1
|
Tiwari P, Mueed S, Abdulkareem AO, Hanif K. Activation of angiotensin converting enzyme 2 promotes hippocampal neurogenesis via activation of Wnt/β-catenin signaling in hypertension. Mol Cell Neurosci 2024; 130:103953. [PMID: 39013481 DOI: 10.1016/j.mcn.2024.103953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
Hypertension-induced brain renin-angiotensin system (RAS) activation and neuroinflammation are hallmark neuropathological features of neurodegenerative diseases. Previous studies from our lab have shown that inhibition of ACE/Ang II/AT1R axis (by AT1R blockers or ACE inhibitors) reduced neuroinflammation and accompanied neurodegeneration via up-regulating adult hippocampal neurogenesis. Apart from this conventional axis, another axis of RAS also exists i.e., ACE2/Ang (1-7)/MasR axis, reported as an anti-hypertensive and anti-inflammatory. However, the role of this axis has not been explored in hypertension-induced glial activation and hippocampal neurogenesis in rat models of hypertension. Hence, in the present study, we examined the effect of ACE2 activator, Diminazene aceturate (DIZE) at 2 different doses of 10 mg/kg (non-antihypertensive) and 15 mg/kg (antihypertensive dose) in renovascular hypertensive rats to explore whether their effect on glial activation, neuroinflammation, and neurogenesis is either influenced by blood-pressure. The results of our study revealed that hypertension induced significant glial activation (astrocyte and microglial), neuroinflammation, and impaired hippocampal neurogenesis. However, ACE2 activation by DIZE, even at the low dose prevented these hypertension-induced changes in the brain. Mechanistically, ACE2 activation inhibited Ang II levels, TRAF6-NFκB mediated inflammatory signaling, NOX4-mediated ROS generation, and mitochondrial dysfunction by upregulating ACE2/Ang (1-7)/MasR signaling. Moreover, DIZE-induced activation of the ACE2/Ang (1-7)/MasR axis upregulated Wnt/β-catenin signaling, promoting hippocampal neurogenesis during the hypertensive state. Therefore, our study demonstrates that ACE2 activation can effectively prevent glial activation and enhance hippocampal neurogenesis in hypertensive conditions, regardless of its blood pressure-lowering effects.
Collapse
Affiliation(s)
- Priya Tiwari
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumbul Mueed
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Adam Olaitan Abdulkareem
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Animal Physiology Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria
| | - Kashif Hanif
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Verma A, Waiker DK, Singh N, Roy A, Singh N, Saraf P, Bhardwaj B, Krishnamurthy S, Trigun SK, Shrivastava SK. Design, Synthesis, and Biological Investigation of Quinazoline Derivatives as Multitargeting Therapeutics in Alzheimer's Disease Therapy. ACS Chem Neurosci 2024; 15:745-771. [PMID: 38327209 DOI: 10.1021/acschemneuro.3c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
An efficient and promising method of treating complex neurodegenerative diseases like Alzheimer's disease (AD) is the multitarget-directed approach. Here in this work, a series of quinazoline derivatives (AV-1 to AV-21) were rationally designed, synthesized, and biologically evaluated as multitargeted directed ligands against human cholinesterase (hChE) and human β-secretase (hBACE-1) that exhibit moderate to good inhibitory effects. Compounds AV-1, AV-2, and AV-3 from the series demonstrated balanced and significant inhibition against these targets. These compounds also displayed excellent blood-brain barrier permeability via the PAMPA-BBB assay. Compound AV-2 significantly displaced propidium iodide (PI) from the acetylcholinesterase-peripheral anionic site (AChE-PAS) and was found to be non-neurotoxic at the maximum tested concentration (80 μM) against differentiated SH-SY5Y cell lines. Compound AV-2 also prevented AChE- and self-induced Aβ aggregation in the thioflavin T assay. Additionally, compound AV-2 significantly ameliorated scopolamine and Aβ-induced cognitive impairments in the in vivo behavioral Y-maze and Morris water maze studies, respectively. The ex vivo and biochemical analysis further revealed good hippocampal AChE inhibition and the antioxidant potential of the compound AV-2. Western blot and immunohistochemical (IHC) analysis of hippocampal brain revealed reduced Aβ, BACE-1, APP/Aβ, and Tau molecular protein expressions levels. The pharmacokinetic analysis of compound AV-2 demonstrated significant oral absorption with good bioavailability. The in silico molecular modeling studies of lead compound AV-2 moreover demonstrated a reasonable binding profile with AChE and BACE-1 enzymes and stable ligand-protein complexes throughout the 100 ns run. Compound AV-2 can be regarded as the lead candidate and could be explored more for AD therapy.
Collapse
Affiliation(s)
- Akash Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Digambar Kumar Waiker
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Neha Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Anima Roy
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Namrata Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Poorvi Saraf
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Bhagwati Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
3
|
Tiwari V, Singh J, Tiwari P, Chaturvedi S, Gupta S, Mishra A, Singh S, Wahajuddin M, Hanif K, Shukla S. ACE2/ANG-(1-7)/Mas receptor axis activation prevents inflammation and improves cognitive functions in streptozotocin induced rat model of Alzheimer's disease-like phenotypes. Eur J Pharmacol 2023; 946:175623. [PMID: 36871666 DOI: 10.1016/j.ejphar.2023.175623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/25/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Activation of the renin-angiotensin system (RAS), by Angiotensin converting enzyme/Angiotensin II/Angiotensin receptor-1 (ACE/Ang II/AT1 R) axis elicits amyloid deposition and cognitive impairment. Furthermore, ACE2 induced release of Ang-(1-7) binds with the Mas receptor and autoinhibits ACE/Ang II/AT1 axis activation. Inhibition of ACE by perindopril has been reported to improve memory in preclinical settings. However, the functional significance and mechanism by which ACE2/Mas receptor regulate cognitive functions and amyloid pathology is not known. The present study is aimed to determine the role of ACE2/Ang-(1-7)/Mas receptor axis in STZ induced rat model of Alzheimer's disease (AD). We have used pharmacological, biochemical and behavioural approaches to identify the role of ACE2/Ang-(1-7)/Mas receptor axis activation on AD-like pathology in both in vitro and invivo models. STZ treatment enhances ROS formation, inflammation markers and NFκB/p65 levels which are associated with reduced ACE2/Mas receptor levels, acetylcholine activity and mitochondrial membrane potential in N2A cells. DIZE mediated ACE2/Ang-(1-7)/Mas receptor axis activation resulted in reduced ROS generation, astrogliosis, NFκB level and inflammatory molecules and improved mitochondrial functions along with Ca2+ influx in STZ treated N2A cells. Interestingly, DIZE induced activation of ACE2/Mas receptor significantly restored acetylcholine levels and reduced amyloid-beta and phospho-tau deposition in cortex and hippocampus that resulted in improved cognitive function in STZ induced rat model of AD-like phenotypes. Our data indicate that ACE2/Mas receptor activation is sufficient to prevented cognitive impairment and progression of amyloid pathology in STZ induced rat model of AD-like phenotypes. These findings suggest the potential role of ACE2/Ang-(1-7)/Mas axis in AD pathophysiology by regulating inflammation cognitive functions.
Collapse
Affiliation(s)
- Virendra Tiwari
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow, 226031, (U.P), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jitendra Singh
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow, 226031, (U.P), India
| | - Priya Tiwari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmacology, CSIR- Central Drug Research Institute, Lucknow, 226031, (U.P), India
| | - Swati Chaturvedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmaceutics and Pharmacokinetics, CSIR - Central Drug Research Institute, Lucknow, 226031, (U.P), India
| | - Shivangi Gupta
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow, 226031, (U.P), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akanksha Mishra
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow, 226031, (U.P), India; Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 01595, USA
| | - Sonu Singh
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow, 226031, (U.P), India; Department of Neuroscience, School of Medicine, University of Connecticut (Uconn) Health Center, 263 Farmington Avenue, L-4078, Farmington, CT, 06030, USA
| | - Muhammad Wahajuddin
- Division of Pharmaceutics and Pharmacokinetics, CSIR - Central Drug Research Institute, Lucknow, 226031, (U.P), India; Institute of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - Kashif Hanif
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmacology, CSIR- Central Drug Research Institute, Lucknow, 226031, (U.P), India
| | - Shubha Shukla
- Division of Neuroscience and Ageing Biology, CSIR- Central Drug Research Institute, Lucknow, 226031, (U.P), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Lim JY, Kim W, Ha AW. The effect of curcumin on blood pressure and cognitive impairment in spontaneously hypertensive rats. Nutr Res Pract 2023; 17:192-205. [PMID: 37009141 PMCID: PMC10042717 DOI: 10.4162/nrp.2023.17.2.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 03/22/2023] Open
Abstract
BACKGROUND/OBJECTIVES It is known that the renin-angiotensin system (RAS) in the brain could regulate cognitive functions as well as blood pressure. Inhibition of RAS for the improvement of cognitive function may be a new strategy, but studies so far have mostly reported on the effects of RAS inhibition by drugs, and there is no research on cognitive improvement through RAS inhibition of food ingredients. Therefore, this study investigated the effect of curcumin on blood pressure and cognitive function and its related mechanism in spontaneously hypertensive rat/Izm (SHR/Izm). MATERIALS/METHODS Six-week-old SHR/Izm rats were divided into 5 groups: control group (CON), scopolamine group (SCO, drug for inducing cognitive deficits), positive control (SCO and tacrine [TAC]), curcumin 100 group (CUR100, SCO + Cur 100 mg/kg), and curcumin 200 group (CUR200, SCO + Cur 200 mg/kg). Changes in blood pressure, RAS, cholinergic system, and cognitive function were compared before and after cognitive impairment. RESULTS The SCO group showed increased blood pressure and significantly reduced cognitive function based on the y-maze and passive avoidance test. Curcumin treatments significantly improved blood pressure and cognitive function compared with the SCO group. In both the CUR100 and CUR200 groups, the mRNA expressions of angiotensin-converting enzyme (ACE) and angiotensin II receptor type1 (AT1), as well as the concentrations of angiotensin II (Ang II) in brain tissue were significantly decreased. The mRNA expression of the muscarinic acetylcholine receptors (mAChRs) and acetylcholine (ACh) content was significantly increased, compared with the SCO group. CONCLUSIONS The administration of curcumin improved blood pressure and cognitive function in SCO-induced hypertensive mice, indicating that the cholinergic system was improved by suppressing RAS and AT1 receptor expression and increasing the mAChR expression.
Collapse
Affiliation(s)
- Ji Young Lim
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| | - Wookyoung Kim
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
| | - Ae Wha Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea
- Department of Food Science and Nutrition, Natural Nutraceuticals Industrialization Research Center, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
5
|
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, Unger T, Hallberg A, Carey RM, Sumners C. The Angiotensin AT 2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol Rev 2022; 74:1051-1135. [PMID: 36180112 PMCID: PMC9553111 DOI: 10.1124/pharmrev.120.000281] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.
Collapse
Affiliation(s)
- U Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert E Widdop
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Edward D Sturrock
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Lizelle Lubbe
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Tahir Hussain
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Elena Kaschina
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Thomas Unger
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Anders Hallberg
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert M Carey
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Colin Sumners
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| |
Collapse
|
6
|
Bhat SA, Fatima Z, Sood A, Shukla R, Hanif K. The Protective Effects of AT2R Agonist, CGP42112A, Against Angiotensin II-Induced Oxidative Stress and Inflammatory Response in Astrocytes: Role of AT2R/PP2A/NFκB/ROS Signaling. Neurotox Res 2021; 39:1991-2006. [PMID: 34529240 DOI: 10.1007/s12640-021-00403-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023]
Abstract
Angiotensin II receptor type 2 (AT2R) agonists have been known to promote neuroprotection by limiting ischemic insult, neuronal proliferation, and differentiation. Further, AT2R agonists have also been associated with the suppression of neuroinflammation and neurodegeneration. Of note, brain astrocytes play a critical role in these neuroinflammatory and neurodegenerative processes. However, the role of AT2R in astrocytic activation remains elusive. Therefore, this study evaluated the role and molecular mechanism of AT2R agonist CGP42112A (CGP) against Angiotensin II (Ang II)-induced astrocytic activation in primary astrocytes, and in a rat model of hypertension. Here, we demonstrated that AT2R activation by CGP abrogated Ang II-induced astrocytic activation, by mitigating the ROS production, mitochondrial dysfunction, IκB-α degradation, NFκB nuclear translocation, and release of TNF-α in astrocytes. However, AT2R-mediated anti-inflammatory effects were reversed by AT2R antagonist, PD123319 (PD), in both in vitro and in vivo conditions. Mechanistically, AT2R via protein phosphatase-2A (PP2A) abrogated the Ang II-induced NFκB activation, ROS generation, and subsequent astrocytic activation. Importantly, PP2A antagonist, okadaic acid, reversed the anti-inflammatory effects of AT2R in Ang II-stimulated primary astrocytes and in the cortex of hypertensive rats. Thus, the present study suggests that AT2R by activating PP2A inhibits oxidative stress and NFκB activation, thereby preventing the astrocytic pro-inflammatory activation. Therefore, AT2R might be advantageous therapeutic target for neuroinflammatory/neurodegenerative diseases perpetuated by astrocytic activation.
Collapse
Affiliation(s)
- Shahnawaz Ali Bhat
- Division of Pharmacology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.
- Department of Zoology, Aligarh Muslim University, Aligarh, India.
| | | | - Anika Sood
- National Institute of Pharmaceutical Education and Research, Rae Bareli, India
| | - Rakesh Shukla
- Division of Pharmacology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Kashif Hanif
- Division of Pharmacology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
7
|
Conventional cardiovascular risk factors in Transient Global Amnesia: Systematic review and proposition of a novel hypothesis. Front Neuroendocrinol 2021; 61:100909. [PMID: 33539928 DOI: 10.1016/j.yfrne.2021.100909] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/07/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Transient Global Amnesia (TGA) is an enigmatic amnestic syndrome. We conducted a systematic review to investigate the relationship between the conventional cardiovascular risk factors and TGA. MEDLINE, CENTRAL, EMBASE and PsycINFO were comprehensively searched and 23 controlled observational studies were retrieved. The prevalence of hypertension, diabetes mellitus, dyslipidemia and smoking was lower among patients with TGA compared to Transient Ischemic Attack. Regarding the comparison of TGA with healthy individuals, there was strong evidence suggesting a protective effect of diabetes mellitus on TGA and weaker evidence for a protective effect of smoking. Hypertension was associated with TGA only in more severe stages, while dyslipidemia was not related. In view of these findings, a novel pathophysiological hypothesis is proposed, in which the functional interactions of Angiotensin-II type-1 and N-methyl-D-aspartate receptors are of pivotal importance. The whole body of clinical evidence (nature of precipitating events, associations with migraine, gender-based association patterns) was integrated.
Collapse
|
8
|
Ahmed HA, Ishrat T. The Brain AT2R-a Potential Target for Therapy in Alzheimer's Disease and Vascular Cognitive Impairment: a Comprehensive Review of Clinical and Experimental Therapeutics. Mol Neurobiol 2020; 57:3458-3484. [PMID: 32533467 PMCID: PMC8109287 DOI: 10.1007/s12035-020-01964-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
Dementia is a potentially avertable tragedy, currently considered among the top 10 greatest global health challenges of the twenty-first century. Dementia not only robs individuals of their dignity and independence, it also has a ripple effect that starts with the inflicted individual's family and projects to the society as a whole. The constantly growing number of cases, along with the lack of effective treatments and socioeconomic impact, poses a serious threat to the sustainability of our health care system. Hence, there is a worldwide effort to identify new targets for the treatment of Alzheimer's disease (AD), the leading cause of dementia. Due to its multifactorial etiology and the recent clinical failure of several novel amyloid-β (Aβ) targeting therapies, a comprehensive "multitarget" approach may be most appropriate for managing this condition. Interestingly, renin angiotensin system (RAS) modulators were shown to positively impact all the factors involved in the pathophysiology of dementia including vascular dysfunction, Aβ accumulation, and associated cholinergic deficiency, in addition to tau hyperphosphorylation and insulin derangements. Furthermore, for many of these drugs, the preclinical evidence is also supported by epidemiological data and/or preliminary clinical trials. The purpose of this review is to provide a comprehensive update on the major causes of dementia including the risk factors, current diagnostic criteria, pathophysiology, and contemporary treatment strategies. Moreover, we highlight the angiotensin II receptor type 2 (AT2R) as an effective drug target and present ample evidence supporting its potential role and clinical applications in cognitive impairment to encourage further investigation in the clinical setting.
Collapse
Affiliation(s)
- Heba A Ahmed
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA.
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
9
|
Ciobica A, Padurariu M, Curpan A, Antioch I, Chirita R, Stefanescu C, Luca AC, Tomida M. Minireview on the Connections between the Neuropsychiatric and Dental Disorders: Current Perspectives and the Possible Relevance of Oxidative Stress and Other Factors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6702314. [PMID: 32685098 PMCID: PMC7345607 DOI: 10.1155/2020/6702314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/21/2020] [Indexed: 01/14/2023]
Abstract
Although the connections between neuropsychiatric and dental disorders attracted the attention of some research groups for more than 50 years now, there is a general opinion in the literature that it remains a clearly understudied and underrated topic, with many unknowns and a multitude of challenges for the specialists working in both these areas of research. In this way, considering the previous experience of our groups in these individual matters which are combined here, we are summarizing in this minireport the current status of knowledge on the connections between neuropsychiatric and dental manifestations, as well as some general ideas on how oxidative stress, pain, music therapy or even irritable bowel syndrome-related manifestations could be relevant in this current context and summarize some current approaches in this matter.
Collapse
Affiliation(s)
- Alin Ciobica
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, Iasi, Romania
| | - Manuela Padurariu
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Street, Iasi, Romania
| | - Alexandrina Curpan
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Bd. Carol I, 20A, 700505 Iași, Romania
| | - Iulia Antioch
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, Iasi, Romania
| | - Roxana Chirita
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Street, Iasi, Romania
| | - Cristinel Stefanescu
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Street, Iasi, Romania
| | - Alina-Costina Luca
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Street, Iasi, Romania
| | - Mihoko Tomida
- Department of Oral Science, Matsumoto Dental University, Shiojiri, Japan
| |
Collapse
|
10
|
Jawaid T, Kamal M, Azmi L, A. Alkhame O, M. Alsanad S. Neuroprotective Effect of Bambusa arundinaceae Leaves Extract on Learning and Memory Impairment in Mice: Impact on NR2B, NR1 and GAP Pathways. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.244.256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Chen J, Li M, Qu D, Sun Y. Neuroprotective Effects of Red Ginseng Saponins in Scopolamine-Treated Rats and Activity Screening Based on Pharmacokinetics. Molecules 2019; 24:molecules24112136. [PMID: 31174251 PMCID: PMC6600263 DOI: 10.3390/molecules24112136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 12/24/2022] Open
Abstract
Ginseng has been used to alleviate age-related dementia and memory deterioration for thousands of years. This study investigated the protective effect of red ginseng saponins against scopolamine-induced cerebral injury. Meanwhile, pharmacokinetics of ginsenosides in normal and scopolamine-treated rats were compared. After scopolamine injection, glutathione, catalase and superoxide dismutase levels were significantly decreased when compared with control group. Compared with SA group, pretreatment of rats with red ginseng saponins could increase glutathione, catalase and superoxide dismutase level. Treatment with red ginseng saponins significantly decreased malondialdehyde level. In the pharmacokinetic analysis, a pattern recognition analysis method was used to investigate the pharmacokinetics of the absorbed compounds in blood. The pharmacokinetic parameters of Rg1, Rg2, Rh3, Rg5 and Rk1 in model group had higher area under the curve (AUC), mean residence time (MRT) and peak plasma concentration (Cmax) values; area under the curve (AUC) values and peak plasma concentration (Cmax) of model group was significantly different from that of normal group (p < 0.05). The Cmax value of Rk3, Rh1, Rh2 and Rh4 in model group was higher than normal group, but their AUC values were not significantly different. There was no significantly difference in time at Cmax (Tmax), AUC and Cmax values of Rb1, Rb2 Re, Rc, Rd and Rf between the model and normal group. 16 ginsenosides were grouped into three separate clusters according to principal component analysis (PCA) score plot based on pharmacokinetic data. The results suggested red ginseng saponins have significant protective effect against scopolamine-induced memory deficit and scopolamine-induced rats could lead to the changes of pharmacokinetic behaviors of ginsenosides.
Collapse
Affiliation(s)
- Jianbo Chen
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China.
| | - Meijia Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China.
| | - Di Qu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China.
| | - Yinshi Sun
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China.
| |
Collapse
|
12
|
Ishola IO, Ikuomola BO, Adeyemi OO. Protective role of Spondias mombin leaf and Cola acuminata seed extracts against scopolamine-induced cognitive dysfunction. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2016.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Ismail O. Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine of the University of Lagos, Idi-araba, Lagos, Nigeria
| | - Bukola O. Ikuomola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine of the University of Lagos, Idi-araba, Lagos, Nigeria
| | - Olufunmilayo O. Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine of the University of Lagos, Idi-araba, Lagos, Nigeria
| |
Collapse
|
13
|
Cognitive-enhancing and ameliorative effects of acanthoside B in a scopolamine-induced amnesic mouse model through regulation of oxidative/inflammatory/cholinergic systems and activation of the TrkB/CREB/BDNF pathway. Food Chem Toxicol 2019; 129:444-457. [PMID: 31077737 DOI: 10.1016/j.fct.2019.04.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 11/21/2022]
Abstract
Recently, our research team reported the anti-amnesic potential of desalted-hydroethanolic extracts of Salicornia europaea L. (SE-EE). In this study, we performed bioactivity-guided isolation and identification of Acanthoside B (Aca.B), from SE-EE, as the potential bioactive candidate and examined anti-amnesic activity with its potential mechanism of action using an in vivo model. S7-L3-3 purified from SE-EE showed enhanced in vitro acetylcholinesterase (AChE) inhibitory activity. The isolated S7-L3-3 was identified and characterized as Aca.B using varied spectral analyses, i.e., Nuclear magnetic resonance (NMR), Ultraviolet-visible (UV-Vis), and Electrospray ionization-mass spectrometry (ESI-MS). In the in vitro studies, Aca.B exhibited negligible toxicity and showed a dose-dependent nitric oxide inhibitory potential in Lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. In the in vivo studies, the oral administration of Aca.B to mice showed enhanced bioavailability and dose-dependent repression of the behavioral/cognitive impairment by regulating the cholinergic function, restoring the antioxidant status, attenuating the inflammatory cytokines/mediators and actively enriching neurotropic proteins in the hippocampal regions of the scopolamine-administered mice.
Collapse
|
14
|
Ko YH, Kwon SH, Ma SX, Seo JY, Lee BR, Kim K, Kim SY, Lee SY, Jang CG. The memory-enhancing effects of 7,8,4’-trihydroxyisoflavone, a major metabolite of daidzein, are associated with activation of the cholinergic system and BDNF signaling pathway in mice. Brain Res Bull 2018; 142:197-206. [DOI: 10.1016/j.brainresbull.2018.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022]
|
15
|
|
16
|
da Silva FD, Pinz MP, de Oliveira RL, Rodrigues KC, Ianiski FR, Bassaco MM, Silveira CC, Jesse CR, Roman SS, Wilhelm EA, Luchese C. Organosulfur compound protects against memory decline induced by scopolamine through modulation of oxidative stress and Na +/K + ATPase activity in mice. Metab Brain Dis 2017; 32:1819-1828. [PMID: 28710722 DOI: 10.1007/s11011-017-0067-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023]
Abstract
The present study investigated the possible effect of BMMS in protecting against memory impairment in an Alzheimer's disease model induced by scopolamine in mice. Another objective was to evaluate the involvement of oxidative stress and Na+/K+ ATPase activity in cerebral cortex and hippocampus of mice. Male Swiss mice were divided into four groups: groups I and III received canola oil (10 ml/kg, intragastrically (i.g.)), while groups II and IV received BMMS (10 mg/kg, i.g.). Thirty minutes after treatments, groups III and IV received scopolamine (1 mg/kg, intraperitoneal (i.p.)), while groups I and II received saline (5 ml/kg, i.p.). Behavioral tests were performed thirty minutes after scopolamine or saline injection. Cerebral cortex and hippocampus were removed to determine the thiobarbituric acid reactive species (TBARS) levels, non-protein thiols (NPSH) content, catalase (CAT) and Na+/K+ ATPase activities. The results showed that BMMS pretreatment protected against the reduction in alternation and latency time induced by scopolamine in the Y-maze test and step-down inhibitory avoidance, respectively. In the Barnes maze, the latency to find the escape box and the number of holes visited were attenuated by BMMS. Locomotor and exploratory activities were similar in all groups. BMMS pretreatment protected against the increase in the TBARS levels, NPSH content and CAT activity, as well as the inhibition on the Na+/K+ ATPase activity caused by scopolamine in the cerebral cortex. In the hippocampus, no significant difference was observed. In conclusion, the present study revealed that BMMS protected against the impairment of retrieval of short-term and long-term memories caused by scopolamine in mice. Moreover, antioxidant effect and protection on the Na+/K+ ATPase activity are involved in the effect of compound against memory impairment in AD model induced by scopolamine.
Collapse
Affiliation(s)
- Fernanda D da Silva
- Programa de Pós-Graduação em Nanociências, Centro de Ciências Tecnológicas, Centro Universitário Franciscano, Santa Maria, RS, CEP 97010-032, Brazil
| | - Mikaela P Pinz
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Renata L de Oliveira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Karline C Rodrigues
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil
| | - Francine R Ianiski
- Programa de Pós-Graduação em Nanociências, Centro de Ciências Tecnológicas, Centro Universitário Franciscano, Santa Maria, RS, CEP 97010-032, Brazil
| | - Mariana M Bassaco
- Programa de Pós-Graduação em Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Claudio C Silveira
- Programa de Pós-Graduação em Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Cristiano R Jesse
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Silvane S Roman
- Universidade Regional Integrada, Campus Erechim, RS, CEP 99700-000, Brazil
| | - Ethel A Wilhelm
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil.
| | - Cristiane Luchese
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Campus Capão do Leão, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
17
|
Saavedra J. Beneficial effects of Angiotensin II receptor blockers in brain disorders. Pharmacol Res 2017; 125:91-103. [DOI: 10.1016/j.phrs.2017.06.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/17/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
|
18
|
Bhat SA, Goel R, Shukla S, Shukla R, Hanif K. Angiotensin Receptor Blockade by Inhibiting Glial Activation Promotes Hippocampal Neurogenesis Via Activation of Wnt/β-Catenin Signaling in Hypertension. Mol Neurobiol 2017; 55:5282-5298. [DOI: 10.1007/s12035-017-0754-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022]
|
19
|
Trofimiuk E, Wielgat P, Braszko JJ. Candesartan, angiotensin II type 1 receptor blocker is able to relieve age-related cognitive impairment. Pharmacol Rep 2017; 70:87-92. [PMID: 29331792 DOI: 10.1016/j.pharep.2017.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Candesartan is one of the standard antihypertensive drug belonging to AT1R angiotensin receptor blockers (ARBs) group. Beneficial effects of this drug in the treatment of hypertension are well recognized. In this study we tested a hypothesis that candesartan could alleviate age-related memory decline. METHODS Aged and young rats have been treated with candesartan (0.1mg kg-1) for 21days and then underwent a battery of behavioral tests: for assessment of long-term memory (Passive avoidance test - PA), recognition memory (Object recognition test - OR), locomotor functions (Open field - OF) and anxiety behavior (Elevated plus maze - EPM). RESULTS Aged rats (2-years-old) displayed clear declining tendency in the retrieval of passive avoidance behavior showing thus increased forgetting. Prolonged administration of candesartan significantly (p<0.01) reversed this phenomenon causing recall measured as the avoidance latency, and surprisingly also showed the tendency to recall deterioration observed in the young rats. More optimistic results were achieved in the OR, where candesartan significantly improved recognition memory (p<0.001) of aged rats who performed even better than the young ones (p<0.05). CONCLUSIONS It appears that candesartan potently abolishes some kinds of aging-induced memory impairments and cognitive declines in aged rats, but in some circumstances it may even could increase the damage of memory. It seems that the use of sartans in the treatment of hypertension for patients with associated cognitive impairment, or for people in risk groups for such disorders can be an interesting alternative.
Collapse
Affiliation(s)
- Emil Trofimiuk
- Department of Clinical Pharmacology, Medical University of Bialystok, Białystok, Poland.
| | - Przemysław Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Białystok, Poland
| | - Jan J Braszko
- Department of Clinical Pharmacology, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
20
|
Malikowska N, Sałat K, Podkowa A. Comparison of pro-amnesic efficacy of scopolamine, biperiden, and phencyclidine by using passive avoidance task in CD-1 mice. J Pharmacol Toxicol Methods 2017; 86:76-80. [PMID: 28412329 DOI: 10.1016/j.vascn.2017.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/15/2016] [Accepted: 04/12/2017] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Memory disorders accompany numerous diseases and therapies, and this is becoming a growing medical issue worldwide. Currently, various animal models of memory impairments are available; however, many of them require high financial outlay and/or are time-consuming. A simple way to achieve an efficient behavioral model of cognitive disorders is to inject defined drug that has pro-amnesic properties. Since the involvement of cholinergic and glutamatergic neurotransmission in cognition is well established, the utilization of a nonselective muscarinic receptor antagonist, scopolamine (SCOP), a selective M1 muscarinic receptor antagonist, biperiden (BIP), and a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, phencyclidine (PCP) seems to be reliable tools to induce amnesia. As the determination of their effective doses remains vague and the active doses vary significantly in laboratory settings and in mouse species being tested, the aim of this study was to compare these three models of amnesia in CD-1 mice. METHODS Male Swiss Albino mice were used in passive avoidance (PA) test. All the compounds were administered intraperitoneally (ip) at doses 1mg/kg, 5mg/kg, and 10mg/kg (SCOP and BIP), and 1mg/kg, 3mg/kg, and 6mg/kg (PCP). RESULTS In the retention trial of the PA task, SCOP and PCP led to the reduction of step-through latency at all the tested doses as compared to control, but BIP was effective only at the dose of 10mg/kg. CONCLUSION This study revealed the effectiveness of SCOP, PCP, and BIP as tools to induce amnesia, with the PCP model being the most efficacious and SCOP being the only model that demonstrates a clear dose-response relationship.
Collapse
Affiliation(s)
- Natalia Malikowska
- Department of Pharmacodynamics, Jagiellonian University, Medical College, Medyczna 9 St., 30-688 Krakow, Poland.
| | - Kinga Sałat
- Department of Pharmacodynamics, Jagiellonian University, Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Adrian Podkowa
- Department of Pharmacodynamics, Jagiellonian University, Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| |
Collapse
|
21
|
Angiotensin II Receptor Blockers Attenuate Lipopolysaccharide-Induced Memory Impairment by Modulation of NF-κB-Mediated BDNF/CREB Expression and Apoptosis in Spontaneously Hypertensive Rats. Mol Neurobiol 2017; 55:1725-1739. [DOI: 10.1007/s12035-017-0450-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/07/2017] [Indexed: 11/28/2022]
|
22
|
Gorain B, Choudhury H, Tekade RK, Karan S, Jaisankar P, Pal TK. Comparative biodistribution and safety profiling of olmesartan medoxomil oil-in-water oral nanoemulsion. Regul Toxicol Pharmacol 2016; 82:20-31. [DOI: 10.1016/j.yrtph.2016.10.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
|
23
|
Zhang Y, Xiu M, Jiang J, He J, Li D, Liang S, Chen Q. Novokinin inhibits gastric acid secretion and protects against alcohol-induced gastric injury in rats. Alcohol 2016; 56:1-8. [PMID: 27814789 DOI: 10.1016/j.alcohol.2016.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023]
Abstract
Novokinin (Arg-Pro-Leu-Lys-Pro-Trp), a potent vasorelaxing and hypotensive peptide modified from ovokinin, exhibits highly selective affinity for the AT2 receptor. However, its role in gastrointestinal functions is still not fully understood. In this study, we found that novokinin inhibited basal gastric acid secretion and protected gastric mucosa from alcohol-induced injury in a dose-related manner in rats after intracerebroventricular (i.c.v.) administration. Novokinin significantly decreased basal gastric acid output at the dose of 50 and 100 nmol/rat. The effect of novokinin on gastric acid secretion was reversed by central injection of PD 123319 (10 nmol/rat), an AT2 receptor antagonist, and peripheral injection of indomethacin (10 mg/kg), an inhibitor of prostaglandin synthesis. Meanwhile, pre-treatment with novokinin at doses of 10, 50, and 100 nmol/rat significantly reduced the alcohol-induced gastric mucosal injury compared to the ulcer-control group, which was inhibited by indomethacin (10 mg/kg). The result showed a remarkable increase in the level of prostaglandin E2 (PGE2), glutathione (GSH), and a decrease in malondialdehyde (MDA) after i.c.v. administration of novokinin. These findings suggest that the inhibitory effect of novokinin on gastric acid secretion is probably mediated via an AT2 receptor-prostaglandins (PGs) pathway. The gastroprotective effect of novokinin might be attributed to the inhibition of acid secretion, the cytoprotection of PGs, and the antioxidant property.
Collapse
|
24
|
Lee JS, Hong SS, Kim HG, Lee HW, Kim WY, Lee SK, Son CG. Gongjin-Dan Enhances Hippocampal Memory in a Mouse Model of Scopolamine-Induced Amnesia. PLoS One 2016; 11:e0159823. [PMID: 27483466 PMCID: PMC4970723 DOI: 10.1371/journal.pone.0159823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/09/2016] [Indexed: 02/02/2023] Open
Abstract
We evaluated the neuropharmacological effects of Gongjin-Dan (GJD) on the memory impairment caused by scopolamine injection. BALB/c mice were orally treated with GJD (100, 200, or 400 mg/kg, daily) or tacrine (THA, 10 mg/kg) for 10 days, and scopolamine (2 mg/kg) was injected intraperitoneally. The radial arm maze and passive avoidance tests were performed to evaluate the animal’s learning and memory. Scopolamine increased the task completing time, the number of total errors (reference and working memory error) in the radial arm maze task, and the latency time in the passive avoidance test, which were significantly ameliorated by treatment with GJD. The GJD treatment also attenuated the scopolamine-induced hyperactivation of acetylcholinesterase activity, and suppression of the expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and their receptors in the hippocampus. These effects of GJD were supported by both the doublecortin (DCX)-positive staining and Nissl staining, which were used to measure hippocampal neurogenesis and atrophy, respectively. These findings strongly suggest that GJD exerts a potent anti-amnesic effect, and its underlying mechanism might involve the modulation of cholinergic activity.
Collapse
Affiliation(s)
- Jin-Seok Lee
- Liver and Immunology Research Center, Oriental Medical Collage of Daejeon University, 22–5 Daehung-dong, Jung-gu, Daejeon, 301–724, Republic of Korea
| | - Sung-Shin Hong
- Korean Medical College of Daejeon University, 22–5 Yongwoon-dong, Dong-gu, Daejeon301-724, Republic of Korea
| | - Hyeong-Geug Kim
- Liver and Immunology Research Center, Oriental Medical Collage of Daejeon University, 22–5 Daehung-dong, Jung-gu, Daejeon, 301–724, Republic of Korea
| | - Hye-Won Lee
- TKM-based Herbal Drug Research Group, Korea Institute of Oriental Medicine, Daejeon 305–811, Republic of Korea
| | - Won-Yong Kim
- Liver and Immunology Research Center, Oriental Medical Collage of Daejeon University, 22–5 Daehung-dong, Jung-gu, Daejeon, 301–724, Republic of Korea
| | - Sam-Keun Lee
- Department of Applied Chemistry, Daejeon University, 62, Daehak-ro, Dong-gu, Daejeon 34520, Republic of Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Oriental Medical Collage of Daejeon University, 22–5 Daehung-dong, Jung-gu, Daejeon, 301–724, Republic of Korea
- * E-mail:
| |
Collapse
|
25
|
Zhuang S, Wang HF, Wang X, Li J, Xing CM. The association of renin-angiotensin system blockade use with the risks of cognitive impairment of aging and Alzheimer's disease: A meta-analysis. J Clin Neurosci 2016; 33:32-38. [PMID: 27475317 DOI: 10.1016/j.jocn.2016.02.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/08/2016] [Accepted: 02/14/2016] [Indexed: 10/21/2022]
Abstract
A quantitative meta-analysis was performed to evaluate the association of renin-angiotensin system blockade (RASB) use with the incidence of cognitive impairment of aging and Alzheimer's disease (AD). Pubmed, Embase, and Cochrane Library databases were searched up to October 2015. Ten studies that assessed the relationship between RASB use and the incidence of cognitive impairment of aging or AD were included. When randomized trials and observational studies were combined, the use of RASB was significantly associated with a reduced risk of AD (risk ratio [RR], 0.80; 95% confidence interval [CI] 0.68-0.92) and cognitive impairment of aging (RR, 0.65; 95% CI 0.35-0.94) compared no use of RASB. Meanwhile, in an analysis of subgroups, both subjects with angiotensin converting enzyme inhibitor (ACEI) and angiotensin receptor blocker (ARB) use were lower incidence of AD (RR, 0.87; 95% CI 0.74-1.00; RR, 0.69; 95% CI 0.44-0.93, respectively) than those without, whereas, indirect comparison between ACEI and ARB revealed no significance in the risk of AD (RR, 1.27, 95% CI 0.85-1.89, p=0.245). In an analysis of cognitive impairment of aging, ARB use (RR, 0.40; 95% CI 0.02-0.78), rather than ACEI use (RR, 0.72; 95% CI 0.36-1.09), was shown to decrease the risk of cognitive impairment of aging. In conclusion, RASB treatments, regardless of the drug class, have benefits on prevention of AD, and the effects of ACEI may analogous to ARB. However, the benefit differs according to drug classes for cognitive impairment of aging, with ARB use, rather than ACEI use, being a potential treatment for reducing the incidence of cognitive impairment of aging.
Collapse
Affiliation(s)
- Shan Zhuang
- Department of Neurology, Longkou People's Hospital, Longkou, Yantai, Shandong Province, China; Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, China
| | - Hai-Feng Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, China
| | - Xin Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, China
| | - Jun Li
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, China
| | - Cheng-Ming Xing
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No.5 Donghai Middle Road, Qingdao, Shandong Province, China.
| |
Collapse
|
26
|
Saavedra JM. Evidence to Consider Angiotensin II Receptor Blockers for the Treatment of Early Alzheimer's Disease. Cell Mol Neurobiol 2016; 36:259-79. [PMID: 26993513 PMCID: PMC11482317 DOI: 10.1007/s10571-015-0327-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/31/2015] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is the most frequent type of dementia and diagnosed late in the progression of the illness when irreversible brain tissue loss has already occurred. For this reason, treatments have been ineffective. It is imperative to find novel therapies ameliorating modifiable risk factors (hypertension, stroke, diabetes, chronic kidney disease, and traumatic brain injury) and effective against early pathogenic mechanisms including alterations in cerebral blood flow leading to poor oxygenation and decreased access to nutrients, impaired glucose metabolism, chronic inflammation, and glutamate excitotoxicity. Angiotensin II receptor blockers (ARBs) fulfill these requirements. ARBs are directly neuroprotective against early injury factors in neuronal, astrocyte, microglia, and cerebrovascular endothelial cell cultures. ARBs protect cerebral blood flow and reduce injury to the blood brain barrier and neurological and cognitive loss in animal models of brain ischemia, traumatic brain injury, and Alzheimer's disease. These compounds are clinically effective against major risk factors for Alzheimer's disease: hypertension, stroke, chronic kidney disease, diabetes and metabolic syndrome, and ameliorate age-dependent cognitive loss. Controlled studies on hypertensive patients, open trials, case reports, and database meta-analysis indicate significant therapeutic effects of ARBs in Alzheimer's disease. ARBs are safe compounds, widely used to treat cardiovascular and metabolic disorders in humans, and although they reduce hypertension, they do not affect blood pressure in normotensive individuals. Overall, there is sufficient evidence to consider long-term controlled clinical studies with ARBs in patients suffering from established risk factors, in patients with early cognitive loss, or in normal individuals when reliable biomarkers of Alzheimer's disease risk are identified.
Collapse
Affiliation(s)
- Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 4000 Reservoir Road, NW, Bldg. D, Room 287, Washington, DC, 20057, USA.
| |
Collapse
|
27
|
Angiotensin Receptor Blockade Modulates NFκB and STAT3 Signaling and Inhibits Glial Activation and Neuroinflammation Better than Angiotensin-Converting Enzyme Inhibition. Mol Neurobiol 2015; 53:6950-6967. [DOI: 10.1007/s12035-015-9584-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/29/2015] [Indexed: 01/02/2023]
|
28
|
Gadelha A, Vendramini AM, Yonamine CM, Nering M, Berberian A, Suiama MA, Oliveira V, Lima-Landman MT, Breen G, Bressan RA, Abílio V, Hayashi MAF. Convergent evidences from human and animal studies implicate angiotensin I-converting enzyme activity in cognitive performance in schizophrenia. Transl Psychiatry 2015; 5:e691. [PMID: 26645626 PMCID: PMC5068582 DOI: 10.1038/tp.2015.181] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/31/2015] [Accepted: 09/19/2015] [Indexed: 01/25/2023] Open
Abstract
In schizophrenia (SCZ), higher angiotensin I-converting enzyme (ACE) levels have been reported in patient's blood and cerebrospinal fluid (CSF). Hereby, we propose to explore whether the ACE activity levels are associated to cognitive performance in SCZ. Seventy-two patients with SCZ or schizoaffective disorder diagnosis, and 69 healthy controls (HCs) underwent a cognitive battery with parallel collection of peripheral blood samples to measure ACE activity. Significant higher ACE activity levels were confirmed in the plasma of SCZ patients compared with HCs (Student's t=-5.216; P<0.001). ACE activity significantly correlated to Hopkins delayed recall measures (r=-0.247; P=0.004) and Hopkins total (r=-0.214; P=0.012). Subjects grouped as high ACE activity (above average) had worse performance compared with low ACE activity level group for Hopkins delayed recall measure, even after correction for clinical condition, age, gender and years of education (P=0.029). The adjusted R squared for this final model was 0.343. This result was evident only comparing extreme groups for ACE activity, when splitting the sample in three groups with similar number of subjects. To clarify this finding, we performed an evaluation of the cognitive performance of transgenic mice with three copies of ACE gene in novel object recognition (NOR) test, which showed that such animals presented impairment in NOR (P<0.05) compared with two copies of wild-type animals. The results observed in SCZ patients and animal model suggest both the association of ACE to cognitive deficits in SCZ. This finding may support the evaluation of novel treatment protocols and/or of innovative drugs for specific intervention of cognitive deficits in SCZ envisioning concomitant ACE activity and behavior evaluations.
Collapse
Affiliation(s)
- A Gadelha
- Integrated Laboratory of Clinical Neurosciences and Schizophrenia Program, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil
| | - A M Vendramini
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - C M Yonamine
- Integrated Laboratory of Clinical Neurosciences and Schizophrenia Program, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil,Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M Nering
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - A Berberian
- Integrated Laboratory of Clinical Neurosciences and Schizophrenia Program, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M A Suiama
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - V Oliveira
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M T Lima-Landman
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - G Breen
- Medical Research Council Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
| | - R A Bressan
- Integrated Laboratory of Clinical Neurosciences and Schizophrenia Program, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil
| | - V Abílio
- Integrated Laboratory of Clinical Neurosciences and Schizophrenia Program, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil,Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M A F Hayashi
- Integrated Laboratory of Clinical Neurosciences and Schizophrenia Program, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil,Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil,Departamento de Farmacologia, Universidade Federal de São Paulo, Rua 3 de maio 100, Ed. INFAR, 3rd floor, CEP 04044-020, São Paulo, Brazil. E-mail: or
| |
Collapse
|
29
|
Antiamnesic and Antioxidants Effects of Ferulago angulata Essential Oil Against Scopolamine-Induced Memory Impairment in Laboratory Rats. Neurochem Res 2015; 40:1799-809. [PMID: 26168780 DOI: 10.1007/s11064-015-1662-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 12/25/2022]
Abstract
Ferulago angulata (Apiaceae) is a shrub indigenous to western Iran, Turkey and Iraq. In traditional medicine, F. angulata is recommended for treating digestive pains, hemorrhoids, snake bite, ulcers and as sedative. In the present study, the effects of inhaled F. angulata essential oil (1 and 3%, daily, for 21 days) on spatial memory performance were assessed in scopolamine-treated rats. Scopolamine-induced memory impairments were observed, as measured by the Y-maze and radial arm-maze tasks. Decreased activities of superoxide dismutase, glutathione peroxidase and catalase along with increase of acetylcholinesterase activity and decrease of total content of reduced glutathione were observed in the rat hippocampal homogenates of scopolamine-treated animals as compared with control. Production of protein carbonyl and malondialdehyde significantly increased in the rat hippocampal homogenates of scopolamine-treated animals as compared with control, as a consequence of impaired antioxidant enzymes activities. Additionally, in scopolamine-treated rats exposure to F. angulata essential oil significantly improved memory formation and decreased oxidative stress, suggesting memory-enhancing and antioxidant effects. Therefore, our results suggest that multiple exposures to F. angulata essential oil ameliorate scopolamine-induced spatial memory impairment by attenuation of the oxidative stress in the rat hippocampus.
Collapse
|
30
|
Goel R, Bhat SA, Rajasekar N, Hanif K, Nath C, Shukla R. Hypertension exacerbates predisposition to neurodegeneration and memory impairment in the presence of a neuroinflammatory stimulus: Protection by angiotensin converting enzyme inhibition. Pharmacol Biochem Behav 2015; 133:132-45. [PMID: 25869103 DOI: 10.1016/j.pbb.2015.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 03/17/2015] [Accepted: 04/06/2015] [Indexed: 01/06/2023]
Abstract
Hypertension is a risk factor for cognitive impairment. Furthermore, neuroinflammation and neurodegeneration are intricately associated with memory impairment. Therefore, the present study aimed to explore the involvement of hypertension and angiotensin system in neurodegeneration and memory dysfunction in the presence of neuroinflammatory stimulus. Memory impairment was induced by chronic neuroinflammation that was developed by repeated intracerebroventricular (ICV) injections of lipopolysaccharide (LPS) on the 1st, 4th, 7th, and 10th day. Memory functions were evaluated by the Morris water maze (MWM) test on days 13-15, followed by biochemical and molecular studies in the cortex and hippocampus regions of rat brain. LPS at the dose of 25μg ICV caused memory impairment in spontaneously hypertensive rats (SHRs) but not in normotensive Wistar rats (NWRs). Memory deficit was obtained with 50μg of LPS (ICV) in NWRs. Control SHRs already exhibited increased angiotensin converting enzyme (ACE) activity and expression, neuroinflammation (increased TNF-α, GFAP, COX-2 and NF-kB), oxidative stress (increased iNOS, ROS and nitrite levels), TLR-4 expression and TUNEL positive cells as compared to control NWRs. Further, LPS (25μg ICV) exaggerated inflammatory response, oxidative stress and apoptosis in SHRs but similar effects were witnessed at 50μg of LPS (ICV) in NWRs. Oral administration of perindopril (ACE inhibitor), at non-antihypertensive dose (0.1mg/kg), for 15days attenuated LPS induced deleterious changes in both NWRs and SHRs. Our data suggest that susceptibility of the brain for neurodegeneration and memory impairment induced by neuroinflammation is enhanced in hypertension, and that can be protected by ACE inhibition.
Collapse
Affiliation(s)
- Ruby Goel
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shahnawaz Ali Bhat
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - N Rajasekar
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Kashif Hanif
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Chandishwar Nath
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Rakesh Shukla
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), India.
| |
Collapse
|
31
|
Abstract
Angiotensin II receptor blockers (ARBs, collectively called sartans) are widely used compounds therapeutically effective in cardiovascular disorders, renal disease, the metabolic syndrome, and diabetes. It has been more recently recognized that ARBs are neuroprotective and have potential therapeutic use in many brain disorders. ARBs ameliorate inflammatory and apoptotic responses to glutamate, interleukin 1β and bacterial endotoxin in cultured neurons, astrocytes, microglial, and endothelial cerebrovascular cells. When administered systemically, ARBs enter the brain, protecting cerebral blood flow, maintaining blood brain barrier function and decreasing cerebral hemorrhage, excessive brain inflammation and neuronal injury in animal models of stroke, traumatic brain injury, Alzheimer's and Parkinson's disease and other brain conditions. Epidemiological analyses reported that ARBs reduced the progression of Alzheimer's disease, and clinical studies suggested amelioration of cognitive loss following stroke and aging. ARBs are pharmacologically heterogeneous; their effects are not only the result of Ang II type 1(AT1) receptor blockade but also of additional mechanisms selective for only some compounds of the class. These include peroxisome proliferator-activated receptor gamma activation and other still poorly defined mechanisms. However, the complete pharmacological spectrum and therapeutic efficacy of individual ARBs have never been systematically compared, and the neuroprotective efficacy of these compounds has not been rigorously determined in controlled clinical studies. The accumulation of pre-clinical evidence should promote further epidemiological and controlled clinical studies. Repurposing ARBs for the treatment of brain disorders, currently without effective therapy, may be of immediate and major translational value.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA.
| |
Collapse
|
32
|
Yan BC, Park JH, Chen BH, Cho JH, Kim IH, Ahn JH, Lee JC, Hwang IK, Cho JH, Lee YL, Kang IJ, Won MH. Long-term administration of scopolamine interferes with nerve cell proliferation, differentiation and migration in adult mouse hippocampal dentate gyrus, but it does not induce cell death. Neural Regen Res 2014; 9:1731-9. [PMID: 25422633 PMCID: PMC4238160 DOI: 10.4103/1673-5374.143415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2014] [Indexed: 11/04/2022] Open
Abstract
Long-term administration of scopolamine, a muscarinic receptor antagonist, can inhibit the survival of newly generated cells, but its effect on the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus remain poorly understood. In this study, we used immunohistochemistry and western blot methods to weekly detect the biological behaviors of nerve cells in the hippocampal dentate gyrus of adult mice that received intraperitoneal administration of scopolamine for 4 weeks. Expression of neuronal nuclear antigen (NeuN; a neuronal marker) and Fluoro-Jade B (a marker for the localization of neuronal degeneration) was also detected. After scopolamine treatment, mouse hippocampal neurons did not die, and Ki-67 (a marker for proliferating cells)-immunoreactive cells were reduced in number and reached the lowest level at 4 weeks. Doublecortin (DCX; a marker for newly generated neurons)-immunoreactive cells were gradually shortened in length and reduced in number with time. After scopolamine treatment for 4 weeks, nearly all of the 5-bromo-2'-deoxyuridine (BrdU)-labeled newly generated cells were located in the subgranular zone of the dentate gyrus, but they did not migrate into the granule cell layer. Few mature BrdU/NeuN double-labeled cells were seen in the subgranular zone of the dentate gyrus. These findings suggest that long-term administration of scopolamine interferes with the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus, but it does not induce cell death.
Collapse
Affiliation(s)
- Bing Chun Yan
- Department of Integrative Traditional & Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, South Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, South Korea
| | - Il-Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
33
|
Woo DC, Lenkinski RE. Neurochemical changes observed by in vivo proton magnetic resonance spectroscopy in the mouse brain postadministration of scopolamine. Acad Radiol 2014; 21:1072-7. [PMID: 25018079 DOI: 10.1016/j.acra.2014.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/12/2014] [Accepted: 04/14/2014] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES This study is aimed at investigating neurochemical changes in scopolamine (SCP)-induced memory impairment using spatially localized in vivo magnetic resonance spectroscopy (MRS) of the hippocampus. MATERIALS AND METHODS Four groups of mice (eight mice per group) were scanned after the injection of different SCP doses: 0, 1, 3, and 5 mg/kg (intraperitoneally). All the animals received (1)H MRS of their hippocampus at two time intervals: 30 minutes and 72 hours after SCP injection. RESULTS This work demonstrated that the doses of 3 mg/kg SCP or higher reduce the concentration of total choline-containing compounds, and these levels returned to baseline after 72 hours. These results are consistent with observations made by others using more invasive brain dialysis approaches. The levels of glutamate and glutamic compounds (glutamate + glutamine) were slightly changed at 3 and 5 mg/kg SCP dose, but the differences were not statistically significant (P > .05). These findings suggest that SCP produces transient, in vivo measurable alterations in the cholinergic system in the hippocampus. CONCLUSIONS On this basis, we conclude that in vivo MRS is a feasible noninvasive method to probe aspects of the alterations induced by SCP in the cholinergic neurotransmission pathways in both animal models and human studies of memory impairment.
Collapse
|
34
|
Umschweif G, Shabashov D, Alexandrovich AG, Trembovler V, Horowitz M, Shohami E. Neuroprotection after traumatic brain injury in heat-acclimated mice involves induced neurogenesis and activation of angiotensin receptor type 2 signaling. J Cereb Blood Flow Metab 2014; 34:1381-90. [PMID: 24849663 PMCID: PMC4126099 DOI: 10.1038/jcbfm.2014.93] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/23/2014] [Accepted: 04/30/2014] [Indexed: 12/18/2022]
Abstract
Long-term exposure of mice to mild heat (34°C±1°C) confers neuroprotection against traumatic brain injury (TBI); however, the underling mechanisms are not fully understood. Heat acclimation (HA) increases hypothalamic angiotensin II receptor type 2 (AT2) expression and hypothalamic neurogenesis. Accumulating data suggest that activation of the brain AT2 receptor confers protection against several types of brain pathologies, including ischemia, a hallmark of the secondary injury occurring following TBI. As AT2 activates the same pro-survival pathways involved in HA-mediated neuroprotection (e.g., Akt phosphorylation, hypoxia-inducible factor 1α (HIF-1α), and brain-derived neurotrophic factor (BDNF)), we examined the role of AT2 in HA-mediated neuroprotection after TBI. Using an AT2-specific antagonist PD123319, we found that the improvements in motor and cognitive recovery as well as reduced lesion volume and neurogenesis seen in HA mice were all diminished by AT2 inhibition, whereas no significant alternations were observed in control mice. We also found that nerve growth factor/tropomyosin-related kinase receptor A (TrkA), BDNF/TrkB, and HIF-1α pathways are upregulated by HA and inhibited on PD123319 administration, suggesting that these pathways play a role in AT2 signaling in HA mice. In conclusion, AT2 is involved in HA-mediated neuroprotection, and AT2 activation may be protective and should be considered a novel drug target in the treatment of TBI patients.
Collapse
Affiliation(s)
- Gali Umschweif
- 1] Department of Pharmacology, School of Pharmacy, Institute of Drug Research, Jerusalem, Israel [2] Laboratory of Environmental Physiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dalia Shabashov
- Department of Pharmacology, School of Pharmacy, Institute of Drug Research, Jerusalem, Israel
| | | | - Victoria Trembovler
- Department of Pharmacology, School of Pharmacy, Institute of Drug Research, Jerusalem, Israel
| | - Michal Horowitz
- Laboratory of Environmental Physiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Esther Shohami
- Department of Pharmacology, School of Pharmacy, Institute of Drug Research, Jerusalem, Israel
| |
Collapse
|
35
|
Umschweif G, Liraz-Zaltsman S, Shabashov D, Alexandrovich A, Trembovler V, Horowitz M, Shohami E. Angiotensin receptor type 2 activation induces neuroprotection and neurogenesis after traumatic brain injury. Neurotherapeutics 2014; 11:665-78. [PMID: 24957202 PMCID: PMC4121449 DOI: 10.1007/s13311-014-0286-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Angiotensin II receptor type 2 (AT(2)) agonists have been shown to limit brain ischemic insult and to improve its outcome. The activation of AT(2) was also linked to induced neuronal proliferation and differentiation in vitro. In this study, we examined the therapeutic potential of AT(2) activation following traumatic brain injury (TBI) in mice, a brain pathology that displays ischemia-like secondary damages. The AT(2) agonist CGP42112A was continuously infused immediately after closed head injury (CHI) for 3 days. We have followed the functional recovery of the injured mice for 35 days post-CHI, and evaluated cognitive function, lesion volume, molecular signaling, and neurogenesis at different time points after the impact. We found dose-dependent improvement in functional recovery and cognitive performance after CGP42112A treatment that was accompanied by reduced lesion volume and induced neurogenesis in the neurogenic niches of the brain and also in the injury region. At the cellular/molecular level, CGP42112A induced early activation of neuroprotective kinases protein kinase B (Akt) and extracellular-regulated kinases ½ (ERK½), and the neurotrophins nerve growth factor and brain-derived neurotrophic factor; all were blocked by treatment with the AT(2) antagonist PD123319. Our results suggest that AT(2) activation after TBI promotes neuroprotection and neurogenesis, and may be a novel approach for the development of new drugs to treat victims of TBI.
Collapse
Affiliation(s)
- Gali Umschweif
- />Department of Pharmacology, The Hebrew University, Jerusalem, Israel
- />Laboratory of Environmental Physiology, The Hebrew University, Jerusalem, Israel
| | | | - Dalia Shabashov
- />Department of Pharmacology, The Hebrew University, Jerusalem, Israel
| | | | | | - Michal Horowitz
- />Laboratory of Environmental Physiology, The Hebrew University, Jerusalem, Israel
| | - Esther Shohami
- />Department of Pharmacology, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
36
|
Yanai S, Semba Y, Ito H, Endo S. Cilostazol improves hippocampus-dependent long-term memory in mice. Psychopharmacology (Berl) 2014; 231:2681-93. [PMID: 24464529 DOI: 10.1007/s00213-014-3442-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/31/2013] [Indexed: 12/15/2022]
Abstract
RATIONALE Phosphodiesterases (PDEs) play an important role in the regulation of intracellular signaling mediated by cyclic adenosine monophosphate (cAMP). Recently, several PDE inhibitors were assessed for their possible cognitive enhancing properties. However, little is known about the effect of PDE3 inhibitors on memory function. OBJECTIVES We examined how the PDE3 inhibitor cilostazol affects C57BL/6 J mice as they perform various behavioral tasks. After behavioral assessment, brains of the mice were analyzed immunohistochemically to quantify the phosphorylation of cAMP-responsive element binding protein (CREB), a downstream component of the cAMP pathway. RESULTS Oral administration of cilostazol significantly enhanced recollection of the exact platform location in the Morris water maze probe test. Cilostazol also improved context-dependent long-term fear memory, without affecting short-term memory. No apparent effect was observed in cue-dependent fear memory. The results suggest that cilostazol selectively improves hippocampus-dependent long-term memory in these tasks. Cilostazol also significantly increased the number of phosphorylated-CREB-positive cells in hippocampal dentate gyrus. CONCLUSIONS These results suggest that cilostazol may exert its beneficial effects on learning and memory by enhancing the cAMP system in hippocampus, where it increases intracellular cAMP activity.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, 173-0015, Japan
| | | | | | | |
Collapse
|
37
|
Lee JS, Kim HG, Han JM, Kim DW, Yi MH, Son SW, Kim YA, Lee JS, Choi MK, Son CG. Ethanol extract of Astragali Radix and Salviae Miltiorrhizae Radix, Myelophil, exerts anti-amnesic effect in a mouse model of scopolamine-induced memory deficits. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:782-792. [PMID: 24690775 DOI: 10.1016/j.jep.2014.03.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/20/2013] [Accepted: 03/18/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myelophil, a combination of extracts taken from Astragali Radix and Salviae Miltiorrhizae Radix, is a traditional Chinese medicine used for the treatment of chronic fatigue-associated disorders. Here we examined the ability of Myelophil to alleviate memory impairment in a mouse model. We aimed to investigate whether Myelophil has the pharmacological effects on memory deficits associated with brain dysfunctions using an animal model. MATERIALS AND METHODS Ten week-old male C57BL/6N mice were pretreated with Myelophil (50, 100, or 200 mg/kg), or tacrine (10 mg/kg) for 7 days, and then intraperitoneally injected with scopolamine (1 mg/kg). Memory-related behaviors were evaluated using the Morris water maze for 5 days. Levels of biomarkers of oxidative stress, antioxidant activity, acetylcholinesterase (AChE) activity, and extracellular signal-regulated kinase (ERK) were measured in brain tissues. RESULTS Scopolamine treatment increased the escape latency time and shortened time spent in the target quadrant; these effects were ameliorated by pretreatment with Myelophil. Scopolamine-induced changes in reactive oxygen species (ROS), malondialehyde (MDA), and AChE activity were significantly attenuated in mice pretreated with Myelophil. Recovery of antioxidant capacities, including total glutathione (GSH) content, and the activities of GSH-reductase, GSH-S-transferase, and catalase was also evident in Myelophil-treated mice. The strongest effects were seen for ERK and muscarinic acetylcholine receptor 1 (mAChR1) at both the protein and gene expression levels, with significant amelioration of expression levels in the Myelophil pretreatment group. CONCLUSIONS These results suggest that Myelophil confers anti-amnesic properties in a mouse model of memory impairment, driven in part by the modulation of cholinergic activity.
Collapse
Affiliation(s)
- Jin-Seok Lee
- Liver and Immunology Research Center, Oriental Medical Collage of Daejeon University, 22-5 Daehung-dong, Jung-gu, Daejeon 301-724, Republic of Korea
| | - Hyeong-Geug Kim
- Liver and Immunology Research Center, Oriental Medical Collage of Daejeon University, 22-5 Daehung-dong, Jung-gu, Daejeon 301-724, Republic of Korea
| | - Jong-Min Han
- Liver and Immunology Research Center, Oriental Medical Collage of Daejeon University, 22-5 Daehung-dong, Jung-gu, Daejeon 301-724, Republic of Korea
| | - Dong-Woon Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Min-Hee Yi
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Seung-Wan Son
- Department of Biomedical Engineering, College of Health Science, Korea University, Seongbuk-Gu, Seoul 136-703, Republic of Korea
| | - Young-Ae Kim
- Liver and Immunology Research Center, Oriental Medical Collage of Daejeon University, 22-5 Daehung-dong, Jung-gu, Daejeon 301-724, Republic of Korea
| | - Jong-Suk Lee
- GyeongGi Bio-Center, GSTEP, 864-1 Iui-dong, Yeongtong-gu, Suwon, Gyeonggi-do, Republic of Korea
| | - Min-Kyeong Choi
- Liver and Immunology Research Center, Oriental Medical Collage of Daejeon University, 22-5 Daehung-dong, Jung-gu, Daejeon 301-724, Republic of Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Oriental Medical Collage of Daejeon University, 22-5 Daehung-dong, Jung-gu, Daejeon 301-724, Republic of Korea.
| |
Collapse
|
38
|
Ahmad A, Ramasamy K, Jaafar SM, Majeed ABA, Mani V. Total isoflavones from soybean and tempeh reversed scopolamine-induced amnesia, improved cholinergic activities and reduced neuroinflammation in brain. Food Chem Toxicol 2014; 65:120-8. [PMID: 24373829 DOI: 10.1016/j.fct.2013.12.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 01/15/2023]
Abstract
The present study was undertaken to compare the neuroprotective effects between total isoflavones from soybean and tempeh against scopolamine-induced cognitive dysfunction. Total isoflavones (10, 20 and 40mg/kg) from soybean (SI) and tempeh (TI) were administered orally to different groups of rats (n=6) for 15days. Piracetam (400mg/kg, p.o.) was used as a standard drug while scopolamine (1mg/kg, i.p.) was used to induce amnesia in the animals. Radial arm and elevated plus mazes served as exteroceptive behavioural models to measure memory. Brain cholinergic activities (acetylcholine and acetylcholinesterase) and neuroinflammatory activities (COX-1, COX-2, IL-1β and IL10) were also assessed. Treatment with SI and TI significantly reversed the scopolamine effect and improved memory with TI group at 40mg/kg, p.o. exhibiting the best improvement (p<0.001) in rats. The TI (10, 20 and 40mg/kg, p.o.) significantly increased (p<0.001) acetylcholine and reduced acetylcholinesterase levels. Meanwhile, only a high dose (40mg/kg, p.o.) of SI showed significant improvement (p<0.05) in the cholinergic activities. Neuroinflammation study also showed that TI (40mg/kg, p.o.) was able to reduce inflammation better than SI. The TI ameliorates scopolamine-induced memory in rats through the cholinergic neuronal pathway and by prevention of neuroinflammation.
Collapse
Affiliation(s)
- Aliya Ahmad
- Brain Research Laboratory, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Campus Puncak Alam, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Campus Puncak Alam, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Siti Murnirah Jaafar
- Brain Research Laboratory, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Campus Puncak Alam, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Abu Bakar Abdul Majeed
- Brain Research Laboratory, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Campus Puncak Alam, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Vasudevan Mani
- Brain Research Laboratory, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Campus Puncak Alam, 42300 Bandar Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
39
|
Ameliorative effect of Noni fruit extract on streptozotocin-induced memory impairment in mice. Behav Pharmacol 2013; 24:307-19. [PMID: 23838966 DOI: 10.1097/fbp.0b013e3283637a51] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study evaluated the effects of a standardized ethyl acetate extract of Morinda citrifolia L. (Noni) fruit on impairment of memory, brain energy metabolism, and cholinergic function in intracerebral streptozotocin (STZ)-treated mice. STZ (0.5 mg/kg) was administered twice at an interval of 48 h. Noni (50 and 100 mg/kg, postoperatively) was administered for 21 days following STZ administration. Memory function was evaluated using Morris Water Maze and passive avoidance tests, and brain levels of cholinergic function, oxidative stress, energy metabolism, and brain-derived neurotrophic factor (BDNF) were estimated. STZ caused memory impairment in Morris Water Maze and passive avoidance tests along with reduced brain levels of ATP, BDNF, and acetylcholine and increased acetylcholinesterase activity and oxidative stress. Treatment with Noni extract (100 mg/kg) prevented the STZ-induced memory impairment in both behavioral tests along with reduced oxidative stress and acetylcholinesterase activity, and increased brain levels of BDNF, acetylcholine, and ATP level. The study shows the beneficial effects of Noni fruit against STZ-induced memory impairment, which may be attributed to improved brain energy metabolism, cholinergic neurotransmission, BDNF, and antioxidative action.
Collapse
|
40
|
Standardized Extract of Bacopa monniera Attenuates Okadaic Acid Induced Memory Dysfunction in Rats: Effect on Nrf2 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:294501. [PMID: 24078822 PMCID: PMC3776558 DOI: 10.1155/2013/294501] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/10/2013] [Indexed: 01/03/2023]
Abstract
The aim of the present study is to investigate the effect of standardized extract of Bacopa monnieri (memory enhancer) and Melatonin (an antioxidant) on nuclear factor erythroid 2 related factor 2 (Nrf2) pathway in Okadaic acid induced memory impaired rats. OKA (200 ng) was administered intracerebroventricularly (ICV) to induce memory impairment in rats. Bacopa monnieri (BM-40 and 80 mg/kg) and Melatonin (20 mg/kg) were administered 1 hr before OKA injection and continued daily up to day 13. Memory functions were assessed by Morris water maze test on days 13–15. Rats were sacrificed for biochemical estimations of oxidative stress, neuroinflammation, apoptosis, and molecular studies of Nrf2, HO1, and GCLC expressions in cerebral cortex and hippocampus brain regions. OKA caused a significant memory deficit with oxidative stress, neuroinflammation, and neuronal loss which was concomitant with attenuated expression of Nrf2, HO1, and GCLC. Treatment with BM and Melatonin significantly improved memory dysfunction in OKA rats as shown by decreased latency time and path length. The treatments also restored Nrf2, HO1, and GCLC expressions and decreased oxidative stress, neuroinflammation, and neuronal loss. Thus strengthening the endogenous defense through Nrf2 modulation plays a key role in the protective effect of BM and Melatonin in OKA induced memory impairment in rats.
Collapse
|
41
|
Kamat PK, Kalani A, Givvimani S, Sathnur PB, Tyagi SC, Tyagi N. Hydrogen sulfide attenuates neurodegeneration and neurovascular dysfunction induced by intracerebral-administered homocysteine in mice. Neuroscience 2013; 252:302-19. [PMID: 23912038 DOI: 10.1016/j.neuroscience.2013.07.051] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 12/21/2022]
Abstract
High levels of homocysteine (Hcy), known as hyperhomocysteinemia are associated with neurovascular diseases. H2S, a metabolite of Hcy, has potent anti-oxidant and anti-inflammatory activities; however, the effect of H2S has not been explored in Hcy (IC)-induced neurodegeneration and neurovascular dysfunction in mice. Therefore, the present study was designed to explore the neuroprotective role of H2S on Hcy-induced neurodegeneration and neurovascular dysfunction. To test this hypothesis we employed wild-type (WT) males ages 8-10 weeks, WT+artificial cerebrospinal fluid (aCSF), WT+Hcy (0.5 μmol/μl) intracerebral injection (IC, one time only prior to NaHS treatment), WT+Hcy+NaHS (sodium hydrogen sulfide, precursor of H2S, 30 μmol/kg, body weight). NaHS was injected i.p. once daily for the period of 7 days after the Hcy (IC) injection. Hcy treatment significantly increased malondialdehyde, nitrite level, acetylcholinestrase activity, tumor necrosis factor-alpha, interleukin-1 beta, glial fibrillary acidic protein, inducible nitric oxide synthase, endothelial nitric oxide synthase and decreased glutathione level indicating oxidative-nitrosative stress and neuroinflammation as compared to control and aCSF-treated groups. Further, increased expression of neuron-specific enolase, S100B and decreased expression of (post-synaptic density-95, synaptosome-associated protein-97) synaptic protein indicated neurodegeneration. Brain sections of Hcy-treated mice showed damage in the cortical area and periventricular cells. Terminal deoxynucleotidyl transferase-mediated, dUTP nick-end labeling-positive cells and Fluro Jade-C staining indicated apoptosis and neurodegeneration. The increased expression of matrix metalloproteinase (MMP) MMP9, MMP2 and decreased expression of tissue inhibitor of metalloproteinase (TIMP) TIMP-1, TIMP-2, tight junction proteins (zonula occulden 1) in Hcy-treated group indicate neurovascular remodeling. Interestingly, NaHS treatment significantly attenuated Hcy-induced oxidative stress, memory deficit, neurodegeneration, neuroinflammation and cerebrovascular remodeling. The results indicate that H2S is effective in providing protection against neurodegeneration and neurovascular dysfunction.
Collapse
Affiliation(s)
- P K Kamat
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
42
|
Sumners C, Horiuchi M, Widdop RE, McCarthy C, Unger T, Steckelings UM. Protective arms of the renin-angiotensin-system in neurological disease. Clin Exp Pharmacol Physiol 2013; 40:580-8. [DOI: 10.1111/1440-1681.12137] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Colin Sumners
- Department of Physiology and Functional Genomics; University of Florida; Gainesville FL USA
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology; Ehime University; Ehime Japan
| | - Robert E Widdop
- Department of Pharmacology; Monash University; Melbourne Victoria Australia
| | - Claudia McCarthy
- Department of Pharmacology; Monash University; Melbourne Victoria Australia
| | - Thomas Unger
- Cardiovascular Research Institute Maastricht (CARIM); Maastricht University; Maastricht The Netherlands
| | - Ulrike M Steckelings
- Institute of Molecular Medicine; Department of Cardiovascular and Renal Physiology; University of Southern Denmark; Odense Denmark
| |
Collapse
|
43
|
|
44
|
Abstract
It is quite well established that activation of the AT(2) receptor (AT(2)R) provides a counter-regulatory role to AT(1)R overactivity, particularly during pathological conditions. Indeed, a potential therapeutic role for the AT(2)R is currently being promulgated with the introduction of novel AT(2)R ligands such as compound 21 (C21). In this brief review, we will focus on recent evidence to suggest that AT(2)R exhibits promising organ protection in the context of the heart, kidney and brain, with inflammation and gender influencing outcome. However, this field is not without controversy since the 'flagship' ligand C21 has also come under scrutiny, although it is safe to say there is much evidence to support a potentially important role of AT(2)R in a number of cardiovascular diseases. This report updates recent data in this field.
Collapse
|
45
|
Doyle OM, Ashburner J, Zelaya FO, Williams SCR, Mehta MA, Marquand AF. Multivariate decoding of brain images using ordinal regression. Neuroimage 2013; 81:347-357. [PMID: 23684876 PMCID: PMC4068378 DOI: 10.1016/j.neuroimage.2013.05.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/26/2013] [Accepted: 05/03/2013] [Indexed: 11/26/2022] Open
Abstract
Neuroimaging data are increasingly being used to predict potential outcomes or groupings, such as clinical severity, drug dose response, and transitional illness states. In these examples, the variable (target) we want to predict is ordinal in nature. Conventional classification schemes assume that the targets are nominal and hence ignore their ranked nature, whereas parametric and/or non-parametric regression models enforce a metric notion of distance between classes. Here, we propose a novel, alternative multivariate approach that overcomes these limitations — whole brain probabilistic ordinal regression using a Gaussian process framework. We applied this technique to two data sets of pharmacological neuroimaging data from healthy volunteers. The first study was designed to investigate the effect of ketamine on brain activity and its subsequent modulation with two compounds — lamotrigine and risperidone. The second study investigates the effect of scopolamine on cerebral blood flow and its modulation using donepezil. We compared ordinal regression to multi-class classification schemes and metric regression. Considering the modulation of ketamine with lamotrigine, we found that ordinal regression significantly outperformed multi-class classification and metric regression in terms of accuracy and mean absolute error. However, for risperidone ordinal regression significantly outperformed metric regression but performed similarly to multi-class classification both in terms of accuracy and mean absolute error. For the scopolamine data set, ordinal regression was found to outperform both multi-class and metric regression techniques considering the regional cerebral blood flow in the anterior cingulate cortex. Ordinal regression was thus the only method that performed well in all cases. Our results indicate the potential of an ordinal regression approach for neuroimaging data while providing a fully probabilistic framework with elegant approaches for model selection. Often in neuroimaging the independent variables are ranked or ordered. Classification and regression models cannot explicitly model an ordinal target. We present a novel multivariate ordinal regression approach for neuroimaging data. Our results show that ordinal regression is a powerful method for ranking data.
Collapse
Affiliation(s)
- O M Doyle
- King's College London, Department of Neuroimaging, Institute of Psychiatry (PO89), De Crespigny Park, London SE5 8AF, UK.
| | - J Ashburner
- Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London WC1N 3BG, UK.
| | - F O Zelaya
- King's College London, Department of Neuroimaging, Institute of Psychiatry (PO89), De Crespigny Park, London SE5 8AF, UK.
| | - S C R Williams
- King's College London, Department of Neuroimaging, Institute of Psychiatry (PO89), De Crespigny Park, London SE5 8AF, UK.
| | - M A Mehta
- King's College London, Department of Neuroimaging, Institute of Psychiatry (PO89), De Crespigny Park, London SE5 8AF, UK.
| | - A F Marquand
- King's College London, Department of Neuroimaging, Institute of Psychiatry (PO89), De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
46
|
Tota S, Goel R, Pachauri SD, Rajasekar N, Najmi AK, Hanif K, Nath C. Effect of angiotensin II on spatial memory, cerebral blood flow, cholinergic neurotransmission, and brain derived neurotrophic factor in rats. Psychopharmacology (Berl) 2013. [PMID: 23192311 DOI: 10.1007/s00213-012-2913-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RATIONAL Studies have shown the involvement of angiotensin II (Ang II) in neurobehavioral aspects, but the exact role of Ang II in memory is still ambiguous. OBJECTIVE This study explored the effect of central Ang II on spatial memory along with cholinergic neurotransmission, brain energy metabolism, cerebral blood flow (CBF), and brain-derived neurotrophic factor (BDNF) in rats. METHODS Spatial memory was evaluated by Morris water maze (MWM) after Ang II (ICV) administration in male Sprague-Dawley rats. CBF was measured by laser Doppler flowmetry. Oxidative stress adenosine triphosphate (ATP), BDNF, acetylcholinesterase (AChE), and acetylcholine (ACh) were estimated in the cortex and hippocampus at 1, 24, and 48 h after Ang II administration. The effect of AT1 and AT2 receptor blocker (candesartan and PD123,319, respectively), AChE inhibitor (donepezil), and antioxidant melatonin was studied on memory, CBF, and biochemical parameters. RESULTS Ang II caused spatial memory impairment by affecting acquisition, consolidation, and recall in the MWM test along with a significant reduction in CBF. Ang II significantly reduced ACh level and caused oxidative stress in the rat brain 1 h post-injection. No significant change was observed in BDNF, AChE, and ATP level. Candesartan and donepezil prevented Ang II-induced memory impairment, reduction in CBF and ACh level. However, PD123,319 and melatonin failed to prevent Ang II-induced memory impairment but improved CBF partially. CONCLUSION This study suggests that Ang II, via the AT1 receptor, affects spatial memory formation, CBF, and ACh level while AT2 receptor has no significant role.
Collapse
Affiliation(s)
- Santoshkumar Tota
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
47
|
Renin-Angiotensin system and sympathetic neurotransmitter release in the central nervous system of hypertension. Int J Hypertens 2012; 2012:474870. [PMID: 23227311 PMCID: PMC3512297 DOI: 10.1155/2012/474870] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/18/2012] [Indexed: 02/07/2023] Open
Abstract
Many Studies suggest that changes in sympathetic nerve activity in the central nervous system might have a crucial role in blood pressure control. The present paper discusses evidence in support of the concept that the brain renin-angiotensin system (RAS) might be linked to sympathetic nerve activity in hypertension. The amount of neurotransmitter release from sympathetic nerve endings can be regulated by presynaptic receptors located on nerve terminals. It has been proposed that alterations in sympathetic nervous activity in the central nervous system of hypertension might be partially due to abnormalities in presynaptic modulation of neurotransmitter release. Recent evidence indicates that all components of the RAS have been identified in the brain. It has been proposed that the brain RAS may actively participate in the modulation of neurotransmitter release and influence the central sympathetic outflow to the periphery. This paper summarizes the results of studies to evaluate the possible relationship between the brain RAS and sympathetic neurotransmitter release in the central nervous system of hypertension.
Collapse
|
48
|
Awasthi H, Kaushal D, Siddiqui HH. Chronic inhibition of central Angiotensin-converting enzyme ameliorates colchicine-induced memory impairment in mice. Sci Pharm 2012; 80:647-62. [PMID: 23008812 PMCID: PMC3447606 DOI: 10.3797/scipharm.1203-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/03/2012] [Indexed: 11/22/2022] Open
Abstract
Preclinical and clinical studies indicated involvement of the central renin-angiotensin system (RAS) in memory functions. However, the role of central angiotensin-converting enzyme (ACE) in memory function is still unclear. The present study investigated the involvement of central ACE in colchicine-induced memory impairment in the context of cholinergic function and oxidative stress. Memory impairment was induced by intracerebral colchicine administration in mice. The ACE inhibitor, perindopril (0.05 and 0.1 mg/kg/day), was administered orally for 14 days. Memory function was evaluated by the Morris water maze (MWM) test from the 14th day on after colchicine injection. Donepezil was used as a standard. Parameters of oxidative stress and cholinergic function, ACE activity in serum and the brain were estimated after the completion of behavioral studies. Colchicine caused memory impairment as revealed by no significant change in latency to reach a hidden platform in the MWM test. Furthermore, there was a significant increase in MDA, ROS, and nitrite levels with a reduction in GSH level and acetylcholinesterase (AChE) activity in the brain of colchicine-treated mice. Colchicine significantly increased brain ACE activity without affecting serum ACE. Donepezil prevented colchicine-induced memory impairment in mice. The antidementic effect of perindopril may be attributed to reduced oxidative stress and improvement in cholinergic function. Moreover, the elevated brain ACE activity was also inhibited by perindopril. The study showed that central ACE plays an important role in colchicine-induced memory deficit, corroborating a number of studies that show that treatment with ACE inhibitors could be neuroprotective.
Collapse
Affiliation(s)
- Himani Awasthi
- Amity University, Uttar Pradesh, India. ; Faculty of Pharmacy, Integral University, Lucknow, India
| | | | | |
Collapse
|
49
|
Tota S, Nath C, Najmi AK, Shukla R, Hanif K. Inhibition of central angiotensin converting enzyme ameliorates scopolamine induced memory impairment in mice: role of cholinergic neurotransmission, cerebral blood flow and brain energy metabolism. Behav Brain Res 2012; 232:66-76. [PMID: 22460064 DOI: 10.1016/j.bbr.2012.03.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/06/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
Evidences indicate that inhibition of central Renin angiotensin system (RAS) ameliorates memory impairment in animals and humans. Earlier we have reported involvement of central angiotensin converting enzyme (ACE) in streptozotocin induced neurodegeneration and memory impairment. The present study investigated the role of central ACE in cholinergic neurotransmission, brain energy metabolism and cerebral blood flow (CBF) in model of memory impairment induced by injection of scopolamine in mice. Perindopril (0.05 and 0.1 mg/kg, PO) was given orally for one week before administration of scopolamine (3mg/kg, IP). Then, memory function was evaluated by Morris water maze and passive avoidance tests. CBF was measured by laser Doppler flowmetry. Biochemical and molecular parameters were estimated after the completion of behavioral studies. Scopolamine caused impairment in memory which was associated with reduced CBF, acetylcholine (ACh) level and elevated acetylcholinesterase (AChE) activity and malondialdehyde (MDA) level. Perindopril ameliorated scopolamine induced amnesia in both the behavioral paradigms. Further, perindopril prevented elevation of AChE and MDA level in mice brain. There was a significant increase in CBF and ACh level in perindopril treated mice. However, scopolamine had no significant effect on ATP level and mRNA expression of angiotensin receptors and ACE in cortex and hippocampus. But, perindopril significantly decreased ACE activity in brain without affecting its mRNA expression. The study clearly showed the interaction between ACE and cholinergic neurotransmission and beneficial effect of perindopril can be attributed to improvement in central cholinergic neurotransmission and CBF.
Collapse
Affiliation(s)
- Santoshkumar Tota
- Division of Pharmacology, Central Drug Research Institute, Lucknow (UP), India
| | | | | | | | | |
Collapse
|