1
|
Prentice PM, Thornton A, Kolm N, Wilson AJ. Genetic and context-specific effects on individual inhibitory control performance in the guppy (Poecilia reticulata). J Evol Biol 2023; 36:1796-1810. [PMID: 37916730 PMCID: PMC10947024 DOI: 10.1111/jeb.14241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023]
Abstract
Among-individual variation in cognitive traits, widely assumed to have evolved under adaptive processes, is increasingly being demonstrated across animal taxa. As variation among individuals is required for natural selection, characterizing individual differences and their heritability is important to understand how cognitive traits evolve. Here, we use a quantitative genetic study of wild-type guppies repeatedly exposed to a 'detour task' to test for genetic variance in the cognitive trait of inhibitory control. We also test for genotype-by-environment interactions (GxE) by testing related fish under alternative experimental treatments (transparent vs. semi-transparent barrier in the detour-task). We find among-individual variation in detour task performance, consistent with differences in inhibitory control. However, analysis of GxE reveals that heritable factors only contribute to performance variation in one treatment. This suggests that the adaptive evolutionary potential of inhibitory control (and/or other latent variables contributing to task performance) may be highly sensitive to environmental conditions. The presence of GxE also implies that the plastic response of detour task performance to treatment environment is genetically variable. Our results are consistent with a scenario where variation in individual inhibitory control stems from complex interactions between heritable and plastic components.
Collapse
Affiliation(s)
- Pamela M. Prentice
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- SRUC, Easter Bush, Roslin Institute BuildingMidlothianUK
| | - Alex Thornton
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| | - Niclas Kolm
- Department of ZoologyStockholm UniversityStockholmSweden
| | | |
Collapse
|
2
|
Khan AH, Bagley JR, LaPierre N, Gonzalez-Figueroa C, Spencer TC, Choudhury M, Xiao X, Eskin E, Jentsch JD, Smith DJ. Genetic pathways regulating the longitudinal acquisition of cocaine self-administration in a panel of inbred and recombinant inbred mice. Cell Rep 2023; 42:112856. [PMID: 37481717 PMCID: PMC10530068 DOI: 10.1016/j.celrep.2023.112856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/06/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
To identify addiction genes, we evaluate intravenous self-administration of cocaine or saline in 84 inbred and recombinant inbred mouse strains over 10 days. We integrate the behavior data with brain RNA-seq data from 41 strains. The self-administration of cocaine and that of saline are genetically distinct. We maximize power to map loci for cocaine intake by using a linear mixed model to account for this longitudinal phenotype while correcting for population structure. A total of 15 unique significant loci are identified in the genome-wide association study. A transcriptome-wide association study highlights the Trpv2 ion channel as a key locus for cocaine self-administration as well as identifying 17 additional genes, including Arhgef26, Slc18b1, and Slco5a1. We find numerous instances where alternate splice site selection or RNA editing altered transcript abundance. Our work emphasizes the importance of Trpv2, an ionotropic cannabinoid receptor, for the response to cocaine.
Collapse
Affiliation(s)
- Arshad H Khan
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Jared R Bagley
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Nathan LaPierre
- Department of Computer Science, UCLA, Los Angeles, CA 90095, USA
| | | | - Tadeo C Spencer
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Mudra Choudhury
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Eleazar Eskin
- Department of Computational Medicine, UCLA, Los Angeles, CA 90095, USA
| | - James D Jentsch
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Desmond J Smith
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Chapp AD, Nwakama CA, Thomas MJ, Meisel RL, Mermelstein PG. Sex Differences in Cocaine Sensitization Vary by Mouse Strain. Neuroendocrinology 2023; 113:1167-1176. [PMID: 37040721 PMCID: PMC11645863 DOI: 10.1159/000530591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/30/2023] [Indexed: 04/13/2023]
Abstract
INTRODUCTION Preclinical literature, frequently utilizing rats, suggests females display a more rapid advancement of substance abuse and a greater risk of relapse following drug abstinence. In clinical populations, it is less clear as to what extent biological sex is a defining variable in the acquisition and maintenance of substance use. Even without considering environmental experiences, genetic factors are presumed to critically influence the vulnerability to addiction. Genetically diverse mouse models provide a robust tool to examine the interactions between genetic background and sex differences in substance abuse. METHODS We explored mouse strain variability in male versus female behavioral sensitization to cocaine. Locomotor sensitization was observed following 5 consecutive days of subcutaneous cocaine across three genetically different mice strains: C57BL/6J, B6129SF2/J, and Diversity Outbred (DO/J). RESULTS Sex differences in cocaine locomotor sensitization were dependent on mouse strain. Specifically, we observed opposing sex differences in locomotor sensitization, with male C57BL/6J and female B6129SF2/J mice displaying heightened activity compared to their opposite sex counterparts. Conversely, no sex differences were observed in the DO/J mice. Acute cocaine administration resulted in locomotor differences across strains in male, but not female, mice. The magnitude of sensitization (or lack thereof) also varied by genetic background. CONCLUSIONS While sex differences in drug addiction may be observed, these effects can be mitigated, or even reversed, depending on genetic background. The clinical implications are that in the absence of understanding the genetic variables underlying vulnerability to addiction, sex provides little information regarding the predisposition of an individual to drug abuse.
Collapse
Affiliation(s)
- Andrew D Chapp
- Department of Neuroscience and Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chinonso A Nwakama
- Department of Neuroscience and Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark J Thomas
- Department of Neuroscience and Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, USA
| | - Robert L Meisel
- Department of Neuroscience and Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul G Mermelstein
- Department of Neuroscience and Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Binh Tran TD, Nguyen H, Sodergren E, Addiction CFSNO, Dickson PE, Wright SN, Philip VM, Weinstock GM, Chesler EJ, Zhou Y, Bubier JA. Microbial glutamate metabolism predicts intravenous cocaine self-administration in diversity outbred mice. Neuropharmacology 2023; 226:109409. [PMID: 36592885 PMCID: PMC9943525 DOI: 10.1016/j.neuropharm.2022.109409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
The gut microbiome is thought to play a critical role in the onset and development of psychiatric disorders, including depression and substance use disorder (SUD). To test the hypothesis that the microbiome affects addiction predisposing behaviors and cocaine intravenous self-administration (IVSA) and to identify specific microbes involved in the relationship, we performed 16S rRNA gene sequencing on feces from 228 diversity outbred mice. Twelve open field measures, two light-dark assay measures, one hole board and novelty place preference measure significantly differed between mice that acquired cocaine IVSA (ACQ) and those that failed to acquire IVSA (FACQ). We found that ACQ mice are more active and exploratory and display decreased fear than FACQ mice. The microbial abundances that differentiated ACQ from FACQ mice were an increased abundance of Barnesiella, Ruminococcus, and Robinsoniella and decreased Clostridium IV in ACQ mice. There was a sex-specific correlation between ACQ and microbial abundance, a reduced Lactobacillus abundance in ACQ male mice, and a decreased Blautia abundance in female ACQ mice. The abundance of Robinsoniella was correlated, and Clostridium IV inversely correlated with the number of doses of cocaine self-administered during acquisition. Functional analysis of the microbiome composition of a subset of mice suggested that gut-brain modules encoding glutamate metabolism genes are associated with the propensity to self-administer cocaine. These findings establish associations between the microbiome composition and glutamate metabolic potential and the ability to acquire cocaine IVSA thus indicating the potential translational impact of targeting the gut microbiome or microbial metabolites for treatment of SUD. This article is part of the Special Issue on "Microbiome & the Brain: Mechanisms & Maladies".
Collapse
Affiliation(s)
- Thi Dong Binh Tran
- The Jackson Laboratory Genomic Medicine, 10 Discovery Way, Farmington, CT, USA
| | - Hoan Nguyen
- The Jackson Laboratory Genomic Medicine, 10 Discovery Way, Farmington, CT, USA
| | - Erica Sodergren
- The Jackson Laboratory Genomic Medicine, 10 Discovery Way, Farmington, CT, USA
| | | | - Price E Dickson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine Marshall University, Huntington, WV, USA
| | - Susan N Wright
- Division of Neuroscience and Behavior, National Institute on Drug Abuse, National Institutes of Health, Three White Flint North, Room 08C08 MSC 6018, Bethesda, MD, 20892, USA
| | - Vivek M Philip
- The Jackson Laboratory Mammalian Genetics, 600 Main St, Bar Harbor, ME, USA
| | - George M Weinstock
- The Jackson Laboratory Genomic Medicine, 10 Discovery Way, Farmington, CT, USA
| | - Elissa J Chesler
- The Jackson Laboratory Mammalian Genetics, 600 Main St, Bar Harbor, ME, USA
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, USA
| | - Jason A Bubier
- The Jackson Laboratory Mammalian Genetics, 600 Main St, Bar Harbor, ME, USA.
| |
Collapse
|
5
|
Bailey LS, Bagley JR, Wherry JD, Chesler EJ, Karkhanis A, Jentsch JD, Tarantino LM. Repeated dosing with cocaine produces strain-dependent effects on responding for conditioned reinforcement in Collaborative Cross mice. Psychopharmacology (Berl) 2023; 240:561-573. [PMID: 36239767 PMCID: PMC10083021 DOI: 10.1007/s00213-022-06256-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE Cocaine use disorder (CUD) is a highly heritable form of substance use disorder, with genetic variation accounting for a substantial proportion of the risk for transitioning from recreational use to a clinically impairing addiction. With repeated exposures to cocaine, psychomotor and incentive sensitization are observed in rodents. These phenomena are thought to model behavioral changes elicited by the drug that contribute to the progression into addiction, but little is known about how genetic variation may moderate these consequences. OBJECTIVES Here, we describe the use of two Collaborative Cross (CC) recombinant inbred mouse strains that either exhibit high (CC018/UncJ) or no (CC027/GeniUncJ) psychomotor sensitization in response to cocaine to measure phenotypes related to incentive sensitization after repeated cocaine exposures; given the relationship of incentive motivation to nucleus accumbens core (NAc) dopamine release and reuptake, we also assessed these neurochemical mechanisms. METHODS Adult male and female CC018/UncJ and CC027/GeniUncJ mice underwent Pavlovian conditioning to associate a visual cue with presentation of a palatable food reward, then received five, every-other-day injections of cocaine or vehicle. Following Pavlovian re-training, they underwent testing acquisition of a new operant response for the visual cue, now serving as a conditioned reinforcer. Subsequently, electrically evoked dopamine release was assessed using fast-scan cyclic voltammetry from acute brain slices containing the NAc. RESULTS While both strains acquired the Pavlovian association, only CC018/UncJ mice showed conditioned reinforcement and incentive sensitization in response to cocaine, while CC027/GeniUncJ mice did not. Voltammetry data revealed that CC018/UncJ, compared to CC027/GeniUnc, mice exhibited higher baseline dopamine release and uptake. Moreover, chronic cocaine exposure blunted tonic and phasic dopamine release in CC018/UncJ, but not CC027/GeniUncJ, mice. CONCLUSIONS Genetic background is a moderator of cocaine-induced neuroadaptations in mesolimbic dopamine signaling, which may contribute to both psychomotor and incentive sensitization and indicate a shared biological mechanism of variation.
Collapse
Affiliation(s)
- Lauren S Bailey
- Department of Psychology, State University of New York - Binghamton University, PO Box 6000, Binghamton, NY, 13902-6000, USA
| | - Jared R Bagley
- Department of Psychology, State University of New York - Binghamton University, PO Box 6000, Binghamton, NY, 13902-6000, USA
| | - James D Wherry
- Department of Psychology, State University of New York - Binghamton University, PO Box 6000, Binghamton, NY, 13902-6000, USA
| | | | - Anushree Karkhanis
- Department of Psychology, State University of New York - Binghamton University, PO Box 6000, Binghamton, NY, 13902-6000, USA
| | - James D Jentsch
- Department of Psychology, State University of New York - Binghamton University, PO Box 6000, Binghamton, NY, 13902-6000, USA.
- The Jackson Laboratory, Bar Harbor, ME, USA.
| | - Lisa M Tarantino
- The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Leonardo M, Brunty S, Huffman J, Lester DB, Dickson PE. Effects of isolation housing stress and mouse strain on intravenous cocaine self-administration, sensory stimulus self-administration, and reward preference. Sci Rep 2023; 13:2810. [PMID: 36797314 PMCID: PMC9935522 DOI: 10.1038/s41598-023-29579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Sensory stimuli are natural rewards in mice and humans. Consequently, preference for a drug reward relative to a sensory reward may be an endophenotype of addiction vulnerability. In this study, we developed a novel behavioral assay to quantify the preference for intravenous drug self-administration relative to sensory stimulus self-administration. We used founder strains of the BXD recombinant inbred mouse panel (C57BL/6J, DBA/2J) and a model of stress (isolation vs enriched housing) to assess genetic and epigenetic effects. Following 10 weeks of differential housing, all mice were tested under three reward conditions: sensory rewards available, cocaine rewards available, both rewards available. When a single reward was available (sensory stimuli or cocaine; delivered using distinct levers), DBA/2J mice self-administered significantly more rewards than C57BL/6J mice. When both rewards were available, DBA/2J mice exhibited a significant preference for cocaine relative to sensory stimuli; in contrast, C57BL/6J mice exhibited no preference. Housing condition influenced sensory stimulus self-administration and strain-dependently influenced inactive lever pressing when both rewards were available. Collectively, these data reveal strain effects, housing effects, or both on reward self-administration and preference. Most importantly, this study reveals that genetic mechanisms underlying preference for a drug reward relative to a nondrug reward can be dissected using the full BXD panel.
Collapse
Affiliation(s)
- Michael Leonardo
- grid.259676.90000 0001 2214 9920Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25703 USA
| | - Sarah Brunty
- grid.259676.90000 0001 2214 9920Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25703 USA
| | - Jessica Huffman
- grid.259676.90000 0001 2214 9920Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25703 USA
| | - Deranda B. Lester
- grid.56061.340000 0000 9560 654XDepartment of Psychology, University of Memphis, 202 Psychology Building, Memphis, TN 38152 USA
| | - Price E. Dickson
- grid.259676.90000 0001 2214 9920Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV 25703 USA
| |
Collapse
|
7
|
Leonardo M, Brunty S, Huffman J, Kastigar A, Dickson PE. Intravenous fentanyl self-administration in male and female C57BL/6J and DBA/2J mice. Sci Rep 2023; 13:799. [PMID: 36646781 PMCID: PMC9842734 DOI: 10.1038/s41598-023-27992-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The genetic mechanisms underlying fentanyl addiction, a highly heritable disease, are unknown. Identifying these mechanisms will lead to better risk assessment, early diagnosis, and improved intervention. To this end, we used intravenous fentanyl self-administration to quantify classical self-administration phenotypes and addiction-like fentanyl seeking in male and female mice from the two founder strains of the BXD recombinant inbred mouse panel (C57BL/6J and DBA/2J). We reached three primary conclusions from these experiments. First, mice from all groups rapidly acquired intravenous fentanyl self-administration and exhibited a dose-response curve, extinction burst, and extinction of the learned self-administration response. Second, fentanyl intake (during acquisition and dose response) and fentanyl seeking (during extinction) were equivalent among groups. Third, strain effects, sex effects, or both were identified for several addiction-like behaviors (cue-induced reinstatement, stress-induced reinstatement, escalation of intravenous fentanyl self-administration). Collectively, these data indicate that C57BL/6J and DBA/2J mice of both sexes were able to acquire, regulate, and extinguish intravenous fentanyl self-administration. Moreover, these data reveal novel strain and sex effects on addiction-like behaviors in the context of intravenous fentanyl self-administration in mice and indicate that the full BXD panel can be used to identify and dissect the genetic mechanisms underlying these effects.
Collapse
Affiliation(s)
- Michael Leonardo
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV, 25703, USA
| | - Sarah Brunty
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV, 25703, USA
| | - Jessica Huffman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV, 25703, USA
| | - Alexis Kastigar
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV, 25703, USA
| | - Price E Dickson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV, 25703, USA.
| |
Collapse
|
8
|
Bagley JR, Bailey LS, Gagnon LH, He H, Philip VM, Reinholdt LG, Tarantino LM, Chesler EJ, Jentsch JD. Behavioral phenotypes revealed during reversal learning are linked with novel genetic loci in diversity outbred mice. ADDICTION NEUROSCIENCE 2022; 4:100045. [PMID: 36714272 PMCID: PMC9879139 DOI: 10.1016/j.addicn.2022.100045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Impulsive behavior and impulsivity are heritable phenotypes that are strongly associated with risk for substance use disorders. Identifying the neurogenetic mechanisms that influence impulsivity may also reveal novel biological insights into addiction vulnerability. Our past studies using the BXD and Collaborative Cross (CC) recombinant inbred mouse panels have revealed that behavioral indicators of impulsivity measured in a reversal-learning task are heritable and are genetically correlated with aspects of intravenous cocaine self-administration. Genome-wide linkage studies in the BXD panel revealed a quantitative trait locus (QTL) on chromosome 10, but we expect to identify additional QTL by testing in a population with more genetic diversity. To this end, we turned to Diversity Outbred (DO) mice; 392 DO mice (156 males, 236 females) were phenotyped using the same reversal learning test utilized previously. Our primary indicator of impulsive responding, a measure that isolates the relative difficulty mice have with reaching performance criteria under reversal conditions, revealed a genome-wide significant QTL on chromosome 7 (max LOD score = 8.73, genome-wide corrected p<0.05). A measure of premature responding akin to that implemented in the 5-choice serial reaction time task yielded a suggestive QTL on chromosome 17 (max LOD score = 9.14, genome-wide corrected <0.1). Candidate genes were prioritized (2900076A07Rik, Wdr73 and Zscan2) based upon expression QTL data we collected in DO and CC mice and analyses using publicly available gene expression and phenotype databases. These findings may advance understanding of the genetics that drive impulsive behavior and enhance risk for substance use disorders.
Collapse
Affiliation(s)
- Jared R. Bagley
- Department of Psychology, Binghamton University, Binghamton, NY, USA
- Center for Systems Neurogenetics of Addiction at The Jackson Laboratory, Bar Harbor, ME, USA
| | - Lauren S. Bailey
- Department of Psychology, Binghamton University, Binghamton, NY, USA
- Center for Systems Neurogenetics of Addiction at The Jackson Laboratory, Bar Harbor, ME, USA
| | - Leona H. Gagnon
- Center for Systems Neurogenetics of Addiction at The Jackson Laboratory, Bar Harbor, ME, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Hao He
- Center for Systems Neurogenetics of Addiction at The Jackson Laboratory, Bar Harbor, ME, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Vivek M. Philip
- Center for Systems Neurogenetics of Addiction at The Jackson Laboratory, Bar Harbor, ME, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Laura G. Reinholdt
- Center for Systems Neurogenetics of Addiction at The Jackson Laboratory, Bar Harbor, ME, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Lisa M. Tarantino
- Center for Systems Neurogenetics of Addiction at The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Elissa J. Chesler
- Center for Systems Neurogenetics of Addiction at The Jackson Laboratory, Bar Harbor, ME, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - James D. Jentsch
- Department of Psychology, Binghamton University, Binghamton, NY, USA
- Center for Systems Neurogenetics of Addiction at The Jackson Laboratory, Bar Harbor, ME, USA
| |
Collapse
|
9
|
Adolescent reinforcement-learning trajectories predict cocaine-taking behaviors in adult male and female rats. Psychopharmacology (Berl) 2022; 239:2885-2901. [PMID: 35705734 DOI: 10.1007/s00213-022-06174-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
The anatomical, structural, and functional adaptations that occur in the brain during adolescence are thought to facilitate improvements in decision-making functions that are known to occur during this stage of development. The mechanisms that underlie these neural adaptations are not known, but deviations in developmental trajectories have been proposed to contribute to the emergence of mental illness, including addiction. Direct evidence supporting this hypothesis, however, has been limited. Here, we used a recently developed reversal-learning protocol to investigate the predictive relationship between adolescent decision-making trajectories and cocaine-taking behaviors in adulthood. Decision-making functions in the reversal-learning task were assessed throughout adolescence and into adulthood in male and female Long-Evans rats. Trial-by-trial choice data was fitted with a reinforcement-learning model to quantify the degree to which choice behavior of individual rats was influenced by rewarded (e.g., ∆+ parameter) and unrewarded (e.g., ∆0 parameter) outcomes. We report that reversal-learning performance improved during adolescence and that this was due to an increase in value updating for rewarded outcomes (e.g., ∆+ parameter). Furthermore, the rate of change in the ∆+ parameter predicted individual differences in the ∆+ parameter and, notably, cocaine-taking behaviors in adulthood: Rats that had a shallower adolescent trajectory were found to have a lower ∆+ parameter and greater cocaine self-administration in adulthood. These data indicate that adolescent development plays a critical role in drug use susceptibility. Future studies aimed at understanding the neurobiological mechanisms that underlie these age-related changes in decision-making could provide new insights into the biobehavioral mechanisms mediating addiction susceptibility.
Collapse
|
10
|
Olsen CM, Corrigan JD. Does Traumatic Brain Injury Cause Risky Substance Use or Substance Use Disorder? Biol Psychiatry 2022; 91:421-437. [PMID: 34561027 PMCID: PMC8776913 DOI: 10.1016/j.biopsych.2021.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/07/2021] [Accepted: 07/12/2021] [Indexed: 01/22/2023]
Abstract
There is a high co-occurrence of risky substance use among adults with traumatic brain injury (TBI), although it is unknown if the neurologic sequelae of TBI can promote this behavior. We propose that to conclude that TBI can cause risky substance use, it must be determined that TBI precedes risky substance use, that confounders with the potential to increase the likelihood of both TBI and risky substance use must be ruled out, and that there must be a plausible mechanism of action. In this review, we address these factors by providing an overview of key clinical and preclinical studies and list plausible mechanisms by which TBI could increase risky substance use. Human and animal studies have identified an association between TBI and risky substance use, although the strength of this association varies. Factors that may limit detection of this relationship include differential variability due to substance, sex, age of injury, and confounders that may influence the likelihood of both TBI and risky substance use. We propose possible mechanisms by which TBI could increase substance use that include damage-associated neuroplasticity, chronic changes in neuroimmune signaling, and TBI-associated alterations in brain networks.
Collapse
Affiliation(s)
- Christopher M Olsen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - John D Corrigan
- Department of Physical Medicine & Rehabilitation, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
11
|
Peltz G, Tan Y. What Have We Learned (or Expect to) From Analysis of Murine Genetic Models Related to Substance Use Disorders? Front Psychiatry 2022; 12:793961. [PMID: 35095607 PMCID: PMC8790171 DOI: 10.3389/fpsyt.2021.793961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022] Open
Abstract
The tremendous public health problem created by substance use disorders (SUDs) presents a major opportunity for mouse genetics. Inbred mouse strains exhibit substantial and heritable differences in their responses to drugs of abuse (DOA) and in many of the behaviors associated with susceptibility to SUD. Therefore, genetic discoveries emerging from analysis of murine genetic models can provide critically needed insight into the neurobiological effects of DOA, and they can reveal how genetic factors affect susceptibility drug addiction. There are already indications, emerging from our prior analyses of murine genetic models of responses related to SUDs that mouse genetic models of SUD can provide actionable information, which can lead to new approaches for alleviating SUDs. Lastly, we consider the features of murine genetic models that enable causative genetic factors to be successfully identified; and the methodologies that facilitate genetic discovery.
Collapse
Affiliation(s)
- Gary Peltz
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | | |
Collapse
|
12
|
Dickson PE, Mittleman G. Working memory and pattern separation in founder strains of the BXD recombinant inbred mouse panel. Sci Rep 2022; 12:69. [PMID: 34996965 PMCID: PMC8741792 DOI: 10.1038/s41598-021-03850-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023] Open
Abstract
Working memory and pattern separation are fundamental cognitive abilities which, when impaired, significantly diminish quality of life. Discovering genetic mechanisms underlying innate and disease-induced variation in these cognitive abilities is a critical step towards treatments for common and devastating neurodegenerative conditions such as Alzheimer's disease. In this regard, the trial-unique nonmatching-to-location assay (TUNL) is a touchscreen operant conditioning procedure allowing simultaneous quantification of working memory and pattern separation in mice and rats. In the present study, we used the TUNL assay to quantify these cognitive abilities in C57BL/6J and DBA/2J mice. These strains are the founders of the BXD recombinant inbred mouse panel which enables discovery of genetic mechanisms underlying phenotypic variation. TUNL testing revealed that pattern separation was significantly influenced by mouse strain, whereas working memory was not. Moreover, horizontal distance and vertical distance between choice-phase stimuli had dissociable effects on TUNL performance. These findings provide novel data on mouse strain differences in pattern separation and support previous findings of equivalent working memory performance in C57BL/6J and DBA/2J mice. Although working memory of the BXD founder strains was equivalent in this study, working memory of BXD strains may be divergent because of transgressive segregation. Collectively, data presented here indicate that pattern separation is heritable in the mouse and that the BXD panel can be used to identify mechanisms underlying variation in pattern separation.
Collapse
Affiliation(s)
- Price E Dickson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV, 25703, USA.
- Department of Psychology, University of Memphis, 400 Innovation Drive, Memphis, TN, 38111, USA.
| | - Guy Mittleman
- Department of Psychological Science, Ball State University, North Quad (NQ), Room 104, Muncie, IN, 47306, USA
- Department of Psychology, University of Memphis, 400 Innovation Drive, Memphis, TN, 38111, USA
| |
Collapse
|
13
|
BXD Recombinant Inbred Mice as a Model to Study Neurotoxicity. Biomolecules 2021; 11:biom11121762. [PMID: 34944406 PMCID: PMC8698863 DOI: 10.3390/biom11121762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 11/17/2022] Open
Abstract
BXD recombinant inbred (RI) lines represent a genetic reference population derived from a cross between C57BL/6J mice (B6) and DBA/2J mice (D2), which through meiotic recombination events possesses recombinant chromosomes containing B6 or D2 haplotype segments. The quantitative trait loci (QTLs) are the locations of segregating genetic polymorphisms and are fundamental to understanding genetic diversity in human disease susceptibility and severity. QTL mapping represents the typical approach for identifying naturally occurring polymorphisms that influence complex phenotypes. In this process, genotypic values at markers of known genomic locations are associated with phenotypic values measured in a segregating population. Indeed, BXD RI strains provide a powerful tool to study neurotoxicity induced by different substances. In this review, we describe the use of BXD RI lines to understand the underlying mechanisms of neurotoxicity in response to ethanol and cocaine, as well as metals and pesticide exposures.
Collapse
|
14
|
Bailey LS, Bagley JR, Dodd R, Olson A, Bolduc M, Philip VM, Reinholdt LG, Sukoff Rizzo SJ, Tarantino L, Gagnon L, Chesler EJ, Jentsch JD. Heritable variation in locomotion, reward sensitivity and impulsive behaviors in a genetically diverse inbred mouse panel. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12773. [PMID: 34672075 PMCID: PMC9044817 DOI: 10.1111/gbb.12773] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022]
Abstract
Drugs of abuse, including alcohol and stimulants like cocaine, produce effects that are subject to individual variability, and genetic variation accounts for at least a portion of those differences. Notably, research in both animal models and human subjects point toward reward sensitivity and impulsivity as being trait characteristics that predict relatively greater positive subjective responses to stimulant drugs. Here we describe use of the eight collaborative cross (CC) founder strains and 38 (reversal learning) or 10 (all other tests) CC strains to examine the heritability of reward sensitivity and impulsivity traits, as well as genetic correlations between these measures and existing addiction-related phenotypes. Strains were all tested for activity in an open field and reward sensitivity (intake of chocolate BOOST®). Mice were then divided into two counterbalanced groups and underwent reversal learning (impulsive action and waiting impulsivity) or delay discounting (impulsive choice). CC and founder mice show significant heritability for impulsive action, impulsive choice, waiting impulsivity, locomotor activity, and reward sensitivity, with each impulsive phenotype determined to be non-correlating, independent traits. This research was conducted within the broader, inter-laboratory effort of the Center for Systems Neurogenetics of Addiction (CSNA) to characterize CC and DO mice for multiple, cocaine abuse related traits. These data will facilitate the discovery of genetic correlations between predictive traits, which will then guide discovery of genes and genetic variants that contribute to addictive behaviors.
Collapse
Affiliation(s)
- Lauren S Bailey
- State University of New York - Binghamton University, Binghamton, New York, USA
| | - Jared R Bagley
- State University of New York - Binghamton University, Binghamton, New York, USA
| | - Rainy Dodd
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | | | | | | | | | - Stacey J Sukoff Rizzo
- The Jackson Laboratory, Bar Harbor, Maine, USA
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lisa Tarantino
- The Jackson Laboratory, Bar Harbor, Maine, USA
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - James David Jentsch
- State University of New York - Binghamton University, Binghamton, New York, USA
- The Jackson Laboratory, Bar Harbor, Maine, USA
| |
Collapse
|
15
|
Groman SM, Lee D, Taylor JR. Unlocking the reinforcement-learning circuits of the orbitofrontal cortex. Behav Neurosci 2021; 135:120-128. [PMID: 34060870 DOI: 10.1037/bne0000414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neuroimaging studies have consistently identified the orbitofrontal cortex (OFC) as being affected in individuals with neuropsychiatric disorders. OFC dysfunction has been proposed to be a key mechanism by which decision-making impairments emerge in diverse clinical populations, and recent studies employing computational approaches have revealed that distinct reinforcement-learning mechanisms of decision-making differ among diagnoses. In this perspective, we propose that these computational differences may be linked to select OFC circuits and present our recent work that has used a neurocomputational approach to understand the biobehavioral mechanisms of addiction pathology in rodent models. We describe how combining translationally analogous behavioral paradigms with reinforcement-learning algorithms and sophisticated neuroscience techniques in animals can provide critical insights into OFC pathology in biobehavioral disorders. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
|
16
|
Nazarian A, Negus SS, Martin TJ. Factors mediating pain-related risk for opioid use disorder. Neuropharmacology 2021; 186:108476. [PMID: 33524407 PMCID: PMC7954943 DOI: 10.1016/j.neuropharm.2021.108476] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/03/2020] [Accepted: 01/23/2021] [Indexed: 12/23/2022]
Abstract
Pain is a complex experience with far-reaching organismal influences ranging from biological factors to those that are psychological and social. Such influences can serve as pain-related risk factors that represent susceptibilities to opioid use disorder. This review evaluates various pain-related risk factors to form a consensus on those that facilitate opioid abuse. Epidemiological findings represent a high degree of co-occurrence between chronic pain and opioid use disorder that is, in part, driven by an increase in the availability of opioid analgesics and the diversion of their use in a non-medical context. Brain imaging studies in individuals with chronic pain that use/abuse opioids suggest abuse-related mechanisms that are rooted within mesocorticolimbic processing. Preclinical studies suggest that pain states have a limited impact on increasing the rewarding effects of opioids. Indeed, many findings indicate a reduction in the rewarding and reinforcing effects of opioids during pain states. An increase in opioid use may be facilitated by an increase in the availability of opioids and a decrease in access to non-opioid reinforcers that require mobility or social interaction. Moreover, chronic pain and substance abuse conditions are known to impair cognitive function, resulting in deficits in attention and decision making that may promote opioid abuse. A better understanding of pain-related risk factors can improve our knowledge in the development of OUD in persons with pain conditions and can help identify appropriate treatment strategies. This article is part of the special issue on 'Vulnerabilities to Substance Abuse.'.
Collapse
Affiliation(s)
- Arbi Nazarian
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Thomas J Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
17
|
Melugin PR, Nolan SO, Siciliano CA. Bidirectional causality between addiction and cognitive deficits. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:371-407. [PMID: 33648674 PMCID: PMC8566632 DOI: 10.1016/bs.irn.2020.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cognitive deficits are highly comorbid with substance use disorders. Deficits span multiple cognitive domains, are associated with disease severity across substance classes, and persist long after cessation of substance use. Furthermore, recovery of cognitive function during protracted abstinence is highly predictive of treatment adherence, relapse, and overall substance use disorder prognosis, suggesting that addiction may be best characterized as a disease of executive dysfunction. While the association between cognitive deficits and substance use disorders is clear, determining causalities is made difficult by the complex interplay between these variables. Cognitive dysfunction present prior to first drug use can act as a risk factor for substance use initiation, likelihood of pathology, and disease trajectory. At the same time, substance use can directly cause cognitive impairments even in individuals without preexisting deficits. Thus, parsing preexisting risk factors from substance-induced adaptations, and how they may interact, poses significant challenges. Here, focusing on psychostimulants and alcohol, we review evidence from clinical literature implicating cognitive deficits as a risk factor for addiction, a consequence of substance use, and the role the prefrontal cortex plays in these phenomena. We then review corresponding preclinical literature, highlighting the high degree of congruency between animal and human studies, and emphasize the unique opportunity that animal models provide to test causality between cognitive phenotypes and substance use, and to investigate the underlying neurobiology at a cellular and molecular level. Together, we provide an accessible resource for assessing the validity and utility of forward- and reverse-translation between these clinical and preclinical literatures.
Collapse
Affiliation(s)
- Patrick R Melugin
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, United States
| | - Suzanne O Nolan
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, United States
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
18
|
Groman SM, Hillmer AT, Liu H, Fowles K, Holden D, Morris ED, Lee D, Taylor J. Midbrain D 3 Receptor Availability Predicts Escalation in Cocaine Self-administration. Biol Psychiatry 2020; 88:767-776. [PMID: 32312578 PMCID: PMC8954711 DOI: 10.1016/j.biopsych.2020.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Results from neuroimaging studies suggest that disruptions in flexible decision-making functions in substance-dependent individuals are a consequence of drug-induced neural adaptations. In addicted populations, however, the causal relationship between biobehavioral phenotypes of susceptibility and addiction consequence is difficult to dissociate. Indeed, evidence from animals suggests that poor decision making due to preexisting biological factors can independently enhance the risk for developing addiction-like behaviors. Neuroimaging studies in animals provide a unique translational approach for the identification of the neurobiological mechanisms that mediate susceptibility to addiction. METHODS We used positron emission tomography in rats to quantify regional dopamine D2/3 receptors and metabotropic glutamate receptor 5 (mGluR5) and assessed decision making using a probabilistic reversal learning task. Susceptibility to self-administer cocaine was then quantified for 21 days followed by tests of motivation and relapse-like behaviors. RESULTS We found that deficits specifically in reward-guided choice behavior on the probabilistic reversal learning task predicted greater escalation of cocaine self-administration behavior and greater motivation for cocaine and, critically, were associated with higher midbrain D3 receptor availability. Additionally, individual differences in midbrain D3 receptor availability independently predicted the rate of escalation in cocaine-taking behaviors. No differences in mGluR5 availability, responses during tests of extinction, or cue-induced reinstatement were observed between the groups. CONCLUSIONS These findings indicate that our identified D3-mediated decision-making phenotype can be used as a behavioral biomarker for assessment of cocaine use susceptibility in human populations.
Collapse
Affiliation(s)
- Stephanie M. Groman
- Department of Psychiatry Yale University,Correspondence should be addressed to: Stephanie M. Groman, Ph.D. (), Jane R. Taylor, Ph.D. (), 34 Park Street, New Haven CT 06515
| | - Ansel T. Hillmer
- Department of Psychiatry Yale University,Department of Radiology and Biomedical Imaging Yale University,Department of Yale Positron Emission Tomography Center Yale University
| | - Heather Liu
- Department of Radiology and Biomedical Imaging Yale University
| | - Krista Fowles
- Department of Yale Positron Emission Tomography Center Yale University
| | - Daniel Holden
- Department of Yale Positron Emission Tomography Center Yale University
| | - Evan D. Morris
- Department of Radiology and Biomedical Imaging Yale University,Department of Yale Positron Emission Tomography Center Yale University,Invicro, LLC
| | - Daeyeol Lee
- The Zanvyl Krieger Mind/Brain Institute, Department of Neuroscience, Department of Psychological and Brain Sciences, Johns Hopkins University
| | - Jane Taylor
- Department of Psychiatry Yale University,Department of Neuroscience Yale University,Correspondence should be addressed to: Stephanie M. Groman, Ph.D. (), Jane R. Taylor, Ph.D. (), 34 Park Street, New Haven CT 06515
| |
Collapse
|
19
|
Characterization of genetically complex Collaborative Cross mouse strains that model divergent locomotor activating and reinforcing properties of cocaine. Psychopharmacology (Berl) 2020; 237:979-996. [PMID: 31897574 PMCID: PMC7542678 DOI: 10.1007/s00213-019-05429-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
Abstract
RATIONALE Few effective treatments exist for cocaine use disorders due to gaps in knowledge about its complex etiology. Genetically defined animal models provide a useful tool for advancing our understanding of the biological and genetic underpinnings of addiction-related behavior and evaluating potential treatments. However, many attempts at developing mouse models of behavioral disorders were based on overly simplified single gene perturbations, often leading to inconsistent and misleading results in pre-clinical pharmacology studies. A genetically complex mouse model may better reflect disease-related behaviors. OBJECTIVES Screening defined, yet genetically complex, intercrosses of the Collaborative Cross (CC) mice revealed two lines, RIX04/17 and RIX41/51, with extreme high and low behavioral responses to cocaine. We characterized these lines as well as their CC parents, CC004/TauUnc and CC041/TauUnc, to evaluate their utility as novel model systems for studying the biological and genetic mechanisms underlying behavioral responses to cocaine. METHODS Behavioral responses to acute (initial locomotor sensitivity) and repeated (behavioral sensitization, conditioned place preference, intravenous self-administration) exposures to cocaine were assessed. We also examined the monoaminergic system (striatal tissue content and in vivo fast scan cyclic voltammetry), HPA axis reactivity, and circadian rhythms as potential mechanisms for the divergent phenotypic behaviors observed in the two strains, as these systems have a previously known role in mediating addiction-related behaviors. RESULTS RIX04/17 and 41/51 show strikingly divergent initial locomotor sensitivity to cocaine with RIX04/17 exhibiting very high and RIX41/51 almost no response. The lines also differ in the emergence of behavioral sensitization with RIX41/51 requiring more exposures to exhibit a sensitized response. Both lines show conditioned place preference for cocaine. We determined that the cocaine sensitivity phenotype in each RIX line was largely driven by the genetic influence of one CC parental strain, CC004/TauUnc and CC041/TauUnc. CC004 demonstrates active operant cocaine self-administration and CC041 is unable to acquire under the same testing conditions, a deficit which is specific to cocaine as both strains show operant response for a natural food reward. Examination of potential mechanisms driving differential responses to cocaine show strain differences in molecular and behavioral circadian rhythms. Additionally, while there is no difference in striatal dopamine tissue content or dynamics, there are selective differences in striatal norepinephrine and serotonergic tissue content. CONCLUSIONS These CC strains offer a complex polygenic model system to study underlying mechanisms of cocaine response. We propose that CC041/TauUnc and CC004/TauUnc will be useful for studying genetic and biological mechanisms underlying resistance or vulnerability to the stimulatory and reinforcing effects of cocaine.
Collapse
|
20
|
Sorato E, Zidar J, Garnham L, Wilson A, Løvlie H. Heritabilities and co-variation among cognitive traits in red junglefowl. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0285. [PMID: 30104430 DOI: 10.1098/rstb.2017.0285] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
Natural selection can act on between-individual variation in cognitive abilities, yet evolutionary responses depend on the presence of underlying genetic variation. It is, therefore, crucial to determine the relative extent of genetic versus environmental control of these among-individual differences in cognitive traits to understand their causes and evolutionary potential. We investigated heritability of associative learning performance and of a cognitive judgement bias (optimism), as well as their covariation, in a captive pedigree-bred population of red junglefowl (Gallus gallus, n > 300 chicks over 5 years). We analysed performance in discriminative and reversal learning (two facets of associative learning), and cognitive judgement bias, by conducting animal models to disentangle genetic from environmental contributions. We demonstrate moderate heritability for reversal learning, and weak to no heritability for optimism and discriminative learning, respectively. The two facets of associative learning were weakly negatively correlated, consistent with hypothesized trade-offs underpinning individual cognitive styles. Reversal, but not discriminative learning performance, was associated with judgement bias; less optimistic individuals reversed a previously learnt association faster. Together these results indicate that genetic and environmental contributions differ among traits. While modular models of cognitive abilities predict a lack of common genetic control for different cognitive traits, further investigation is required to fully ascertain the degree of covariation between a broader range of cognitive traits and the extent of any shared genetic control.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
Collapse
Affiliation(s)
- Enrico Sorato
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, Linköping 581 83, Sweden
| | - Josefina Zidar
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, Linköping 581 83, Sweden
| | - Laura Garnham
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, Linköping 581 83, Sweden
| | - Alastair Wilson
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, Linköping 581 83, Sweden
| |
Collapse
|
21
|
D'Souza MS. Brain and Cognition for Addiction Medicine: From Prevention to Recovery Neural Substrates for Treatment of Psychostimulant-Induced Cognitive Deficits. Front Psychiatry 2019; 10:509. [PMID: 31396113 PMCID: PMC6667748 DOI: 10.3389/fpsyt.2019.00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023] Open
Abstract
Addiction to psychostimulants like cocaine, methamphetamine, and nicotine poses a continuing medical and social challenge both in the United States and all over the world. Despite a desire to quit drug use, return to drug use after a period of abstinence is a common problem among individuals dependent on psychostimulants. Recovery for psychostimulant drug-dependent individuals is particularly challenging because psychostimulant drugs induce significant changes in brain regions associated with cognitive functions leading to cognitive deficits. These cognitive deficits include impairments in learning/memory, poor decision making, and impaired control of behavioral output. Importantly, these drug-induced cognitive deficits often impact adherence to addiction treatment programs and predispose abstinent addicts to drug use relapse. Additionally, these cognitive deficits impact effective social and professional rehabilitation of abstinent addicts. The goal of this paper is to review neural substrates based on animal studies that could be pharmacologically targeted to reverse psychostimulant-induced cognitive deficits such as impulsivity and impairment in learning and memory. Further, the review will discuss neural substrates that could be used to facilitate extinction learning and thus reduce emotional and behavioral responses to drug-associated cues. Moreover, the review will discuss some non-pharmacological approaches that could be used either alone or in combination with pharmacological compounds to treat the above-mentioned cognitive deficits. Psychostimulant addiction treatment, which includes treatment for cognitive deficits, will help promote abstinence and allow for better rehabilitation and integration of abstinent individuals into society.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, United States
| |
Collapse
|
22
|
Howe DG, Blake JA, Bradford YM, Bult CJ, Calvi BR, Engel SR, Kadin JA, Kaufman TC, Kishore R, Laulederkind SJF, Lewis SE, Moxon SAT, Richardson JE, Smith C. Model organism data evolving in support of translational medicine. Lab Anim (NY) 2018; 47:277-289. [PMID: 30224793 PMCID: PMC6322546 DOI: 10.1038/s41684-018-0150-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
Model organism databases (MODs) have been collecting and integrating biomedical research data for 30 years and were designed to meet specific needs of each model organism research community. The contributions of model organism research to understanding biological systems would be hard to overstate. Modern molecular biology methods and cost reductions in nucleotide sequencing have opened avenues for direct application of model organism research to elucidating mechanisms of human diseases. Thus, the mandate for model organism research and databases has now grown to include facilitating use of these data in translational applications. Challenges in meeting this opportunity include the distribution of research data across many databases and websites, a lack of data format standards for some data types, and sustainability of scale and cost for genomic database resources like MODs. The issues of widely distributed data and application of data standards are some of the challenges addressed by FAIR (Findable, Accessible, Interoperable, and Re-usable) data principles. The Alliance of Genome Resources is now moving to address these challenges by bringing together expertly curated research data from fly, mouse, rat, worm, yeast, zebrafish, and the Gene Ontology consortium. Centralized multi-species data access, integration, and format standardization will lower the data utilization barrier in comparative genomics and translational applications and will provide a framework in which sustainable scale and cost can be addressed. This article presents a brief historical perspective on how the Alliance model organisms are complementary and how they have already contributed to understanding the etiology of human diseases. In addition, we discuss four challenges for using data from MODs in translational applications and how the Alliance is working to address them, in part by applying FAIR data principles. Ultimately, combined data from these animal models are more powerful than the sum of the parts.
Collapse
Affiliation(s)
- Douglas G Howe
- The Institute of Neuroscience, University of Oregon, Eugene, OR, USA.
| | | | - Yvonne M Bradford
- The Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Stacia R Engel
- Department of Genetics, Stanford University, Palo Alto, CA, USA
| | | | | | - Ranjana Kishore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stanley J F Laulederkind
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA
| | - Suzanna E Lewis
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sierra A T Moxon
- The Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | | |
Collapse
|
23
|
Pierce RC, Fant B, Swinford-Jackson SE, Heller EA, Berrettini WH, Wimmer ME. Environmental, genetic and epigenetic contributions to cocaine addiction. Neuropsychopharmacology 2018; 43:1471-1480. [PMID: 29453446 PMCID: PMC5983541 DOI: 10.1038/s41386-018-0008-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/21/2017] [Accepted: 12/30/2017] [Indexed: 12/13/2022]
Abstract
Decades of research on cocaine has produced volumes of data that have answered many important questions about the nature of this highly addictive drug. Sadly, none of this information has translated into the development of effective therapies for the treatment of cocaine addiction. This review endeavors to assess the current state of cocaine research in an attempt to identify novel pathways for therapeutic development. For example, risk of cocaine addiction is highly heritable but genome-wide analyses comparing cocaine-dependent individuals to controls have not resulted in promising targets for drug development. Is this because the genetics of addiction is too complex or because the existing research methodologies are inadequate? Likewise, animal studies have revealed dozens of enduring changes in gene expression following prolonged exposure to cocaine, none of which have translated into therapeutics either because the resulting compounds were ineffective or produced intolerable side-effects. Recently, attention has focused on epigenetic modifications resulting from repeated cocaine intake, some of which appear to be heritable through changes in the germline. While epigenetic changes represent new vistas for therapeutic development, selective manipulation of epigenetic marks is currently challenging even in animals such that translational potential is a distant prospect. This review will reveal that despite the enormous progress made in understanding the molecular and physiological bases of cocaine addiction, there is much that remains a mystery. Continued advances in genetics and molecular biology hold potential for revealing multiple pathways toward the development of treatments for the continuing scourge of cocaine addiction.
Collapse
Affiliation(s)
- R. Christopher Pierce
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Bruno Fant
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Sarah E. Swinford-Jackson
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Elizabeth A. Heller
- 0000 0004 1936 8972grid.25879.31Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Wade H. Berrettini
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Mathieu E. Wimmer
- 0000 0001 2248 3398grid.264727.2Department of Psychology, Temple University, Philadelphia, PA 19122 USA
| |
Collapse
|
24
|
Whyte AJ, Torregrossa MM, Barker JM, Gourley SL. Editorial: Long-Term Consequences of Adolescent Drug Use: Evidence From Pre-clinical and Clinical Models. Front Behav Neurosci 2018; 12:83. [PMID: 29773981 PMCID: PMC5943494 DOI: 10.3389/fnbeh.2018.00083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Alonzo J Whyte
- Departments of Pediatrics and Psychiatry, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Mary M Torregrossa
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jacqueline M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Shannon L Gourley
- Departments of Pediatrics and Psychiatry, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Graduate Programs in Neuroscience and Molecular and Systems Pharmacology, Emory University, Atlanta, GA, United States
| |
Collapse
|
25
|
Egervari G, Ciccocioppo R, Jentsch JD, Hurd YL. Shaping vulnerability to addiction - the contribution of behavior, neural circuits and molecular mechanisms. Neurosci Biobehav Rev 2018; 85:117-125. [PMID: 28571877 PMCID: PMC5708151 DOI: 10.1016/j.neubiorev.2017.05.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/11/2017] [Accepted: 05/22/2017] [Indexed: 12/11/2022]
Abstract
Substance use disorders continue to impose increasing medical, financial and emotional burdens on society in the form of morbidity and overdose, family disintegration, loss of employment and crime, while advances in prevention and treatment options remain limited. Importantly, not all individuals exposed to abused substances effectively develop the disease. Genetic factors play a significant role in determining addiction vulnerability and interactions between innate predisposition, environmental factors and personal experiences are also critical. Thus, understanding individual differences that contribute to the initiation of substance use as well as on long-term maladaptations driving compulsive drug use and relapse propensity is of critical importance to reduce this devastating disorder. In this paper, we discuss current topics in the field of addiction regarding individual vulnerability related to behavioral endophenotypes, neural circuits, as well as genetics and epigenetic mechanisms. Expanded knowledge of these factors is of importance to improve and personalize prevention and treatment interventions in the future.
Collapse
Affiliation(s)
- Gabor Egervari
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 10029 New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 10029 New York, NY, USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - J David Jentsch
- Department of Psychology, Binghamton University, 13902 Binghamton, NY, USA
| | - Yasmin L Hurd
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 10029 New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 10029 New York, NY, USA.
| |
Collapse
|
26
|
Altered Baseline and Nicotine-Mediated Behavioral and Cholinergic Profiles in ChAT-Cre Mouse Lines. J Neurosci 2018; 38:2177-2188. [PMID: 29371319 DOI: 10.1523/jneurosci.1433-17.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 11/21/2022] Open
Abstract
The recent development of transgenic rodent lines expressing cre recombinase in a cell-specific manner, along with advances in engineered viral vectors, has permitted in-depth investigations into circuit function. However, emerging evidence has begun to suggest that genetic modifications may introduce unexpected caveats. In the current studies, we sought to extensively characterize male and female mice from both the ChAT(BAC)-Cre mouse line, created with the bacterial artificial chromosome (BAC) method, and ChAT(IRES)-Cre mouse line, generated with the internal ribosome entry site (IRES) method. ChAT(BAC)-Cre transgenic and wild-type mice did not differ in general locomotor behavior, anxiety measures, drug-induced cataplexy, nicotine-mediated hypolocomotion, or operant food training. However, ChAT(BAC)-Cre transgenic mice did exhibit significant deficits in intravenous nicotine self-administration, which paralleled an increase in vesicular acetylcholine transporter and choline acetyltransferase (ChAT) hippocampal expression. For the ChAT(IRES)-Cre line, transgenic mice exhibited deficits in baseline locomotor, nicotine-mediated hypolocomotion, and operant food training compared with wild-type and hemizygous littermates. No differences among ChAT(IRES)-Cre wild-type, hemizygous, and transgenic littermates were found in anxiety measures, drug-induced cataplexy, and nicotine self-administration. Given that increased cre expression was present in the ChAT(IRES)-Cre transgenic mice, as well as a decrease in ChAT expression in the hippocampus, altered neuronal function may underlie behavioral phenotypes. In contrast, ChAT(IRES)-Cre hemizygous mice were more similar to wild-type mice in both protein expression and the majority of behavioral assessments. As such, interpretation of data derived from ChAT-Cre rodents must consider potential limitations dependent on the line and/or genotype used in research investigations.SIGNIFICANCE STATEMENT Altered baseline and/or nicotine-mediated behavioral profiles were discovered in transgenic mice from the ChAT(BAC)-Cre and ChAT(IRES)-Cre lines. Given that these cre-expressing mice have become increasingly used by the scientific community, either independently with chemicogenetic and optogenetic viral vectors or crossed with other transgenic lines, the current studies highlight important considerations for the interpretation of data from previous and future experimental investigations. Moreover, the current findings detail the behavioral effects of either increased or decreased baseline cholinergic signaling mechanisms on locomotor, anxiety, learning/memory, and intravenous nicotine self-administration behaviors.
Collapse
|
27
|
Barfield ET, Gourley SL. Adolescent Corticosterone and TrkB Pharmaco-Manipulations Sex-Dependently Impact Instrumental Reversal Learning Later in Life. Front Behav Neurosci 2017; 11:237. [PMID: 29270114 PMCID: PMC5725412 DOI: 10.3389/fnbeh.2017.00237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/14/2017] [Indexed: 02/01/2023] Open
Abstract
Early-life trauma can increase the risk for, and severity of, several psychiatric illnesses. These include drug use disorders, and some correlations appear to be stronger in women. Understanding the long-term consequences of developmental stressor or stress hormone exposure and possible sex differences is critically important. So-called “reversal learning” tasks are commonly used in rodents to model cognitive deficits in stress- and addiction-related illnesses in humans. Here, we exposed mice to the primary stress hormone corticosterone (CORT) during early adolescence (postnatal days 31–42), then tested behavioral flexibility in adulthood using an instrumental reversal learning task. CORT-exposed female, but not male, mice developed perseverative errors. Despite resilience to subchronic CORT exposure, males developed reversal performance impairments following exposure to physical stressors. Administration of a putative tyrosine kinase receptor B (trkB) agonist, 7,8-dihydroxyflavone (7,8-DHF), during adolescence blocked CORT-induced errors in females and improved performance in males. Conversely, blockade of trkB by ANA-12 impaired performance. These data suggest that trkB-based interventions could have certain protective benefits in the context of early-life stressor exposure. We consider the implications of our findings in an extended “Discussion” section.
Collapse
Affiliation(s)
- Elizabeth T Barfield
- Department of Pediatrics, Emory University, Atlanta, GA, United States.,Graduate Program in Neuroscience, Emory University, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Shannon L Gourley
- Department of Pediatrics, Emory University, Atlanta, GA, United States.,Graduate Program in Neuroscience, Emory University, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| |
Collapse
|
28
|
Thompson AB, Gerson J, Stolyarova A, Bugarin A, Hart EE, Jentsch JD, Izquierdo A. Steep effort discounting of a preferred reward over a freely-available option in prolonged methamphetamine withdrawal in male rats. Psychopharmacology (Berl) 2017; 234:2697-2705. [PMID: 28584929 PMCID: PMC6441328 DOI: 10.1007/s00213-017-4656-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/23/2017] [Indexed: 11/29/2022]
Abstract
RATIONALE Drug addiction can be described as aberrant allocation of effort toward acquiring drug, despite associated costs. It is unclear if this behavioral pattern results from an overvaluation of reward or to an altered sensitivity to costs. OBJECTIVE Present experiments assessed reward sensitivity and effortful choice in rats following 1 week of withdrawal from methamphetamine (mAMPH). METHODS Rats were treated with either saline or an escalating dose mAMPH regimen, then tested after a week without the drug. In experiment 1, rats were given a free choice between water and various concentrations of sucrose solution to assess general reward sensitivity. In experiment 2, rats were presented with a choice between lever-pressing for sucrose pellets on a progressive ratio schedule or consuming freely-available chow. RESULTS In experiment 1, we found no differences in sucrose preference between mAMPH- and saline-pretreated rats. In experiment 2, when selecting between two options, mAMPH-pretreated rats engaged in less lever-pressing for sucrose pellets (p < 0.01) and switched from this preferred reward to the chow sooner than saline-pretreated rats (p < 0.05). This effect was not consistent with general reward devaluation or loss of motivation. CONCLUSIONS These findings demonstrate that mAMPH exposure and withdrawal lead to steeper discounting of reward value by effort, an effect that is consistent with the effect of mAMPH on discounting by delay, and which may reflect an underlying shared mechanism.
Collapse
Affiliation(s)
- Andrew B. Thompson
- Department of Psychology, The Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Julian Gerson
- Department of Psychology, The Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Alexandra Stolyarova
- Department of Psychology, The Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Amador Bugarin
- Department of Psychology, The Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Evan E. Hart
- Department of Psychology, The Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - J. David Jentsch
- Department of Psychology, The Brain Research Institute, UCLA, Los Angeles, CA, USA,Department of Psychology, The State University of New York, Binghamton University, Binghamton, NY, USA,Integrative Center for Learning and Memory, UCLA, Los Angeles, CA, USA,Integrative Center for Addictions, UCLA, Los Angeles, CA, USA
| | - Alicia Izquierdo
- Department of Psychology, The Brain Research Institute, UCLA, Los Angeles, CA, USA. .,Integrative Center for Learning and Memory, UCLA, Los Angeles, CA, USA. .,Integrative Center for Addictions, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Foley BR, Marjoram P, Nuzhdin SV. Basic reversal-learning capacity in flies suggests rudiments of complex cognition. PLoS One 2017; 12:e0181749. [PMID: 28813432 PMCID: PMC5558953 DOI: 10.1371/journal.pone.0181749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/06/2017] [Indexed: 11/19/2022] Open
Abstract
The most basic models of learning are reinforcement learning models (for instance, classical and operant conditioning) that posit a constant learning rate; however many animals change their learning rates with experience. This process is sometimes studied by reversing an existing association between cues and rewards, and measuring the rate of relearning. Augmented reversal-learning, where learning rates increase with practice, can be an important component of behavioral flexibility; and may provide insight into higher cognition. Previous studies of reversal-learning in Drosophila have not measured learning rates, but have tended to focus on measuring gross deficits in reversal-learning, as the ratio of two timepoints. These studies have uncovered a diversity of mechanisms underlying reversal-learning, but natural genetic variation in this trait has yet to be assessed. We conducted a reversal-learning regime on a diverse panel of Drosophila melanogaster genotypes. We found highly significant genetic variation in their baseline ability to learn. We also found that they have a consistent, and strong (1.3×), increase in their learning speed with reversal. We found no evidence, however, that there was genetic variation in their ability to increase their learning rates with experience. This may suggest that Drosophila have a hitherto unrecognized ability to integrate acquired information, and improve their decision making; but that their mechanisms for doing so are under strong constraints.
Collapse
Affiliation(s)
- Brad R. Foley
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| | - Paul Marjoram
- Department of Preventative Medicine, Keck School of Medicine of USC, Los Angeles, California, United States of America
| | - Sergey V. Nuzhdin
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
30
|
Dopamine D3 Receptor Availability Is Associated with Inflexible Decision Making. J Neurosci 2017; 36:6732-41. [PMID: 27335404 DOI: 10.1523/jneurosci.3253-15.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 05/16/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Dopamine D2/3 receptor signaling is critical for flexible adaptive behavior; however, it is unclear whether D2, D3, or both receptor subtypes modulate precise signals of feedback and reward history that underlie optimal decision making. Here, PET with the radioligand [(11)C]-(+)-PHNO was used to quantify individual differences in putative D3 receptor availability in rodents trained on a novel three-choice spatial acquisition and reversal-learning task with probabilistic reinforcement. Binding of [(11)C]-(+)-PHNO in the midbrain was negatively related to the ability of rats to adapt to changes in rewarded locations, but not to the initial learning. Computational modeling of choice behavior in the reversal phase indicated that [(11)C]-(+)-PHNO binding in the midbrain was related to the learning rate and sensitivity to positive, but not negative, feedback. Administration of a D3-preferring agonist likewise impaired reversal performance by reducing the learning rate and sensitivity to positive feedback. These results demonstrate a previously unrecognized role for D3 receptors in select aspects of reinforcement learning and suggest that individual variation in midbrain D3 receptors influences flexible behavior. Our combined neuroimaging, behavioral, pharmacological, and computational approach implicates the dopamine D3 receptor in decision-making processes that are altered in psychiatric disorders. SIGNIFICANCE STATEMENT Flexible decision-making behavior is dependent upon dopamine D2/3 signaling in corticostriatal brain regions. However, the role of D3 receptors in adaptive, goal-directed behavior has not been thoroughly investigated. By combining PET imaging with the D3-preferring radioligand [(11)C]-(+)-PHNO, pharmacology, a novel three-choice probabilistic discrimination and reversal task and computational modeling of behavior in rats, we report that naturally occurring variation in [(11)C]-(+)-PHNO receptor availability relates to specific aspects of flexible decision making. We confirm these relationships using a D3-preferring agonist, thus identifying a unique role of midbrain D3 receptors in decision-making processes.
Collapse
|
31
|
Ferland JMN, Winstanley CA. Risk-preferring rats make worse decisions and show increased incubation of craving after cocaine self-administration. Addict Biol 2017; 22:991-1001. [PMID: 27002211 DOI: 10.1111/adb.12388] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/07/2016] [Accepted: 02/10/2016] [Indexed: 02/03/2023]
Abstract
Maladaptive decision-making may play an integral role in the development and maintenance of an addiction. Substance-dependent individuals make riskier choices on the Iowa Gambling Task, and these deficits persist during withdrawal and are predictive of relapse. However, it is unclear from clinical studies whether this cognitive impairment is a cause or consequence of drug use. We trained male Long-Evans rats on the rat Gambling Task, a rodent analogue of the Iowa Gambling Task, to determine how choice preference influenced, and was influenced by, cocaine self-administration, withdrawal and incubation of craving. Rats that exhibited a preference for the risky, disadvantageous options at baseline were uniquely and adversely affected by cocaine self-administration. Risky choice was exacerbated in these rats when decision-making was assessed during the same diurnal period as cocaine self-administration, whereas the choice pattern of optimal decision-makers was unaffected. This decision-making deficit was maintained during 30 days of withdrawal and correlated with greater cue-induced incubation of craving. Risk-preferring rats also made more drug-seeking responses during cocaine self-administration. These data demonstrate that poor decision-making prior to contact with addictive drugs is associated with a pro-addictive behavioural phenotype, characterized by further increased risky choice and heightened responding for drug both during cocaine self-administration and withdrawal. Such findings indicate that the elevated risky decision-making observed in substance-dependent populations is not merely circumstantial, but makes an important contribution to addiction vulnerability and severity that can now be effectively modelled in laboratory rats.
Collapse
Affiliation(s)
- Jacqueline-Marie N. Ferland
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Canada
| | - Catharine A. Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Canada
| |
Collapse
|
32
|
Acute effects of cocaine and cannabis on reversal learning as a function of COMT and DRD2 genotype. Psychopharmacology (Berl) 2016; 233:199-211. [PMID: 26572896 PMCID: PMC4700084 DOI: 10.1007/s00213-015-4141-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/20/2015] [Indexed: 12/27/2022]
Abstract
RATIONALE Long-term cannabis and cocaine use has been associated with impairments in reversal learning. However, how acute cannabis and cocaine administration affect reversal learning in humans is not known. OBJECTIVE In this study, we aimed to establish the acute effects of administration of cannabis and cocaine on valence-dependent reversal learning as a function of DRD2 Taq1A (rs1800497) and COMT Val108/158Met (rs4680) genotype. METHODS A double-blind placebo-controlled randomized 3-way crossover design was used. Sixty-one regular poly-drug users completed a deterministic reversal learning task under the influence of cocaine, cannabis, and placebo that enabled assessment of both reward- and punishment-based reversal learning. RESULTS Proportion correct on the reversal learning task was increased by cocaine, but decreased by cannabis. Effects of cocaine depended on the DRD2 genotype, as increases in proportion correct were seen only in the A1 carriers, and not in the A2/A2 homozygotes. COMT genotype did not modulate drug-induced effects on reversal learning. CONCLUSIONS These data indicate that acute administration of cannabis and cocaine has opposite effects on reversal learning. The effects of cocaine, but not cannabis, depend on interindividual genetic differences in the dopamine D2 receptor gene.
Collapse
|
33
|
Spechler PA, Chaarani B, Hudson KE, Potter A, Foxe JJ, Garavan H. Response inhibition and addiction medicine. PROGRESS IN BRAIN RESEARCH 2016; 223:143-64. [DOI: 10.1016/bs.pbr.2015.07.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
DePoy LM, Gourley SL. Synaptic Cytoskeletal Plasticity in the Prefrontal Cortex Following Psychostimulant Exposure. Traffic 2015; 16:919-40. [PMID: 25951902 DOI: 10.1111/tra.12295] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 02/01/2023]
Abstract
Addiction is characterized by maladaptive decision-making, a loss of control over drug consumption and habit-like drug seeking despite adverse consequences. These cognitive changes may reflect the effects of drugs of abuse on prefrontal cortical neurobiology. Here, we review evidence that amphetamine and cocaine fundamentally remodel the structure of excitatory neurons in the prefrontal cortex. We summarize evidence in particular that these psychostimulants have opposing effects in the medial and orbital prefrontal cortices ('mPFC' and 'oPFC', respectively). For example, amphetamine and cocaine increase dendrite length and spine density in the mPFC, while dendrites are impoverished and dendritic spines are eliminated in the oPFC. We will discuss evidence that certain cytoskeletal regulatory proteins expressed in the oPFC and implicated in postnatal (adolescent) neural development also regulate behavioral sensitivity to cocaine. These findings potentially open a window of opportunity for the identification of novel pharmacotherapeutic targets in the treatment of drug abuse disorders in adults, as well as in drug-vulnerable adolescent populations. Finally, we will discuss the behavioral implications of drug-related dendritic spine elimination in the oPFC, with regard to reversal learning tasks and tasks that assess the development of reward-seeking habits, both used to model aspects of addiction in rodents.
Collapse
Affiliation(s)
- Lauren M DePoy
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| |
Collapse
|
35
|
Dickson PE, Ndukum J, Wilcox T, Clark J, Roy B, Zhang L, Li Y, Lin DT, Chesler EJ. Association of novelty-related behaviors and intravenous cocaine self-administration in Diversity Outbred mice. Psychopharmacology (Berl) 2015; 232:1011-24. [PMID: 25238945 PMCID: PMC4774545 DOI: 10.1007/s00213-014-3737-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/28/2014] [Indexed: 01/22/2023]
Abstract
RATIONALE The preference for and reaction to novelty are strongly associated with addiction to cocaine and other drugs. However, the genetic variants and molecular mechanisms underlying these phenomena remain largely unknown. Although the relationship between novelty- and addiction-related traits has been observed in rats, studies in mice have failed to demonstrate this association. New, genetically diverse, high-precision mouse populations including Diversity Outbred (DO) mice provide an opportunity to assess an expanded range of behavioral variation enabling detection of associations of novelty- and addiction-related traits in mice. METHODS To examine the relationship between novelty- and addiction-related traits, male (n = 51) and female (n = 47) DO mice were tested on open field exploration, hole board exploration, and novelty preference followed by intravenous cocaine self-administration (IVSA; ten 2-h sessions of fixed ratio 1 and one 6-h session of progressive ratio). RESULTS We observed high variation of cocaine IVSA in DO mice with 43 % reaching and 57 % not reaching conventional acquisition criteria. As a group, mice that did not reach these criteria still demonstrated significant lever discrimination. Mice experiencing catheter occlusion or other technical issues (n = 17) were excluded from the analysis. Novelty-related behaviors were positively associated with cocaine IVSA. Multivariate analysis of associations among novelty- and addiction-related traits revealed a large degree of shared variance (45 %). CONCLUSIONS Covariation among cocaine IVSA and novelty-related phenotypes in DO mice indicates that this relationship is amenable to genetic dissection. The high genetic precision and phenotypic diversity in the DO may facilitate discovery of previously undetectable mechanisms underlying predisposition to develop addiction disorders.
Collapse
Affiliation(s)
| | - Juliet Ndukum
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609
| | - Troy Wilcox
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609
| | - James Clark
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609
| | - Brittany Roy
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609
| | - Lifeng Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224
| | - Yun Li
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224
| | | |
Collapse
|
36
|
Prenatal stress and adult drug-seeking behavior: interactions with genes and relation to nondrug-related behavior. ADVANCES IN NEUROBIOLOGY 2015; 10:75-100. [PMID: 25287537 DOI: 10.1007/978-1-4939-1372-5_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Addiction inflicts large personal, social, and economic burdens, yet its etiology is poorly defined and effective treatments are lacking. As with other neuropsychiatric disorders, addiction is characterized by a core set of symptoms and behaviors that are believed to be influenced by complex gene-environment interactions. Our group focuses on the interaction between early stress and genetic background in determining addiction vulnerability. Prior work by our group and others has indicated that a history of prenatal stress (PNS) in rodents elevates adult drug seeking in a number of behavioral paradigms. The focus of the present chapter is to summarize work in the area of PNS and addiction models as well as our recent studies of PNS on drug seeking in different strains of mice as a strategy to dissect gene-environment interactions underlying cocaine addiction vulnerability. These studies indicate that ability of PNS to elevate adult cocaine seeking is strain dependent. Further, PNS also alters other nondrug behaviors in a fashion that is dependent on different strains and independent from the strain dependence of drug seeking. Thus, it appears that the ability of PNS to alter behavior related to different psychiatric conditions is orthogonal, with similar nonspecific susceptibility to prenatal stress across genetic backgrounds but with the genetic background determining the specific nature of the PNS effects. Finally, the advent of recombinant inbred mouse strains is allowing us to determine the genetic bases of these gene-environment interactions. Understanding these effects will have broad implications to determining the nature of vulnerability to addiction and perhaps other disorders.
Collapse
|
37
|
Castelluccio BC, Meda SA, Muska CE, Stevens MC, Pearlson GD. Error processing in current and former cocaine users. Brain Imaging Behav 2014; 8:87-96. [PMID: 23949893 DOI: 10.1007/s11682-013-9247-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deficits in response inhibition and error processing can result in maladaptive behavior, including failure to use past mistakes to inform present decisions. A specific deficit in inhibiting a prepotent response represents one aspect of impulsivity and is a prominent feature of addictive behaviors in general, including cocaine abuse/dependence. Brain regions implicated in cognitive control exhibit reduced activation in cocaine abusers. The purposes of the present investigation were (1) to identify neural differences associated with error processing in current and former cocaine-dependent individuals compared to healthy controls and (2) to determine whether former, long-term abstinent cocaine users showed similar differences compared with current users. The present study used an fMRI Go/No-Go task to investigate differences in BOLD response to correct rejections and false alarms between current cocaine users (n = 30), former cocaine users (n = 29), and healthy controls (n = 35). Impulsivity trait measures were also assessed and compared with BOLD activity. Nineteen regions of interest previously implicated in errors of disinhibition were queried. There were no group differences in the correct rejections condition, but both current and former users exhibited increased BOLD response relative to controls for false alarms. In current users, the pregenual cingulate gyrus and left angular/supramarginal gyri overactivated. In former users, the right middle frontal/precentral gyri, right inferior parietal lobule, and left angular/supramarginal gyri overactivated. Overall, our results support a hypothesis that neural activity in former users differs more from healthy controls than that of current users due to cognitive compensation that facilitates abstinence.
Collapse
Affiliation(s)
- Brian C Castelluccio
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, 200 Retreat Avenue, Whitehall Building, Hartford, CT, 06106, USA,
| | | | | | | | | |
Collapse
|
38
|
DePoy LM, Perszyk RE, Zimmermann KS, Koleske AJ, Gourley SL. Adolescent cocaine exposure simplifies orbitofrontal cortical dendritic arbors. Front Pharmacol 2014; 5:228. [PMID: 25452728 PMCID: PMC4233985 DOI: 10.3389/fphar.2014.00228] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/23/2014] [Indexed: 12/21/2022] Open
Abstract
Cocaine and amphetamine remodel dendritic spines within discrete cortico-limbic brain structures including the orbitofrontal cortex (oPFC). Whether dendrite structure is similarly affected, and whether pre-existing cellular characteristics influence behavioral vulnerabilities to drugs of abuse, remain unclear. Animal models provide an ideal venue to address these issues because neurobehavioral phenotypes can be defined both before, and following, drug exposure. We exposed mice to cocaine from postnatal days 31–35, corresponding to early adolescence, using a dosing protocol that causes impairments in an instrumental reversal task in adulthood. We then imaged and reconstructed excitatory neurons in deep-layer oPFC. Prior cocaine exposure shortened and simplified arbors, particularly in the basal region. Next, we imaged and reconstructed orbital neurons in a developmental-genetic model of cocaine vulnerability—the p190rhogap+/– mouse. p190RhoGAP is an actin cytoskeleton regulatory protein that stabilizes dendrites and dendritic spines, and p190rhogap+/– mice develop rapid and robust locomotor activation in response to cocaine. Despite this, oPFC dendritic arbors were intact in drug-naïve p190rhogap+/– mice. Together, these findings provide evidence that adolescent cocaine exposure has long-term effects on dendrite structure in the oPFC, and they suggest that cocaine-induced modifications in dendrite structure may contribute to the behavioral effects of cocaine more so than pre-existing structural abnormalities in this cell population.
Collapse
Affiliation(s)
- Lauren M DePoy
- Department of Pediatrics, Emory University School of Medicine , Atlanta, GA, USA ; Yerkes National Primate Research Center, Emory University , Atlanta, GA, USA ; Graduate Program in Neuroscience, Emory University , Atlanta, GA, USA
| | - Riley E Perszyk
- Graduate Program in Molecular and Systems Pharmacology, Emory University , Atlanta, GA, USA
| | - Kelsey S Zimmermann
- Department of Pediatrics, Emory University School of Medicine , Atlanta, GA, USA ; Yerkes National Primate Research Center, Emory University , Atlanta, GA, USA ; Graduate Program in Neuroscience, Emory University , Atlanta, GA, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, CT, USA ; Interdepartmental Neuroscience Program, Yale University , New Haven, CT, USA ; Department of Neurobiology, Yale University School of Medicine , New Haven, CT, USA
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine , Atlanta, GA, USA ; Yerkes National Primate Research Center, Emory University , Atlanta, GA, USA ; Graduate Program in Neuroscience, Emory University , Atlanta, GA, USA
| |
Collapse
|
39
|
Weafer J, Burkhardt A, de Wit H. Sweet taste liking is associated with impulsive behaviors in humans. Front Behav Neurosci 2014; 8:228. [PMID: 24987343 PMCID: PMC4060557 DOI: 10.3389/fnbeh.2014.00228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/05/2014] [Indexed: 11/13/2022] Open
Abstract
Evidence from both human and animal studies suggests that sensitivity to rewarding stimuli is positively associated with impulsive behaviors, including both impulsive decision making and inhibitory control. The current study examined associations between the hedonic value of a sweet taste and two forms of impulsivity (impulsive choice and impulsive action) in healthy young adults (N = 100). Participants completed a sweet taste test in which they rated their liking of various sweetness concentrations. Subjects also completed measures of impulsive choice (delay discounting), and impulsive action (go/no-go task). Subjects who discounted more steeply (i.e., greater impulsive choice) liked the high sweetness concentration solutions more. By contrast, sweet liking was not related to impulsive action. These findings indicate that impulsive choice may be associated with heightened sensitivity to the hedonic value of a rewarding stimulus, and that these constructs might share common underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Jessica Weafer
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago Chicago, IL, USA
| | - Anne Burkhardt
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago Chicago, IL, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago Chicago, IL, USA
| |
Collapse
|
40
|
Jentsch JD, Ashenhurst JR, Cervantes MC, Groman SM, James AS, Pennington ZT. Dissecting impulsivity and its relationships to drug addictions. Ann N Y Acad Sci 2014; 1327:1-26. [PMID: 24654857 DOI: 10.1111/nyas.12388] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Addictions are often characterized as forms of impulsive behavior. That said, it is often noted that impulsivity is a multidimensional construct, spanning several psychological domains. This review describes the relationship between varieties of impulsivity and addiction-related behaviors, the nature of the causal relationship between the two, and the underlying neurobiological mechanisms that promote impulsive behaviors. We conclude that the available data strongly support the notion that impulsivity is both a risk factor for, and a consequence of, drug and alcohol consumption. While the evidence indicating that subtypes of impulsive behavior are uniquely informative--either biologically or with respect to their relationships to addictions--is convincing, multiple lines of study link distinct subtypes of impulsivity to low dopamine D2 receptor function and perturbed serotonergic transmission, revealing shared mechanisms between the subtypes. Therefore, a common biological framework involving monoaminergic transmitters in key frontostriatal circuits may link multiple forms of impulsivity to drug self-administration and addiction-related behaviors. Further dissection of these relationships is needed before the next phase of genetic and genomic discovery will be able to reveal the biological sources of the vulnerability for addiction indexed by impulsivity.
Collapse
Affiliation(s)
- J David Jentsch
- Department of Psychology, University of California Los Angeles, Los Angeles, California
| | | | | | | | | | | |
Collapse
|
41
|
Dickson PE, Calton MA, Mittleman G. Performance of C57BL/6J and DBA/2J mice on a touchscreen-based attentional set-shifting task. Behav Brain Res 2013; 261:158-70. [PMID: 24361287 DOI: 10.1016/j.bbr.2013.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 11/24/2022]
Abstract
Attentional set-shifting deficits are a feature of multiple psychiatric disorders. However, the neurogenetic mechanisms underlying these deficits are largely unknown. In the present study we assessed performance of C57BL/6J and DBA/2J mice on a touchscreen-based attentional set-shifting task similar to those used with humans and non-human primates. In experiment 1, mice discriminated simple white lines followed by compound stimuli composed of white lines superimposed on grey shapes. Although performance of the two strains was largely equivalent during early stages of the task, DBA/2J mice committed significantly more errors compared to C57BL/6J mice on the extra-dimensional shift. Additionally, performance of mice as a group declined across the three compound discrimination reversals. In experiment 2 we assessed salience of the shapes and lines dimensions and determined if dimensional salience, a variable previously shown to affect set-shifting abilities in humans and non-human primates, could be systematically manipulated. Findings from experiment 2 suggested that strain differences during the extra-dimensional shift in experiment 1 were most parsimoniously explained by a consistently impaired ability in DBA/2J mice to discriminate a subset of the compound stimuli. Additionally, unlike maze-based tasks, the relative salience of the two dimensions could be manipulated by systematically altering the width of lines exemplars while retaining other potentially-relevant attributes of the compound stimuli. These findings reveal unique and in some cases strain-dependent phenomena related to discriminations of simple and multidimensional visual stimuli which may facilitate future efforts to identify and fully characterize visual discrimination, reversal learning, and attentional set-shifting deficits in mice.
Collapse
Affiliation(s)
- Price E Dickson
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, United States
| | - Michele A Calton
- Department of Psychology, University of Memphis, Memphis, TN 38152, United States
| | - Guy Mittleman
- Department of Psychology, University of Memphis, Memphis, TN 38152, United States.
| |
Collapse
|
42
|
James AS, Chen JY, Cepeda C, Mittal N, Jentsch JD, Levine MS, Evans CJ, Walwyn W. Opioid self-administration results in cell-type specific adaptations of striatal medium spiny neurons. Behav Brain Res 2013; 256:279-83. [PMID: 23968589 DOI: 10.1016/j.bbr.2013.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 11/28/2022]
Abstract
Medium-sized spiny neurons (MSNs), the predominant neuronal population of the striatum, are an integral component of the many cortical and limbic pathways associated with reward-related behaviors. A differential role of the D1 receptor-enriched (D1) MSNs of the striatonigral direct pathway, as compared with the D2 receptor-enriched (D2) MSNs of the striatopallidal indirect pathway, in mediating the addictive behaviors associated with cocaine is beginning to emerge. However, whether opioids, well-known analgesics with euphoric properties, similarly induce dissociable signaling adaptations in these neurons remains unclear. Transgenic mice expressing green fluorescent protein (GFP)-labeled D1 or D2 neurons were implanted with intravenous jugular catheters. Mice learned to self-administer 0.1mg/kg/infusion of the opioid remifentanil during 2h sessions over 13 contiguous days. Thereafter, the electrophysiological properties of D1- and D2-MSNs in the shell region of the nucleus accumbens (NAc) were assessed. We found that prior opioid exposure did not alter the basic membrane properties nor the kinetics or amplitude of miniature excitatory postsynaptic currents (mEPSCs). However, when challenged with the mu opioid receptor (μOR) agonist DAMGO, the characteristic inhibitory profile of this receptor was altered. DAMGO inhibited the frequency of mEPSCs in D1-MSNs from control mice receiving saline and in D2-MSNs from mice exposed to remifentanil or saline, but this inhibitory profile was reduced in D1-MSNs from mice receiving remifentanil. Remifentanil exposure also altered the probability of glutamate release onto D1-, but not D2-MSNs. Together these results suggest a D1-pathway specific effect associated with the acquisition of opioid-seeking behaviors.
Collapse
Affiliation(s)
- Alex S James
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Jentsch JD, Pennington ZT. Reward, interrupted: Inhibitory control and its relevance to addictions. Neuropharmacology 2013; 76 Pt B:479-86. [PMID: 23748054 DOI: 10.1016/j.neuropharm.2013.05.022] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 12/21/2022]
Abstract
There are broad individual differences in the ability to voluntarily and effortfully suppress motivated, reward-seeking behaviors, and this review presents the hypothesis that these individual differences are relevant to addictive disorders. On one hand, cumulative experience with drug abuse appears to alter the molecular, cellular and circuit mechanisms that mediate inhibitory abilities, leading to increasingly uncontrolled patterns of drug-seeking and -taking. On the other, native inter-individual differences in inhibitory control are apparently a risk factor for aspects of drug-reinforced responding and substance use disorders. In both cases, the behavioral manifestation of poor inhibitory abilities is linked to relatively low striatal dopamine D2-like receptor availability, and evidence is accumulating for a more direct contribution of striatopallidal neurons to cognitive control processes. Mechanistic research is now identifying genes upstream of dopamine transmission that mediate these relationships, as well as the involvement of other neurotransmitter systems, acting alone and in concert with dopamine. The reviewed research stands poised to identify new mechanisms that can be targeted by pharmacotherapies and/or by behavioral interventions that are designed to prevent or treat addictive behaviors and associated behavioral pathology. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- James David Jentsch
- Department of Psychology, University of California, Los Angeles 90095-1563, USA; Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles 90095-1563, USA; Semel Institute for Human Neuroscience and Behavior, University of California, Los Angeles 90095-1563, USA; The Brain Research Institute, University of California, Los Angeles 90095-1563, USA.
| | | |
Collapse
|