1
|
Ahmed W, Li S, Liang M, Peng P, Muhammad W, Wang Q, Gao C. Selenium-containing polyurethane nanofibers with MnO 2 nanoparticles and gelsevirine promote diabetic wound healing by modulation of ROS and inflammation. BIOMATERIALS ADVANCES 2025; 173:214289. [PMID: 40158270 DOI: 10.1016/j.bioadv.2025.214289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Reactive oxygen species (ROS) and subsequent inflammatory cascades hinder the healing of diabetic wounds, which should be tackled simultaneously when designing wound dressings. In this study, ROS-responsive di‑selenium-containing polyurethane nanofibers (PUF) loaded with manganese dioxide nanoparticles (MnO2 NPs) and gelsevirine (GSV) with an average diameter of 0.6 ± 10 μm, were prepared to specifically target ROS and inflammation control, thereby enhancing healing in diabetic wounds. The resulting nanofibers exhibited a porous architecture and enhanced drug delivery capability. The MnO2/GSV/PUF dressing showed negligible cytotoxicity with cell viability over 80 %, effective ROS-scavenging ability of 87 %, and inhibition of pro-inflammatory cytokine expression. This dual mechanism of ROS-scavenging and inflammation modulation accelerated the healing of diabetic wounds up to 92 % in 14 d in a full-thickness diabetic wound model, as evidenced by reduced cytokine levels, enhanced epithelialization, and uniform collagen deposition with the highest percentage of 60 %.
Collapse
Affiliation(s)
- Wajiha Ahmed
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shifen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Min Liang
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China
| | - Pai Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qiaoxuan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China.
| |
Collapse
|
2
|
Panes-Fernández J, Marileo AM, Espinoza-Rubilar N, Meza ME, Salgado-Martínez BA, Gaete-Riquelme K, Moraga-Cid G, Castro PA, Burgos CF, Fuentealba J, Yévenes GE. The Alkaloid Gelsemine Reduces Aβ Peptide Toxicity by Targeting Transglutaminase Type 2 Enzyme. PLANTS (BASEL, SWITZERLAND) 2025; 14:1556. [PMID: 40431119 PMCID: PMC12114793 DOI: 10.3390/plants14101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/05/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025]
Abstract
Gelsemine, a naturally occurring indole alkaloid derived from plants of the Gelsemium species of the Gelsemiaceae family, has been extensively investigated for its neuroprotective and anti-inflammatory properties. Recent studies have demonstrated that gelsemine exerts neuroprotective effects against beta-amyloid (Aβ) oligomers, a key neurotoxic peptide implicated in the pathogenesis of Alzheimer's disease (AD). However, despite these beneficial effects, the precise molecular targets underlying gelsemine's neuroprotective actions in AD remain unidentified. Here, we employed a combination of bioinformatic, biochemical, and functional assays in neuronal models to investigate the mechanism of gelsemine's action in AD cellular models. Our findings indicate that gelsemine inhibits the activity of transglutaminase 2 (TG2), an enzyme involved in protein cross-linking with emerging roles in Aβ aggregation and neurotoxicity. Molecular modeling and biochemical analyses reveal that gelsemine interacts with the TG2 catalytic site, leading to its inhibition. Furthermore, gelsemine modulates the TG2-mediated Aβ aggregation process, thereby attenuating Aβ-induced neurotoxicity and preserving neuronal function. These findings establish TG2 as a previously unrecognized molecular target of gelsemine and underscore the potential of Gelsemium-derived alkaloids as neuroprotective agents. The modulation of TG2 activity by natural alkaloids may provide a novel therapeutic approach for mitigating Aβ toxicity and preserving neuronal function in AD.
Collapse
Affiliation(s)
- Jessica Panes-Fernández
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (J.P.-F.); (N.E.-R.); (M.E.M.)
| | - Ana M. Marileo
- Laboratorio de Neurofarmacología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (A.M.M.); (B.A.S.-M.); (K.G.-R.)
| | - Nicole Espinoza-Rubilar
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (J.P.-F.); (N.E.-R.); (M.E.M.)
| | - Macarena E. Meza
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (J.P.-F.); (N.E.-R.); (M.E.M.)
| | - Bernardita A. Salgado-Martínez
- Laboratorio de Neurofarmacología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (A.M.M.); (B.A.S.-M.); (K.G.-R.)
| | - Krishna Gaete-Riquelme
- Laboratorio de Neurofarmacología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (A.M.M.); (B.A.S.-M.); (K.G.-R.)
| | - Gustavo Moraga-Cid
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (G.M.-C.); (P.A.C.); (C.F.B.)
| | - Patricio A. Castro
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (G.M.-C.); (P.A.C.); (C.F.B.)
| | - Carlos F. Burgos
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (G.M.-C.); (P.A.C.); (C.F.B.)
| | - Jorge Fuentealba
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (J.P.-F.); (N.E.-R.); (M.E.M.)
| | - Gonzalo E. Yévenes
- Laboratorio de Neurofarmacología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070409, Chile; (A.M.M.); (B.A.S.-M.); (K.G.-R.)
| |
Collapse
|
3
|
Dębia K, Dzięcioł M, Wróblewska A, Janda-Milczarek K. Goutweed ( Aegopodium podagraria L.)-An Edible Weed with Health-Promoting Properties. Molecules 2025; 30:1603. [PMID: 40286209 PMCID: PMC11990176 DOI: 10.3390/molecules30071603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Goutweed (Aegopodium podagraria L.) is a species of medicinal perennial in the celery family (Apiaceae), also considered an edible plant with medicinal effects and high nutritional value. In traditional folk medicine, it was known as a remedy for gout (arthritis) and also used to relieve rheumatism or sciatica. The botanical characteristics, occurrence, nutritional composition, and traditional and present-day applications of this plant are discussed. Furthermore, the important specific plant metabolites including organic acids and their derivatives, flavonoids, coumarins, polyacetylenes and terpene components of essential oil are presented and their biological activity is described. The valuable medicinal properties of Aegopodium podagria L. include anti-inflammatory, antirheumatic, antioxidant, antibacterial, antifungal, diuretic, sedative and protective effects on the kidneys and liver. The aim of this paper was to describe, on the basis of the available literature, the chemical composition, bioactivity and health-promoting properties of this wild edible plant. The information obtained is described and summarized in tables.
Collapse
Affiliation(s)
- Kamila Dębia
- Department of Biology, Parasitology and Pharmaceutical Botany, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 72 Powstańców Wielkopolskich Street, 70-111 Szczecin, Poland;
| | - Małgorzata Dzięcioł
- Department of Chemical Organic Technology and Polymer Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 42 Piastów Avenue, 71-065 Szczecin, Poland;
| | - Agnieszka Wróblewska
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 42 Piastów Avenue, 71-065 Szczecin, Poland;
| | - Katarzyna Janda-Milczarek
- Department of Biology, Parasitology and Pharmaceutical Botany, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 72 Powstańców Wielkopolskich Street, 70-111 Szczecin, Poland;
| |
Collapse
|
4
|
Wang Y, Yang Z, Huang T, Pan L, Ding J, Liu Z. Experimental and Computational Investigation of the Target and Mechanisms of Gelsemium Alkaloids in the Central Nervous System. Int J Mol Sci 2025; 26:1312. [PMID: 39941079 PMCID: PMC11818404 DOI: 10.3390/ijms26031312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Gelsemium has a long history of medicinal use but is also a poisonous plant. Some low-toxicity alkaloids in Gelsemium exhibit anxiolytic, anti-inflammatory, analgesic, and other pharmacological effects; however, certain alkaloids in Gelsemium are highly toxic. Nevertheless, the molecular targets underlying the biological effects of Gelsemium alkaloids remain poorly understood. We employed electrophysiological techniques and molecular modeling to examine the modulatory effects of Gelsemium alkaloids on inhibitory neurotransmitter receptors, as well as to elucidate the mechanisms underlying their molecular interactions. Our findings indicate that low-toxicity alkaloids primarily exert their pharmacological effects through actions on glycine receptors, with the binding site located at the orthosteric site between two α-subunits. Both highly toxic and low-toxicity alkaloids target GABAA receptors, using the β+/α- interface transmembrane structural domains as common binding sites. These results identify the targets through which Gelsemium alkaloids affect the central nervous system and predict the binding modes and key amino acids involved from a computational modeling perspective. However, further experimental validation through mutational studies is necessary to strengthen these findings.
Collapse
Affiliation(s)
- Yunfan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China;
| | - Zhijiang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (Z.Y.); (T.H.); (L.P.)
| | - Tengxin Huang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (Z.Y.); (T.H.); (L.P.)
| | - Li Pan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (Z.Y.); (T.H.); (L.P.)
| | - Junjie Ding
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (Z.Y.); (T.H.); (L.P.)
| | - Zhaoying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China;
| |
Collapse
|
5
|
Zeng QQ, Wang J, Yue RC, Wang FS, Xu Y, Su YP, Zhang QL, Zheng YW, Zhang GF, Li B, Yu CX, Jin GL. Gelsevirine ameliorates sepsis-associated encephalopathy by inhibiting the STING signalling-mediated pyroptosis pathway in microglia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156071. [PMID: 39326131 DOI: 10.1016/j.phymed.2024.156071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is among the most prevalent and deadly complications associated with sepsis, but satisfactory treatments and therapeutic agents are lacking. Gelsevirine, an active ingredient derived from Gelsemium elegans Benth., has shown promising effects in animal models of anxiety, ischaemic stroke and osteoarthritis. However, its protective effect against SAE and its mechanism of action are still unknown. PURPOSE To elucidate the efficacy of gelsevirine against SAE and the mechanism of its protective effect through the STING signalling-mediated pyroptosis pathway. METHODS We constructed a mouse model of caecum ligation and puncture (CLP)-induced sepsis and explored the protective effects of gelsevirine in mice with SAE by assessing survival rates and behavioural alterations. To further explore its mechanism of action, we investigated the modulatory effects of gelsevirine on the levels of inflammatory factors, microglial activation and pyroptosis by Western blotting, immunohistochemistry staining and PCR. STING knockout mice were used to verify the protective effect of gelsevirine against SAE through the STING pathway. RESULTS Gelsevirine increased the survival rate of mice with SAE. The Morris water maze and open field tests revealed that gelsevirine significantly alleviated cognitive dysfunction and increased exploratory behaviour in mice with SAE. Gelsevirine inhibited the activation of microglia and decreased inflammatory factor levels in the hippocampus of mice with SAE. In mice with SAE and in vitro BV2 microglia, gelsevirine reduced levels of inflammatory factors and inhibited STING protein phosphorylation and microglial pyroptosis. However, after STING knockout, the inhibitory effect of gelsevirine on microglial pyroptosis was significantly weakened, and gelsevirine-mediated protective effects were abolished. CONCLUSIONS Gelsevirine increased the survival rate, ameliorated cognitive impairment, inhibited glial cell activation and reduced inflammation in the hippocampi of mice with SAE; the mechanism may be related to the inhibition of STING signalling pathway-mediated pyroptosis in microglia.
Collapse
Affiliation(s)
- Qing-Quan Zeng
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Jing Wang
- Laboratory Animal Center, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Rong-Cai Yue
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, Fujian, PR China
| | - Fa-Sheng Wang
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Ying Xu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Yan-Ping Su
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, Fujian, PR China
| | - Qiao-Ling Zhang
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - You-Wei Zheng
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Gui-Fei Zhang
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Bo Li
- Amway (Shanghai) Science and Technology Development Co., Ltd, Shanghai, PR China; Amway (China) Botanical R&D Center, Wuxi 214145, PR China.
| | - Chang-Xi Yu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, Fujian, PR China.
| | - Gui-Lin Jin
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, Fujian, PR China.
| |
Collapse
|
6
|
Ye B, Wang Q, Ye Q, Wang D, Wang Z, Dong Z, Zou J. Effects of different combinations of koumine and gelsemine on growth performance, intestinal health, and transcriptome of Cyprinus carpio. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133130. [PMID: 38086301 DOI: 10.1016/j.jhazmat.2023.133130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 02/08/2024]
Abstract
Koumine (KM) and gelsemine (GS) have shown significant benefits in livestock production, but their potential in aquaculture remains largely unexplored. This study examined the impact of different KM and GS combinations as feed additives on C. carpio (90 fish per group, initial weight 1.95 ± 0.08 g). KM and GS were introduced in ratios of 2:2 (mg/kg), 2:1 (mg/kg), and 2:0.67 (mg/kg) over a 10-week aquaculture experiment. The results demonstrate that the 2:1 (mg/kg) group increases the villus length, muscular layer thickness, crude protein, and crude fat content. Regarding fatty acid content, KM and GS enhance the levels of various fatty acids, including the total saturated fatty acid and total monounsaturated fatty acid. Additionally, KM and GS improve the composition and function of the intestinal microbiota. The 2:1 (mg/kg) group significantly elevates the enzymatic activities of SOD, MDA, CAT and upregulates the expression of immune-related genes such as toll-like receptor 2, transforming growth factor β, and glutathione S-transferase. Transcriptomic analysis suggests that KM and GS may have potential benefits for nutrient utilization and immune regulation in C. carpio. In summary, this study provides valuable insights into the use of KM and GS as feed additives in aquaculture.
Collapse
Affiliation(s)
- Bin Ye
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiujie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiao Ye
- School of Life Sciences, Huizhou University, Huizhou 516007, China
| | - Dongjie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlu Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Cui T, Zang S, Sun X, Zhang J, Su Y, Wang D, Wu G, Chen R, Que Y, Lin Q, You C. Molecular identification and functional characterization of a transcription factor GeRAV1 from Gelsemium elegans. BMC Genomics 2024; 25:22. [PMID: 38166591 PMCID: PMC10759518 DOI: 10.1186/s12864-023-09919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Gelsemium elegans is a traditional Chinese medicinal plant and temperature is one of the key factors affecting its growth. RAV (related to ABI3/VP1) transcription factor plays multiple roles in higher plants, including the regulation of plant growth, development, and stress response. However, RAV transcription factor in G. elegans has not been reported. RESULTS In this study, three novel GeRAV genes (GeRAV1-GeRAV3) were identified from the transcriptome of G. elegans under low temperature stress. Phylogenetic analysis showed that GeRAV1-GeRAV3 proteins were clustered into groups II, IV, and V, respectively. RNA-sequencing (RNA-seq) and real-time quantitative PCR (qRT-PCR) analyses indicated that the expression of GeRAV1 and GeRAV2 was increased in response to cold stress. Furthermore, the GeRAV1 gene was successfully cloned from G. elegans leaf. It encoded a hydrophilic, unstable, and non-secretory protein that contained both AP2 and B3 domains. The amino acid sequence of GeRAV1 protein shared a high similarity of 81.97% with Camptotheca acuminata CaRAV. Subcellular localization and transcriptional self-activation experiments demonstrated that GeRAV1 was a nucleoprotein without self-activating activity. The GeRAV1 gene was constitutively expressed in the leaves, stems, and roots of the G. elegans, with the highest expression levels in roots. In addition, the expression of the GeRAV1 gene was rapidly up-regulated under abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA) stresses, suggesting that it may be involved in hormonal signaling pathways. Moreover, GeRAV1 conferred improved cold and sodium chloride tolerance in Escherichia coli Rosetta cells. CONCLUSIONS These findings provided a foundation for further understanding on the function and regulatory mechanism of the GeRAV1 gene in response to low-temperature stress in G. elegans.
Collapse
Affiliation(s)
- Tianzhen Cui
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinlu Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guran Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruiqi Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- The Second People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350003, China.
| | - Chuihuai You
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- The Second People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350003, China.
| |
Collapse
|
8
|
Zhang PP, Liang JJ, Lu QY, Yin X, Zhou YQ, Feng TT, Zhou Y, Chang D, Wei X. New Monoterpenoid Indole Hybrids from Gelsemium elegans with Anti-Inflammatory and Osteoclast Inhibitory Activities. Chem Biodivers 2023; 20:e202301665. [PMID: 37968250 DOI: 10.1002/cbdv.202301665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/17/2023]
Abstract
Gelsegansymines A (1) and B (2), two new indole alkaloids along with six known analogues (3-8) were isolated from the aerial parts of Gelsemium elegans. Their structures were elucidated by means of spectroscopic techniques. Structurally, compounds 1 and 2 possessed the rare cage-like gelsedine skeleton hybrid with bicyclic monoterpenoid. The anti-inflammatory activities of isolated compounds (1-3) were tested on LPS induced RAW264.7 cells. Under the treated concentration without toxicity for cells, the cytokines levels of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were evaluated by Griess method and enzyme-linked immunosorbent assay (ELISA). The results showed that compounds 1-3 exhibited anti-inflammatory activities with dose-dependent manner range from 12.5 to 50 μmol/L. Furthermore, the inhibitory activities of compounds 1 and 2 on receptor activator of NF-κB ligand (RANKL) induced osteoclast formation were tested in vitro. Compounds 1 and 2 at 5 μmol/L exhibited the significant inhibitory effect on the osteoclastogenesis induced by RANKL. This work reported the anti-inflammatory and osteoclast inhibitory activities of new monoterpenoid indole hybrids, which may inspire the further light on the related traditional application research of G. elegans.
Collapse
Affiliation(s)
- Pan-Pan Zhang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, People's Republic of China
| | - Jia-Jun Liang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, People's Republic of China
| | - Qing-Yu Lu
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, People's Republic of China
| | - Xin Yin
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, People's Republic of China
| | - Yong-Qiang Zhou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, People's Republic of China
| | - Ting-Ting Feng
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, People's Republic of China
| | - Ying Zhou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, People's Republic of China
| | - Dong Chang
- Yunnan Academy of Scientific & Technical Information, Kunming, 650500
| | - Xin Wei
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, People's Republic of China
| |
Collapse
|
9
|
Wang L, Chen S, Gao X, Liang X, Lv W, Zhang D, Jin X. Recent progress in chemistry and bioactivity of monoterpenoid indole alkaloids from the genus gelsemium: a comprehensive review. J Enzyme Inhib Med Chem 2023; 38:2155639. [PMID: 36629436 PMCID: PMC9848241 DOI: 10.1080/14756366.2022.2155639] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Monoterpenoid indole alkaloids (MIAs) represent a major class of active ingredients from the plants of the genus Gelsemium. Gelsemium MIAs with diverse chemical structures can be divided into six categories: gelsedine-, gelsemine-, humantenine-, koumine-, sarpagine- and yohimbane-type. Additionally, gelsemium MIAs exert a wide range of bioactivities, including anti-tumour, immunosuppression, anti-anxiety, analgesia, and so on. Owing to their fascinating structures and potent pharmaceutical properties, these gelsemium MIAs arouse significant organic chemists' interest to design state-of-the-art synthetic strategies for their total synthesis. In this review, we comprehensively summarised recently reported novel gelsemium MIAs, potential pharmacological activities of some active molecules, and total synthetic strategies covering the period from 2013 to 2022. It is expected that this study may open the window to timely illuminate and guide further study and development of gelsemium MIAs and their derivatives in clinical practice.
Collapse
Affiliation(s)
- Lin Wang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Siyu Chen
- China Medical University-Queen’s University of Belfast Joint College, China Medical University, Shenyang, China
| | - Xun Gao
- Jiangsu Institute Marine Resources Development, Jiangsu Ocean University, Lianyungang, China
| | - Xiao Liang
- School of Pharmacy, Liaoning University, Shenyang, China
| | - Weichen Lv
- Department of Clinical Medicine, Dalian University, Dalian, China
| | - Dongfang Zhang
- School of Pharmacy, China Medical University, Shenyang, China,CONTACT Dongfang Zhang
| | - Xin Jin
- School of Pharmacy, China Medical University, Shenyang, China,Xin Jin School of Pharmacy, China Medical University, Shenyang, 110122, China
| |
Collapse
|
10
|
Chen Y, Bian H, Lv J, Song W, Xing C, Hui C, Zhang D, Zhang C, Zhao L, Li Y, Su L. Gelsevirine is a novel STING-specific inhibitor and mitigates STING-related inflammation in sepsis. Front Immunol 2023; 14:1190707. [PMID: 37583703 PMCID: PMC10424845 DOI: 10.3389/fimmu.2023.1190707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/13/2023] [Indexed: 08/17/2023] Open
Abstract
Background Stimulation of IFN genes (STING) is central to the production of interferon and proinflammatory cytokines in response to microbial DNA or self-DNA in the cytosol. The detrimental role of the activation of STING during sepsis has been well documented. Methods Here, we found that gelsevirine (GS) potently inhibit interferon and inflammatory cytokine induction in macrophages exposed to STING agonists (2'3'-cGAMP, IFN stimulatory DNA (ISD), and poly(dA:dT)). I n silico docking analysis and surface plasmon resonance binding study showed that GS bonds with high affinity to the cyclic dinucleotide (CDN)-binding pocket of STING. Biotin pull-down assay also confirmed that GS competitively bonded to STING protein. Furthermore, GS inhibited 2'3'-cGAMP-induced STING dimerization and subsequent activation. In addition, GS induced K48-linked STING ubiquitination and degradation, which was likely through upregulating and recruiting TRIM21. In mice exposed to cecal ligation and puncture (CLP)-induced sepsis, post-operative administration of GS significantly extended the survival period and mitigated acute organ damage. Results Overall, GS inhibited STING signaling by competitively binding to the CDN-binding pocket to lock STING in an inactive open conformation, while also promoting K48-linked STING ubiquitination and degradation. Conclusions Our findings identify a novel STING-specific inhibitor that could be applied in the treatment of sepsis.
Collapse
Affiliation(s)
- Yuhong Chen
- School of Pharmacy, Bengbu Medical College, Bengbu, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Huihui Bian
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Juan Lv
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Wanxue Song
- Department of Anesthesiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Chunlei Hui
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Dinglei Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Chenxi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Liang Zhao
- Luodian Clinical Drug Research Center, Institute for Translational Medicine Research, Shanghai University, Shanghai, China
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Yingke Li
- Department of Anesthesiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Li Su
- School of Pharmacy, Bengbu Medical College, Bengbu, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Luodian Clinical Drug Research Center, Institute for Translational Medicine Research, Shanghai University, Shanghai, China
| |
Collapse
|
11
|
Marileo AM, Gavilán J, San Martín VP, Lara CO, Sazo A, Muñoz-Montesino C, Castro PA, Burgos CF, Leiva-Salcedo E, Aguayo LG, Moraga-Cid G, Fuentealba J, Yévenes GE. Modulation of GABA A receptors and of GABAergic synapses by the natural alkaloid gelsemine. Front Mol Neurosci 2023; 15:1083189. [PMID: 36733271 PMCID: PMC9887029 DOI: 10.3389/fnmol.2022.1083189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
The Gelsemium elegans plant preparations have shown beneficial activity against common diseases, including chronic pain and anxiety. Nevertheless, their clinical uses are limited by their toxicity. Gelsemine, one of the most abundant alkaloids in the Gelsemium plants, have replicated these therapeutic and toxic actions in experimental behavioral models. However, the molecular targets underlying these biological effects remain unclear. The behavioral activity profile of gelsemine suggests the involvement of GABAA receptors (GABAARs), which are the main biological targets of benzodiazepines (BDZs), a group of drugs with anxiolytic, hypnotic, and analgesic properties. Here, we aim to define the modulation of GABAARs by gelsemine, with a special focus on the subtypes involved in the BDZ actions. The gelsemine actions were determined by electrophysiological recordings of recombinant GABAARs expressed in HEK293 cells, and of native receptors in cortical neurons. Gelsemine inhibited the agonist-evoked currents of recombinant and native receptors. The functional inhibition was not associated with the BDZ binding site. We determined in addition that gelsemine diminished the frequency of GABAergic synaptic events, likely through a presynaptic modulation. Our findings establish gelsemine as a negative modulator of GABAARs and of GABAergic synaptic function. These pharmacological features discard direct anxiolytic or analgesic actions of gelsemine through GABAARs but support a role of GABAARs on the alkaloid induced toxicity. On the other hand, the presynaptic effects of the alkaloid provide an additional mechanism to explain their beneficial effects. Collectively, our results contribute novel information to improve understanding of gelsemine actions in the mammalian nervous system.
Collapse
Affiliation(s)
- Ana M. Marileo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Javiera Gavilán
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Victoria P. San Martín
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Cesar O. Lara
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Anggelo Sazo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Carola Muñoz-Montesino
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Patricio A. Castro
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Carlos F. Burgos
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Elías Leiva-Salcedo
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Luis G. Aguayo
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Gustavo Moraga-Cid
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Gonzalo E. Yévenes
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile,*Correspondence: Gonzalo E. Yévenes, ✉
| |
Collapse
|
12
|
Wu Y, Long XM, Liu GF, Bai X, Sun ZL, Liu ZY. The multicomponent residue depletion of Gelsemium elegans in pig tissues, urine, and plasma. Front Vet Sci 2023; 9:1111782. [PMID: 36713860 PMCID: PMC9880259 DOI: 10.3389/fvets.2022.1111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Gelsemium elegans (G. elegans) as a traditional medicinal plant used in livestock production. The use of G. elegans in veterinary clinics may pose safety risks to human health. Objectives The aim of this study was to investigate tissue residue depletion in pigs fed G. elegans powder. Methods A precise quantitation method and a simultaneous semi-quantitation method for multiple components independently of standards in pig tissues were developed for the first time. The two methods were validated in terms of specificity, LODs, LOQs, linearity, accuracy, precision, and matrix effects. They were then applied to a tissue residue depletion study after G. elegans powder at a dose of 2% per kg feed were fed to pigs. Results Compared with precise quantitation, the method validation results indicated that the semi-quantitation method was reliable and acceptable for multicomponent quantification independent of standards. Many G. elegans alkaloids are widely distributed in most tissues of pigs. Tissue residue depletion studies indicated that 14-hydroxygelsenicine, 11-hydroxygelsenicine, and gelsemoxonine could be used as potential residue markers, and pancreas, small intestine, and lung tissues could be considered as potential residue target tissues of G. elegans. In addition, both urine and plasma could be used to predict 14-hydroxygelsenicine and gelsemoxonine residues in the liver, pancreas, and small intestinal tissues of pigs. Conclusion The developed semi-quantification method can be applied to monitor the application and residue of G. elegans. The results provide scientific evidence for evaluating the safety of animal-derived food from G. elegans for consumers and will be helpful for its application and future development.
Collapse
Affiliation(s)
- Yong Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Xue-Ming Long
- Hunan Provincial Institute of Veterinary Drugs and Feed Control, Changsha, Hunan, China
| | - Gao-Feng Liu
- Hunan Canzoho Biological Technology Co., Ltd., Liuyang, Hunan, China
| | - Xia Bai
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhi-Liang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China,*Correspondence: Zhi-Liang Sun ✉
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China,Zhao-Ying Liu ✉
| |
Collapse
|
13
|
Sex Differences in the In Vivo Exposure Process of Multiple Components of Gelsemium elegans in Rats. Metabolites 2022; 13:metabo13010033. [PMID: 36676958 PMCID: PMC9865510 DOI: 10.3390/metabo13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Asian Gelsemium elegans (G. elegans) has a wide range of pharmacological activities. However, its strong toxicity limits its potential development and application. Interestingly, there are significant gender differences in G. elegans toxicity in rats. This work aimed to elucidate the overall absorption, distribution, metabolism, and excretion (ADME) of whole G. elegans crude extract in female and male rats using high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC/QqTOF-MS), which facilitates determining the reasons for the gender differences in toxicity. A total of 25 absorbed bioactive components and 3 related produced metabolites were tentatively identified in female rats, while only 17 absorbed bioactive components and 3 related produced metabolites were identified in male rats. By comparison of peak intensities, most compounds were found to be more active in absorption, distribution and excretion in female rats than in male rats, which showed that female rats were more sensitive to G. elegans. This study was the first to investigate the multicomponent in vivo process of G. elegans in rats and compare the differences between sexes. It was hypothesized that differences in the absorption of gelsedine-type alkaloids were one of the main reasons for the sex differences in G. elegans toxicity.
Collapse
|
14
|
Lu JS, Yang L, Chen J, Xiong FF, Cai P, Wang XY, Xiong BJ, Chen ZH, Chen L, Yang J, Yu CX. Basolateral amygdala astrocytes modulate diabetic neuropathic pain and may be a potential therapeutic target for koumine. Br J Pharmacol 2022; 180:1408-1428. [PMID: 36519959 DOI: 10.1111/bph.16011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE New remedies are required for the treatment of diabetic neuropathic pain (DNP) due to insufficient efficacy of available therapies. Here, we used chemogenetic approaches combined with in vivo pharmacology to elucidate the role of basolateral amygdala (BLA) astrocytes in DNP pathogenesis and provide new insights into therapeutic strategies for DNP. EXPERIMENTAL APPROACH A streptozotocin-induced DNP model was established. Designer receptors exclusively activated by designer drugs (DREADDs) were used to regulate astrocyte activity. Mechanical hyperalgesia was assessed using the electronic von Frey test. Anxiety-like behaviours were detected using open field and elevated plus maze tests. Astrocytic activity was detected by immunofluorescence, and cytokine content was determined by ELISA. KEY RESULTS BLA astrocytes were regulated by DREADDs, and inhibition of BLA astrocytes attenuated mechanical allodynia and pain-related negative emotions in DNP rats. In contrast, temporary activation of BLA astrocytes induced allodynia without anxious behaviours in naive rats. In addition, koumine (KM) alleviated mechanical allodynia and anxiety-like behaviours in DNP rats, inhibited the activation of BLA astrocytes and suppressed the inflammatory response. Furthermore, persistent activation of BLA astrocytes through chemogenetics mimicked chronic pain, and KM alleviated the pain hypersensitivity and anxiety-like behaviours. CONCLUSION AND IMPLICATIONS DREADDs bidirectionally regulate the activity of BLA astrocytes, which proves for the first time the role of BLA astrocyte activation in the pathogenesis of DNP and represents a novel therapeutic strategy for DNP. KM ameliorates DNP, perhaps by inhibiting the activation of BLA astrocytes and reveal KM as a potential candidate for treating DNP.
Collapse
Affiliation(s)
- Jing-Shan Lu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Lan Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jian Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Fang-Fang Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ping Cai
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xin-Yao Wang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Bo-Jun Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ze-Hong Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Chang-Xi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
15
|
Xiong B, Zhong Z, Chen C, Huang H, Lin J, Xu Y, Yang J, Yu C. The anxiolytic effect of koumine on a predatory sound stress-induced anxiety model and its associated molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154225. [PMID: 35689899 DOI: 10.1016/j.phymed.2022.154225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Koumine is the most abundant alkaloid extracted from Gelsemium elegans Benth.. Preliminary studies by our research group have shown that koumine has significant anxiolytic effect, but this needs to be further confirmed. HYPOTHESIS/PURPOSE To investigate the potential anxiolytic effect of koumine on predatory sound (PS) stress-induced anxiety models and preliminarily explore its therapeutic targets and molecular mechanisms. STUDY DESIGN AND METHODS The anxiolytic effect of koumine in an animal model of acute PS stress-induced anxiety were determined. Then, neurosteroids levels in the main brain regions involved in anxiety disorders, as well as plasma adrenocorticotropic hormone (ACTH) and corticosterone (CORT) levels, were determinated. Finally, to clarify the effect of koumine on translocator protein 18 kDa (TSPO), the affinity between koumine and TSPO was evaluated by surface plasmon resonance (SPR) technology. RESULTS Koumine treatment mitigated anxiety-like behavior following acute PS stress in the open field test and elevated plus maze test. PS exposure significantly decreased progesterone and allopregnanolone levels in the PFC, Hip, and Amy and increased ACTH and CORT levels in plasma, and koumine administration significantly reversed these effects. Finally, the reliable SPR results showed that the KD of koumine with TSPO was 155.33 ± 11.0 μM, indicating that koumine is a human TSPO high-affinity ligand that has an affinity comparable to typical TSPO ligands. CONCLUSION Our results show that koumine has obvious anxiolytic effect in the PS-induced anxiety model. Targeting TSPO-neurosteroids-HPA axis may be an important mechanism by which koumine exerts its anxiolytic effect.
Collapse
Affiliation(s)
- Bojun Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zhifeng Zhong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chaojie Chen
- School of Chemical Engineering and Resource Recycling, Wuzhou University, Wuzhou 543002, China; Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou 350122, China
| | - Huihui Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jinxiang Lin
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ying Xu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| | - Changxi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
16
|
Ma X, Wang ZY, Zuo MT, Yang K, Sun ZL, Wu Y, Liu ZY. Excretion, Metabolism, and Tissue Distribution of Gelsemium elegans ( Gardn. & Champ.) Benth in Pigs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082605. [PMID: 35458803 PMCID: PMC9025967 DOI: 10.3390/molecules27082605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022]
Abstract
Gelsemium elegans (Gardn. & Champ.) Benth is a toxic flowering plant in the family Loganiaceae used to treat skin diseases, neuralgia and acute pain. The high toxicity of G. elegans restricts its development and clinical applications, but in veterinary applications, G. elegans has been fed to pigs as a feed additive without poisoning. However, until now, the in vivo processes of the multiple components of G. elegans have not been studied. This study investigates the excretion, metabolism and tissue distribution of the multiple components of G. elegans after feeding it to pigs in medicated feed. Pigs were fed 2% G. elegans powder in feed for 45 days. The plasma, urine, bile, feces and tissues (heart, liver, lung, spleen, brain, spinal cord, adrenal gland, testis, thigh muscle, abdominal muscle and back muscle) were collected 6 h after the last feeding and analyzed using high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Five natural products in plasma, twelve natural products and five metabolites in urine, and three natural products in feces were characterized, suggesting that multiple components from G. elegans were excreted in the urine. However, ten natural products and four metabolites were detected in bile samples, which suggested that G. elegans is involved in enterohepatic circulation in pigs. A total of seven of these metabolites were characterized, and four metabolites were glucuronidated metabolites. Ten natural products and six metabolites were detected in the tissues, which indicates that G. elegans is widely distributed in tissues and can cross the blood-brain barrier. Among the characterized compounds, a highly toxic gelsedine-type alkaloid from G. elegans was the main compound detected in all biological samples. This is the first study of the excretion, metabolism and tissue distribution of multiple components from G. elegans in pigs. These data can provide an important reference to explain the efficacy and toxicity of G. elegans. Additionally, the results of the tissue distribution of G. elegans are of great value for further residue depletion studies and safety evaluations of products of animals fed G. elegans.
Collapse
Affiliation(s)
- Xiao Ma
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha 410128, China; (X.M.); (Z.-Y.W.); (M.-T.Z.); (K.Y.); (Z.-L.S.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha 410128, China
| | - Zi-Yuan Wang
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha 410128, China; (X.M.); (Z.-Y.W.); (M.-T.Z.); (K.Y.); (Z.-L.S.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha 410128, China
| | - Meng-Ting Zuo
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha 410128, China; (X.M.); (Z.-Y.W.); (M.-T.Z.); (K.Y.); (Z.-L.S.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha 410128, China
| | - Kun Yang
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha 410128, China; (X.M.); (Z.-Y.W.); (M.-T.Z.); (K.Y.); (Z.-L.S.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha 410128, China
| | - Zhi-Liang Sun
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha 410128, China; (X.M.); (Z.-Y.W.); (M.-T.Z.); (K.Y.); (Z.-L.S.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha 410128, China
| | - Yong Wu
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha 410128, China; (X.M.); (Z.-Y.W.); (M.-T.Z.); (K.Y.); (Z.-L.S.)
- Hunan Canzoho Biological Technology Co., Ltd., 321 Kangning Road, District Economic and Technological Development, Liuyang 410329, China
- Correspondence: (Y.W.); (Z.-Y.L.)
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha 410128, China; (X.M.); (Z.-Y.W.); (M.-T.Z.); (K.Y.); (Z.-L.S.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha 410128, China
- Correspondence: (Y.W.); (Z.-Y.L.)
| |
Collapse
|
17
|
Wu ZH, Su Y, Luo ZF, Sun ZL, Gong ZH, Xiao LT. In Situ Visual Distribution of Gelsemine, Koumine, and Gelsenicine by MSI in Gelsemiumelegans at Different Growth Stages. Molecules 2022; 27:1810. [PMID: 35335173 PMCID: PMC8952314 DOI: 10.3390/molecules27061810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/26/2022] [Accepted: 03/05/2022] [Indexed: 02/05/2023] Open
Abstract
The distribution of pharmatically important alkaloids gelsemine, koumine, and gelsenicine in Gelsemium elegans tissues is a hot topic attracting research attention. Regretfully, the in planta visual distribution details of these alkaloids are far from clear although several researches reported the alkaloid quantification in G. elegans by LC-MS/MS. In this study, mass imaging spectrometry (MSI) was employed to visualize the in situ visualization of gelsemine, koumine, and gelsenicine in different organs and tissues of G. elegans at different growth stages, and the relative quantification of three alkaloids were performed according to the image brightness intensities captured by the desorption electrospray ionization MSI (DESI-MSI). The results indicated that these alkaloids were mainly accumulated in pith region and gradually decreased from pith to epidermis. Interestingly, three alkaloids were found to be present in higher abundance in the leaf vein. Along with the growth and development, the accumulation of these alkaloids was gradually increased in root and stem. Moreover, we employed LC-MS/MS to quantify three alkaloids and further validated the in situ distributions. The content of koumine reached 249.2 μg/g in mature roots, 272.0 μg/g in mature leaves, and 149.1 μg/g in mature stems, respectively, which is significantly higher than that of gelsemine and gelsenicine in the same organ. This study provided an accurately in situ visualization of gelsemine, koumine, and gelsenicine in G. elegans, and would be helpful for understanding their accumulation in plant and guiding application.
Collapse
Affiliation(s)
- Zi-Han Wu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Z.-H.W.); (Y.S.); (Z.-F.L.)
| | - Yi Su
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Z.-H.W.); (Y.S.); (Z.-F.L.)
| | - Zhou-Fei Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Z.-H.W.); (Y.S.); (Z.-F.L.)
| | - Zhi-Liang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhi-Hong Gong
- Waters Technology (Shanghai) Co., Ltd., Shanghai 200120, China;
| | - Lang-Tao Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Z.-H.W.); (Y.S.); (Z.-F.L.)
| |
Collapse
|
18
|
Feng M, Kong D, Guo H, Xing C, Lv J, Bian H, Lv N, Zhang C, Chen D, Liu M, Yu Y, Su L. Gelsevirine improves age-related and surgically induced osteoarthritis in mice by reducing STING availability and local inflammation. Biochem Pharmacol 2022; 198:114975. [PMID: 35202579 DOI: 10.1016/j.bcp.2022.114975] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023]
Abstract
Low-grade and chronic inflammation is recognized as an important mediator of the pathogenesis of osteoarthritis (OA). The aim of current work was to test the therapeutic effects of gelsevirine on age-related and surgically induced OA in mice and elucidate the underlying mechanism. The in vitro studies revealed that gelsevirine treatment mitigated IL-1β-induced inflammatory response and degeneration in cultured chondrocytes, evidenced by reduced apoptosis and expression of MMP3, MMP9, MMP13, IFNβ, TNFɑ, and Il6, and increased expression of Col2A and Il10. Furthermore, gelsevirine treatment in IL-1β-stimulated chondrocytes reduced the protein expression of stimulator of IFN genes (STING, also referred to Tmem173) and p-TBK1. Importantly, gelsevirine treatment did not provide further protection in STING-deficient chondrocytes against IL-1β stimulation. The in vivo studies revealed that gelsevirine treatment mitigated articular cartilage destruction in age-related and destabilization of the medial meniscus (DMM)-induced OA. Similarly, gelsevirine treatment did not provide further beneficial effects against OA in STING deficient mice. Mechanistically, gelsevirine promoted STING K48-linked poly-ubiquitination and MG-132 (a proteasome inhibitor) reversed the inhibitive effects of gelsevirine on IL-1β-induced activation of STING/TBK1 pathway in chondrocytes. Collectively, we identify that gelsevirine targets STING for K48 ubiquitination and degradation and improves age-related and surgically induced OA in mice.
Collapse
Affiliation(s)
- Meixia Feng
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Depei Kong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Guo
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Juan Lv
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Huihui Bian
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Nanning Lv
- Lianyungang Second People's Hospital, Lianyungang, China
| | - Chenxi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Dagui Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Mingming Liu
- Lianyungang Second People's Hospital, Lianyungang, China.
| | - Yongsheng Yu
- School of Medicine, Shanghai University, Shanghai, China.
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China.
| |
Collapse
|
19
|
Yu H, Tang MH, Zeng ZY, Huang SJ, Zheng XF, Liu ZY. Suppressive Effects of Gelsemine on Anxiety-like Behaviors Induced by Chronic Unpredictable Mild Stress in Mice. Brain Sci 2022; 12:brainsci12020191. [PMID: 35203954 PMCID: PMC8870043 DOI: 10.3390/brainsci12020191] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Gelsemine is an active principle and a major alkaloid found in Gelsemium genus of plants belonging to the Loganiaceae family. The aim of the present study was to explore whether gelsemine exerts anxiolytic effects on a mouse model of chronic-unpredictable-mild-stress (CUMS)-induced anxiety-like behaviors. NOD-like receptor protein 3 (NLRP3) inflammasome, downregulated cAMP-response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) were also evaluated as potential mechanisms. First, gelsemine reversed a CUMS-induced decrease in body-weight gain in mice. Next, gelsemine alleviated CUMS-induced anxiety-like behaviors, as evidenced by the increased distance traveled in the central zone of the open-field test, both the increased percentage of time spent and distance traveled in the light compartment, the increased number of transitions between compartments in the light/dark-transition test, and the increased percentage of entries and time spent in the open arm of the elevated plus-maze. In addition, gelsemine decreased the levels of pro-inflammatory cytokines, including interleukin (IL)-1β and IL-6, in the hypothalamus and hippocampus of CUMS mice. Interestingly, further investigations revealed that gelsemine inhibited the CUMS-induced activation of NLRP3-inflammasome pathways and downregulated CREB and BDNF overexpression in the hypothalamus. In summary, gelsemine alleviated anxiety-like behaviors in the CUMS-induced mouse model. Gelsemine exerted its anxiolytic effects by modulating the NLRP3 and CREB/BDNF pathways.
Collapse
Affiliation(s)
- Hui Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Mo-Huan Tang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Zi-Yue Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Si-Juan Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
| | - Xiao-Feng Zheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (H.Y.); (M.-H.T.); (Z.-Y.Z.); (S.-J.H.); (X.-F.Z.)
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, China
- Correspondence:
| |
Collapse
|
20
|
Toxicokinetics, in vivo metabolic profiling, and in vitro metabolism of gelsenicine in rats. Arch Toxicol 2022; 96:525-533. [DOI: 10.1007/s00204-021-03209-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/14/2021] [Indexed: 11/02/2022]
|
21
|
Lin Y, Liu Q, Chen Z, Zheng F, Huang H, Yu C, Yang J. The immunomodulatory effect of koumine on B cells under dependent and independent responses by T cells. Eur J Pharmacol 2022; 914:174690. [PMID: 34890543 DOI: 10.1016/j.ejphar.2021.174690] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Abstract
Dysregulated activation of polyclonal B cells and production of pathogenic antibodies are involved in the development of rheumatoid arthritis (RA). Therefore, targeted B cell therapy is effective against RA. Gelsemium elegans (Gardn. & Champ.) Benth., a toxic plant widely distributed in Southeast Asia, has been used for treating rheumatoid pain, neuropathic pain, spasticity, skin ulcers, and cancers for many years in traditional Chinese medicine. Koumine, an alkaloid monomer from Gelsemium elegans Benth., exerts therapeutic effects against RA. However, whether koumine affects B cells remains unknown. In this study, the effect of koumine on B cells under T cell-independent (TI) and T cell-dependent (TD) immune responses is investigated in vitro and in vivo. Mouse primary B cells were obtained by immunomagnetic bead sorting, and immunomodulatory effects of koumine on the activation, proliferation, and differentiation of B cells were determined in TI and TD models induced by lipopolysaccharide (LPS) and anti-CD40 antibodies in vitro, respectively. The humoral immune responses of TI and TD were established using NP-AECM-FICOLL and NP-CGG in C57BL/6J mice, respectively. We found that koumine inhibited B cell differentiation in the TI model and inhibited B cell activation and proliferation in the TD model in vitro. Koumine also inhibited antibody secretion in TI immune response, TD initial immune response, and in TD secondary immune response. Our results reveal that koumine has a direct and indirect immune regulatory effect on B cells, showing that it can directly inhibit the differentiation and secretion of autoantibodies after abnormal activation of B cells, and indirectly inhibit the activation and proliferation of TD B cells to reduce the secretion of antibodies. It may be an important mechanism for its anti-RA effect in mice, providing a rationale and laboratory data support for the application of koumine in anti-human RA therapy.
Collapse
Affiliation(s)
- Yarong Lin
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Qian Liu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zehong Chen
- Laboratory of Medical Function, Basic Medical Experimental Teaching Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Fengting Zheng
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Huihui Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Changxi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
22
|
Lin H, Qiu H, Cheng Y, Liu M, Chen M, Que Y, Que W. Gelsemium elegans Benth: Chemical Components, Pharmacological Effects, and Toxicity Mechanisms. Molecules 2021; 26:molecules26237145. [PMID: 34885727 PMCID: PMC8659130 DOI: 10.3390/molecules26237145] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Gelsemium elegans Benth (GEB), also known as heartbreak grass, is a highly poisonous plant belonging to the family Loganiaceae and genus Gelsemium that has broad application prospects in medicine. This article reviews its chemical components, pharmacological effects, toxicity mechanisms, and research progress in clinical applications in recent years. Indole alkaloids are the main active components of GEB and have a variety of pharmacological and biological functions. They have anti-tumor, anti-inflammatory, analgesic, and immunomodulation properties, with the therapeutic dose being close to the toxic dose. Application of small-dose indole alkaloids fails to work effectively, while high-dose usage is prone to poisoning, aggravating the patient’s conditions. Special caution is needed, especially to observe the changes in the disease condition of the patients in clinical practice. In-depth research on the chemical components and mechanisms of GEB is essential to the development of promising lead compounds and lays the foundation for extensive clinical application and safe usage of GEB in the future.
Collapse
Affiliation(s)
- Hailing Lin
- Department of Pharmacy, Fujian Medical University Union Hospital, 29 Xin Quan Rd, Gulou, Fuzhou 350001, China; (H.L.); (H.Q.); (Y.C.); (M.L.); (M.C.)
| | - Hongqiang Qiu
- Department of Pharmacy, Fujian Medical University Union Hospital, 29 Xin Quan Rd, Gulou, Fuzhou 350001, China; (H.L.); (H.Q.); (Y.C.); (M.L.); (M.C.)
| | - Yu Cheng
- Department of Pharmacy, Fujian Medical University Union Hospital, 29 Xin Quan Rd, Gulou, Fuzhou 350001, China; (H.L.); (H.Q.); (Y.C.); (M.L.); (M.C.)
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, 29 Xin Quan Rd, Gulou, Fuzhou 350001, China; (H.L.); (H.Q.); (Y.C.); (M.L.); (M.C.)
| | - Maohua Chen
- Department of Pharmacy, Fujian Medical University Union Hospital, 29 Xin Quan Rd, Gulou, Fuzhou 350001, China; (H.L.); (H.Q.); (Y.C.); (M.L.); (M.C.)
| | - Youxiong Que
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (Y.Q.); (W.Q.)
| | - Wancai Que
- Department of Pharmacy, Fujian Medical University Union Hospital, 29 Xin Quan Rd, Gulou, Fuzhou 350001, China; (H.L.); (H.Q.); (Y.C.); (M.L.); (M.C.)
- Correspondence: (Y.Q.); (W.Q.)
| |
Collapse
|
23
|
Heravi MM, Abedian‐Dehaghani N, Zadsirjan V, Rangraz Y. Catalytic Function of Cu (I) and Cu (II) in Total Synthesis of Alkaloids. ChemistrySelect 2021. [DOI: 10.1002/slct.202101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Neda Abedian‐Dehaghani
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Yalda Rangraz
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| |
Collapse
|
24
|
Qi XJ, Zuo MT, Huang SJ, Ma X, Wang ZY, Liu ZY. Metabolic profile and tissue distribution of Humantenirine, an oxindole alkaloid from Gelsemium, after oral administration in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1181:122901. [PMID: 34433122 DOI: 10.1016/j.jchromb.2021.122901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/27/2021] [Accepted: 08/15/2021] [Indexed: 11/27/2022]
Abstract
Humantenirine is an active oxindole alkaloid extracted from Gelsemium elegans Benth (G. elegans). In the present study, the metabolites of humantenirine in liver microsomes were first identified by HPLC/QqTOF-MS. Then, the metabolic profile and tissue distribution after oral administration in rats were further investigated. A total of seven metabolites were identified in vitro, and five metabolites in vitro were found in vivo. Moreover, a Ⅱ-phase metabolite was identified first in vivo. The results indicated that humantenirine could be metabolized widely. The parent drug and its metabolites were distributed widely in various tissues and highly in the liver and pancreas. However, the parent drug and its metabolites had low peak intensities in plasma. The elimination of humantenirine occurred rapidly as well, the most unconverted forms of which were found in the kidney. Metabolic pathways, including demethylation, dehydrogenation, oxidation and glucuronidation, were proposed. The present findings may provide a basis for the study of pharmacokinetic characteristics and will contribute to the evaluation of the pharmacology and toxicity of G. elegans.
Collapse
Affiliation(s)
- Xue-Jia Qi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Meng-Ting Zuo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Si-Juan Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Xiao Ma
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Zi-Yuan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha 410128, Hunan, China.
| |
Collapse
|
25
|
Zhang HH, Yang WJ, Huang YJ, Li WJ, Zhang SX, Liu ZY. The metabolism of gelsevirine in human, pig, goat and rat liver microsomes. Vet Med Sci 2021; 7:2086-2092. [PMID: 33955684 PMCID: PMC8464259 DOI: 10.1002/vms3.499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/07/2021] [Accepted: 04/07/2021] [Indexed: 11/25/2022] Open
Abstract
Gelsemium is a small genus of flowering plants from the family Loganiaceae comprising five species, three of which, Gelsemium sempervirens (L.) J. St.‐Hil., G. elegans Benth and G. rankinii Small, are particularly popular. Compared with other alkaloids from G. elegans, gelsemine, gelsevirine and koumine exhibit equally potent anxiolytic effects and low toxicity. Although the pharmacological activities and metabolism of koumine and gelsemine have been reported in previous studies, the species differences of gelsevirine metabolism have not been well studied. In this study, the metabolism of gelsevirine was investigated by using liver microsomes of humans, pigs, goats and rats by means of HPLC‐QqTOF/MS. The results indicated that the metabolism of gelsevirine in liver microsomes had qualitative and quantitative species differences. Based on the results, the possible metabolic pathways of gelsevirine in liver microsomes were proposed. Investigation of the metabolism of gelsevirine will provide a basis for further studies of the in vivo metabolism of this drug.
Collapse
Affiliation(s)
- Hua-Hai Zhang
- College of Forestry, Northwest A&F University, Yangling, China.,Qinling National Forest Ecosystem Research Station, Huoditang, China
| | - Wen-Jia Yang
- Yangling Demonstration Zone Hospital, Yangling, China
| | - Ya-Jun Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.,Hunan Prima Drug Research Center Co., Ltd., Changsha, China
| | - Wen-Jing Li
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
| | - Shuo-Xin Zhang
- College of Forestry, Northwest A&F University, Yangling, China.,Qinling National Forest Ecosystem Research Station, Huoditang, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.,Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| |
Collapse
|
26
|
Wang L, Xu HL, Liang JW, Ding YY, Meng FH. An Integrated Network, RNA Sequencing, and Experiment Pharmacology Approach Reveals the Active Component, Potential Target, and Mechanism of Gelsemium elegans in the Treatment of Colorectal Cancer. Front Oncol 2021; 10:616628. [PMID: 33425771 PMCID: PMC7786369 DOI: 10.3389/fonc.2020.616628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/20/2020] [Indexed: 01/26/2023] Open
Abstract
In this study, a combination of network pharmacology, bioinformatics analysis, molecular docking and transcriptomics was used to investigate the active ingredient and potential target of Gelsemium elegans in the treatment of colorectal cancer. Koumine was screened as the active component by targeting PDK1 through network pharmacology and reverse docking. RNA-Seq, enrichment analysis and validation experiment were then further employed to reveal koumine might function in inhibiting Akt/mTOR/HK2 pathway to regulate cell glycolysis and detachment of HK2 from mitochondria and VDAC-1 to activate cell apoptosis both in vitro and in vivo. In the present study, we provide a systematical approach for the identification of effective ingredient and potential target of herbal medicine. Our results have important implication for the intensive study of koumine as novel anticancer agents for colorectal cancer and could be supportive in its further structural modification.
Collapse
Affiliation(s)
- Lin Wang
- School of Pharmacy, China Medical University, Liaoning, China
| | - Hai-Li Xu
- School of Pharmacy, China Medical University, Liaoning, China
| | - Jing-Wei Liang
- School of Pharmacy, China Medical University, Liaoning, China
| | - Ying-Ying Ding
- School of Pharmacy, China Medical University, Liaoning, China
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, Liaoning, China
| |
Collapse
|
27
|
Zuo MT, Liu YC, Sun ZL, Lin L, Tang Q, Cheng P, Liu ZY. An integrated strategy toward comprehensive characterization and quantification of multiple components from herbal medicine: An application study in Gelsemium elegans. CHINESE HERBAL MEDICINES 2021; 13:17-32. [PMID: 36117759 PMCID: PMC9476712 DOI: 10.1016/j.chmed.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 11/30/2022] Open
Abstract
Objective To develop a powerful integrated strategy based on liquid chromatography coupled with mass spectrometry (LC-MS) systems for the comprehensive characterization and quantification of multiple components of herbal medicines. Methods Firstly, different mobile phase additives, analysis time, and MS acquisition modes were orthogonally tested with liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) in order to detect as many components of Gelsemium elegans as possible with high peak intensity. Secondly, several data mining strategies, including database searching, diagnostic ion filtering and neutral loss filtering, were utilized to perform chemical profiling. Subsequently, this study focused on the quantification and validation of the performance of a liquid chromatography-triple mass spectrometry (LC-QqQ/MS) assay based on derivative multiple reaction monitoring (DeMRM). Results A total of 147 components from G. elegans were characterized, among them 116 nontarget components were reported for the first time. A sensitive and reproducible LC-QqQ/MS method was successfully developed and validated for the simultaneous relative quantification of 41 components of G. elegans. This LC-QqQ/MS method was then applied to compare the contents of components in the roots, stems and leaves. Conclusion The present integrated strategy would significantly contribute to chemical studies on herbal medicine, and its utility could be extended to other research fields, such as metabolomics, quality control, and pharmacokinetics.
Collapse
|
28
|
Yang ZH, Zhang GM, Chen CY, He J, Chen CJ. Prenatal exposure to koumine results in cognitive deficits and increased anxiety-like behavior in mice offspring. J Chem Neuroanat 2020; 111:101888. [PMID: 33212191 DOI: 10.1016/j.jchemneu.2020.101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 11/20/2022]
Abstract
Koumine (KM) is a major alkaloid monomer in the traditional Chinese medicine herb Gelsemium elegans Benth that has exhibited therapeutic potential in clinical applications. However, the pharmacological toxicological mechanism of this drug has not been fully explored. The purpose of this study was to evaluate the impacts of KM administration at a therapeutic dose in offspring. On gestational day 0, mice were injected with KM once daily for 4 consecutive days. Male and female offspring were subjected to behavioral tests and neuropathological analyses from postnatal day 60. Prenatal KM exposure resulted in cognitive and memory impairments in the Morris water maze, Y-maze test, and novel object recognition test. The open field test and elevated plus maze test indicated that prenatal KM exposure induced anxiety-like behavior in offspring. Electrophysiological experiments demonstrated that KM exposure inhibited hippocampal long-term potentiation. Immunostaining for neurogenesis markers DCX and BrdU demonstrated that KM suppressed adult neurogenesis in the subgranular zone of the dentate gyrus. In addition, prenatal KM exposure induced a significant reduction in dendritic spine density in hippocampal neurons. Synaptic formation-related proteins were decreased in the KM group based on western blot. No sex differences in the effects of KM were observed. Collectively, our results indicate that prenatal KA exposure has detrimental neural effects on offspring. This study provides a preliminary preclinical toxicological assessment of the safety of KM use during pregnancy.
Collapse
Affiliation(s)
- Zhen-Hua Yang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Jiangmen Wuyi Hospital of TCM, Jiangmen 529000, China
| | - Gui-Mei Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Heshan Hospital of TCM, Heshan 529700, China
| | | | - Ji He
- School of Chemical Engineering and Resource Recycling, Wuzhou University, Wuzhou 543002, China
| | - Chao-Jie Chen
- School of Chemical Engineering and Resource Recycling, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
29
|
Su Y, Lu W, Fu X, Xu Y, Ye L, Yang J, Huang H, Yu C. Formulation and Pharmacokinetic Evaluation of a Drug-in-Adhesive Patch for Transdermal Delivery of Koumine. AAPS PharmSciTech 2020; 21:297. [PMID: 33099696 DOI: 10.1208/s12249-020-01793-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/18/2020] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to develop a suitable drug-in-adhesive patch for transdermal delivery of koumine. Acrylic polymer Duro-Tak® 87-4287, which contains hydroxyl groups, may significantly enhance the skin permeation of koumine from transdermal patches containing 0.93-3.72% koumine. Among permeation enhancers, 10% azone showed the greatest potential and increased the flux of koumine to 1.48-fold that of the control. Therefore, an optimized patch formulation containing 3.72% koumine and 10% azone in Duro-Tak® 87-4287 that offers good physical properties was selected for an in vivo pharmacokinetic study using rats. The maximal plasma drug concentration (Cmax) of koumine after transdermal administration (4 mg/patch) was 25.80 ± 1.51 ng/mL, which was in the range of those after oral administration (3 mg/kg and 15 mg/kg). The time to the maximal concentration (Tmax) and the half-life (t1/2) of the drug with transdermal administration were 3.96 ± 0.46 h and 21.10 ± 1.36 h, respectively, which were longer than those with oral administration. Furthermore, the area under the concentration-time curve (AUC0-72 h) of 898.20 ± 45.57 ng·h/mL for the transdermal patch was much higher than that for oral administration (15 mg/kg). In conclusion, the drug-in-adhesive patch containing koumine provides a steady plasma koumine level and sustained release in vivo and can be an effective means of transdermal delivery for koumine.
Collapse
|
30
|
Cao JJ, Yang K, Huang CY, Li YJ, Yu H, Wu Y, Sun ZL, Liu ZY. Pharmacokinetic Study of Multiple Components of Gelsemium elegans in Goats by Ultra-Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. J Anal Toxicol 2020; 44:378-390. [PMID: 31993639 DOI: 10.1093/jat/bkz100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/27/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022] Open
Abstract
Gelsemium elegans (G. elegans) has been used in traditional Chinese medicine. This plant is highly toxic to humans, but can promote the growth of pigs and goats in the veterinary clinic. It is a very complex mixture containing tens or hundreds of different components. Therefore, multiple-component pharmacokinetic studies of G. elegans are a major challenge due to the lack of authentic standards of the components. The purpose of this study was to investigate the plasma pharmacokinetics of multiple components after a single oral dose of G. elegans in goat using a sensitive ultra-performance liquid chromatography coupled to tandem mass spectrometry method for the simultaneous semiquantification of multiple alkaloids without standards. The method was validated in terms of the specificity, LOD, LOQ, linearity, accuracy, precision and matrix effects. To validate the global pharmacokinetic characteristics, the results obtained from the semiquantitative analysis of three authentic compounds (gelsemine, koumine and humantenmine) were compared with the absolute quantification from our recently published method. The results showed that the two methods had similar analytical results, and the obtained values of Tmax, T1/2 and MRT0-t of the three alkaloids were similar between the two methods. In addition, the values of Cmax and AUC0-t of the three alkaloids after normalization were close to the real values, which indicated that this semiquantitative method could be used in the pharmacokinetic study of multiplecomponents. Then the pharmacokinetic parameters of 23 other G. elegans alkaloids in goats were obtained. The results suggested that the gelsedine-type alkaloids were the major active ingredients that predict and explain the efficacy and toxicity of G. elegans.
Collapse
Affiliation(s)
- Jun-Jie Cao
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City 410128, Hunan China.,Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City 410128, Hunan, China
| | - Kun Yang
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City 410128, Hunan China.,Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City 410128, Hunan, China
| | - Chong-Yin Huang
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City 410128, Hunan China.,Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City 410128, Hunan, China
| | - Yu-Juan Li
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City 410128, Hunan China.,Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City 410128, Hunan, China
| | - Hui Yu
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City 410128, Hunan China.,Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City 410128, Hunan, China
| | - Yong Wu
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City 410128, Hunan China.,Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City 410128, Hunan, China
| | - Zhi-Liang Sun
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City 410128, Hunan China.,Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City 410128, Hunan, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City 410128, Hunan China.,Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City 410128, Hunan, China
| |
Collapse
|
31
|
Chen L, Pan H, Bai Y, Li H, Yang W, Lin ZX, Cui W, Xian YF. Gelsemine, a natural alkaloid extracted from Gelsemium elegans Benth. alleviates neuroinflammation and cognitive impairments in Aβ oligomer-treated mice. Psychopharmacology (Berl) 2020; 237:2111-2124. [PMID: 32363440 DOI: 10.1007/s00213-020-05522-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/08/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Gelsemine is a natural alkaloid extracted from Gelsemium elegans Benth., a traditional Chinese medicinal herb. Gelsemine has been shown to penetrate the brain, and could produce neurological activities, such as anxiolytic and neuralgia-alleviating effects, suggesting that this natural compound might be used for treating nervous system diseases. RESULTS In this study, we have found, for the first time, that gelsemine at low concentrations (5-10 μg/kg) significantly alleviated cognitive impairments induced by β-amyloid (Aβ) oligomer, a main neurotoxin of Alzheimer's disease (AD). In addition, gelsemine substantially prevented Aβ oligomer-induced over-activation of microglia and astrocytes, indicating that gelsemine might reduce AD-related gliosis. Consistently, gelsemine inhibited the over-expression of pro-inflammatory cytokines, including interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), in the brain of mice. Moreover, gelsemine largely increased the expression of pSer9-glycogen synthase kinase-3β (GSK3β), and decreased the hyper-phosphorylation of tau protein as evidenced by Western blotting analysis. Furthermore, gelsemine prevented Aβ oligomer-induced reduction of PSD-95, a representative post-synaptic protein. CONCLUSION All these results directly demonstrated the anti-Aβ oligomer neuroprotective properties of gelsemine, opening a novel perspective for the development of gelsemine-based therapeutics against Aβ-associated neurodegeneration disorders, including AD in particular.
Collapse
Affiliation(s)
- Liping Chen
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Hanbo Pan
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Yujing Bai
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Huiqin Li
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Wen Yang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Brain Research Centre, School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China. .,Department of Physiology, School of Medicine, Ningbo University. Ningbo, Ningbo, 315211, People's Republic of China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Brain Research Centre, School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
32
|
Zuo MT, Wang ZY, Yang K, Li YJ, Huang CY, Liu YC, Yu H, Zhao XJ, Liu ZY. Characterization of absorbed and produced constituents in goat plasma urine and faeces from the herbal medicine Gelsemium elegans by using high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112617. [PMID: 31988014 DOI: 10.1016/j.jep.2020.112617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/06/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal medicine contains hundreds of natural products, and studying their absorption, metabolism, distribution, and elimination presents great challenges. Gelsemium elegans (G. elegans) is a flowering plants in the Loganiaceae family. The plant is known to be toxic and has been used for many years as a traditional Chinese herbal medicine for the treatment of rheumatoid arthritis, neuropathic pain, spasticity, skin ulcers and cancer. It was also used as veterinary drugs for deworming, promoting animal growth, and pesticides. At present, studies on the metabolism of G. elegans have primarily focused on only a few single available reference ingredients, such as koumine, gelsemine and gelsedine. MATERIAL AND METHODS The goal of this work is to elucidate the overall metabolism of whole G. elegans powder in goats using high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC/QqTOF-MS). RESULTS Analyses of plasma, urine and fecal samples identified or tentatively characterized a total of 44 absorbed natural products and 27 related produced metabolites. Gelsedine-type, sarpagine-type and gelsemine-type alkaloids were the compounds with the highest metabolite formation. In the present study, most natural products identified in G. elegans were metabolized through glucuronidation and oxidation. Hydrogenation, dehydrogenation and demethylation also occurred. CONCLUSION To our knowledge, this is the first report of the metabolite profiling of the G. elegans crude extract in goats, which is of great significance for a safer and more rational application of this herbal medicine.
Collapse
Affiliation(s)
- Meng-Ting Zuo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Zi-Yuan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Kun Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Yu-Juan Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Chong-Ying Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Yan-Chun Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Hui Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Xue-Jiao Zhao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
33
|
Cao JJ, Yang K, Yu H, Long XM, Li YJ, Sun ZL, Liu ZY. Comparative toxicokinetic profiles of multiple-components of Gelsemium elegans in pigs and rats after a single oral administration. Toxicon 2020; 181:28-35. [PMID: 32335100 DOI: 10.1016/j.toxicon.2020.04.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/24/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Gelsemium elegans Benth (G. elegans) is highly toxic to humans and rats, but has insecticides and growth promoting effects on pigs and goats. G. elegans is widely used in livestock, but its in vivo dynamics are entirely unknown. Hence, we investigated the toxicokinetic profiles of G. elegans alkaloids after a single oral dose of G. elegans to pigs (1.0 g/kg) and rats (0.1 g/kg). The results indicated that rats were more susceptible to the toxicity of G. elegans than pigs. The toxicokinetic parameters of 22 and 6 components were obtained in pigs and rats, respectively. The components included 9 and 5 gelsedine-type alkaloids in pigs and rats, respectively. The Tmax results of the 5 gelsedine-type alkaloids indicated that these alkaloids were rapidly absorbed in pigs and rats. The T1/2 values of the 5 gelsedine-type alkaloids indicated that the elimination rates of these alkaloids in pigs were slower than those in rats. In addition, the Cmax and AUC results indicated that the degrees of absorption and exposure of most alkaloids in pigs were higher than those in rats except GS-2. However, the Cmax value of GS-2 (11-methoxy-14-hydroxygelsenicine) in rats was greater than that of pigs, and the Cmax value of 14-hydroxygelsenicine in pigs was merely greater than 3 times that of rats. The present results suggested that the cause of the toxicological differences species of G. elegans might be related to the degrees of absorption and exposure of gelsedine-type alkaloids, especially for the 14-hydroxygelsenicine and GS-2 in different animals.
Collapse
Affiliation(s)
- Jun-Jie Cao
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City, 410128, Hunan, China
| | - Kun Yang
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City, 410128, Hunan, China
| | - Hui Yu
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City, 410128, Hunan, China
| | - Xue-Ming Long
- Hunan Provincial Institute of Veterinary Drugs and Feed Control, 61 Xiaoxiangzhong Rd, District Yuelu, Changsha City, 410006, Hunan, China
| | - Yu-Juan Li
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City, 410128, Hunan, China
| | - Zhi-Liang Sun
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City, 410128, Hunan, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, 1 Nongda Rd, District Furong, Changsha City, 410128, Hunan, China.
| |
Collapse
|
34
|
Koumine Promotes ROS Production to Suppress Hepatocellular Carcinoma Cell Proliferation Via NF-κB and ERK/p38 MAPK Signaling. Biomolecules 2019; 9:biom9100559. [PMID: 31581704 PMCID: PMC6843837 DOI: 10.3390/biom9100559] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
In the past decades, hepatocellular carcinoma (HCC) has been receiving increased attention due to rising morbidity and mortality in both developing and developed countries. Koumine, one of the significant alkaloidal constituents of Gelsemium elegans Benth., has been regarded as a promising anti-inflammation, anxiolytic, and analgesic agent, as well as an anti-tumor agent. In the present study, we attempted to provide a novel mechanism by which koumine suppresses HCC cell proliferation. We demonstrated that koumine might suppress the proliferation of HCC cells and promote apoptosis in HCC cells dose-dependently. Under koumine treatment, the mitochondria membrane potential was significantly decreased while reactive oxygen species (ROS) production was increased in HCC cells; in the meantime, the phosphorylation of ERK, p38, p65, and IκBα could all be inhibited by koumine treatment dose-dependently. More importantly, the effects of koumine upon mitochondria membrane potential, ROS production, and the phosphorylation of ERK, p38, p65, and IκBα could be significantly reversed by ROS inhibitor, indicating that koumine affects HCC cell fate and ERK/p38 MAPK and NF-κB signaling activity through producing excess ROS. In conclusion, koumine could inhibit the proliferation of HCC cells and promote apoptosis in HCC cells; NF-κB and ERK/p38 MAPK pathways could contribute to koumine functions in a ROS-dependent manner.
Collapse
|
35
|
Zhang HH, Huang YJ, Liu YC, Jiang XY, Zhang SX, Liu ZY. Characterization of gelsevirine metabolites in rat liver S9 by accurate mass measurements using high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1179-1184. [PMID: 30989727 DOI: 10.1002/rcm.8457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Gelsemium elegans Benth. belongs to the family Loganiaceae and is widely distributed in northern America, east Asia, and southeast Asia. It has attracted wide attention for its diverse biological effects and complex architectures. Gelsevirine is one of the major components in G. elegans. Compared with other alkaloids from G. elegans, gelsevirine exhibits equally potent anxiolytic effects but with less toxicity. However, the metabolism of gelsevirine has not been clearly elucidated. METHODS The metabolism of gelsevirine was investigated using liver S9 fractions derived from rat liver homogenates by centrifugation at 9000 g. A rapid and accurate high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (HPLC/QqTOF-MS) method was applied to characterize the gelsevirine metabolites. RESULTS We discovered a total number of four metabolites of gelsevirine. The metabolic pathways of gelsevirine consisted of hydrogenation, N-demethylenation and oxidation in rat liver S9. CONCLUSIONS This is the first study on the metabolism of gelsevirine. We proposed possible metabolic pathways of gelsevirine. These findings may warrant future studies of the in vivo metabolism of gelsemine in animals.
Collapse
Affiliation(s)
- Hua-Hai Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Rd., Yangling, Shaanxi, 712100, China
- Qinling National Forest Ecosystem Research Station, Huoditang, Ningshan, Shaanxi, 711600, China
| | - Ya-Jun Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yan-Chun Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Xu-Yan Jiang
- College of Landscape Architecture and Arts, Northwest A&F University, 3 Taicheng Rd., Yangling, Shaanxi, 712100, China
| | - Shuo-Xin Zhang
- College of Forestry, Northwest A&F University, 3 Taicheng Rd., Yangling, Shaanxi, 712100, China
- Qinling National Forest Ecosystem Research Station, Huoditang, Ningshan, Shaanxi, 711600, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, 410128, China
| |
Collapse
|
36
|
Sun MX, Cui Y, Li Y, Meng WQ, Xu QQ, Zhao J, Lu JC, Xiao K. Indole alkaloids from Gelsemium elegans. PHYTOCHEMISTRY 2019; 162:232-240. [PMID: 30953910 DOI: 10.1016/j.phytochem.2019.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Five previously undescribed monoterpenoid indole alkaloids were isolated from the roots of Gelsemium elegans. Their structures with absolute configurations were elucidated by HRESIMS, X-ray diffraction, ECD spectra, and molecular modeling. 19,20-Epoxyhumantenine is a humantenine-type alkaloid with an epoxypropyl group at the C-20 position, (4R)-19-oxo-gelsevirine N4-oxide is a gelsemine-related alkaloid, and gelsedethenine is a gelsedine-type alkaloid with a butenyl group at the C-20 position. Moreover, 10,11-dimethoxy-N1-demethoxy-gelsemamide is an open-loop indole alkaloid and 11-demethoxy-gelsemazonamide is an aromatic azo-linked dimeric indole alkaloid. Among the five alkaloids, (4R)-19-oxo-gelsevirine N4-oxide and 10,11-dimethoxy-N1-demethoxy-gelsemamide exhibited significant inhibitory effects on nitric oxide production in lipopolysaccharide-induced RAW 264.7 macrophage cells, with IC50 values of 6.18 ± 1.07 and 12.2 ± 1.02 μM, respectively.
Collapse
Affiliation(s)
- Ming-Xue Sun
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Yan Cui
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu Li
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Wen-Qi Meng
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Qing-Qiang Xu
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Jie Zhao
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Jin-Cai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Kai Xiao
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
37
|
Bai B, Peng SY, Liu Q, Shen J, Zhu LP, Wang DM, Yang DP, Zhao ZM. A New Nonglycosidic Iridoid from Aerial Parts of Gelsemium elegans. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Ye Q, Zhang C, Wang Z, Feng Y, Zhou A, Xie S, Xiang Q, Song E, Zou J. Induction of oxidative stress, apoptosis and DNA damage by koumine in Tetrahymena thermophila. PLoS One 2019; 14:e0212231. [PMID: 30753239 PMCID: PMC6372211 DOI: 10.1371/journal.pone.0212231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/29/2019] [Indexed: 01/13/2023] Open
Abstract
Koumine is a component of the Chinese medicinal herb Gelsemium elegans and is toxic to vertebrates. We used the ciliate Tetrahymena thermophila as a model to evaluate the toxic effects of this indole alkaloid in eukaryotic microorganisms. Koumine inhibited T. thermophila growth and viability in a dose-dependent manner. Moreover, this drug produced oxidative stress in T. thermophila cells and expressions of antioxidant enzymes were significantly elevated at high koumine levels (p < 0.05). Koumine also caused significant levels of apoptosis (p < 0.05) and induced DNA damage in a dose-dependent manner. Mitophagic vacuoles were present in cells indicating induction of autophagy by this drug. Expression of ATG7, MTT2/4, CYP1 and HSP70 as well as the MAP kinase pathway gene MPK1 and MPK3 were significantly altered after exposed to koumine. This study represents a preliminary toxicological evaluation of koumine in the single celled eukaryote T. thermophila.
Collapse
Affiliation(s)
- Qiao Ye
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chaonan Zhang
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhenlu Wang
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongyong Feng
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Aiguo Zhou
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shaolin Xie
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qiong Xiang
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Enfeng Song
- Department of Traditional Chinese Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jixing Zou
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
39
|
Yuan Z, Liang Z, Yi J, Chen X, Li R, Wu Y, Wu J, Sun Z. Protective Effect of Koumine, an Alkaloid from Gelsemium Sempervirens, on Injury Induced by H₂O₂ in IPEC-J2 Cells. Int J Mol Sci 2019; 20:ijms20030754. [PMID: 30754638 PMCID: PMC6386868 DOI: 10.3390/ijms20030754] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 12/26/2022] Open
Abstract
Medicinal herbal plants have been commonly used for intervention in different diseases and improvement of health worldwide. Koumine, an alkaloid monomer found abundantly in Gelsemium plants, can be effectively used as an antioxidant. The purpose of this study was to evaluate the potential protective effect of koumine against hydrogen peroxide (H2O2)-induced oxidative stress and apoptosis in porcine intestinal epithelial cell line (IPEC-J2 cells). MTT assays showed that koumine significantly increased cell viability in H2O2-mediated IPEC-J2 cells. Preincubation with koumine ameliorated H2O2-medicated apoptosis by decreasing reactive oxygen species (ROS) production, and efficiently suppressed the lactate dehydrogenase (LDH) release and malondialdehyde (MDA) production. Moreover, a loss of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) activities was restored to normal level in H2O2-induced IPEC-J2 cells upon koumine exposure. Furthermore, pretreatment with koumine suppressed H2O2-mediated loss of mitochondrial membrane potential, caspase-9 and caspase-3 activation, decrease of Bcl-2 expression and elevation of Bax expressions. Collectively, the results of this study indicated that koumine possesses the cytoprotective effects in IPEC-J2 cells during exposure to H2O2 by suppressing production of ROS, inhibiting the caspase-3 activity and influencing the expression of Bax and Bcl-2. Koumine could potentially serve as a protective effect against H2O2-induced apoptosis.
Collapse
Affiliation(s)
- Zhihang Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Zengenni Liang
- Department of Hunan Agricultural Product Processing Institute, Changsha 410128, China.
| | - Jine Yi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Xiaojun Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Rongfang Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Yong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Jing Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Zhiliang Sun
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| |
Collapse
|
40
|
Gelsemine and koumine, principal active ingredients of Gelsemium, exhibit mechanical antiallodynia via spinal glycine receptor activation-induced allopregnanolone biosynthesis. Biochem Pharmacol 2019; 161:136-148. [PMID: 30668937 DOI: 10.1016/j.bcp.2019.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022]
Abstract
Gelsemine, the principal active alkaloid from Gelsemium sempervirens Ait., and koumine, the most dominant alkaloids from Gelsemium elegans Benth., produced antinociception in a variety of rodent models of painful hypersensitivity. The present study explored the molecular mechanisms underlying gelsemine- and koumine-induced mechanical antiallodynia in neuropathic pain. The radioligand binding and displacement assays indicated that gelsemine and koumine, like glycine, were reversible and orthosteric agonists of glycine receptors with full efficacy and probably acted on same binding site as the glycine receptor antagonist strychnine. Treatment with gelsemine, koumine and glycine in primary cultures of spinal neurons (but not microglia or astrocytes) concentration dependently increased 3α-hydroxysteroid oxidoreductase (3α-HSOR) mRNA expression, which was inhibited by pretreatment with strychnine but not the glial inhibitor minocycline. Intrathecal injection of gelsemine, koumine and glycine stimulated 3α-HSOR mRNA expression in the spinal cords of neuropathic rats and produced mechanical antiallodynia. Their spinal mechanical antiallodynia was completely blocked by strychnine, the selective 3α-HSOR inhibitor medroxyprogesterone acetate (MPA), 3α-HSOR gene silencer siRNA/3α-HSOR and specific GABAA receptor antagonist isoallopregnanolone, but not minocycline. All the results taken together uncovered that gelsemine and koumine are orthosteric agonists of glycine receptors, and produce mechanical antiallodynia through neuronal glycine receptor/3α-HSOR/allopregnanolone/GABAA receptor pathway.
Collapse
|
41
|
Ye Q, Feng Y, Wang Z, Jiang W, Qu Y, Zhang C, Zhou A, Xie S, Zou J. Effects of gelsemine on oxidative stress and DNA damage responses of Tetrahymena thermophila. PeerJ 2018; 6:e6093. [PMID: 30581679 PMCID: PMC6292385 DOI: 10.7717/peerj.6093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/10/2018] [Indexed: 01/01/2023] Open
Abstract
Gelsemine is an important toxic substance extracted from Gelsemium elegans, which has a lot of biological functions in cells and organisms, but its toxicity has been rarely reported in Tetrahymena thermophila. In this study, we used the protozoan T. thermophila as an experimental model to investigate the potential toxicity-induced mechanism of gelsemine in the unicellular eukaryote. Our results clearly showed gelsemine inhibited T. thermophila growth in a dose-dependent manner. This exposure also resulted in oxidative stress on T. thermophila cells and antioxidant enzyme levels were significantly altered at high gelsemine levels (p < 0.05). Gelsemine produced a slight apoptotic effect at the highest (0.8 mg/mL) gelsemine level used here (p < 0.05). Furthermore, the toxin-induced DNA damage in a dose-dependent manner. The ultrastructural analysis also revealed mitophagic vacuoles at 0.4 and 0.8 mg/mL levels of gelsemine exposure. Moreover, expressions of oxidative stress-related and MAP kinase genes were significantly changed after exposure to 0.8 mg/mL level of gelsemine (p < 0.05). Altogether, our results clearly show that gelsemine from G. elegans can inhibit the growth via inducing oxidative stress and DNA damage in T. thermophila cells.
Collapse
Affiliation(s)
- Qiao Ye
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.,Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongyong Feng
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.,Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhenlu Wang
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.,Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wenzhao Jiang
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.,Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuexin Qu
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.,Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chaonan Zhang
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.,Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Aiguo Zhou
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.,Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shaolin Xie
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.,Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jixing Zou
- Healthy Aquaculture Laboratory, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.,Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
42
|
Chow TYA, Ng CHV, Tse ML. Clinical manifestations and causes of gelsemium poisoning in Hong Kong from 2005 to 2017: Review of 33 cases. HONG KONG J EMERG ME 2018. [DOI: 10.1177/1024907918808156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background: Gelsemium elegans is an extremely toxic plant, but gelsemium poisoning is seldom reported in the English literature. Objectives: To evaluate the clinical manifestations and causes of gelsemium poisoning in Hong Kong. Methods: A retrospective review of gelsemium poisoning recorded by the Hong Kong Poison Information Centre from 2005 to 2017. Results: In total, 33 cases (55% female, median age 44 (interquartile range: 30–56)) were identified in 14 incidences. Consumption of contaminated Ficus hirta (五指毛桃) soup is the commonest cause (52%). Other causes include misidentification of herbs (12%), consumption of parasitic plant Cassytha filiformis (無根藤) (15%) and suicidal ingestion of Gelsemium elegans (斷腸草) (3%). Most patients (94%) had mild to moderate toxicity, with one fatal case and one severe case presented with coma and respiratory depression. All patients complained of dizziness (100%), followed by visual blurring (34%) and nausea (28%). More than half (53%) had ocular manifestations (e.g. visual blurring, ptosis, nystagmus, diplopia) which are not commonly reported in other herbal poisoning. The time of symptom onset was early (median: 50 min (interquartile range: 30–60)) and all occurred within 2 h after oral intake. Most patients (94%) recovered uneventfully with conservative treatment. Conclusion: Most gelsemium poisoning in Hong Kong was due to contamination or misidentification. Early-onset dizziness (<2 h) with ocular symptoms after herbs consumption highly suggests Gelsemium poisoning. Good supportive care, particularly respiratory support, is the mainstay of management. Early recognition and the corresponding preventive measures would be useful.
Collapse
Affiliation(s)
- Tin Yat Anthony Chow
- Hong Kong Poison Information Centre, K3A, United Christian Hospital, Kwun Tong, Hong Kong
| | - Chun Ho Vember Ng
- Hong Kong Poison Information Centre, K3A, United Christian Hospital, Kwun Tong, Hong Kong
| | - Man Li Tse
- Hong Kong Poison Information Centre, K3A, United Christian Hospital, Kwun Tong, Hong Kong
| |
Collapse
|
43
|
Wang L, Wen Y, Meng F. Simultaneous determination of gelsemine and koumine in rat plasma by UPLC-MS/MS and application to pharmacokinetic study after oral administration ofGelsemium elegansBenth extract. Biomed Chromatogr 2018; 32:e4201. [DOI: 10.1002/bmc.4201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Lin Wang
- School of Pharmacy; China Medical University; Shenyang China
| | - Yanqing Wen
- School of Pharmacy; China Medical University; Shenyang China
| | - Fanhao Meng
- School of Pharmacy; China Medical University; Shenyang China
| |
Collapse
|
44
|
Bellavite P, Bonafini C, Marzotto M. Experimental neuropharmacology of Gelsemium sempervirens: Recent advances and debated issues. J Ayurveda Integr Med 2018; 9:69-74. [PMID: 29428604 PMCID: PMC5884012 DOI: 10.1016/j.jaim.2017.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/19/2017] [Accepted: 01/27/2017] [Indexed: 01/01/2023] Open
Abstract
Gelsemium sempervirens L. (Gelsemium) is traditionally used for its anxiolytic-like properties and its action mechanism in laboratory models are under scrutiny. Evidence from rodent models was reported suggesting the existence of a high sensitivity of central nervous system to anxiolytic power of Gelsemium extracts and Homeopathic dilutions. In vitro investigation of extremely low doses of this plant extract showed a modulation of gene expression of human neurocytes. These studies were criticized in a few commentaries, generated a debate in literature and were followed by further experimental studies from various laboratories. Toxic doses of Gelsemium cause neurological signs characterized by marked weakness and convulsions, while ultra-low doses or high Homeopathic dilutions counteract seizures induced by lithium and pilocarpine, decrease anxiety after stress and increases the anti-stress allopregnanolone hormone, through glycine receptors. Low (non-Homeopathic) doses of this plant or its alkaloids decrease neuropathic pain and c-Fos expression in mice brain and oxidative stress. Due to the complexity of the matter, several aspects deserve interpretation and the main controversial topics, with a focus on the issues of high dilution pharmacology, are discussed and clarified.
Collapse
Affiliation(s)
- Paolo Bellavite
- Department of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | - Clara Bonafini
- Department of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Marta Marzotto
- Department of Medicine, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| |
Collapse
|
45
|
Development and in-house validation of a sensitive LC–MS/MS method for simultaneous quantification of gelsemine, koumine and humantenmine in porcine plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1076:54-60. [DOI: 10.1016/j.jchromb.2018.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/03/2018] [Accepted: 01/15/2018] [Indexed: 01/15/2023]
|
46
|
Samineni R, Madapa J, Pabbaraja S, Mehta G. Stitching Oxindoles and Ynones in a Domino Process: Access to Spirooxindoles and Application to a Short Synthesis of Spindomycin B. Org Lett 2017; 19:6152-6155. [DOI: 10.1021/acs.orglett.7b03030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ramesh Samineni
- Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Jaipal Madapa
- Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Srihari Pabbaraja
- Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
47
|
Xiong BJ, Xu Y, Jin GL, Liu M, Yang J, Yu CX. Analgesic effects and pharmacologic mechanisms of the Gelsemium alkaloid koumine on a rat model of postoperative pain. Sci Rep 2017; 7:14269. [PMID: 29079733 PMCID: PMC5660238 DOI: 10.1038/s41598-017-14714-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Postoperative pain (POP) of various durations is a common complication of surgical procedures. POP is caused by nerve damage and inflammatory responses that are difficult to treat. The neuroinflammation-glia-steroid network is known to be important in POP. It has been reported that the Gelsemium alkaloid koumine possesses analgesic, anti-inflammatory and neurosteroid modulating activities. This study was undertaken to test the analgesic effects of koumine against POP and explore the underlying pharmacologic mechanisms. Our results showed that microglia and astroglia were activated in the spinal dorsal horn post-incision, along with an increase of proinflammatory cytokines (interleukin 1β, interleukin 6, and tumor necrosis factor α). Both subcutaneous and intrathecal (i.t.) koumine treatment after incision significantly prevented mechanical allodynia and thermal hyperalgesia, inhibited microglial and astroglial activation, and suppressed expression of proinflammatory cytokines. Moreover, the analgesic effects of koumine were antagonized by i.t. administration of translocator protein (18 kDa) (TSPO) antagonist PK11195 and GABAA receptor antagonist bicuculline. Together, koumine prevented mechanical allodynia and thermal hyperalgesia caused by POP. The pharmacologic mechanism of koumine-mediated analgesia might involve inhibition of spinal neuroinflammation and activation of TSPO. These data suggested that koumine might be a potential pharmacotherapy for the management of POP.
Collapse
Affiliation(s)
- Bo-Jun Xiong
- Department of Pharmacology and College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Ying Xu
- Department of Pharmacology and College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
- Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Gui-Lin Jin
- Department of Pharmacology and College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
- Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Ming Liu
- Department of Pharmacology and College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Jian Yang
- Department of Pharmacology and College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
- Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China
| | - Chang-Xi Yu
- Department of Pharmacology and College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China.
- Fujian Key Laboratory of Natural Medicine Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, People's Republic of China.
| |
Collapse
|
48
|
Fingerprint analysis of Gelsemium elegans by HPLC followed by the targeted identification of chemical constituents using HPLC coupled with quadrupole-time-of-flight mass spectrometry. Fitoterapia 2017; 121:94-105. [DOI: 10.1016/j.fitote.2017.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/15/2022]
|
49
|
Liu YC, Xiao S, Yang K, Ling L, Sun ZL, Liu ZY. Comprehensive identification and structural characterization of target components from Gelsemium elegans by high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry based on accurate mass databases combined with MS/MS spectra. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:378-396. [PMID: 28444801 DOI: 10.1002/jms.3937] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/16/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
This study reports an applicable analytical strategy of comprehensive identification and structure characterization of target components from Gelsemium elegans by using high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QqTOF MS) based on the use of accurate mass databases combined with MS/MS spectra. The databases created included accurate masses and elemental compositions of 204 components from Gelsemium and their structural data. The accurate MS and MS/MS spectra were acquired through data-dependent auto MS/MS mode followed by an extraction of the potential compounds from the LC-QqTOF MS raw data of the sample. The same was matched using the databases to search for targeted components in the sample. The structures for detected components were tentatively characterized by manually interpreting the accurate MS/MS spectra for the first time. A total of 57 components have been successfully detected and structurally characterized from the crude extracts of G. elegans, but has failed to differentiate some isomers. This analytical strategy is generic and efficient, avoids isolation and purification procedures, enables a comprehensive structure characterization of target components of Gelsemium and would be widely applicable for complicated mixtures that are derived from Gelsemium preparations. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yan-Chun Liu
- Hunan Engineering Research Center of Veterinary Drug, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Sa Xiao
- Hunan Engineering Research Center of Veterinary Drug, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Kun Yang
- Hunan Engineering Research Center of Veterinary Drug, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Li Ling
- Hunan Engineering Research Center of Veterinary Drug, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhi-Liang Sun
- Hunan Engineering Research Center of Veterinary Drug, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhao-Ying Liu
- Hunan Engineering Research Center of Veterinary Drug, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, China
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, Hunan, 410128, China
| |
Collapse
|
50
|
Chen CJ, Zhong ZF, Xin ZM, Hong LH, Su YP, Yu CX. Koumine exhibits anxiolytic properties without inducing adverse neurological effects on functional observation battery, open-field and Vogel conflict tests in rodents. J Nat Med 2017; 71:397-408. [DOI: 10.1007/s11418-017-1070-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/03/2017] [Indexed: 01/30/2023]
|