acute versus chronic substance use) and new targets for SUD treatment.
Collapse
Affiliation(s)
- Xinyi Li
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Astrid P. Ramos-Rolón
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Gabriel Kass
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Lais S. Pereira-Rufino
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Naomi Shifman
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Zhenhao Shi
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Corinde E. Wiers
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Won J, Maillard P, Shan K, Ashley J, Cardim D, Zhu DC, Zhang R. Association of Blood Pressure With Brain White Matter Microstructural Integrity Assessed With MRI Diffusion Tensor Imaging in Healthy Young Adults. Hypertension 2024; 81:1145-1155. [PMID: 38487873 PMCID: PMC11023804 DOI: 10.1161/hypertensionaha.123.22337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND High blood pressure (BP) in middle-aged and older adults is associated with a brain white matter (WM) microstructural abnormality. However, little evidence is available in healthy young adults. We investigated the associations between high BP and WM microstructural integrity in young adults. METHODS This study included 1015 healthy young adults (542 women, 22-37 years) from the Human Connectome Project. Brachial systolic and diastolic BP were measured using a semiautomatic or manual sphygmomanometer. Diffusion-weighted magnetic resonance imaging was acquired to obtain diffusion tensor imaging metrics of free water (FW) content, FW-corrected WM fractional anisotropy, axial diffusivity, radial diffusivity, and mean diffusivity. Using whole-brain voxel-wise linear regression models and ANCOVA, we examined associations of BP and hypertension stage with diffusion tensor imaging metrics after adjusting for age, sex, education, body mass index, smoking status, alcohol consumption history, and differences in the b value used for diffusion magnetic resonance imaging. RESULTS Systolic and diastolic BP of the sample (mean±SD) were 122.8±13.0 and 76.0±9.9 mm Hg, respectively. Associations of BP with diffusion tensor imaging metrics revealed regional heterogeneity for FW-corrected fractional anisotropy. High BP and high hypertension stage were associated with higher FW and lower FW-corrected axial diffusivity, FW-corrected radial diffusivity, and FW-corrected mean diffusivity. Moreover, associations of high diastolic BP and hypertension stage with high FW were found only in men not in women. CONCLUSIONS High BP in young adults is associated with altered brain WM microstructural integrity, suggesting that high BP may have damaging effects on brain WM microstructural integrity in early adulthood, particularly in men.
Collapse
Affiliation(s)
- Junyeon Won
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Pauline Maillard
- Department of Neurology, University of California, Davis, CA, USA
| | - Kevin Shan
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - John Ashley
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Danilo Cardim
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - David C. Zhu
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
5
|
Wallace AL, Courtney KE, Wade NE, Hatz LE, Baca R, Jacobson A, Liu TT, Jacobus J. Neurite Orientation Dispersion and Density Imaging (NODDI) of Brain Microstructure in Adolescent Cannabis and Nicotine Use. Behav Sci (Basel) 2024; 14:231. [PMID: 38540534 PMCID: PMC10968201 DOI: 10.3390/bs14030231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
INTRODUCTION Despite evidence suggesting deleterious effects of cannabis and nicotine tobacco product (NTP) use on white matter integrity, there have been limited studies examining white matter integrity among users of both cannabis and nicotine. Further, updated white matter methodology provides opportunities to investigate use patterns on neurite orientation dispersion and density (NODDI) indices and subtle tissue changes related to the intra- and extra-neurite compartment. We aimed to investigate how cannabis and NTP use among adolescents and young adults interacts to impact the white matter integrity microstructure. MATERIALS AND METHODS A total of 221 participants between the ages of 16 and 22 completed the Customary Drinking and Drug Use Record (CDDR) to measure substance use, and underwent a magnetic resonance imaging (MRI) session. Participants were divided into NTP-control and NTP groupings and cannabis-control and cannabis groupings (≥26 NTP/cannabis uses in past 6 months). Tract-Based Spatial Statistics (TBSS) and two-way between-subjects ANOVA investigated the effects of NTP use group, cannabis use group, and their interaction on fractional anisotropy (FA) and NODDI indices while controlling for age and biological sex. RESULTS NTP use was associated with decreased FA values and increased orientation dispersion in the left anterior capsule. There were no significant effects of cannabis use or the interaction of NTP and cannabis use on white matter outcomes. DISCUSSION NTP use was associated with altered white matter integrity in an adolescent and young adult sample. Findings suggest that NTP-associated alterations may be linked to altered fiber tract geometry and dispersed neurite structures versus myelination, as well as differential effects of NTP and cannabis use on white matter structure. Future work is needed to investigate how altered white matter is related to downstream behavioral effects from NTP use.
Collapse
Affiliation(s)
- Alexander L Wallace
- Psychiatry Department, University of California San Diego, La Jolla, CA 92093, USA; (A.L.W.)
| | - Kelly E. Courtney
- Psychiatry Department, University of California San Diego, La Jolla, CA 92093, USA; (A.L.W.)
| | - Natasha E. Wade
- Psychiatry Department, University of California San Diego, La Jolla, CA 92093, USA; (A.L.W.)
| | - Laura E. Hatz
- Psychiatry Department, University of California San Diego, La Jolla, CA 92093, USA; (A.L.W.)
| | - Rachel Baca
- Psychiatry Department, University of California San Diego, La Jolla, CA 92093, USA; (A.L.W.)
| | - Aaron Jacobson
- Center for Functional MRI and Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Thomas T. Liu
- Center for Functional MRI and Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Joanna Jacobus
- Psychiatry Department, University of California San Diego, La Jolla, CA 92093, USA; (A.L.W.)
| |
Collapse
|
6
|
Porcu M, Cocco L, Marrosu F, Cau R, Suri JS, Qi Y, Pineda V, Bosin A, Malloci G, Ruggerone P, Puig J, Saba L. Impact of corpus callosum integrity on functional interhemispheric connectivity and cognition in healthy subjects. Brain Imaging Behav 2024; 18:141-158. [PMID: 37955809 DOI: 10.1007/s11682-023-00814-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 11/14/2023]
Abstract
To examine the corpus callosum's (CC) integrity in terms of fractional anisotropy (FA) and how it affects resting-state hemispheric connectivity (rs-IHC) and cognitive function in healthy individuals. Sixty-eight healthy individuals were recruited for the study. The global FA (gFA) and FA values of each CC tract (forceps minor, body, tapetum, and forceps major) were evaluated using diffusion-weighted imaging (DWI) sequences. The homotopic functional connectivity technique was used to quantify the effects of FA in the CC tracts on bilateral functional connectivity, including the confounding effect of gFA. Brain regions with higher or lower rs-IHC were identified using the threshold-free cluster enhancement family-wise error-corrected p-value of 0.05. The null hypothesis was rejected if the p-value was ≤ 0.05 for the nonparametric partial correlation technique. Several clusters of increased rs-IHC were identified in relation to the FA of individual CC tracts, each with a unique topographic distribution and extension. Only forceps minor FA values correlated with cognitive scores. The integrity of CC influences rs-IHC differently in healthy subjects. Specifically, forceps minor anisotropy impacts rs-IHC and cognition more than other CC tracts do.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy.
- Department of Medical Imaging, Azienda Ospedaliera Universitaria di Cagliari, S.S: 554, Km 4,500 - CAP, Monserrato, 09042, Cagliari, Italy.
| | - Luigi Cocco
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Yang Qi
- Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China
| | - Victor Pineda
- Department of Medical Sciences, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Andrea Bosin
- Department of Physics, University of Cagliari, Cagliari, Italy
| | | | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Cagliari, Italy
| | - Josep Puig
- Department of Medical Sciences, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| |
Collapse
|
7
|
Porcu M, Cocco L, Cau R, Suri JS, Mannelli L, Manchia M, Puig J, Qi Y, Saba L. Correlation of Cognitive Reappraisal and the Microstructural Properties of the Forceps Minor: A Deductive Exploratory Diffusion Tensor Imaging Study. Brain Topogr 2024; 37:63-74. [PMID: 38062326 DOI: 10.1007/s10548-023-01020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/29/2023] [Indexed: 01/07/2024]
Abstract
Cognitive reappraisal (CR) is a mechanism for emotion regulation, and the prefrontal cortex (PFC) plays a central role in the regulation of emotions. We tested the hypothesis of an association between CR function and microstructural properties of forceps minor (a commissural bundle within the PFC) in healthy subjects (HS). We analyzed a population of 65 young HS of a public dataset. The diffusion tensor imaging (DTI) sequence of every subject was analyzed to extract the derived shape (diameter and volume) and DTI metrics in terms of fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) of the forceps minor. The CR subscale of the German version of the Emotion Regulation Questionnaire (ERQ) was used for CR assessment. The Shapiro-Wilk test was applied to test the assumption of normality in all these parameters, adopting a statistical threshold at p < 0.05. Whenever appropriate a non-parametric two-tailed partial correlation analysis was applied to test for correlations between the CR ERQ score and the derived shape and DTI metrics, including age and sex as confounders, adopting a statistical threshold at p < 0.05. The non-parametric two-tailed partial correlation analysis revealed a mildly significant correlation with FA (ρ = 0.303; p = 0.016), a weakly significant negative correlation with MD (ρ = - 0.269; p = 0.033), and a mildly significant negative correlation with RD (ρ = - 0.305; p = 0.015). These findings suggest a correlation between DTI microstructural properties of forceps minor and CR.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy.
- Department of Medical Imaging, Azienda Ospedaliera Universitaria di Cagliari, S.S: 554, Km 4,500, Monserrato, 09042, Cagliari, Italy.
| | - Luigi Cocco
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | | | - Mirko Manchia
- Unit of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Josep Puig
- Department of Radiology (IDI) and Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Yang Qi
- Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China
| | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| |
Collapse
|
8
|
Li Y, Wang Z, Lai S, Li M, Liang H, Qin H, Wang K. Reversible splenial lesion syndrome type II in youth mimicking acute ischemic stroke like onset: A case report. Medicine (Baltimore) 2023; 102:e34568. [PMID: 37543791 PMCID: PMC10403037 DOI: 10.1097/md.0000000000034568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/13/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Reversible splenial lesion syndrome (RESLES) is a newly recognized syndrome. Its typical pathologic findings is a reversible progress correlated with transiently reduced diffusion lesion in the splenium of the corpus callosum. The common clinical symptoms include mildly altered states consciousness, delirium, and seizure. METHODS We presented a 21-year-old patient with signs of acute ischemic stroke (AIS), including symptoms of weakness on the right upper limb and aphasia, lasting 50 minutes until he was taken to the emergency. He just had a cough 20 days ago. RESULTS An elevated level of white blood cell count, neutrophil count, monocyte count, protein of cerebrospinal fluid was found in laboratory examinations. Magnetic resonance imaging revealed distinct lesions involving white matter in the splenium of the corpus callosum and frontal-parietal cortex on both cerebral hemispheres. Digital subtraction angiography examination was also unremarkable. The patient recovered to baseline within 4 days. We treated the patient with glucocorticoid, antiviral drugs, butylphthalide, and dehydrating drugs. In addition, the follow-up brain magnetic resonance imaging scan showed reduced lesions. AIS-like symptoms did not occur during a 30-day follow-up period. CONCLUSION This patient with reversible splenial lesion syndrome type II exhibited AIS-like symptoms, which was uncommon on clinical. This case extends the recognized clinical phenotypes for this disorder.
Collapse
Affiliation(s)
- Yan Li
- Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Zhengyang Wang
- Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Sijia Lai
- Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Manfei Li
- Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Huihui Liang
- Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Hui Qin
- Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Kaihua Wang
- Guangxi International Zhuang Medicine Hospital, Nanning, China
| |
Collapse
|
9
|
Altered white matter functional network in nicotine addiction. Psychiatry Res 2023; 321:115073. [PMID: 36716553 DOI: 10.1016/j.psychres.2023.115073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
Nicotine addiction is a neuropsychiatric disorder with dysfunction in cortices as well as white matter (WM). The nature of the functional alterations in WM remains unclear. The small-world model can well characterize the structure and function of the human brain. In this study, we utilized the small-world model to compare the WM functional connectivity between 62 nicotine addiction participants (called the discovery sample) and 66 matched healthy controls (called the control sample). We also recruited an independent sample comprising 32 nicotine addicts (called the validation sample) for clinical application. The WM functional network data at the network level showed that the nicotine addiction group revealed decreased small-worldness index (σ) and normalized clustering coefficient (γ) compared with healthy controls. For clinical application, the small-world topology of WM functional connectivity could distinguish nicotine addicts from healthy controls (classification accuracy=0.59323, p = 0.0464). We trained abnormal small-world properties on the discovery sample to identify the severity of nicotine addiction, and the identification was successfully applied to the validation sample (classification accuracy=0.65625, p = 0.0106). Our neuroimaging findings provide direct evidence for WM functional changes in nicotine addiction and suggest that the small-world properties of WM function could be qualified as potential biomarkers in nicotine addiction.
Collapse
|
10
|
Muthulingam JA, Olesen SS, Hansen TM, Drewes AM, Frøkjær JB. White matter brain changes in chronic pancreatitis: A 7-year longitudinal follow-up study. Pancreatology 2022; 22:871-879. [PMID: 36031507 DOI: 10.1016/j.pan.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES The progression of cerebral white matter changes over time has not been explored in chronic pancreatitis (CP). We aimed to characterize such alterations in individuals with CP at baseline and after 7-years as compared with controls and to explore associations to risk factors and clinical parameters. METHODS Diffusion tensor imaging was used to evaluate 20 individuals with CP and 13 healthy controls at baseline and after 7-years (CP: n = 9, controls: n = 11). Tract-based spatial statistics were used to assess whole-brain white matter structure, extract significant fractional anisotropy (FA) clusters between groups, mean FA skeleton, mean FA and mean diffusivity (MD). FA of the extracted significant clusters between groups were used for regression analyses with risk factors and clinical parameters, including duration of CP, smoking, and diabetes. RESULTS At baseline, widespread reductions in FA were found in CP compared to controls involving corpus callosum, the anterior, posterior thalamic radiation, and superior and posterior corona radiata (cluster volume: 49,431 mm3, all P < 0.05). At baseline, also the mean FA (P = 0.004) and FA skeleton (P = 0.002) were reduced in CP compared to controls. FA of the extracted significant cluster was associated with the daily tobacco use (P = 0.001) and duration of CP (P = 0.010). At follow-up, the whole-brain FA skeleton was reduced by 1.7% for both CP individuals and controls (P = 0.878). CONCLUSION Individuals with CP had widespread cerebral white matter alterations at baseline that can likely be explained by the CP disease and exposure to toxic substances. Otherwise, further progression resembles that in healthy controls.
Collapse
Affiliation(s)
- Janusiya Anajan Muthulingam
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Søren Schou Olesen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Centre for Pancreatic Diseases, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark; Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Tine Maria Hansen
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Asbjørn Mohr Drewes
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Centre for Pancreatic Diseases, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Jens Brøndum Frøkjær
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
11
|
Muthulingam JA, Brock C, Hansen TM, Drewes AM, Brock B, Frøkjær JB. Disrupted white matter integrity in the brain of type 1 diabetes is associated with peripheral neuropathy and abnormal brain metabolites. J Diabetes Complications 2022; 36:108267. [PMID: 35905510 DOI: 10.1016/j.jdiacomp.2022.108267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/23/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
AIMS We aimed to quantify microstructural white matter abnormalities using magnetic resonance imaging and examine their associations with 1) brain metabolite and volumes and 2) clinical diabetes-specific characteristics and complications in adults with type 1 diabetes mellitus (T1DM) and distal symmetric peripheral neuropathy (DSPN). METHODS Diffusion tensor images (DTI) obtained from 46 adults with T1DM and DSPN and 28 healthy controls were analyzed using tract-based spatial statistics and were then associated with 1) brain metabolites and volumes and 2) diabetes-specific clinical characteristics (incl. HbA1c, diabetes duration, level of retinopathy, nerve conduction assessment). RESULTS Adults with T1DM and DSPN had reduced whole-brain FA skeleton (P = 0.018), most prominently in the inferior longitudinal fasciculus and retrolenticular internal capsule (P < 0.001). Reduced fractional anisotropy (FA) was associated with lower parietal N-acetylaspartate/creatine metabolite ratio (r = 0.399, P = 0.006), brain volumes (P ≤ 0.002), diabetes duration (r = -0.495, P < 0.001) and sural nerve amplitude (r = 0.296, P = 0.046). Additionally, FA was reduced in the subgroup with concomitant proliferative retinopathy compared to non-proliferative retinopathy (P = 0.03). No association was observed between FA and HbA1c. CONCLUSIONS This hypothesis-generating study provided that altered white matter microstructural abnormalities in T1DM with DSPN were associated with reduced metabolites central for neuronal communications and diabetes complications, indicating that peripheral neuropathic complications are often accompanied by central neuropathy.
Collapse
Affiliation(s)
| | - Christina Brock
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Tine Maria Hansen
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Asbjørn Mohr Drewes
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Centre for Pancreatic Diseases, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Birgitte Brock
- Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, 2820 Gentofte, Denmark
| | - Jens Brøndum Frøkjær
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
12
|
Qi S, Fu Z, Wu L, Calhoun VD, Zhang D, Daughters SB, Hsu PC, Jiang R, Vergara VM, Sui J, Addicott MA. Cognition, Aryl Hydrocarbon Receptor Repressor Methylation, and Abstinence Duration-Associated Multimodal Brain Networks in Smoking and Long-Term Smoking Cessation. Front Neurosci 2022; 16:923065. [PMID: 35968362 PMCID: PMC9363622 DOI: 10.3389/fnins.2022.923065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Cigarette smoking and smoking cessation are associated with changes in cognition and DNA methylation; however, the neurobiological correlates of these effects have not been fully elucidated, especially in long-term cessation. Cognitive performance, percent methylation of the aryl hydrocarbon receptor repressor (AHRR) gene, and abstinence duration were used as references to supervise a multimodal fusion analysis of functional, structural, and diffusion magnetic resonance imaging (MRI) data, in order to identify associated brain networks in smokers and ex-smokers. Correlations among these networks and with smoking-related measures were performed. Cognition-, methylation-, and abstinence duration-associated networks discriminated between smokers and ex-smokers and correlated with differences in fractional amplitude of low frequency fluctuations (fALFF) values, gray matter volume (GMV), and fractional anisotropy (FA) values. Long-term smoking cessation was associated with more accurate cognitive performance, as well as lower fALFF and more GMV in the hippocampus complex. The methylation- and abstinence duration-associated networks positively correlated with smoking-related measures of abstinence duration and percent methylation, respectively, suggesting they are complementary measures. This analysis revealed structural and functional co-alterations linked to smoking abstinence and cognitive performance in brain regions including the insula, frontal gyri, and lingual gyri. Furthermore, AHRR methylation, a promising epigenetic biomarker of smoking recency, may provide an important complement to self-reported abstinence duration.
Collapse
Affiliation(s)
- Shile Qi
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Lei Wu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Stacey B. Daughters
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ping-Ching Hsu
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Rongtao Jiang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States
| | - Victor M. Vergara
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Merideth A. Addicott
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
13
|
Wade NE, Courtney KE, Doran N, Baca R, Aguinaldo LD, Thompson C, Finegan J, Jacobus J. Young Adult E-Cigarette and Combustible Tobacco Users Attitudes, Substance Use Behaviors, Mental Health, and Neurocognitive Performance. Brain Sci 2022; 12:brainsci12070889. [PMID: 35884696 PMCID: PMC9312928 DOI: 10.3390/brainsci12070889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 02/05/2023] Open
Abstract
Nicotine and tobacco product (NTP) use has escalated, largely due to the advent of e-cigarettes. The NTP administration method (i.e., combustible cigarette, e-cigarette) may be an important differentiator. We assessed young adult substance use history, nicotine attitudes, mental health, and neurocognition by the NTP use method. Emerging adults (16–22 year olds) were divided into combustible NTP users (Combustible+ = 79, had used any combustible NTP in the last 6 months), non-combustible users (E-Cig = 43, had used non-combustible NTP, in the past 6 months), and NTP Naïve (n = 79; had not used NTP in the past 6 months) based on past 6-month NTP use patterns. Participants completed self-report and objective neurocognition measures. Analysis of covariance assessed mental health and neurocognition by group, controlling for confounds and correcting for multiple comparisons. Nicotine groups reported more favorable attitudes toward combustible cigarette and e-cigarette use, with taste as the primary reason for e-cigarette use. Combustible+ reported more nicotine dependence and craving. Substance use differed by group, with Combustible+ using the most NTP, alcohol, and cannabis. Nicotine groups reported higher depression and stress symptoms; male Combustible+ reported higher depression symptoms than other same-gender groups. Groups did not differ on neurocognition, though cannabis use was associated with inaccurate emotional Stroop responses. Overall, research suggests that young adult combustible users are likely qualitatively different from non-combustible users. Understanding the unique characteristics related to NTP product use will help guide intervention and prevention development.
Collapse
|
14
|
Weng JC, Chuang YC, Zheng LB, Lee MS, Ho MC. Assessment of brain connectome alterations in male chronic smokers using structural and generalized q-sampling MRI. Brain Imaging Behav 2022; 16:1761-1775. [PMID: 35294980 DOI: 10.1007/s11682-022-00647-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 11/26/2022]
Abstract
An association has been shown between chronic cigarette smoking and structural abnormalities in the brain areas related to several functions relevant to addictive behavior. However, few studies have focused on the structural alternations of chronic smoking by using magnetic resonance imaging (MRI). Also, it remains unclear how structural alternations are associated with tobacco-dependence severity and the positive/negative outcome expectances. The q-sampling imaging (GQI) is an advanced diffusion MRI technique that can reconstruct more precise and consistent images of complex oriented fibers than other methods. We aimed to use GQI to evaluate the impact of the neurological structure caused by chronic smoking. Sixty-seven chronic smokers and 43 nonsmokers underwent a MRI scan. The tobacco dependence severity and the positive/negative outcome expectancies were assessed via self-report. We used GQI with voxel-based statistical analysis (VBA) to evaluate structural brain and connectivity abnormalities. Graph theoretical analysis (GTA) and network-based statistical (NBS) analysis were also performed to identify the structural network differences among groups. Chronic smokers had smaller GM and WM volumes in the bilateral frontal lobe and bilateral frontal region. The GM/WM volumes correlated with dependence severity and outcome expectancies in the brain areas involving high-level functions. Chronic smokers had shape changes in the left hippocampal head and tail and the inferior brain stem. Poorer WM integrity in chronic smokers was found in the left middle frontal region, the right superior fronto-occipital fasciculus, the right temporal region, the left parahippocampus, the left anterior internal capsule, and the right inferior parietal region. WM integrity correlated with dependence severity and outcome expectancies in brain areas involving high-level functions. Chronic smokers had decreased local segregation and global integration among the brain regions and networks. Our results provide further evidence indicating that chronic smoking may be associated with brain structure and connectivity changes.
Collapse
Affiliation(s)
- Jun-Cheng Weng
- Department of Medical Imaging and Radiological Sciences, Graduate Institute of Artificial Intelligence, Chang Gung University, 33302, Taoyuan, Taiwan
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University, Chang Gung Memorial Hospital at Linkou, 33302, Taoyuan, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, 61363, Chiayi, Taiwan
| | - Yu-Chen Chuang
- Department of Medical Imaging and Radiological Sciences, Graduate Institute of Artificial Intelligence, Chang Gung University, 33302, Taoyuan, Taiwan
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, 10051, Taipei, Taiwan
| | - Li-Bang Zheng
- Department of Medical Imaging and Radiological Sciences, Graduate Institute of Artificial Intelligence, Chang Gung University, 33302, Taoyuan, Taiwan
| | - Ming-Shih Lee
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, 40201, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, 40201, Taichung, Taiwan
| | - Ming-Chou Ho
- Department of Psychology, Chung Shan Medical University, 40201, Taichung, Taiwan.
- Clinical Psychological Room, Chung Shan Medical University Hospital, 40201, Taichung, Taiwan.
- Department of Psychology, Chung Shan Medical University, No.110, Sec. 1, Chien-Kuo N. Road, 402, Taichung, Taiwan.
| |
Collapse
|
15
|
Courtney KE, Sorg S, Baca R, Doran N, Jacobson A, Liu TT, Jacobus J. The Effects of Nicotine and Cannabis Co-Use During Late Adolescence on White Matter Fiber Tract Microstructure. J Stud Alcohol Drugs 2022; 83:287-295. [PMID: 35254252 PMCID: PMC8909919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVE Co-use of cannabis and nicotine and tobacco products (NTPs) in adolescence/young adulthood is common and associated with worse outcomes than the use of either substance in isolation. Despite this, little is known about the unique contributions of co-use to neurostructural microstructure during this neurodevelopmentally important period. This study sought to investigate the interactive effects of nicotine and cannabis co-use on white matter fiber tract microstructure in emerging adulthood. METHOD A total of 111 late adolescent (16-22 years old) nicotine (NTP; n = 55, all past-year cannabis users) and non-nicotine users (non-NTP; n = 56, 61% reporting cannabis use in the past year) completed demographic and clinical interviews and a neuroimaging session comprising anatomical and diffusion-weighted imaging scans. Group connectometry analysis identified white matter tracts significantly associated with the interaction between nicotine group and past-year cannabis use according to generalized fractional anisotropy (GFA). RESULTS Nicotine Group × Cannabis Use interactions were observed in the right and left cingulum and left fornix tracts (false discovery rate = 0.053), where greater cannabis use was associated with increased GFA in the cingulum and left fornix, but only when co-used with nicotine. CONCLUSIONS This report represents the first group connectometry analysis in late adolescent/young adult cannabis and/or NTP users. Results suggest that co-use of cannabis and NTPs results in a structurally distinct white matter phenotype as compared with cannabis use only, although to what extent this may change over time with more chronic nicotine and cannabis use remains to be examined in future work.
Collapse
Affiliation(s)
- Kelly E. Courtney
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Scott Sorg
- Department of Psychiatry, University of California, San Diego, La Jolla, California,Veterans Affairs San Diego Healthcare System, La Jolla, California
| | - Rachel Baca
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Neal Doran
- Department of Psychiatry, University of California, San Diego, La Jolla, California,Veterans Affairs San Diego Healthcare System, La Jolla, California
| | - Aaron Jacobson
- Department of Radiology, University of California San Diego, La Jolla, California
| | - Thomas T. Liu
- Department of Radiology, University of California San Diego, La Jolla, California
| | - Joanna Jacobus
- Department of Psychiatry, University of California, San Diego, La Jolla, California,Correspondence may be sent to Joanna Jacobus at the Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, MC 0405, La Jolla, CA 92093, or via email at:
| |
Collapse
|
16
|
Zhou M, Hu Y, Huang R, Zhou Y, Xie X, Zhang S, Jia S, Zhang Y, Xue T, Dong F, Lu X, Yuan K, Yu D. Right arcuate fasciculus and left uncinate fasciculus abnormalities in young smoker. Addict Biol 2022; 27:e13132. [PMID: 35229948 DOI: 10.1111/adb.13132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022]
Abstract
Previous diffusion tensor imaging (DTI) studies had investigated the white matter (WM) integrity abnormalities in smokers. Exposure to nicotine disrupts neurodevelopment during adolescence, possibly by disrupting the trophic effects of acetylcholine. However, little is known about the diffusion parameters of specific fibre bundles at multiple locations in young smokers. Thirty-seven young smokers and 29 age-, education- and gender-matched healthy non-smokers participated in this study. Automated Fibre Quantification (AFQ) was employed to investigate the WM microstructure in young smokers by integrating multiple indices. Diffusion parameters, that is, fractional anisotropy (FA), axial diffusion (AD), radial diffusion (RD) and mean diffusion (MD), were calculated at 100 points along the length of 18 major brain tracts. The relationships between neuroimaging differences and smoking behaviours were explored, including Fagerström Test of Nicotine Dependence (FTND) and pack-years. Compared with non-smokers, young smokers showed significantly increased FA, AD and decreased RD in the left uncinate fasciculus (UF) and right thalamic radiation (TR), increased AD, RD and decreased FA in the right arcuate fasciculus (Arc). Correlation analyses revealed that FA values of the left UF and RD values of the right Arc were negatively correlated with FTND score in smokers and FA values of the right Arc were positively correlated with FTND scores. Positive correlation was observed between AD values of the left UF and pack-years in smokers. The findings enhanced our understanding of the potential effect of adolescent smoking on WM microstructure.
Collapse
Affiliation(s)
- Mi Zhou
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering Inner Mongolia University of Science and Technology Baotou China
| | - Yiting Hu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering Inner Mongolia University of Science and Technology Baotou China
| | - Ruoyan Huang
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering Inner Mongolia University of Science and Technology Baotou China
| | - Yang Zhou
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering Inner Mongolia University of Science and Technology Baotou China
| | - Xiaoyan Xie
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering Inner Mongolia University of Science and Technology Baotou China
| | - Shidi Zhang
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering Inner Mongolia University of Science and Technology Baotou China
| | - Shaodi Jia
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering Inner Mongolia University of Science and Technology Baotou China
| | - Yunmiao Zhang
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering Inner Mongolia University of Science and Technology Baotou China
| | - Ting Xue
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering Inner Mongolia University of Science and Technology Baotou China
| | - Fang Dong
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering Inner Mongolia University of Science and Technology Baotou China
| | - Xiaoqi Lu
- School of Information Engineering Inner Mongolia University of Technology Huhhot China
| | - Kai Yuan
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering Inner Mongolia University of Science and Technology Baotou China
- School of Life Science and Technology Xidian University Xi'an China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education Xi'an China
| | - Dahua Yu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering Inner Mongolia University of Science and Technology Baotou China
| |
Collapse
|
17
|
Courtney KE, Sorg S, Baca R, Doran N, Jacobson A, Liu TT, Jacobus J. The Effects of Nicotine and Cannabis Co-Use During Late Adolescence on White Matter Fiber Tract Microstructure. J Stud Alcohol Drugs 2022; 83:287-295. [PMID: 35254252 PMCID: PMC8909919 DOI: 10.15288/jsad.2022.83.287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/24/2021] [Indexed: 08/10/2023] Open
Abstract
OBJECTIVE Co-use of cannabis and nicotine and tobacco products (NTPs) in adolescence/young adulthood is common and associated with worse outcomes than the use of either substance in isolation. Despite this, little is known about the unique contributions of co-use to neurostructural microstructure during this neurodevelopmentally important period. This study sought to investigate the interactive effects of nicotine and cannabis co-use on white matter fiber tract microstructure in emerging adulthood. METHOD A total of 111 late adolescent (16-22 years old) nicotine (NTP; n = 55, all past-year cannabis users) and non-nicotine users (non-NTP; n = 56, 61% reporting cannabis use in the past year) completed demographic and clinical interviews and a neuroimaging session comprising anatomical and diffusion-weighted imaging scans. Group connectometry analysis identified white matter tracts significantly associated with the interaction between nicotine group and past-year cannabis use according to generalized fractional anisotropy (GFA). RESULTS Nicotine Group × Cannabis Use interactions were observed in the right and left cingulum and left fornix tracts (false discovery rate = 0.053), where greater cannabis use was associated with increased GFA in the cingulum and left fornix, but only when co-used with nicotine. CONCLUSIONS This report represents the first group connectometry analysis in late adolescent/young adult cannabis and/or NTP users. Results suggest that co-use of cannabis and NTPs results in a structurally distinct white matter phenotype as compared with cannabis use only, although to what extent this may change over time with more chronic nicotine and cannabis use remains to be examined in future work.
Collapse
Affiliation(s)
- Kelly E. Courtney
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Scott Sorg
- Department of Psychiatry, University of California, San Diego, La Jolla, California
- Veterans Affairs San Diego Healthcare System, La Jolla, California
| | - Rachel Baca
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Neal Doran
- Department of Psychiatry, University of California, San Diego, La Jolla, California
- Veterans Affairs San Diego Healthcare System, La Jolla, California
| | - Aaron Jacobson
- Department of Radiology, University of California San Diego, La Jolla, California
| | - Thomas T. Liu
- Department of Radiology, University of California San Diego, La Jolla, California
| | - Joanna Jacobus
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| |
Collapse
|
18
|
Ottino-González J, Uhlmann A, Hahn S, Cao Z, Cupertino RB, Schwab N, Allgaier N, Alia-Klein N, Ekhtiari H, Fouche JP, Goldstein RZ, Li CSR, Lochner C, London ED, Luijten M, Masjoodi S, Momenan R, Oghabian MA, Roos A, Stein DJ, Stein EA, Veltman DJ, Verdejo-García A, Zhang S, Zhao M, Zhong N, Jahanshad N, Thompson PM, Conrod P, Mackey S, Garavan H. White matter microstructure differences in individuals with dependence on cocaine, methamphetamine, and nicotine: Findings from the ENIGMA-Addiction working group. Drug Alcohol Depend 2022; 230:109185. [PMID: 34861493 PMCID: PMC8952409 DOI: 10.1016/j.drugalcdep.2021.109185] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/27/2021] [Accepted: 11/14/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Nicotine and illicit stimulants are very addictive substances. Although associations between grey matter and dependence on stimulants have been frequently reported, white matter correlates have received less attention. METHODS Eleven international sites ascribed to the ENIGMA-Addiction consortium contributed data from individuals with dependence on cocaine (n = 147), methamphetamine (n = 132) and nicotine (n = 189), as well as non-dependent controls (n = 333). We compared the fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) of 20 bilateral tracts. Also, we compared the performance of various machine learning algorithms in deriving brain-based classifications on stimulant dependence. RESULTS The cocaine and methamphetamine groups had lower regional FA and higher RD in several association, commissural, and projection white matter tracts. The methamphetamine dependent group additionally showed lower regional AD. The nicotine group had lower FA and higher RD limited to the anterior limb of the internal capsule. The best performing machine learning algorithm was the support vector machine (SVM). The SVM successfully classified individuals with dependence on cocaine (AUC = 0.70, p < 0.001) and methamphetamine (AUC = 0.71, p < 0.001) relative to non-dependent controls. Classifications related to nicotine dependence proved modest (AUC = 0.62, p = 0.014). CONCLUSIONS Stimulant dependence was related to FA disturbances within tracts consistent with a role in addiction. The multivariate pattern of white matter differences proved sufficient to identify individuals with stimulant dependence, particularly for cocaine and methamphetamine.
Collapse
Affiliation(s)
- Jonatan Ottino-González
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States.
| | - Anne Uhlmann
- Department of Child & Adolescent Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Sage Hahn
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Zhipeng Cao
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Renata B Cupertino
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Nathan Schwab
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Nicholas Allgaier
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Nelly Alia-Klein
- Department of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, New York, United States
| | - Hamed Ekhtiari
- Institute for Cognitive Sciences Studies, University of Tehran, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Jean-Paul Fouche
- SA MRC Genomics and Brain Disorders Unit, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Rita Z Goldstein
- Department of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, New York, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University, New Haven, Connecticut, United States
| | - Christine Lochner
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Edythe D London
- Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, California, United States
| | - Maartje Luijten
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Sadegh Masjoodi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Momenan
- Clinical Neuroimaging Research Core, National Institutes on Alcohol Abuse & Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Mohammad Ali Oghabian
- Neuroimaging & Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Annerine Roos
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa; SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Elliot A Stein
- Neuroimaging Research Branch, Intramural Research Program, National Institute of Drug Abuse, Baltimore, Maryland, United States
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC - location VUMC, Amsterdam, the Netherlands
| | - Antonio Verdejo-García
- School of Psychological Sciences & Turner Institute for Brain & Mental Health, Monash University, Melbourne, Australia
| | - Sheng Zhang
- Department of Psychiatry, Yale University, New Haven, Connecticut, United States
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Neda Jahanshad
- Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, San Diego, California, United States
| | - Paul M Thompson
- Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, San Diego, California, United States
| | - Patricia Conrod
- Department of Psychiatry, Université de Montreal, Montreal, Quebec, Canada
| | - Scott Mackey
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| |
Collapse
|
19
|
Spilling CA, Dhillon MPK, Burrage DR, Ruickbie S, Baker EH, Barrick TR, Jones PW. Factors affecting brain structure in smoking-related diseases: Chronic Obstructive Pulmonary Disease (COPD) and coronary artery disease. PLoS One 2021; 16:e0259375. [PMID: 34739504 PMCID: PMC8570465 DOI: 10.1371/journal.pone.0259375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
Background Changes in brain structure and cognitive decline occur in Chronic Obstructive Pulmonary Disease (COPD). They also occur with smoking and coronary artery disease (CAD), but it is unclear whether a common mechanism is responsible. Methods Brain MRI markers of brain structure were tested for association with disease markers in other organs. Where possible, principal component analysis (PCA) was used to group markers within organ systems into composite markers. Univariate relationships between brain structure and the disease markers were explored using hierarchical regression and then entered into multivariable regression models. Results 100 participants were studied (53 COPD, 47 CAD). PCA identified two brain components: brain tissue volumes and white matter microstructure, and six components from other organ systems: respiratory function, plasma lipids, blood pressure, glucose dysregulation, retinal vessel calibre and retinal vessel tortuosity. Several markers could not be grouped into components and were analysed as single variables, these included brain white matter hyperintense lesion (WMH) volume. Multivariable regression models showed that less well organised white matter microstructure was associated with lower respiratory function (p = 0.028); WMH volume was associated with higher blood pressure (p = 0.036) and higher C-Reactive Protein (p = 0.011) and lower brain tissue volume was associated with lower cerebral blood flow (p<0.001) and higher blood pressure (p = 0.001). Smoking history was not an independent correlate of any brain marker. Conclusions Measures of brain structure were associated with a range of markers of disease, some of which appeared to be common to both COPD and CAD. No single common pathway was identified, but the findings suggest that brain changes associated with smoking-related diseases may be due to vascular, respiratory, and inflammatory changes.
Collapse
Affiliation(s)
- Catherine A Spilling
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Mohani-Preet K Dhillon
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Daniel R Burrage
- Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| | - Sachelle Ruickbie
- Respiratory Medicine, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Emma H Baker
- Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| | - Thomas R Barrick
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Paul W Jones
- Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| |
Collapse
|
20
|
Ye Z, Mo C, Liu S, Hatch KS, Gao S, Ma Y, Hong LE, Thompson PM, Jahanshad N, Acheson A, Garavan H, Shen L, Nichols TE, Kochunov P, Chen S, Ma T. White Matter Integrity and Nicotine Dependence: Evaluating Vertical and Horizontal Pleiotropy. Front Neurosci 2021; 15:738037. [PMID: 34720862 PMCID: PMC8551454 DOI: 10.3389/fnins.2021.738037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 01/26/2023] Open
Abstract
Tobacco smoking is an addictive behavior that supports nicotine dependence and is an independent risk factor for cancer and other illnesses. Its neurogenetic mechanisms are not fully understood but may act through alterations in the cerebral white matter (WM). We hypothesized that the vertical pleiotropic pathways, where genetic variants influence a trait that in turn influences another trait, link genetic factors, integrity of cerebral WM, and nicotine addiction. We tested this hypothesis using individual genetic factors, WM integrity measured by fractional anisotropy (FA), and nicotine dependence-related smoking phenotypes, including smoking status (SS) and cigarettes per day (CPDs), in a large epidemiological sample collected by the UK Biobank. We performed a genome-wide association study (GWAS) to identify previously reported loci associated with smoking behavior. Smoking was found to be associated with reduced WM integrity in multiple brain regions. We then evaluated two competing vertical pathways: Genes → WM integrity → Smoking versus Genes → Smoking → WM integrity and a horizontal pleiotropy pathway where genetic factors independently affect both smoking and WM integrity. The causal pathway analysis identified 272 pleiotropic single-nucleotide polymorphisms (SNPs) whose effects on SS were mediated by FA, as well as 22 pleiotropic SNPs whose effects on FA were mediated by CPD. These SNPs were mainly located in important susceptibility genes for smoking-induced diseases NCAM1 and IREB2. Our findings revealed the role of cerebral WM in the maintenance of the complex addiction and provided potential genetic targets for future research in examining how changes in WM integrity contribute to the nicotine effects on the brain.
Collapse
Affiliation(s)
- Zhenyao Ye
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Chen Mo
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Song Liu
- School of Computer Science and Technology, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Kathryn S Hatch
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Yizhou Ma
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Ashley Acheson
- Department of Psychiatry and Behavioral Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Hugh Garavan
- Department of Psychiatry, The University of Vermont, Burlington, VT, United States
| | - Li Shen
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Thomas E Nichols
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
21
|
He X, Rodriguez-Moreno DV, Cycowicz YM, Cheslack-Postava K, Tang H, Wang Z, Amsel LV, Ryan M, Geronazzo-Alman L, Musa GJ, Bisaga A, Hoven CW. White matter integrity and functional connectivity in adolescents with a parental history of substance use disorder. NEUROIMAGE: REPORTS 2021; 1. [DOI: 10.1016/j.ynirp.2021.100037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Wang C, Wang S, Huang P, Shen Z, Qian W, Luo X, Li K, Zeng Q, Gu Q, Yu H, Yang Y, Zhang M. Abnormal white matter tracts of insula in smokers. Brain Imaging Behav 2021; 15:1955-1965. [PMID: 32974850 DOI: 10.1007/s11682-020-00389-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 11/26/2022]
Abstract
Nicotine addiction is characterized as a neural circuit dysfunction, particularly with regard to the alterations in central reward pathways. The insula, a cortical region that is thought to play a central role in this reward circuitry, has been implicated in the maintenance of nicotine addiction. However, it remains largely unclear about the white matter (WM) microstructural alterations of insula in nicotine addiction and whether the WM alterations of insula could predict smoking cessation outcomes. In this study, 58 male nicotine-dependent smokers and 34 matched male nonsmoking controls were recruited. After a 12-week smoking cessation treatment with varenicline, 38 smokers relapsed, and 20 did not relapse. Diffusion tensor imaging and probabilistic tractography were used to investigate the differences of WM tracts of insula between smokers and nonsmokers. Relative to nonsmokers, in the left hemisphere, smokers showed lower fractional anisotropy (FA) in the fiber tracts of anterior insula cortex-to-nucleus accumbens and posterior insula cortex-to-nucleus accumbens; in the right hemisphere, smokers showed higher FA, and lower axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) in the fiber tracts of anterior insula cortex-to-medial orbitofrontal cortex, posterior insula cortex-to-medial orbitofrontal cortex, and posterior insula cortex-to-nucleus accumbens. However, there were no differences of WM diffusion properties between relapsers and nonrelapsers. This study is the first using probabilistic tractography to exclusively clarify the precise roles of insular WM tracts in smokers, which may provide new insights into the underlying neurobiology of nicotine addiction.
Collapse
Affiliation(s)
- Chao Wang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shuyue Wang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhujing Shen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Qian
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hualiang Yu
- Department of Psychiatry, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
23
|
Lee J, Ju G, Son JW, Shin CJ, Lee SI, Park H, Kim S. White matter integrity in alcohol-dependent patients with long-term abstinence. Medicine (Baltimore) 2021; 100:e26078. [PMID: 34032740 PMCID: PMC8154411 DOI: 10.1097/md.0000000000026078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/05/2021] [Indexed: 11/26/2022] Open
Abstract
Based on association studies on amounts of alcohol consumed and cortical and subcortical structural shrinkage, we investigated the effect of chronic alcohol consumption on white matter pathways using probabilistic tractography.Twenty-three alcohol-dependent men (with an average sobriety of 13.1 months) from a mental health hospital and 22 age-matched male healthy social drinkers underwent 3T magnetic resonance imaging. Eighteen major white matter pathways were reconstructed using the TRActs Constrained by UnderLying Anatomy tool (provided by the FreeSurfer). The hippocampal volumes were estimated using an automated procedure. The lifetime drinking history interview, Alcohol Use Disorder Identification Test, Brief Michigan Alcoholism Screening Test, and pack-years of smoking were also evaluated.Analysis of covariance controlling for age, cigarette smoking, total motion index indicated that there was no definite difference of diffusion parameters between the 2 groups after multiple comparison correction. As hippocampal volume decreased, the fractional anisotropy of the right cingulum-angular bundle decreased. Additionally, the axial diffusivity of right cingulum-angular bundle was positively correlated with the alcohol abstinence period.The results imply resilience of white matter in patients with alcohol dependence. Additional longitudinal studies with multimodal methods and neuropsychological tests may improve our findings of the changes in white matter pathways in patients with alcohol dependence.
Collapse
Affiliation(s)
- Jeonghwan Lee
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Gawon Ju
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Jung-Woo Son
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Chul-Jin Shin
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Sang Ick Lee
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Hyemi Park
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Siekyeong Kim
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| |
Collapse
|
24
|
Khedr EM, Abdelrahman AA, Safwat SM, Moheb A, Noaman MM. The effect of acute and chronic nicotine consumption on intra-cortical inhibition and facilitation: A transcranial magnetic stimulation study. Neurophysiol Clin 2021; 51:243-250. [PMID: 34016502 DOI: 10.1016/j.neucli.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The aim of the present study was to explore the impact of acute and chronic nicotine consumption on measures of intracortical inhibition and facilitation. METHODS This study involved 50 chronic heavy cigarette smokers and 40 healthy subjects matched for age, sex and educational level, with no history of chronic nicotine intake. Intracortical inhibition and facilitation were assessed using transcranial magnetic stimulation (TMS) measures of motor threshold (MT), short- and long-interval intra-cortical inhibition (SICI, LICI), cortical silent period (CSP) and intra-cortical facilitation (ICF). Basal serum levels of cotinine were measured in the healthy group and at ½ and 2 h after smoking a single cigarette in the chronic smokers. RESULTS There was enhanced SICI and reduced ICF in smokers (independent of time after smoking) compared with non-smokers. The former suggests a chronic effect of increased nicotine levels on GABA-A neurotransmission whereas the latter suggests an additional effect on glutamatergic transmission. There were no significant differences between smokers and non-smokers in other TMS parameters. There was a significant negative correlation between cotinine levels at ½ h after smoking and SICI at 3 ms ISI (P < 0.001). There were no significant differences in any of the neurophysiological measures between smokers at ½ h versus 2 h after smoking a single cigarette. CONCLUSION Chronic nicotine consumption enhances SICI, and reduces ICF, supporting the hypothesis that nicotine acts as a neuromodulator of GABA-A and glutamate neurotransmission.
Collapse
Affiliation(s)
- Eman M Khedr
- Neuropsychiatry Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Ahmed A Abdelrahman
- Neuropsychiatry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Shady M Safwat
- Neuropsychiatry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amira Moheb
- Neuropsychiatry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mostafa M Noaman
- Neuropsychiatry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
25
|
Dai X, Zhang J, Gao L, Yu J, Li Y, Du B, Huang X, Zhang H. Intrinsic dialogues between the two hemispheres in middle-aged male alcoholics: a resting-state functional MRI study. Neuroreport 2021; 32:206-213. [PMID: 33470766 DOI: 10.1097/wnr.0000000000001579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The purpose of this study was to investigate the interhemispheric intrinsic connectivity measured by resting-state functional MRI (R-fMRI) in middle-aged male alcoholics. METHODS Thirty male alcoholics (47.33 ± 8.30 years) and 30 healthy males (47.20 ± 6.17 years) were recruited and obtained R-fMRI data. Inter- and intrahemispheric coordination was performed by using voxel-mirrored homotopic connectivity (VMHC) and seed-based functional connectivity analysis. RESULTS We found significantly decreased VMHC in a set of regions in male alcoholics patients, including lateral temporal, inferior frontal gyrus, insular/insulae operculum, precuneus/posterior cingulate gyrus, and pars triangularis (P < 0.05, corrected). Subsequent seed-based functional connectivity analysis demonstrated disrupted functional connectivity between the regions of local homotopic connectivity deficits and other areas of the brain, particularly the areas subserving the default, salience, primary somatomotor, and language systems. CONCLUSIONS Middle-aged male alcoholic subjects demonstrated prominent reductions in inter- and intrahemispheric functional coherence. These abnormal changes may reflect degeneration of system/network integration, particularly the domains subserving default, linguistic processing, and salience integration.
Collapse
Affiliation(s)
| | - Jianlong Zhang
- Psychiatry, the Third People's Hospital of Zhongshan, Zhongshan City
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan
| | - Jinming Yu
- Psychiatry, the Third People's Hospital of Zhongshan, Zhongshan City
| | - Yuanchun Li
- Department of Nursing, the Third People's Hospital of Zhongshan, Zhongshan City, China
| | - Baoguo Du
- Psychiatry, the Third People's Hospital of Zhongshan, Zhongshan City
| | | | | |
Collapse
|
26
|
Courtney KE, Baca R, Doran N, Jacobson A, Liu TT, Jacobus J. The effects of nicotine and cannabis co-use during adolescence and young adulthood on white matter cerebral blood flow estimates. Psychopharmacology (Berl) 2020; 237:3615-3624. [PMID: 32803367 PMCID: PMC7686080 DOI: 10.1007/s00213-020-05640-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
RATIONALE Co-use of cannabis and nicotine is common among adolescents/young adults and is associated with poorer psychological and physical outcomes, compared with single substance use. Little is known about the impact of co-use on the developing brain. OBJECTIVES Preliminary investigation of the effects of nicotine on white matter (WM) cerebral blood flow (CBF) in adolescents/young adults and its potential moderation by cannabis use. METHODS Adolescent/young adult (16-22 years old) nicotine and tobacco product users (NTP; N = 37) and non-nicotine users (non-NTP; N = 26) underwent a neuroimaging session comprised of anatomical, optimized pseudo-continuous arterial spin labeling, and diffusion tensor imaging scans. Groups were compared on whole-brain WM CBF estimates and their relation to past-year cannabis use. Follow-up analyses assessed correlations between identified CBF clusters and corresponding fractional anisotropy (FA) values. RESULTS Group by cannabis effects were observed in five clusters (voxel-wise alpha < 0.001, cluster-wise alpha < 0.05; ≥ 11 contiguous voxels): non-NTP exhibited positive correlations between CBF and cannabis use in all clusters, whereas no significant relationships were observed for NTP. Greater CBF extracted from one cluster (including portions of right superior longitudinal fasciculus) was associated with reduced FA for non-NTP group only. CONCLUSIONS This is the first investigation of WM health as indexed by CBF, and its association with FA, in adolescents/young adults with nicotine and/or cannabis use. Results suggest that cannabis use by itself may be related to increased CBF in WM fiber tracts demonstrating poorer structural intergrity, yet the occurrence of even infrequent NTP use (greater than once per month) appears to diminish this relationship.
Collapse
Affiliation(s)
- Kelly E Courtney
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0405, La Jolla, CA, 92093, USA
| | - Rachel Baca
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0405, La Jolla, CA, 92093, USA
| | - Neal Doran
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0405, La Jolla, CA, 92093, USA
- Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Aaron Jacobson
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Thomas T Liu
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Joanna Jacobus
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0405, La Jolla, CA, 92093, USA.
| |
Collapse
|
27
|
Association between human gray matter metabotropic glutamate receptor-5 availability in vivo and white matter properties: a [ 11C]ABP688 PET and diffusion tensor imaging study. Brain Struct Funct 2020; 225:1805-1816. [PMID: 32495131 DOI: 10.1007/s00429-020-02094-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
Excitatory corticofugal projections in the subcortical white matter (WM) convey signals arising from local neuronal activity in the gray matter (GM). We hypothesized that metabotropic glutamate receptor-5 (mGluR5) availability in GM, as a surrogate marker for local glutamatergic neuronal activity, correlates with WM properties in healthy brain. We examined the relationship in healthy individuals between GM mGluR5 availability measured in vivo using [11C]ABP688 positron emission tomography (PET) and WM properties measured as fractional anisotropy (FA) using diffusion tensor imaging (DTI). Twenty-three healthy volunteers underwent this multimodal imaging. We calculated mGluR5 availability, [11C]ABP688 binding potential (BPND), using the simplified reference tissue model, and generated DTI FA maps using FMRIB's Diffusion Toolbox (FDT) along with Tract-Based Spatial Statistics (TBSS). To investigate the relationship between mGluR5 availability and FA, we performed voxel-wise and region of interest (ROI)-based analyses. The voxel-wise analysis showed significant positive correlations between the whole cerebral GM [11C]ABP688 BPND and the FA in widespread WM regions including the corpus callosum body, internal capsule, and corona radiata (FWE corrected p < 0.05). The ROI-based analysis also revealed significant positive correlations (Bonferroni-corrected threshold p < 0.00021) between [11C]ABP688 BPND in the frontal and parietal cortical GM and FA in the internal capsule (anterior limb and retrolenticular part). Using a novel multimodal imaging interrogation, we provide the first evidence that GM mGluR5 availability is significantly positively associated with WM properties in healthy subjects. Future comparison studies could determine whether this relationship is perturbed in neuropsychiatric disorders with dysregulated mGluR5 signaling.
Collapse
|
28
|
DiFranza JR. Neural Remodeling Begins With the First Cigarette. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:629-630. [PMID: 32198003 DOI: 10.1016/j.bpsc.2019.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
|
29
|
Kangiser MM, Thomas AM, Kaiver CM, Lisdahl KM. Nicotine Effects on White Matter Microstructure in Young Adults. Arch Clin Neuropsychol 2020; 35:10-21. [PMID: 31009035 DOI: 10.1093/arclin/acy101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 03/11/2018] [Accepted: 12/06/2018] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Nicotine use is widely prevalent among youth, and is associated with white matter microstructural changes as measured by diffusion tensor imaging (DTI). In adults, nicotine use is generally associated with lower fractional anisotropy (FA), but in adolescents/young adults (≤30 years), microstructure appears healthier, indicated by higher FA. This cross-sectional study examined associations between nicotine use and white matter microstructure using fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in young adults. METHODS Fifty-three participants (18 nicotine users [10 female]/35 controls [17 female]) ages 18-25 underwent MRI scan, neuropsychological battery, toxicology screening, and drug use interview. Nicotine group associations with FA and MD were examined in various white matter tracts. In significant tracts, AD and RD were measured. Exploratory correlations were conducted between significant tracts and verbal memory and sustained attention/working memory performance. RESULTS Nicotine users exhibited significantly lower FA than controls in the left anterior thalamic radiation, left inferior longitudinal fasciculus, left superior longitudinal fasciculus-temporal, and left uncinate fasciculus. In these tracts, AD and RD did not differ, nor did MD differ in any tract. White matter quality was positively correlated with sustained attention/working memory performance. CONCLUSIONS Cigarette smoking may disrupt white matter microstructure. These results are consistent with adult studies, but inconsistent with adolescent/young adult studies, likely due to methodological and sample age differences. Further studies should examine longitudinal effects of nicotine use on white matter microstructure in a larger sample.
Collapse
Affiliation(s)
- Megan M Kangiser
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Alicia M Thomas
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Christine M Kaiver
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| | - Krista M Lisdahl
- University of Wisconsin-Milwaukee, Department of Psychology, Milwaukee, WI, USA
| |
Collapse
|
30
|
Chaarani B, Spechler PA, Ivanciu A, Snowe M, Nickerson JP, Higgins ST, Garavan H. Multimodal Neuroimaging Differences in Nicotine Abstinent Smokers Versus Satiated Smokers. Nicotine Tob Res 2020; 21:755-763. [PMID: 29660044 DOI: 10.1093/ntr/nty070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/05/2018] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Research on cigarette smokers suggests cognitive and behavioral impairments. However, much remains unclear how the functional neurobiology of smokers is influenced by nicotine state. Therefore, we sought to determine which state, be it acute nicotine abstinence or satiety, would yield the most robust differences compared with nonsmokers when assessing neurobiological markers of nicotine dependence. METHODS Smokers (N = 15) and sociodemographically matched nonsmokers (N = 15) were scanned twice using a repeated-measures design. Smokers were scanned after a 24-hour nicotine abstinence and immediately after smoking their usual brand cigarette. The neuroimaging battery included a stop-signal task of response inhibition and pseudocontinuous arterial spin labeling to measure cerebral blood flow (CBF). Whole-brain voxel-wise analyses of covariance were carried out on stop success and stop fail Stop-Signal Task contrasts and CBF maps to assess differences among nonsmokers, abstinent smokers, and satiated smokers. Cluster correction was performed using AFNI's 3dClustSim to achieve a significance of p < .05. RESULTS Smokers exhibited higher brain activation in bilateral inferior frontal gyrus, a brain region known to be involved in inhibitory control, during successful response inhibitions relative to nonsmokers. This effect was significantly higher during nicotine abstinence relative to satiety. Smokers also exhibited lower CBF in the bilateral inferior frontal gyrus than nonsmokers. These hypoperfusions were not different between abstinence and satiety. CONCLUSIONS These findings converge on alterations in smokers in prefrontal circuits known to be critical for inhibitory control. These effects are present, even when smokers are satiated, but the neural activity required to achieve performance equal to controls is increased when smokers are in acute abstinence. IMPLICATIONS Our multimodal neuroimaging study gives neurobiological insights into the cognitive demands of maintaining abstinence and suggests targets for assessing the efficacy of therapeutic interventions.
Collapse
Affiliation(s)
- Bader Chaarani
- Vermont Center on Behavior and Health, Department of Psychiatry, University of Vermont, Burlington, VT
| | - Philip A Spechler
- Vermont Center on Behavior and Health, Department of Psychiatry, University of Vermont, Burlington, VT
| | - Alexandra Ivanciu
- Vermont Center on Behavior and Health, Department of Psychiatry, University of Vermont, Burlington, VT
| | - Mitchell Snowe
- Vermont Center on Behavior and Health, Department of Psychiatry, University of Vermont, Burlington, VT
| | | | - Stephen T Higgins
- Vermont Center on Behavior and Health, Department of Psychiatry, University of Vermont, Burlington, VT
| | - Hugh Garavan
- Vermont Center on Behavior and Health, Department of Psychiatry, University of Vermont, Burlington, VT
| |
Collapse
|
31
|
Thayer RE, Hansen NS, Prashad S, Karoly HC, Filbey FM, Bryan AD, Feldstein Ewing SW. Recent tobacco use has widespread associations with adolescent white matter microstructure. Addict Behav 2020; 101:106152. [PMID: 31639638 DOI: 10.1016/j.addbeh.2019.106152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/01/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
Abstract
IMPORTANCE Given the prevalence of alcohol, cannabis, and tobacco use during adolescence, it is important to explore the relative relationship of these three substances with brain structure. OBJECTIVE To determine associations between recent alcohol, cannabis, and tobacco use and white and gray matter in a large sample of adolescents. DESIGN, SETTING, AND PARTICIPANTS MRI data were collected in N = 200 adolescents ages 14-18 (M = 15.82 years; 67% male; 61% Hispanic/Latino). On average, during the past month, participants reported consuming 2.05 drinks per 1.01 drinking day, 0.64 g per 6.98 cannabis use days, and 2.49 cigarettes per 12.32 smoking days. MAIN OUTCOMES AND MEASURES General linear models were utilized to examine past 30-day average quantities of alcohol, cannabis, and tobacco use, age, sex, and sex by substance interactions in skeletonized white matter (fractional anisotropy and axial, radial, and mean diffusivity) and voxel-based morphometry of gray matter (volume/density). RESULTS Tobacco use was negatively associated with white matter integrity (radial and mean diffusivity) with peak effects in inferior and superior longitudinal fasciculi. Cannabis use was negatively associated with white matter integrity (axial diffusivity) in a small cluster in the left superior longitudinal fasciculus. No associations were observed between recent alcohol use and white or gray matter overall, but interactions showed significant negative associations between alcohol use and white matter in females. CONCLUSIONS AND RELEVANCE It is important to note that recent tobacco use, particularly given the popularity of e-tobacco/vaping in this age group, had widespread associations with brain structure in this sample of adolescents.
Collapse
|
32
|
Shen Q, Heikkinen N, Kärkkäinen O, Gröhn H, Könönen M, Liu Y, Kaarre O, Zhang Z, Tan C, Tolmunen T, Vanninen R. Effects of long-term adolescent alcohol consumption on white matter integrity and their correlations with metabolic alterations. Psychiatry Res Neuroimaging 2019; 294:111003. [PMID: 31726326 DOI: 10.1016/j.pscychresns.2019.111003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/28/2022]
Abstract
Alcohol-related white matter (WM) microstructural changes have not been fully elucidated in adolescents. We aimed to investigate influences of subclinical alcohol use during adolescence on WM microstructure and to characterize those with serum metabolic alterations. 35 moderate-to-heavy drinkers (15 males, 20 females) and 27 controls (12 males, 15 females) were selected based on their ten-year Alcohol Use Disorders Identification Test scores measured at three time points. Magnetic resonance imaging was conducted at endpoint time. Whole brain analysis of fractional anisotropy (FA) was performed. Diffusivity indices in the significant regions were computed for between-group comparisons and correlation analyses with serum metabolite concentrations. Decreased FA was found in moderate-to-heavy drinking men in anterior corpus callosum, superior/anterior corona radiata and right inferior fronto-occipital fasciculus, accompanied by increased radial diffusivity and a smaller area of reduced axial diffusivity, which correlated with serum metabolites playing roles in energy metabolism, myelination and axonal degeneration. No significant difference in FA was detected between female or mixed-gender moderate-to-heavy drinking subjects and controls, supporting gender differences in the relationship between adolescent alcohol use and neurodevelopmental trajectories. Future researches with longitudinal imaging data are warranted for comprehensive evaluation on potentially reversible effects of alcohol use over adolescent brain.
Collapse
Affiliation(s)
- Qin Shen
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, China; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Noora Heikkinen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland; Doctoral Programme of Clinical Research, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Olli Kärkkäinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Finland; School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Heidi Gröhn
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Mervi Könönen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Yawu Liu
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland; Department of Neurology, University of Kuopio, Kuopio, Finland
| | - Outi Kaarre
- Doctoral Programme of Clinical Research, School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Adolescent Psychiatry, Kuopio University Hospital, Kuopio, Finland
| | - Zishu Zhang
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Changlian Tan
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Tommi Tolmunen
- Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland; Department of Psychiatry, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ritva Vanninen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland; Department of Clinical Radiology, School of Medicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
33
|
Santoro A, Tomino C, Prinzi G, Lamonaca P, Cardaci V, Fini M, Russo P. Tobacco Smoking: Risk to Develop Addiction, Chronic Obstructive Pulmonary Disease, and Lung Cancer. Recent Pat Anticancer Drug Discov 2019; 14:39-52. [PMID: 30605063 DOI: 10.2174/1574892814666190102122848] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/11/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND The morbidity and mortality associated with tobacco smoking is well established. Nicotine is the addictive component of tobacco. Nicotine, through the non-neuronal α7nicotinic receptor, induces cell proliferation, neo-angiogenesis, epithelial to mesenchymal transition, and inhibits drug-induced apoptosis. OBJECTIVE To understand the genetic, molecular and cellular biology of addiction, chronic obstructive pulmonary disease and lung cancer. METHODS The search for papers to be included in the review was performed during the months of July- September 2018 in the following databases: PubMed (http://www.ncbi.nlm.nih.gov), Scopus (http://www.scopus.com), EMBASE (http://www.elsevier.com/online-tools/embase), and ISI Web of Knowledge (http://apps.webofknowledge.com/). The following searching terms: "nicotine", "nicotinic receptor", and "addiction" or "COPD" or "lung cancer" were used. Patents were retrieved in clinicaltrials.gov (https://clinicaltrials.gov/). All papers written in English were evaluated. The reference list of retrieved articles was also reviewed to identify other eligible studies that were not indexed by the above-mentioned databases. New experimental data on the ability of nicotine to promote transformation of human bronchial epithelial cells, exposed for one hour to Benzo[a]pyrene-7,8-diol-9-10-epoxide, are reported. RESULTS Nicotinic receptors variants and nicotinic receptors upregulation are involved in addiction, chronic obstructive pulmonary disease and/or lung cancer. Nicotine through α7nicotinic receptor upregulation induces complete bronchial epithelial cells transformation. CONCLUSION Genetic studies highlight the involvement of nicotinic receptors variants in addiction, chronic obstructive pulmonary disease and/or lung cancer. A future important step will be to translate these genetic findings to clinical practice. Interventions able to help smoking cessation in nicotine dependence subjects, under patent, are reported.
Collapse
Affiliation(s)
- Alessia Santoro
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Carlo Tomino
- Scientific Direction, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Giulia Prinzi
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Palma Lamonaca
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Vittorio Cardaci
- Pulmonary Rehabilitation, IRCCS San Raffaele Pisana, Via della Pisana, 235, I-00163 Rome, Italy
| | - Massimo Fini
- Scientific Direction, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Patrizia Russo
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| |
Collapse
|
34
|
Wassenaar TM, Yaffe K, van der Werf YD, Sexton CE. Associations between modifiable risk factors and white matter of the aging brain: insights from diffusion tensor imaging studies. Neurobiol Aging 2019; 80:56-70. [PMID: 31103633 PMCID: PMC6683729 DOI: 10.1016/j.neurobiolaging.2019.04.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/26/2019] [Accepted: 04/05/2019] [Indexed: 01/13/2023]
Abstract
There is increasing interest in factors that may modulate white matter (WM) breakdown and, consequentially, age-related cognitive and behavioral deficits. Recent diffusion tensor imaging studies have examined the relationship of such factors with WM microstructure. This review summarizes the evidence regarding the relationship between WM microstructure and recognized modifiable factors, including hearing loss, hypertension, diabetes, obesity, smoking, depressive symptoms, physical (in) activity, and social isolation, as well as sleep disturbances, diet, cognitive training, and meditation. Current cross-sectional evidence suggests a clear link between loss of WM integrity (lower fractional anisotropy and higher mean diffusivity) and hypertension, obesity, diabetes, and smoking; a relationship that seems to hold for hearing loss, social isolation, depressive symptoms, and sleep disturbances. Physical activity, cognitive training, diet, and meditation, on the other hand, may protect WM with aging. Preliminary evidence from cross-sectional studies of treated risk factors suggests that modification of factors could slow down negative effects on WM microstructure. Careful intervention studies are needed for this literature to contribute to public health initiatives going forward.
Collapse
Affiliation(s)
- Thomas M Wassenaar
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroscience, FMRIB Centre, University of Oxford, John Radcliffe Hospital, UK
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology, and Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, VU University Medical Center, MC, Amsterdam, the Netherlands
| | - Claire E Sexton
- Department of Neurology, Global Brain Health Institute, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA; Department of Psychiatry, Wellcome Centre for Integrative Neuroscience, Oxford Centre for Human Brain Activity, University of Oxford, John Radcliffe Hospital, UK.
| |
Collapse
|
35
|
O’Neill J, O’Connor MJ, Yee V, Ly R, Narr K, Alger JR, Levitt JG. Differential neuroimaging indices in prefrontal white matter in prenatal alcohol-associated ADHD versus idiopathic ADHD. Birth Defects Res 2019; 111:797-811. [PMID: 30694611 PMCID: PMC6650301 DOI: 10.1002/bdr2.1460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/08/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Attention deficit-hyperactivity disorder (ADHD) is common in fetal alcohol spectrum disorders (FASD) but also in patients without prenatal alcohol exposure (PAE). Many patients diagnosed with idiopathic ADHD may actually have ADHD and covert PAE, a treatment-relevant distinction. METHODS We compared proton magnetic resonance spectroscopic imaging (MRSI; N = 44) and diffusion tensor imaging (DTI; N = 46) of the anterior corona radiata (ACR)-a key fiber tract in models of ADHD-at 1.5 T in children with ADHD with PAE (ADHD+PAE), children with ADHD without PAE (ADHD-PAE), children without ADHD with PAE (non-ADHD+PAE), and children with neither ADHD nor PAE (non-ADHD-PAE, i.e., typically developing controls). Levels of choline-compounds (Cho) were the main MRSI endpoint, given interest in dietary choline for FASD; the main DTI endpoint was fractional anisotropy (FA), as ACR FA may reflect ADHD-relevant executive control functions. RESULTS For ACR Cho, there was an ADHD-by-PAE interaction (p = 0.038) whereby ACR Cho was 26.7% lower in ADHD+PAE than in ADHD-PAE children (p < 0.0005), but there was no significant ACR Cho difference between non-ADHD+PAE and non-ADHD-PAE children. Voxelwise false-discovery rate (FDR)-corrected analysis of DTI revealed significantly (q ≤ 0.0101-0.05) lower FA in ACR for subjects with PAE (ADHD+PAE or non-ADHD+PAE) than for subjects without PAE (ADHD-PAE or non-ADHD-PAE). There was no significant effect of ADHD on FA. Thus, in overlapping samples, effects of PAE on Cho and FA were observed in the same white-matter tract. CONCLUSIONS These findings point to tract focal, white-matter pathology possibly specific for ADHD+PAE subjects. Low Cho may derive from abnormal choline metabolism; low FA suggests suboptimal white-matter integrity in PAE. More advanced MRSI and DTI-and neurocognitive assessments-may better distinguish ADHD+PAE from ADHD-PAE, helping identify covert cases of FASD.
Collapse
Affiliation(s)
- Joseph O’Neill
- Division of Child & Adolescent Psychiatry, UCLA Semel institute for Neuroscience, Los Angeles, CA
| | - Mary J. O’Connor
- Division of Child & Adolescent Psychiatry, UCLA Semel institute for Neuroscience, Los Angeles, CA
| | - Victor Yee
- Division of Child & Adolescent Psychiatry, UCLA Semel institute for Neuroscience, Los Angeles, CA
| | - Ronald Ly
- Division of Child & Adolescent Psychiatry, UCLA Semel institute for Neuroscience, Los Angeles, CA
| | | | - Jeffrey R. Alger
- Department of Neurology, UCLA Los Angeles, CA
- Neurospectroscopics, Inc., Encino, CA
| | - Jennifer G. Levitt
- Division of Child & Adolescent Psychiatry, UCLA Semel institute for Neuroscience, Los Angeles, CA
| |
Collapse
|
36
|
Hampton WH, Hanik IM, Olson IR. Substance abuse and white matter: Findings, limitations, and future of diffusion tensor imaging research. Drug Alcohol Depend 2019; 197:288-298. [PMID: 30875650 PMCID: PMC6440853 DOI: 10.1016/j.drugalcdep.2019.02.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/14/2019] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
Individuals who abuse substances often differ from nonusers in their brain structure. Substance abuse and addiction is often associated with atrophy and pathology of grey matter, but much less is known about the role of white matter, which constitutes over half of human brain volume. Diffusion tensor imaging (DTI), a method for non-invasively estimating white matter, is increasingly being used to study addiction and substance abuse. Here we review recent DTI studies of major substances of abuse (alcohol, opiates, cocaine, cannabis, and nicotine substance abuse) to examine the relationship, specificity, causality, and permanence of substance-related differences in white matter microstructure. Across substance, users tended to exhibit differences in the microstructure of major fiber pathways, such as the corpus callosum. The direction of these differences, however, appeared substance-dependent. The subsample of longitudinal studies reviewed suggests that substance abuse may cause changes in white matter, though it is unclear to what extent such alterations are permanent. While collectively informative, some studies reviewed were limited by methodological and technical approach. We therefore also provide methodological guidance for future research using DTI to study substance abuse.
Collapse
Affiliation(s)
- William H Hampton
- Department of Psychology, College of Liberal Arts, Temple University, United States
| | - Italia M Hanik
- Department of Psychology, College of Liberal Arts, Temple University, United States
| | - Ingrid R Olson
- Department of Psychology, College of Liberal Arts, Temple University, United States.
| |
Collapse
|
37
|
Chaarani B, Kan KJ, Mackey S, Spechler PA, Potter A, Orr C, D'Alberto N, Hudson KE, Banaschewski T, Bokde ALW, Bromberg U, Büchel C, Cattrell A, Conrod PJ, Desrivières S, Flor H, Frouin V, Gallinat J, Gowland P, Heinz A, Ittermann B, Martinot JL, Nees F, Papadopoulos-Orfanos D, Paus T, Poustka L, Smolka MN, Walter H, Whelan R, Higgins ST, Schumann G, Althoff RR, Stein EA, Garavan H. Low Smoking Exposure, the Adolescent Brain, and the Modulating Role of CHRNA5 Polymorphisms. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:672-679. [PMID: 31072760 DOI: 10.1016/j.bpsc.2019.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Studying the neural consequences of tobacco smoking during adolescence, including those associated with early light use, may help expose the mechanisms that underlie the transition from initial use to nicotine dependence in adulthood. However, only a few studies in adolescents exist, and they include small samples. In addition, the neural mechanism, if one exists, that links nicotinic receptor genes to smoking behavior in adolescents is still unknown. METHODS Structural and diffusion tensor magnetic resonance imaging data were acquired from a large sample of 14-year-old adolescents who completed an extensive battery of neuropsychological, clinical, personality, and drug-use assessments. Additional assessments were conducted at 16 years of age. RESULTS Exposure to smoking in adolescents, even at low doses, is linked to volume changes in the ventromedial prefrontal cortex and to altered neuronal connectivity in the corpus callosum. The longitudinal analyses strongly suggest that these effects are not preexisting conditions in those who progress to smoking. There was a genetic contribution wherein the volume reduction effects were magnified in smokers who were carriers of the high-risk genotype of the alpha 5 nicotinic receptor subunit gene, rs16969968. CONCLUSIONS These findings give insight into a mechanism involving genes, brain structure, and connectivity underlying why some adolescents find nicotine especially addictive.
Collapse
Affiliation(s)
- Bader Chaarani
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont.
| | - Kees-Jan Kan
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont
| | - Scott Mackey
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont
| | - Philip A Spechler
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont
| | - Alexandra Potter
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont
| | - Catherine Orr
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont
| | - Nicholas D'Alberto
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont
| | - Kelsey E Hudson
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neurosciences, Trinity College Dublin, Dublin, Ireland
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Anna Cattrell
- Medical Research Council-Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Patricia J Conrod
- Department of Psychological Medicine and Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Montreal, Quebec
| | - Sylvane Desrivières
- Medical Research Council-Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Vincent Frouin
- Neurospin, Commissariat à l'Energie Atomique, CEA-Saclay Center, Paris, France
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, Hamburg, Germany
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging and Psychiatry," University Paris Sud, University Paris Descartes-Sorbonne Paris Cité and Maison de Solenn, Paris, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | | | - Tomáš Paus
- Rotman Research Institute, Baycrest and Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Whelan
- Department of Psychology, University College Dublin, Dublin, Ireland
| | - Stephen T Higgins
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont
| | - Gunter Schumann
- Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Montreal, Quebec
| | - Robert R Althoff
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont
| | - Elliot A Stein
- The National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Hugh Garavan
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont.
| | -
- Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Montreal, Quebec
| |
Collapse
|
38
|
Liang H, Chang L, Chen R, Oishi K, Ernst T. Independent and Combined Effects of Chronic HIV-Infection and Tobacco Smoking on Brain Microstructure. J Neuroimmune Pharmacol 2018; 13:509-522. [PMID: 30225549 PMCID: PMC6247419 DOI: 10.1007/s11481-018-9810-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
HIV-infected individuals (HIV+) have 2-3 times higher prevalence of tobacco smoking than the general U.S. population. This study aims to evaluate the independent and combined effects of tobacco-smoking and HIV-infection on brain microstructure and cognition using a 2 × 2 design. 21 HIV + Smokers, 25 HIV + Nonsmokers, 25 Seronegative (SN)-Smokers and 23 SN-Nonsmokers were evaluated using diffusion tensor imaging. Fractional anisotropy (FA), mean (MD), radial (RD) and axial (AD) diffusivity were assessed in 8 major cerebral fiber tracts and 5 subcortical regions. Cognitive performance in 7 neurocognitive domains was also assessed. Compared to SN, HIV+ had higher AD in genu of corpus callosum (GCC, p = 0.002). Smokers also had higher diffusivities in GCC, splenium of corpus callosum (SCC), anterior corona radiata (ACR), sagittal stratum (SS) and superior fronto-occipital fasciculus (SFO), than Nonsmokers (p-values<0.001-0.003). Tobacco-Smoking and HIV-infection showed synergistic effects on AD_SS (p = 0.002) and RD_SFO (p = 0.02), but opposite effects in FA_putamen (p = 0.024). Additive effects from HIV+ and Tobacco-Smoking were observed in 9 other white matter tracts, with highest diffusivities and lowest FA in HIV + Smokers. Higher diffusivities in the GCC, SCC, ACR and SS predicted poorer cognitive performance across all participants (p ≤ 0.001). Higher AD_GCC also predicted slower Speed of information processing and poorer Fluency and Attention only in HIV + Smokers (p = 0.001-0.003). Chronic tobacco smoking and HIV-infection appear to have additive and synergistic adverse effects on brain diffusivities, suggesting greater neuroinflammation, which may contribute to poorer cognition. Therefore, chronic tobacco-smoking may be a risk factor for HIV-associated neurocognitive disorders. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Huajun Liang
- Department of Radiology, University of Maryland Baltimore School of Medicine, 419 W. Redwood Street, Suite 225, Baltimore, MD, 21201, USA
| | - Linda Chang
- Department of Radiology, University of Maryland Baltimore School of Medicine, 419 W. Redwood Street, Suite 225, Baltimore, MD, 21201, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rong Chen
- Department of Radiology, University of Maryland Baltimore School of Medicine, 419 W. Redwood Street, Suite 225, Baltimore, MD, 21201, USA
| | - Kenichi Oishi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas Ernst
- Department of Radiology, University of Maryland Baltimore School of Medicine, 419 W. Redwood Street, Suite 225, Baltimore, MD, 21201, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Zou Y, Murray DE, Durazzo TC, Schmidt TP, Murray TA, Meyerhoff DJ. White matter microstructural correlates of relapse in alcohol dependence. Psychiatry Res Neuroimaging 2018; 281:92-100. [PMID: 30273793 PMCID: PMC6204088 DOI: 10.1016/j.pscychresns.2018.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022]
Abstract
Identification of neural correlates of relapse to alcohol after treatment is clinically important as it may inform better substance abuse treatment. Few studies have specifically analyzed the white matter microstructure in treatment seekers as it might relate to relapse risk versus long-term abstinence. Using 4 Tesla diffusion tensor imaging, we compared two groups of one-month-abstinent treatment-seekers, who were classified based on their drinking status between six and nine months after treatment initiation. We hypothesized that subsequent relapsers had greater white matter microstructural deficits in specific brain regions than long-term abstainers. At one month of abstinence, 37 future relapsers versus 25 future abstainers had lower fractional anisotropy (a measure of axonal organization and membrane integrity) in the corpus callosum and right stria terminalis/fornix, higher diffusivity in the genu of the corpus callosum, left and right stria terminalis/fornix, and lower diffusivity in left anterior corona radiata. These differences existed despite similar lifetime and recent drinking and smoking histories in the groups. Longer smoking duration in relapsers was associated with lower fractional anisotropy in right stria terminalis/fornix. The study identified specific microstructural biomarkers of alcohol relapse risk in adults, contributing to the definition of a neurobiological relapse risk profile in alcohol use disorder.
Collapse
Affiliation(s)
- Yukai Zou
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, United States; College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, United States
| | - Donna E Murray
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA 94121, United States; Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, United States
| | - Timothy C Durazzo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States; Mental Illness Research Mental Illness Research and Education Clinical Centers, Sierra-Pacific War Related Illness and Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, United States
| | - Thomas P Schmidt
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA 94121, United States
| | - Troy A Murray
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA 94121, United States
| | - Dieter J Meyerhoff
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA 94121, United States; Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, United States.
| |
Collapse
|
40
|
Schubert AL, Hagemann D, Frischkorn GT, Herpertz SC. Faster, but not smarter: An experimental analysis of the relationship between mental speed and mental abilities. INTELLIGENCE 2018. [DOI: 10.1016/j.intell.2018.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Wang X, Huang X, Gao Z, Jiang H, Lu X. Vasogenic cerebral edema associated with the disability in activities of daily living in patients with chronic obstructive pulmonary disease. Brain Behav 2018; 8:e01065. [PMID: 30004190 PMCID: PMC6085924 DOI: 10.1002/brb3.1065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 06/14/2018] [Accepted: 06/20/2018] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION The aim of this study was to explore whether patients with chronic obstructive pulmonary disease (COPD) develop vasogenic cerebral edema, and whether this edema contributes to the COPD-related disability. METHODS Eighteen stable patients with COPD and 17 matched healthy volunteers were enrolled. Apparent diffusion coefficient (ADC) values were calculated by voxel-based analysis using DTI-Studio software based on diffusion tensor imaging. COPD-related disability was calculated using activities of daily living (ADL) scale. RESULTS In patients with COPD, ADC increased in the white matter fiber tracts including the bilateral anterior cingulum and posterior corpus callosum and in the white matter fibers connecting the bilateral insular cortices, sub-lobar cortices, and pars triangularis cortices and the left rectus and olfactory gyrus. However, after further controlling for cigarette smoking, the difference in ADC values in the posterior corpus callosum between groups disappeared. Patients with COPD had significantly higher scores in ADL than that in controls. Moreover, ADL scores were positively correlated with the increased regional ADC values. CONCLUSION Vasogenic cerebral edema occurs in patients with COPD. Cigarette smoking may be a risk factor for COPD-related vasogenic edema. Vasogenic cerebral edema may be related to the COPD-related ADL impairment.
Collapse
Affiliation(s)
- Xiaochuan Wang
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xuqing Huang
- Department of Respiratory Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhongming Gao
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Haibo Jiang
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xiaodong Lu
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
42
|
Porter A, Leckie R, Verstynen T. White matter pathways as both a target and mediator of health behaviors. Ann N Y Acad Sci 2018; 1428:71-88. [PMID: 29749627 DOI: 10.1111/nyas.13708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/03/2018] [Accepted: 03/14/2018] [Indexed: 01/09/2023]
Abstract
Health behaviors arise from the dynamics of highly interconnected networks in the brain and variability in these networks drives individual differences in behavior. In this review, we show how many factors that predict the physical health of the body also correlate with variability of the myelinated fascicles, called white matter, that connect brain regions together. The general pattern present in the literature is that as predictors of physical health decline, there is often a coincident reduction in the integrity of major white matter pathways. We also highlight a plausible mechanism, inflammatory pathways, whereby health-related activation of the immune system can impact the myelin sheath, a protective tissue that facilitates long range communication in the brain. The growing body of evidence supports the hypothesis that degrading health in the periphery may disrupt the communication efficiency of the macroscopic neural circuits that mediate complex behaviors, which can in turn contribute to poorer physical health.
Collapse
Affiliation(s)
- Alexis Porter
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Regina Leckie
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Yu D, Yuan K, Bi Y, Luo L, Zhai J, Liu B, Li Y, Cheng J, Guan Y, Xue T, Bu L, Su S, Ma Y, Qin W, Tian J, Lu X. Altered interhemispheric resting-state functional connectivity in young male smokers. Addict Biol 2018; 23:772-780. [PMID: 28474806 DOI: 10.1111/adb.12515] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 02/03/2017] [Accepted: 03/19/2017] [Indexed: 02/04/2023]
Abstract
With the help of advanced neuroimaging approaches, previous studies revealed structural and functional brain changes in smokers compared with healthy non-smokers. Homotopic resting-state functional connectivity between the corresponding regions in cerebral hemispheres may help us to deduce the changes of functional coordination in the whole brain of young male smokers. Functional homotopy reflects an essential aspect of brain function and communication between the left and right cerebral hemispheres, which is important for the integrity of brain function. However, few studies used voxel mirrored homotopic connectivity (VMHC) method to investigate the changes of homotopic connectivity in young male smokers. Twenty-seven young male smokers and 27 matched healthy male non-smokers were recruited in our study. Compared with healthy male non-smokers, young male smokers showed decreased VMHC values in the insula and putamen, and increased VMHC values in the prefrontal cortex. Correlation analysis demonstrated that there were significant positive correlations between the average VMHC values of the prefrontal cortex and pack-years in young male smokers. In addition, significant negative correlation was found between the average VMHC values in the insula and pack-years. Our results revealed the disrupted homotopic resting-state functional connectivity in young male smokers. The novel findings may extend our understanding of smoking.
Collapse
Affiliation(s)
- Dahua Yu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering; Inner Mongolia University of Science and Technology; China
| | - Kai Yuan
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering; Inner Mongolia University of Science and Technology; China
- Life Sciences Research Center, School of Life Science and Technology; Xidian University; China
| | - Yanzhi Bi
- Life Sciences Research Center, School of Life Science and Technology; Xidian University; China
| | - Lin Luo
- Department of Medical Imaging, The First Affiliated Hospital of Baotou Medical College; Inner Mongolia University of Science and Technology; China
| | - Jinquan Zhai
- Department of Medical Imaging, The First Affiliated Hospital of Baotou Medical College; Inner Mongolia University of Science and Technology; China
| | - Bo Liu
- Department of Medical Imaging, The First Affiliated Hospital of Baotou Medical College; Inner Mongolia University of Science and Technology; China
| | - Yangding Li
- Guangxi Key Laboratory of Multi-source Information Mining and Security; Guangxi Normal University; China
| | - Jiadong Cheng
- Life Sciences Research Center, School of Life Science and Technology; Xidian University; China
| | - Yanyan Guan
- Life Sciences Research Center, School of Life Science and Technology; Xidian University; China
| | - Ting Xue
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering; Inner Mongolia University of Science and Technology; China
| | - Limei Bu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering; Inner Mongolia University of Science and Technology; China
| | - Shaoping Su
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering; Inner Mongolia University of Science and Technology; China
| | - Yao Ma
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering; Inner Mongolia University of Science and Technology; China
| | - Wei Qin
- Life Sciences Research Center, School of Life Science and Technology; Xidian University; China
| | - Jie Tian
- Life Sciences Research Center, School of Life Science and Technology; Xidian University; China
- Institute of Automation; Chinese Academy of Sciences; China
| | - Xiaoqi Lu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering; Inner Mongolia University of Science and Technology; China
| |
Collapse
|
44
|
Elucidation of shared and specific white matter findings underlying psychopathology clusters in schizophrenia. Asian J Psychiatr 2017; 30:144-151. [PMID: 28938151 DOI: 10.1016/j.ajp.2017.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/28/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Schizophrenia is associated with diverse white matter (WM) brain abnormalities. In this study, we sought to examine the WM microstructural findings which underlie clinical psychopathology clusters in schizophrenia and hypothesized that these symptom clusters are associated with common and unique WM tracts. METHODS Overall, 76 healthy controls (HC), and 148 patients with schizophrenia (SZ) were recruited and severity of symptomatology in schizophrenia was assessed using the Positive and Negative Syndrome Scale. WM fractional anisotropy (FA) values were extracted from their diffusion tensor images. Psychopathology clusters were first determined using factor analysis and the relationship between these symptom factors and FA values were then assessed with structural equation modelling, which included covariates such as age, sex, duration of illness and medications prescribed. RESULTS Patients with schizophrenia had reduced FA in the genu of corpus callosum (gCC) compared to HC. A three-factor model, namely Positive, Negative, Disorganised factors, was determined as the best fit for the data. All three psychopathology factors were associated with decreased FA in the gCC and bilateral cingulate gyrus. Higher Negative factor scores were uniquely associated with decreased FA in the right sagittal striatum and right superior longitudinal fasciculus. CONCLUSIONS This study found shared and specific WM changes and their associations with specific symptom clusters, which potentially allows for monitoring of such white matter findings associated with clinical presentations in schizophrenia over treatment and illness course.
Collapse
|
45
|
Krakauer K, Ebdrup BH, Glenthøj BY, Raghava JM, Nordholm D, Randers L, Rostrup E, Nordentoft M. Patterns of white matter microstructure in individuals at ultra-high-risk for psychosis: associations to level of functioning and clinical symptoms. Psychol Med 2017; 47:2689-2707. [PMID: 28464976 DOI: 10.1017/s0033291717001210] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Individuals at ultra-high-risk (UHR) for psychosis present with emerging symptoms and decline in functioning. Previous univariate analyses have indicated widespread white matter (WM) aberrations in multiple brain regions in UHR individuals and patients with schizophrenia. Using multivariate statistics, we investigated whole brain WM microstructure and associations between WM, clinical symptoms, and level of functioning in UHR individuals. METHODS Forty-five UHR individuals and 45 matched healthy controls (HCs) underwent magnetic resonance diffusion tensor imaging (DTI) at 3 Tesla. UHR individuals were assessed with the Comprehensive Assessment of At-Risk Mental States, Scale for the Assessment of Negative Symptoms, and Social and Occupational Functioning Assessment Scale. Partial least-squares correlation analysis (PLSC) was used as statistical method. RESULTS PLSC group comparisons revealed one significant latent variable (LV) accounting for 52% of the cross-block covariance. This LV indicated a pattern of lower fractional anisotropy (FA), axial diffusivity (AD), and mode of anisotropy (MO) concomitant with higher radial diffusivity (RD) in widespread brain regions in UHR individuals compared with HCs. Within UHR individuals, PLSC revealed five significant LVs associated with symptoms and level of functioning. The first LV accounted for 31% of the cross-block covariance and indicated a pattern where higher symptom score and lower level of functioning correlated to lower FA, AD, MO, and higher RD. CONCLUSIONS UHR individuals demonstrate complex brain patterns of WM abnormalities. Despite the subtle psychopathology of UHR individuals, aberrations in WM appear associated with positive and negative symptoms as well as level of functioning.
Collapse
Affiliation(s)
- K Krakauer
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - B H Ebdrup
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - B Y Glenthøj
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - J M Raghava
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - D Nordholm
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - L Randers
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - E Rostrup
- Functional Imaging Unit,Clinical Physiology,Nuclear Medicine and PET,Copenhagen University Hospital Rigshospitalet,DK-2600 Glostrup,Denmark
| | - M Nordentoft
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| |
Collapse
|
46
|
Wang S, Zuo L, Jiang T, Peng P, Chu S, Xiao D. Abnormal white matter microstructure among early adulthood smokers: a tract-based spatial statistics study. Neurol Res 2017; 39:1094-1102. [PMID: 28934078 DOI: 10.1080/01616412.2017.1379277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objectives Cigarette smoking is an important risk factor of central nervous system diseases. However, the white matter (WM) integrity of early adulthood chronic smokers has not been attached enough importance to as it deserves, and the relationship between the chronic smoking effect and the WM is still unclear. The purpose of this study was to investigate whole - brain WM microstructure of early adulthood smokers and explore the structural correlates of behaviorally relevant features of the disorder. Methods We compared multiple DTI-derived indices, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD), between early adulthood smokers (n = 19) and age-, education- and gender-matched controls (n = 23) using a whole-brain tract-based spatial statistics approach. We also explored the correlations of the mean DTI index values with pack-years and Fagerström Test for Nicotine Dependence. Results The smokers showed increased FA in left superior longitudinal fasciculus (SLF), left anterior corona radiate, left superior corona radiate, left posterior corona radiate, left external capsule (EC), left inferior fronto-occipital fasciculus and sagittal stratum (SS), and decreased RD in left SLF. There were significant negative correlations among the average FA in the left external capsule and pack-years in smokers. In addition, significant positive correlation was found between RD values in the left SLF and pack-years. Discussion These findings indicate that smokers show microstructural changes in several white-matter regions. The correlation between the cumulative effect and microstructural WM alternations suggests that WM properties may become the new biomarkers in practice.
Collapse
Affiliation(s)
- Shuangkun Wang
- a Department of Radiology, Beijing Chao-Yang Hospital , Capital Medical University , Beijing , China
| | - Long Zuo
- a Department of Radiology, Beijing Chao-Yang Hospital , Capital Medical University , Beijing , China
| | - Tao Jiang
- a Department of Radiology, Beijing Chao-Yang Hospital , Capital Medical University , Beijing , China
| | - Peng Peng
- a Department of Radiology, Beijing Chao-Yang Hospital , Capital Medical University , Beijing , China
| | - Shuilian Chu
- b Clinical Research Center, Beijing Chao-Yang Hospital , Capital Medical University , Beijing , China
| | - Dan Xiao
- c Tobacco Medicine and Tobacco Cessation Center , China-Japan Friendship Hospital , Beijing , China.,d WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention , China-Japan Friendship Hospital , Beijing , China
| |
Collapse
|
47
|
Huang P, Shen Z, Wang C, Qian W, Zhang H, Yang Y, Zhang M. Altered White Matter Integrity in Smokers Is Associated with Smoking Cessation Outcomes. Front Hum Neurosci 2017; 11:438. [PMID: 28912702 PMCID: PMC5582085 DOI: 10.3389/fnhum.2017.00438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/16/2017] [Indexed: 01/03/2023] Open
Abstract
Smoking is a significant cause of preventable mortality worldwide. Understanding the neural mechanisms of nicotine addiction and smoking cessation may provide effective targets for developing treatment strategies. In the present study, we explored whether smokers have white matter alterations and whether these alterations are related to cessation outcomes and smoking behaviors. Sixty-six smokers and thirty-seven healthy non-smokers were enrolled. The participants underwent magnetic resonance imaging scans and smoking-related behavioral assessments. After a 12-week treatment with varenicline, 28 smokers succeeded in quitting smoking and 38 failed. Diffusion parameter maps were compared among the non-smokers, future quitters, and relapsers to identify white matter differences. We found that the future relapsers had significantly lower fractional anisotropy (FA) in the orbitofrontal area than non-smokers, and higher FA in the cerebellum than non-smokers and future quitters. The future quitters had significantly lower FA in the postcentral gyrus compared to non-smokers and future relapsers. Compared to non-smokers, pooled smokers had lower FA in bilateral orbitofrontal gyrus and left superior frontal gyrus. In addition, regression analysis showed that the left orbitofrontal FA was correlated with smoking-relevant behaviors. These results suggest that white matter alterations in smokers may contribute to the formation of aberrant brain circuits underlying smoking behaviors and are associated with future smoking cessation outcomes.
Collapse
Affiliation(s)
- Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou, China
| | - Zhujing Shen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou, China
| | - Chao Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou, China
| | - Wei Qian
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou, China
| | - Huan Zhang
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang UniversityHangzhou, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, BaltimoreMD, United States
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou, China
| |
Collapse
|
48
|
Effects of abstinence and chronic cigarette smoking on white matter microstructure in alcohol dependence: Diffusion tensor imaging at 4T. Drug Alcohol Depend 2017; 175:42-50. [PMID: 28384535 PMCID: PMC5444327 DOI: 10.1016/j.drugalcdep.2017.01.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/21/2016] [Accepted: 01/22/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND We previously reported widespread microstructural deficits of brain white matter in alcohol-dependent individuals (ALC) compared to light drinkers in a small 1.5T diffusion tensor imaging study employing tract-based spatial statistics. Using a larger dataset acquired at 4T, the present study is an extension that investigated the effects of alcohol consumption, abstinence from alcohol, and comorbid cigarette smoking on white matter microstructure. METHODS Tract-based spatial statistics were performed on 20 1-week-abstinent ALC, 52 1-month-abstinent ALC, and 30 controls. Regional measures of fractional anisotropy (FA) and mean diffusivity (MD) in the significant clusters were compared by Analysis of Covariance. The metrics were correlated with substance use history and behavioral measures. RESULTS 1-week-abstinent ALC showed lower FA than controls in the corpus callosum, right cingulum, external capsule, and hippocampus. At 1 month of abstinence, only the FA in the body of the corpus callosum of ALC remained significantly different from controls. Some regional FA deficits correlated with more severe measures of drinking and smoking histories but only weakly with mood and impulsivity measures. CONCLUSION White matter microstructure is abnormal during early abstinence in alcohol dependent treatment seekers and recovers into the normal range within about four weeks. The compromised white matter was related to substance use severity, mood, and impulsivity. Our findings suggest that ALC may benefit from interventions that facilitate normalization of DTI metrics to maintain abstinence, via smoking cessation, cognitive-based therapy, and perhaps pharmacology to support remyelination.
Collapse
|
49
|
Ritchie SJ, Tucker-Drob EM, Cox SR, Dickie DA, Del C Valdés Hernández M, Corley J, Royle NA, Redmond P, Muñoz Maniega S, Pattie A, Aribisala BS, Taylor AM, Clarke TK, Gow AJ, Starr JM, Bastin ME, Wardlaw JM, Deary IJ. Risk and protective factors for structural brain ageing in the eighth decade of life. Brain Struct Funct 2017; 222:3477-3490. [PMID: 28424895 PMCID: PMC5676817 DOI: 10.1007/s00429-017-1414-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/27/2017] [Indexed: 11/06/2022]
Abstract
Individuals differ markedly in brain structure, and in how this structure degenerates during ageing. In a large sample of human participants (baseline n = 731 at age 73 years; follow-up n = 488 at age 76 years), we estimated the magnitude of mean change and variability in changes in MRI measures of brain macrostructure (grey matter, white matter, and white matter hyperintensity volumes) and microstructure (fractional anisotropy and mean diffusivity from diffusion tensor MRI). All indices showed significant average change with age, with considerable heterogeneity in those changes. We then tested eleven socioeconomic, physical, health, cognitive, allostatic (inflammatory and metabolic), and genetic variables for their value in predicting these differences in changes. Many of these variables were significantly correlated with baseline brain structure, but few could account for significant portions of the heterogeneity in subsequent brain change. Physical fitness was an exception, being correlated both with brain level and changes. The results suggest that only a subset of correlates of brain structure are also predictive of differences in brain ageing.
Collapse
Affiliation(s)
- Stuart J Ritchie
- Department of Psychology, The University of Edinburgh, Edinburgh, UK. .,Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK.
| | | | - Simon R Cox
- Department of Psychology, The University of Edinburgh, Edinburgh, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
| | - David Alexander Dickie
- Brain Research Imaging Centre, The University of Edinburgh, Edinburgh, UK.,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Maria Del C Valdés Hernández
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK.,Brain Research Imaging Centre, The University of Edinburgh, Edinburgh, UK.,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Janie Corley
- Department of Psychology, The University of Edinburgh, Edinburgh, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
| | - Natalie A Royle
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK.,Brain Research Imaging Centre, The University of Edinburgh, Edinburgh, UK.,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Paul Redmond
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Susana Muñoz Maniega
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK.,Brain Research Imaging Centre, The University of Edinburgh, Edinburgh, UK.,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Alison Pattie
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Benjamin S Aribisala
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK.,Brain Research Imaging Centre, The University of Edinburgh, Edinburgh, UK.,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.,Computer Science Department, Faculty of Science, Lagos State University, Lagos, Nigeria
| | - Adele M Taylor
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Toni-Kim Clarke
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| | - Alan J Gow
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK.,Department of Psychology, Heriot-Watt University, Edinburgh, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK.,Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK.,Brain Research Imaging Centre, The University of Edinburgh, Edinburgh, UK.,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Joanna M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK.,Brain Research Imaging Centre, The University of Edinburgh, Edinburgh, UK.,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Department of Psychology, The University of Edinburgh, Edinburgh, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
50
|
Altered spontaneous brain activity in chronic smokers revealed by fractional ramplitude of low-frequency fluctuation analysis: a preliminary study. Sci Rep 2017; 7:328. [PMID: 28336919 PMCID: PMC5428464 DOI: 10.1038/s41598-017-00463-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 02/28/2017] [Indexed: 11/12/2022] Open
Abstract
Although a substantial body of previous functional magnetic resonance imaging (fMRI) studies have revealed different brain responses to external stimuli in chronic cigarette smokers compared with nonsmokers, only a few studies assessed brain spontaneous activity in the resting state in chronic smokers. The aim of this study was to investigate alterations of brain activity during the resting state in chronic smokers using fractional amplitude of low-frequency fluctuation (fALFF). In the present study, 55 smokers and 49 healthy nonsmokers were included. All the subjects underwent resting-state fMRI scans and the data were analyzed by the fALFF approach. The smokers showed significantly decreased fALFF in the left precuneus, right inferior temporal and occipital gyrus(ITG/IOG), while significantly increased fALFF in the right caudate. Subsequent correlation analysis revealed that the fALFF values of the left precuneus and right ITG/IOG were positively correlated with years of smoking across the smokers. This resting-state fMRI study suggests that the changed spontaneous neuronal activity, as reflected by the fALFF, in these regions may be implicated in the underlying the pathophysiology of smoking.
Collapse
|