1
|
Ludwig FA, Laurini E, Schmidt J, Pricl S, Deuther-Conrad W, Wünsch B. [ 18F]Fluspidine-A PET Tracer for Imaging of σ 1 Receptors in the Central Nervous System. Pharmaceuticals (Basel) 2024; 17:166. [PMID: 38399380 PMCID: PMC10892410 DOI: 10.3390/ph17020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
σ1 receptors play a crucial role in various neurological and neurodegenerative diseases including pain, psychosis, Alzheimer's disease, and depression. Spirocyclic piperidines represent a promising class of potent σ1 receptor ligands. The relationship between structural modifications and σ1 receptor affinity and selectivity over σ2 receptors led to the 2-fluoroethyl derivative fluspidine (2, Ki = 0.59 nM). Enantiomerically pure (S)-configured fluspidine ((S)-2) was prepared by the enantioselective reduction of the α,β-unsaturated ester 23 with NaBH4 and the enantiomerically pure co-catalyst (S,S)-24. The pharmacokinetic properties of both fluspidine enantiomers (R)-2 and (S)-2 were analyzed in vitro. Molecular dynamics simulations revealed very similar interactions of both fluspidine enantiomers with the σ1 receptor protein, with a strong ionic interaction between the protonated amino moiety of the piperidine ring and the COO- moiety of glutamate 172. The 18F-labeled radiotracers (S)-[18F]2 and (R)-[18F]2 were synthesized in automated syntheses using a TRACERlab FX FN synthesis module. High radiochemical yields and radiochemical purity were achieved. Radiometabolites were not found in the brains of mice, piglets, and rhesus monkeys. While both enantiomers revealed similar initial brain uptake, the slow washout of (R)-[18F]2 indicated a kind of irreversible binding. In the first clinical trial, (S)-[18F]2 was used to visualize σ1 receptors in the brains of patients with major depressive disorder (MDD). This study revealed an increased density of σ1 receptors in cortico-striato-(para)limbic brain regions of MDD patients. The increased density of σ1 receptors correlated with the severity of the depressive symptoms. In an occupancy study with the PET tracer (S)-[18F]2, the selective binding of pridopidine at σ1 receptors in the brain of healthy volunteers and HD patients was shown.
Collapse
Affiliation(s)
- Friedrich-Alexander Ludwig
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, D-04318 Leipzig, Germany; (F.-A.L.); (W.D.-C.)
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy; (E.L.); (S.P.)
| | - Judith Schmidt
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany;
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127 Trieste, Italy; (E.L.); (S.P.)
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland
| | - Winnie Deuther-Conrad
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, D-04318 Leipzig, Germany; (F.-A.L.); (W.D.-C.)
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany;
- GRK 2515, Chemical Biology of Ion Channels (Chembion), Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
2
|
Malar DS, Thitilertdecha P, Ruckvongacheep KS, Brimson S, Tencomnao T, Brimson JM. Targeting Sigma Receptors for the Treatment of Neurodegenerative and Neurodevelopmental Disorders. CNS Drugs 2023; 37:399-440. [PMID: 37166702 PMCID: PMC10173947 DOI: 10.1007/s40263-023-01007-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
The sigma-1 receptor is a 223 amino acid-long protein with a recently identified structure. The sigma-2 receptor is a genetically unrelated protein with a similarly shaped binding pocket and acts to influence cellular activities similar to the sigma-1 receptor. Both proteins are highly expressed in neuronal tissues. As such, they have become targets for treating neurological diseases, including Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), multiple sclerosis (MS), Rett syndrome (RS), developmental and epileptic encephalopathies (DEE), and motor neuron disease/amyotrophic lateral sclerosis (MND/ALS). In recent years, there have been many pre-clinical and clinical studies of sigma receptor (1 and 2) ligands for treating neurological disease. Drugs such as blarcamesine, dextromethorphan and pridopidine, which have sigma-1 receptor activity as part of their pharmacological profile, are effective in treating multiple aspects of several neurological diseases. Furthermore, several sigma-2 receptor ligands are under investigation, including CT1812, rivastigmine and SAS0132. This review aims to provide a current and up-to-date analysis of the current clinical and pre-clinical data of drugs with sigma receptor activities for treating neurological disease.
Collapse
Affiliation(s)
- Dicson S Malar
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokphorn S Ruckvongacheep
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - James M Brimson
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Room 409, ChulaPat-1 Building, 154 Rama 1 Road, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Lenoir S, Lahaye RA, Vitet H, Scaramuzzino C, Virlogeux A, Capellano L, Genoux A, Gershoni-Emek N, Geva M, Hayden MR, Saudou F. Pridopidine rescues BDNF/TrkB trafficking dynamics and synapse homeostasis in a Huntington disease brain-on-a-chip model. Neurobiol Dis 2022; 173:105857. [PMID: 36075537 DOI: 10.1016/j.nbd.2022.105857] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by polyglutamine-encoding CAG repeat expansion in the huntingtin (HTT) gene. HTT is involved in the axonal transport of vesicles containing brain-derived neurotrophic factor (BDNF). In HD, diminished BDNF transport leads to reduced BDNF delivery to the striatum, contributing to striatal and cortical neuronal death. Pridopidine is a selective and potent sigma-1 receptor (S1R) agonist currently in clinical development for HD. The S1R is located at the endoplasmic reticulum (ER)-mitochondria interface, where it regulates key cellular pathways commonly impaired in neurodegenerative diseases. We used a microfluidic device that reconstitutes the corticostriatal network, allowing the investigation of presynaptic dynamics, synaptic morphology and transmission, and postsynaptic signaling. Culturing primary neurons from the HD mouse model HdhCAG140/+ provides a "disease-on-a-chip" platform ideal for investigating pathogenic mechanisms and drug activity. Pridopidine rescued the trafficking of BDNF and TrkB resulting in an increased neurotrophin signaling at the synapse. This increased the capacity of HD neurons to release glutamate and restored homeostasis at the corticostriatal synapse. These data suggest that pridopidine enhances the availability of corticostriatal BDNF via S1R activation, leading to neuroprotective effects.
Collapse
Affiliation(s)
- Sophie Lenoir
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, Grenoble, France
| | - Romane A Lahaye
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, Grenoble, France
| | - Hélène Vitet
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, Grenoble, France
| | - Chiara Scaramuzzino
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, Grenoble, France
| | - Amandine Virlogeux
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, Grenoble, France
| | - Laetitia Capellano
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, Grenoble, France
| | - Aurélie Genoux
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, Grenoble, France
| | | | | | - Michael R Hayden
- Prilenia Therapeutics, Herzliya, Israel; The Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frédéric Saudou
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, Grenoble, France..
| |
Collapse
|
4
|
Estévez-Silva HM, Cuesto G, Romero N, Brito-Armas JM, Acevedo-Arozena A, Acebes Á, Marcellino DJ. Pridopidine Promotes Synaptogenesis and Reduces Spatial Memory Deficits in the Alzheimer's Disease APP/PS1 Mouse Model. Neurotherapeutics 2022; 19:1566-1587. [PMID: 35917088 PMCID: PMC9606189 DOI: 10.1007/s13311-022-01280-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2022] [Indexed: 10/16/2022] Open
Abstract
Sigma-1 receptor agonists have recently gained a great deal of interest due to their anti-amnesic, neuroprotective, and neurorestorative properties. Compounds such as PRE-084 or pridopidine (ACR16) are being studied as a potential treatment against cognitive decline associated with neurodegenerative disease, also to include Alzheimer's disease. Here, we performed in vitro experiments using primary neuronal cell cultures from rats to evaluate the abilities of ACR16 and PRE-084 to induce new synapses and spines formation, analyzing the expression of the possible genes and proteins involved. We additionally examined their neuroprotective properties against neuronal death mediated by oxidative stress and excitotoxicity. Both ACR16 and PRE-084 exhibited a concentration-dependent neuroprotective effect against NMDA- and H2O2-related toxicity, in addition to promoting the formation of new synapses and dendritic spines. However, only ACR16 generated dendritic spines involved in new synapse establishment, maintaining a more expanded activation of MAPK/ERK and PI3K/Akt signaling cascades. Consequently, ACR16 was also evaluated in vivo, and a dose of 1.5 mg/kg/day was administered intraperitoneally in APP/PS1 mice before performing the Morris water maze. ACR16 diminished the spatial learning and memory deficits observed in APP/PS1 transgenic mice via PI3K/Akt pathway activation. These data point to ACR16 as a pharmacological tool to prevent synapse loss and memory deficits associated with Alzheimer's disease, due to its neuroprotective properties against oxidative stress and excitotoxicity, as well as the promotion of new synapses and spines through a mechanism that involves AKT and ERK signaling pathways.
Collapse
Affiliation(s)
- Héctor M Estévez-Silva
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Germán Cuesto
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Ninovska Romero
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - José Miguel Brito-Armas
- Unidad de Investigación, Hospital Universitario de Canarias, ITB-ULL/CIBERNED, Tenerife, Spain
| | - Abraham Acevedo-Arozena
- Unidad de Investigación, Hospital Universitario de Canarias, ITB-ULL/CIBERNED, Tenerife, Spain
| | - Ángel Acebes
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain.
| | | |
Collapse
|
5
|
Estévez-Silva HM, Mediavilla T, Giacobbo BL, Liu X, Sultan FR, Marcellino DJ. Pridopidine modifies disease phenotype in a SOD1 mouse model of Amyotrophic Lateral Sclerosis. Eur J Neurosci 2022; 55:1356-1372. [PMID: 35080077 PMCID: PMC9305776 DOI: 10.1111/ejn.15608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal and incurable neurodegenerative disease due to the loss of upper and lower motor neurons, which leads to muscle weakness, atrophy, and paralysis. Sigma‐1 receptor (σ‐1R) is a ligand‐operated protein that exhibits pro‐survival and anti‐apoptotic properties. In addition, mutations in its codifying gene are linked to development of juvenile ALS pointing to an important role in ALS. Here, we investigated the disease‐modifying effects of pridopidine, a σ‐1R agonist, using a delayed onset SOD1 G93A mouse model of ALS. Mice were administered a continuous release of pridopidine (3.0 mg/kg/day) for 4 weeks starting before the appearance of any sign of muscle weakness. Mice were monitored weekly and several behavioural tests were used to evaluate muscle strength, motor coordination and gait patterns. Pridopidine‐treated SOD1 G93A mice showed genotype‐specific effects with the prevention of cachexia. In addition, these effects exhibited significant improvement of motor behaviour 5 weeks after treatment ended. However, the survival of the animals was not extended. In summary, these results show that pridopidine can modify the disease phenotype of ALS‐associated cachexia and motor deficits in a SOD1 G93A mouse model.
Collapse
Affiliation(s)
- Héctor M Estévez-Silva
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Tomás Mediavilla
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Xijia Liu
- Umeå School of Business, Economics and Statistics, Umeå University, Umeå, Sweden
| | - Fahad R Sultan
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
6
|
Rodríguez LR, Lapeña-Luzón T, Benetó N, Beltran-Beltran V, Pallardó FV, Gonzalez-Cabo P, Navarro JA. Therapeutic Strategies Targeting Mitochondrial Calcium Signaling: A New Hope for Neurological Diseases? Antioxidants (Basel) 2022; 11:antiox11010165. [PMID: 35052668 PMCID: PMC8773297 DOI: 10.3390/antiox11010165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Calcium (Ca2+) is a versatile secondary messenger involved in the regulation of a plethora of different signaling pathways for cell maintenance. Specifically, intracellular Ca2+ homeostasis is mainly regulated by the endoplasmic reticulum and the mitochondria, whose Ca2+ exchange is mediated by appositions, termed endoplasmic reticulum-mitochondria-associated membranes (MAMs), formed by proteins resident in both compartments. These tethers are essential to manage the mitochondrial Ca2+ influx that regulates the mitochondrial function of bioenergetics, mitochondrial dynamics, cell death, and oxidative stress. However, alterations of these pathways lead to the development of multiple human diseases, including neurological disorders, such as amyotrophic lateral sclerosis, Friedreich's ataxia, and Charcot-Marie-Tooth. A common hallmark in these disorders is mitochondrial dysfunction, associated with abnormal mitochondrial Ca2+ handling that contributes to neurodegeneration. In this work, we highlight the importance of Ca2+ signaling in mitochondria and how the mechanism of communication in MAMs is pivotal for mitochondrial maintenance and cell homeostasis. Lately, we outstand potential targets located in MAMs by addressing different therapeutic strategies focused on restoring mitochondrial Ca2+ uptake as an emergent approach for neurological diseases.
Collapse
Affiliation(s)
- Laura R. Rodríguez
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Correspondence: (L.R.R.); (P.G.-C.); (J.A.N.)
| | - Tamara Lapeña-Luzón
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Noelia Benetó
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Vicent Beltran-Beltran
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
| | - Federico V. Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Pilar Gonzalez-Cabo
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (T.L.-L.); (N.B.); (V.B.-B.); (F.V.P.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Correspondence: (L.R.R.); (P.G.-C.); (J.A.N.)
| | - Juan Antonio Navarro
- Department of Genetics, Universitat de València-INCLIVA, 46100 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- Correspondence: (L.R.R.); (P.G.-C.); (J.A.N.)
| |
Collapse
|
7
|
Asla MM, Nawar AA, Abdelsalam A, Elsayed E, Rizk MA, Hussein MA, Kamel WA. The Efficacy and Safety of Pridopidine on Treatment of Patients with Huntington's Disease: A Systematic Review and Meta-Analysis. Mov Disord Clin Pract 2022; 9:20-30. [PMID: 35005061 PMCID: PMC8721839 DOI: 10.1002/mdc3.13357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/02/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pridopidine is a novel drug that helps stabilize psychomotor function in patients with Huntington's disease (HD) by activating the cortical glutamate pathway. It promises to achieve the unmet needs of current therapies of HD without worsening other symptoms. OBJECTIVE To review the literature discussing the efficacy of pridopidine in alleviating motor symptoms and its safety in patients with HD. METHODS We searched Scopus, Web of Science, the Cochrane Library, Wiley, and PubMed for randomized controlled trials (RCTs) of pridopidine on HD. Data from eligible studies were extracted and pooled as mean differences for efficacy and risk ratios (RRs) for safety using RevMan software version 5.3. RESULTS A total of 4 relevant RCTs with 1130 patients were selected (816 in the pridopidine group and 314 in the placebo group). The pooled effect size favored pridopidine over placebo insignificantly in the Unified Huntington's Disease Rating Scale Total Motor Score (mean difference [MD], -0.93; 95% confidence interval [CI], -2.01 to 0.14; P = 0.09), whereas the effect size of 3 studies significantly favored pridopidine over placebo in the Unified Huntington's Disease Rating Scale Modified Motor Score (MD, -0.81; 95% CI, -1.48 to -0.13; P = 0.02). Pridopidine generally was well tolerated. None of the adverse effects were considerably higher in the case of pridopidine compared with placebo in overall adverse events (RR, 1.03; 95% CI, 0.94-1.13; P = 0.49) and serious adverse events (RR, 1.62; 95% CI, 0.88-2.99; P = 0.12). CONCLUSION The effects of pridopidine on motor functions (especially voluntary movements) in patients with HD are encouraging and provide a good safety profile that motivates further clinical trials on patients to confirm its effectiveness and safety.
Collapse
Affiliation(s)
| | | | - Alaa Abdelsalam
- Faculty of Human MedicineZagazig UniversityZagazig CityEgypt
| | - Esraa Elsayed
- Faculty of Human MedicineZagazig UniversityZagazig CityEgypt
| | | | | | - Walaa A. Kamel
- Neurology Department, Faculty of MedicineBeni‐Suef UniversityBeni SuefEgypt
- Neurology DepartmentIbn Sina HospitalKuwait cityKuwait
| |
Collapse
|
8
|
Sharma N, Patel C, Shenkman M, Kessel A, Ben-Tal N, Lederkremer GZ. The Sigma-1 receptor is an ER-localized type II membrane protein. J Biol Chem 2021; 297:101299. [PMID: 34648767 PMCID: PMC8561001 DOI: 10.1016/j.jbc.2021.101299] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/10/2022] Open
Abstract
The Sigma-1 receptor (S1R) is a transmembrane protein with important roles in cellular homeostasis in normal physiology and in disease. Especially in neurodegenerative diseases, S1R activation has been shown to provide neuroprotection by modulating calcium signaling, mitochondrial function and reducing endoplasmic reticulum (ER) stress. S1R missense mutations are one of the causes of the neurodegenerative Amyotrophic Lateral Sclerosis and distal hereditary motor neuronopathies. Although the S1R has been studied intensively, basic aspects remain controversial, such as S1R topology and whether it reaches the plasma membrane. To address these questions, we have undertaken several approaches. C-terminal tagging with a small biotin-acceptor peptide and BirA biotinylation in cells suggested a type II membrane orientation (cytosolic N-terminus). However, N-terminal tagging gave an equal probability for both possible orientations. This might explain conflicting reports in the literature, as tags may affect the protein topology. Therefore, we studied untagged S1R using a protease protection assay and a glycosylation mapping approach, introducing N-glycosylation sites. Both methods provided unambiguous results showing that the S1R is a type II membrane protein with a short cytosolic N-terminal tail. Assessments of glycan processing, surface fluorescence-activated cell sorting, and cell surface biotinylation indicated ER retention, with insignificant exit to the plasma membrane, in the absence or presence of S1R agonists or of ER stress. These findings may have important implications for S1R-based therapeutic approaches.
Collapse
Affiliation(s)
- Neeraj Sharma
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Chaitanya Patel
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Marina Shenkman
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Amit Kessel
- School of Neurobiology, Biochemistry and Biophysics, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nir Ben-Tal
- School of Neurobiology, Biochemistry and Biophysics, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gerardo Z Lederkremer
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
9
|
Jabłońska M, Grzelakowska K, Wiśniewski B, Mazur E, Leis K, Gałązka P. Pridopidine in the treatment of Huntington's disease. Rev Neurosci 2021; 31:441-451. [PMID: 32083454 DOI: 10.1515/revneuro-2019-0085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023]
Abstract
Huntington's disease (HD) is a highly common inherited monogenic neurodegenerative disease, and the gene responsible for its development is located in the 4p16.3 chromosome. The product of that gene mutation is an abnormal huntingtin (Htt) protein that disrupts the neural conduction, thus leading to motor and cognitive disorders. The disease progresses to irreversible changes in the central nervous system (CNS). Although only a few drugs are available to symptomatic treatment, 'dopamine stabilizers' (as represented by the pridopidine) may be the new treatment options. The underlying causes of HD are dopaminergic conduction disorders. Initially, the disease is hyperkinetic (chorea) until it eventually reaches the hypokinetic phase. Studies confirmed a correlation between the amount of dopamine in the CNS and the stage of the disease. Pridopidine has the capacity to be a dopamine buffer, which could increase or decrease the dopamine content depending on the disease phase. A research carried out on animal models demonstrated the protective effect of pridopidine on nerve cells thanks to its ability to alter the cortical glutamatergic signaling through the N-methyl-D-aspartate (NMDA) receptors. Studies on dopamine stabilizers also reported that pridopidine has a 100-fold greater affinity for the sigma-1 receptor than for the D2 receptor. Disturbances in the activity of sigma-1 receptors occur in neurodegenerative diseases, including HD. Their interaction with pridopidine results in the neuroprotective effect, which is manifested as an increase in the plasticity of synaptic neurons and prevention of their atrophy within the striatum. To determine the effectiveness of pridopidine in the treatment of HD, large multicenter randomized studies such as HART, MermaiHD, and PRIDE-HD were carried out.
Collapse
Affiliation(s)
- Magdalena Jabłońska
- Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Klaudyna Grzelakowska
- Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Bartłomiej Wiśniewski
- Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Ewelina Mazur
- Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Kamil Leis
- Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Przemysław Gałązka
- Department of General and Oncological Pediatric Surgery, Antoni Jurasz University Hospital No. 1 in Bydgoszcz, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| |
Collapse
|
10
|
Shenkman M, Geva M, Gershoni-Emek N, Hayden MR, Lederkremer GZ. Pridopidine reduces mutant huntingtin-induced endoplasmic reticulum stress by modulation of the Sigma-1 receptor. J Neurochem 2021; 158:467-481. [PMID: 33871049 DOI: 10.1111/jnc.15366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/18/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER)-localized Sigma-1 receptor (S1R) is neuroprotective in models of neurodegenerative diseases, among them Huntington disease (HD). Recent clinical trials in HD patients and preclinical studies in cellular and mouse HD models suggest a therapeutic potential for the high-affinity S1R agonist pridopidine. However, the molecular mechanisms of the cytoprotective effect are unclear. We have previously reported strong induction of ER stress by toxic mutant huntingtin (mHtt) oligomers, which is reduced upon sequestration of these mHtt oligomers into large aggregates. Here, we show that pridopidine significantly ameliorates mHtt-induced ER stress in cellular HD models, starting at low nanomolar concentrations. Pridopidine reduced the levels of markers of the three branches of the unfolded protein response (UPR), showing the strongest effects on the PKR-like endoplasmic reticulum kinase (PERK) branch. The effect is S1R-dependent, as it is abolished in cells expressing mHtt in which the S1R was deleted using CRISPR/Cas9 technology. mHtt increased the level of the detergent-insoluble fraction of S1R, suggesting a compensatory cellular mechanism that responds to increased ER stress. Pridopidine further enhanced the levels of insoluble S1R, suggesting the stabilization of activated S1R oligomers. These S1R oligomeric species appeared in ER-localized patches, and not in the mitochondria-associated membranes nor the ER-derived quality control compartment. The colocalization of S1R with the chaperone BiP was significantly reduced by mHtt, and pridopidine restored this colocalization to normal, unstressed levels. Pridopidine increased toxic oligomeric mHtt recruitment into less toxic large sodium dodecyl sulfate-insoluble aggregates, suggesting that this in turn reduces ER stress and cytotoxicity.
Collapse
Affiliation(s)
- Marina Shenkman
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Michal Geva
- Prilenia Therapeutics Development LTD, Herzliya, Israel
| | | | | | - Gerardo Z Lederkremer
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Abatematteo FS, Niso M, Contino M, Leopoldo M, Abate C. Multi-Target Directed Ligands (MTDLs) Binding the σ 1 Receptor as Promising Therapeutics: State of the Art and Perspectives. Int J Mol Sci 2021; 22:6359. [PMID: 34198620 PMCID: PMC8232171 DOI: 10.3390/ijms22126359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 11/18/2022] Open
Abstract
The sigma-1 (σ1) receptor is a 'pluripotent chaperone' protein mainly expressed at the mitochondria-endoplasmic reticulum membrane interfaces where it interacts with several client proteins. This feature renders the σ1 receptor an ideal target for the development of multifunctional ligands, whose benefits are now recognized because several pathologies are multifactorial. Indeed, the current therapeutic regimens are based on the administration of different classes of drugs in order to counteract the diverse unbalanced physiological pathways associated with the pathology. Thus, the multi-targeted directed ligand (MTDL) approach, with one molecule that exerts poly-pharmacological actions, may be a winning strategy that overcomes the pharmacokinetic issues linked to the administration of diverse drugs. This review aims to point out the progress in the development of MTDLs directed toward σ1 receptors for the treatment of central nervous system (CNS) and cancer diseases, with a focus on the perspectives that are proper for this strategy. The evidence that some drugs in clinical use unintentionally bind the σ1 protein (as off-target) provides a proof of concept of the potential of this strategy, and it strongly supports the promise that the σ1 receptor holds as a target to be hit in the context of MTDLs for the therapy of multifactorial pathologies.
Collapse
Affiliation(s)
| | | | | | | | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, 70125 Bari, Italy; (F.S.A.); (M.N.); (M.C.); (M.L.)
| |
Collapse
|
12
|
Maurice T. Bi-phasic dose response in the preclinical and clinical developments of sigma-1 receptor ligands for the treatment of neurodegenerative disorders. Expert Opin Drug Discov 2021; 16:373-389. [PMID: 33070647 DOI: 10.1080/17460441.2021.1838483] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022]
Abstract
Introduction: The sigma-1 receptor (S1R) is attracting much attention for disease-modifying therapies in neurodegenerative diseases. It is a conserved protein, present in plasma and endoplasmic reticulum (ER) membranes and enriched in mitochondria-associated ER membranes (MAMs). It modulates ER-mitochondria Ca2+ transfer and ER stress pathways. Mitochondrial and MAM dysfunctions contribute to neurodegenerative processes in diseases such as Alzheimer, Parkinson, Huntington or Amyotrophic Lateral Sclerosis. Interestingly, the S1R can be activated by small druggable molecules and accumulating preclinical data suggest that S1R agonists are effective protectants in these neurodegenerative diseases.Area covered: In this review, we will present the data showing the high therapeutic potential of S1R drugs for the treatment of neurodegenerative diseases, focusing on pridopidine as a potent and selective S1R agonist under clinical development. Of particular interest is the bi-phasic (bell-shaped) dose-response effect, representing a common feature of all S1R agonists and described in numerous preclinical models in vitro, in vivo and in clinical trials.Expert opinion: S1R agonists modulate inter-organelles communication altered in neurodegenerative diseases and activate intracellular survival pathways. Research will continue growing in the future. The particular cellular nature of this chaperone protein must be better understood to facilitate the clinical developement of promising molecules.
Collapse
Affiliation(s)
- Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, UMR_S1198, Montpellier, France
| |
Collapse
|
13
|
Naia L, Ly P, Mota SI, Lopes C, Maranga C, Coelho P, Gershoni-Emek N, Ankarcrona M, Geva M, Hayden MR, Rego AC. The Sigma-1 Receptor Mediates Pridopidine Rescue of Mitochondrial Function in Huntington Disease Models. Neurotherapeutics 2021; 18:1017-1038. [PMID: 33797036 PMCID: PMC8423985 DOI: 10.1007/s13311-021-01022-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2021] [Indexed: 12/23/2022] Open
Abstract
Pridopidine is a selective Sigma-1 receptor (S1R) agonist in clinical development for Huntington disease (HD) and amyotrophic lateral sclerosis. S1R is a chaperone protein localized in mitochondria-associated endoplasmic reticulum (ER) membranes, a signaling platform that regulates Ca2+ signaling, reactive oxygen species (ROS) and mitochondrial fission. Here, we investigate the protective effects of pridopidine on various mitochondrial functions in human and mouse HD models. Pridopidine effects on mitochondrial dynamics were assessed in primary neurons from YAC128 HD mice expressing the mutant human HTT gene. We observe that pridopidine prevents the disruption of mitochondria-ER contact sites and improves the co-localization of inositol 1,4,5-trisphosphate receptor (IP3R) and its chaperone S1R with mitochondria in YAC128 neurons, leading to increased mitochondrial activity, elongation, and motility. Increased mitochondrial respiration is also observed in YAC128 neurons and in pridopidine-treated HD human neural stem cells (hNSCs). ROS levels were assessed after oxidative insult or S1R knockdown in pridopidine-treated YAC128 neurons, HD hNSCs, and human HD lymphoblasts. All HD models show increased ROS levels and deficient antioxidant response, which are efficiently rescued with pridopidine. Importantly, pridopidine treatment before H2O2-induced mitochondrial dysfunction and S1R presence are required for HD cytoprotection. YAC128 mice treated at early/pre-symptomatic age with pridopidine show significant improvement in motor coordination, indicating a delay in symptom onset. Additionally, in vivo pridopidine treatment reduces mitochondrial ROS levels by normalizing mitochondrial complex activity. In conclusion, S1R-mediated enhancement of mitochondrial function contributes to the neuroprotective effects of pridopidine, providing insight into its mechanism of action and therapeutic potential.
Collapse
Affiliation(s)
- Luana Naia
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Neurobiology, Care Science and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Philip Ly
- The Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sandra I Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carla Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carina Maranga
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Patrícia Coelho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | - Maria Ankarcrona
- Department of Neurobiology, Care Science and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | | | - Michael R Hayden
- The Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Prilenia Therapeutics LTD, Herzliya, Israel
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
14
|
Abstract
Significance: The molecular processes that determine Huntington's disease (HD) pathogenesis are not yet fully understood, and until now no effective neuroprotective therapeutic strategies have been developed. Mitochondria are one of most important organelles required for neuronal homeostasis, by providing metabolic pathways relevant for energy production, regulating calcium homeostasis, or controlling free radical generation and cell death. Because augmented reactive oxygen species (ROS) accompanied by mitochondrial dysfunction are relevant early HD mechanisms, targeting these cellular mechanisms may constitute relevant therapeutic approaches. Recent Advances: Previous findings point toward a close relationship between mitochondrial dysfunction and redox changes in HD. Mutant huntingtin (mHTT) can directly interact with mitochondrial proteins, as translocase of the inner membrane 23 (TIM23), disrupting mitochondrial proteostasis and favoring ROS production and HD progression. Furthermore, abnormal brain and muscle redox signaling contributes to altered proteostasis and motor impairment in HD, which can be improved with the mitochondria-targeted antioxidant mitoquinone or resveratrol, an SIRT1 activator that ameliorates mitochondrial biogenesis and function. Critical Issues: Various antioxidants and metabolic enhancers have been studied in HD; however, the real outcome of these molecules is still debatable. New compounds have proven to ameliorate mitochondrial and redox-based signaling pathways in early stages of HD, potentially precluding selective neurodegeneration. Future Directions: Unraveling the molecular etiology of deregulated mitochondrial function and dynamics, and oxidative stress opens new prospects for HD therapeutics. In this review, we explore the role of redox unbalance and mitochondrial dysfunction in HD progression, and further describe advances on clinical trials in HD based on mitochondrial and redox-based therapeutic strategies.
Collapse
Affiliation(s)
- Lígia Fão
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Cristina Rego
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
15
|
Agha H, McCurdy CR. In vitro and in vivo sigma 1 receptor imaging studies in different disease states. RSC Med Chem 2021; 12:154-177. [PMID: 34046607 PMCID: PMC8127618 DOI: 10.1039/d0md00186d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
The sigma receptor system has been classified into two distinct subtypes, sigma 1 (σ1R) and sigma 2 (σ2R). Sigma 1 receptors (σ1Rs) are involved in many neurodegenerative diseases and different central nervous system disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia, and drug addiction, and pain. This makes them attractive targets for developing radioligands as tools to gain a better understanding of disease pathophysiology and clinical diagnosis. Over the years, several σ1R radioligands have been developed to image the changes in σ1R distribution and density providing insights into their role in disease development. Moreover, the involvement of both σ1Rs and σ2Rs with cancer make these ligands, especially those that are σ2R selective, great tools for imaging different types of tumors. This review will discuss the principles of molecular imaging using PET and SPECT, known σ1R radioligands and their applications for labelling σ1Rs under different disease conditions. Furthermore, this review will highlight σ1R radioligands that have demonstrated considerable potential as biomarkers, and an opportunity to fulfill the ultimate goal of better healthcare outcomes and improving human health.
Collapse
Affiliation(s)
- Hebaalla Agha
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA +(352) 273 7705 +1 (352) 294 8691
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA +(352) 273 7705 +1 (352) 294 8691
- UF Translational Drug Development Core, University of Florida Gainesville FL 32610 USA
| |
Collapse
|
16
|
McAlary L, Chew YL, Lum JS, Geraghty NJ, Yerbury JJ, Cashman NR. Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises. Front Cell Neurosci 2020; 14:581907. [PMID: 33328890 PMCID: PMC7671971 DOI: 10.3389/fncel.2020.581907] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of the motor neurons that innervate muscle, resulting in gradual paralysis and culminating in the inability to breathe or swallow. This neuronal degeneration occurs in a spatiotemporal manner from a point of onset in the central nervous system (CNS), suggesting that there is a molecule that spreads from cell-to-cell. There is strong evidence that the onset and progression of ALS pathology is a consequence of protein misfolding and aggregation. In line with this, a hallmark pathology of ALS is protein deposition and inclusion formation within motor neurons and surrounding glia of the proteins TAR DNA-binding protein 43, superoxide dismutase-1, or fused in sarcoma. Collectively, the observed protein aggregation, in conjunction with the spatiotemporal spread of symptoms, strongly suggests a prion-like propagation of protein aggregation occurs in ALS. In this review, we discuss the role of protein aggregation in ALS concerning protein homeostasis (proteostasis) mechanisms and prion-like propagation. Furthermore, we examine the experimental models used to investigate these processes, including in vitro assays, cultured cells, invertebrate models, and murine models. Finally, we evaluate the therapeutics that may best prevent the onset or spread of pathology in ALS and discuss what lies on the horizon for treating this currently incurable disease.
Collapse
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Yee Lian Chew
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Stephen Lum
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Nicholas John Geraghty
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Justin John Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Neil R. Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Grachev ID, Meyer PM, Becker GA, Bronzel M, Marsteller D, Pastino G, Voges O, Rabinovich L, Knebel H, Zientek F, Rullmann M, Sattler B, Patt M, Gerhards T, Strauss M, Kluge A, Brust P, Savola JM, Gordon MF, Geva M, Hesse S, Barthel H, Hayden MR, Sabri O. Sigma-1 and dopamine D2/D3 receptor occupancy of pridopidine in healthy volunteers and patients with Huntington disease: a [ 18F] fluspidine and [ 18F] fallypride PET study. Eur J Nucl Med Mol Imaging 2020; 48:1103-1115. [PMID: 32995944 PMCID: PMC8041674 DOI: 10.1007/s00259-020-05030-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/07/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE Pridopidine is an investigational drug for Huntington disease (HD). Pridopidine was originally thought to act as a dopamine stabilizer. However, pridopidine shows highest affinity to the sigma-1 receptor (S1R) and enhances neuroprotection via the S1R in preclinical studies. Using [18F] fluspidine and [18F] fallypride PET, the purpose of this study was to assess in vivo target engagement/receptor occupancy of pridopidine to the S1R and dopamine D2/D3 receptor (D2/D3R) at clinical relevant doses in healthy volunteers (HVs) and as proof-of-concept in a small number of patients with HD. METHODS Using [18F] fluspidine PET (300 MBq, 0-90 min), 11 male HVs (pridopidine 0.5 to 90 mg; six dose groups) and three male patients with HD (pridopidine 90 mg) were investigated twice, without and 2 h after single dose of pridopidine. Using [18F] fallypride PET (200 MBq, 0-210 min), four male HVs were studied without and 2 h following pridopidine administration (90 mg). Receptor occupancy was analyzed by the Lassen plot. RESULTS S1R occupancy as function of pridopidine dose (or plasma concentration) in HVs could be described by a three-parameter Hill equation with a Hill coefficient larger than one. A high degree of S1R occupancy (87% to 91%) was found throughout the brain at pridopidine doses ranging from 22.5 to 90 mg. S1R occupancy was 43% at 1 mg pridopidine. In contrast, at 90 mg pridopidine, the D2/D3R occupancy was only minimal (~ 3%). CONCLUSIONS Our PET findings indicate that at clinically relevant single dose of 90 mg, pridopidine acts as a selective S1R ligand showing near to complete S1R occupancy with negligible occupancy of the D2/D3R. The dose S1R occupancy relationship suggests cooperative binding of pridopidine to the S1R. Our findings provide significant clarification about pridopidine's mechanism of action and support further use of the 45-mg twice-daily dose to achieve full and selective targeting of the S1R in future clinical trials of neurodegenerative disorders. Clinical Trials.gov Identifier: NCT03019289 January 12, 2017; EUDRA-CT-Nr. 2016-001757-41.
Collapse
Affiliation(s)
- Igor D Grachev
- Teva Branded Pharmaceutical Products R&D, Inc, Malvern, PA, 19355, USA.,Guide Pharmaceutical Consulting, LLC, Millstone, NJ, 08535, USA
| | - Philipp M Meyer
- Department of Nuclear Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Georg A Becker
- Department of Nuclear Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Marcus Bronzel
- ABX-CRO Advanced Pharmaceutical Services Forschungsgesellschaft mbH, Dresden, Germany
| | - Doug Marsteller
- Teva Branded Pharmaceutical Products R&D, Inc, Frazer, PA, 19355, USA
| | - Gina Pastino
- Teva Branded Pharmaceutical Products R&D, Inc, Frazer, PA, 19355, USA
| | - Ole Voges
- ABX-CRO Advanced Pharmaceutical Services Forschungsgesellschaft mbH, Dresden, Germany
| | - Laura Rabinovich
- Teva Branded Pharmaceutical Products R&D, Inc, Frazer, PA, 19355, USA
| | - Helena Knebel
- Teva Branded Pharmaceutical Products R&D, Inc, Frazer, PA, 19355, USA
| | - Franziska Zientek
- Department of Nuclear Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Bernhard Sattler
- Department of Nuclear Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Thilo Gerhards
- Department of Nuclear Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Maria Strauss
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany
| | - Andreas Kluge
- ABX-CRO Advanced Pharmaceutical Services Forschungsgesellschaft mbH, Dresden, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig, Germany
| | - Juha-Matti Savola
- Teva Branded Pharmaceutical Products R&D, Inc, Frazer, PA, 19355, USA
| | - Mark F Gordon
- Teva Branded Pharmaceutical Products R&D, Inc, Frazer, PA, 19355, USA
| | - Michal Geva
- Prilenia Therapeutics Development Ltd., Herzliya, Israel
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
18
|
Brimson JM, Brimson S, Chomchoei C, Tencomnao T. Using sigma-ligands as part of a multi-receptor approach to target diseases of the brain. Expert Opin Ther Targets 2020; 24:1009-1028. [PMID: 32746649 DOI: 10.1080/14728222.2020.1805435] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The sigma receptors are found abundantly in the central nervous system and are targets for the treatment of various diseases, including Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD), depression, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). However, for many of these diseases, other receptors and targets have been the focus of the most, such as acetylcholine esterase inhibitors in Alzheimer's and dopamine replacement in Parkinson's. The currently available drugs for these diseases have limited success resulting in the requirement of an alternative approach to their treatment. AREAS COVERED In this review, we discuss the potential role of the sigma receptors and their ligands as part of a multi receptor approach in the treatment of the diseases mentioned above. The literature reviewed was obtained through searches in databases, including PubMed, Web of Science, Google Scholar, and Scopus. EXPERT OPINION Given sigma receptor agonists provide neuroprotection along with other benefits such as potentiating the effects of other receptors, further development of multi-receptor targeting ligands, and or the development of multi-drug combinations to target multiple receptors may prove beneficial in the future treatment of degenerative diseases of the CNS, especially when coupled with better diagnostic techniques.
Collapse
Affiliation(s)
- James Michael Brimson
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Chanichon Chomchoei
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Tewin Tencomnao
- Age-related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University , Bangkok, Thailand
| |
Collapse
|
19
|
Gubert C, Renoir T, Hannan AJ. Why Woody got the blues: The neurobiology of depression in Huntington's disease. Neurobiol Dis 2020; 142:104958. [PMID: 32526274 DOI: 10.1016/j.nbd.2020.104958] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/02/2020] [Accepted: 06/03/2020] [Indexed: 02/03/2023] Open
Abstract
Huntington's disease (HD) is an extraordinary disorder that usually strikes when individuals are in the prime of their lives, as was the case for the influential 20th century musician Woody Guthrie. HD demonstrates the exceptionally fine line between life and death in such 'genetic diseases', as the only difference between those who suffer horribly and die slowly of this disease is often just a handful of extra tandem repeats (beyond the normal polymorphic range) in a genome that constitutes over 3 billion paired nucleotides of DNA. Furthermore, HD presents as a complex and heterogenous combination of psychiatric, cognitive and motor symptoms, so can appear as an unholy trinity of 'three disorders in one'. The autosomal dominant nature of the disorder is also extremely challenging for affected families, as a 'flip of a coin' dictates which children inherit the mutation from their affected parent, and the gene-negative family members bear the burden of caring for the other half of the family that is affected. In this review, we will focus on one of the earliest, and most devastating, symptoms associated with HD, depression, which has been reported to affect approximately half of gene-positive HD family members. We will discuss the pathogenesis of HD, and depressive symptoms in particular, including molecular and cellular mechanisms, and potential genetic and environmental modifiers. This expanding understanding of HD pathogenesis may not only lead to novel therapeutic options for HD families, but may also provide insights into depression in the wider population, which has the greatest burden of disease of any disorder and an enormous unmet need for new therapies.
Collapse
Affiliation(s)
- Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
20
|
Jia H, Cai Z, Holden D, He Y, Lin SF, Li S, Baum E, Shirali A, Kapinos M, Gao H, Ropchan J, Huang Y. Positron Emission Tomography Imaging Evaluation of a Novel 18F-Labeled Sigma-1 Receptor Radioligand in Cynomolgus Monkeys. ACS Chem Neurosci 2020; 11:1673-1681. [PMID: 32356969 DOI: 10.1021/acschemneuro.0c00171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We report a convenient radiosynthesis and the first positron emission tomography (PET) imaging evaluation of [18F]FBFP as a potent sigma-1 (σ1) receptor radioligand with advantageous characteristics. [18F]FBFP was synthesized in one step from an iodonium ylide precursor. In cynomolgus monkeys, [18F]FBFP displayed high brain uptake and suitable tissue kinetics for quantitative analysis. It exhibited heterogeneous distribution with higher regional volume of distribution (VT) values in the amygdala, hippocampus, insula, and frontal cortex. Pretreatment with the σ1 receptor agonist SA4503 (0.5 mg/kg) significantly reduced radioligand uptake in the monkey brain (>95%), indicating high binding specificity of [18F]FBFP in vivo. Compared with (S)-[18F]fluspidine, [18F]FBFP possessed higher regional nondisplaceable binding potential (BPND) values across the brain regions. These findings demonstrate that [18F]FBFP is a highly promising PET radioligand for imaging and quantification of σ1 receptors in humans.
Collapse
Affiliation(s)
- Hongmei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Daniel Holden
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Yingfang He
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shu-Fei Lin
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Songye Li
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Evan Baum
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Anupama Shirali
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Michael Kapinos
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Hong Gao
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Jim Ropchan
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
21
|
McGarry A, Auinger P, Kieburtz K, Geva M, Mehra M, Abler V, Grachev ID, Gordon MF, Savola JM, Gandhi S, Papapetropoulos S, Hayden M. Additional Safety and Exploratory Efficacy Data at 48 and 60 Months from Open-HART, an Open-Label Extension Study of Pridopidine in Huntington Disease. J Huntingtons Dis 2020; 9:173-184. [PMID: 32508327 DOI: 10.3233/jhd-190393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Open-HART was an open-label extension of HART, a randomized, double-blind, placebo-controlled study of pridopidine in Huntington disease (HD). Previously, we reported safety and exploratory efficacy data after 36 months of treatment with pridopidine 45 mg twice daily. In the interim, emerging data suggests pridopidine may have neuroprotective effects mediated by sigma-1 receptor agonism. OBJECTIVE To report additional safety and exploratory efficacy data for continued open-label use of 45 mg BID pridopidine at 48 and 60 months. METHODS Patients in Open-HART were followed up to or greater than 60 months. Adverse events, concomitant medications, vital signs, laboratory values, and ECG data were monitored. Rates of decline in total functional capacity (TFC) and total motor score (TMS) over 60 months were evaluated in an exploratory analysis and compared between Open-HART and placebo recipients from the 2CARE trial. To account for missing data, sensitivity analyses were performed. RESULTS Of the original Open-HART baseline cohort (N = 118), 40 remained in the study at 48 months and 33 at 60 months. Pridopidine remained safe and well tolerated over the 60-month interval. TFC and TMS at 48 and 60 months remained stable, showing less decline at these timepoints compared to historical placebo controls from the 2CARE trial. TFC differences at 48 and 60 months observed remained nominally significant after sensitivity analysis. CONCLUSION The 45 mg BID pridopidine dosage remained safe and tolerable over 60 months. Exploratory analyses show TFC and TMS stability at 48 and 60 months, in contrast to placebo historical controls from the 2CARE trial. Results are consistent with data reported from the recent Phase 2 PRIDE-HD trial showing less functional decline in the pridopidine 45 mg BID treated group at 52 weeks.
Collapse
Affiliation(s)
- Andrew McGarry
- Cooper University Health Care at Rowan University, Camden, NJ, USA
| | - Peggy Auinger
- University of Rochester Medical Center, Rochester, NY, USA
| | - Karl Kieburtz
- University of Rochester Medical Center, Rochester, NY, USA
| | | | - Munish Mehra
- Tigermed Data Solutions, Bengaluru, Karnataka, India
| | - Victor Abler
- Teva Pharmaceutical Industries, Kansas City, MO, USA
| | | | | | | | - Sanjay Gandhi
- Teva Pharmaceutical Industries, Kansas City, MO, USA
| | | | - Michael Hayden
- Prilenia Therapeutics, Herzliya, Israel
- CMMT, UBC, Canada
| |
Collapse
|
22
|
McGarry A, Leinonen M, Kieburtz K, Geva M, Olanow CW, Hayden M. Effects of Pridopidine on Functional Capacity in Early-Stage Participants from the PRIDE-HD Study. J Huntingtons Dis 2020; 9:371-380. [PMID: 33164941 PMCID: PMC7836066 DOI: 10.3233/jhd-200440] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND No pharmacological treatment has been demonstrated to provide a functional benefit for persons with Huntington's disease (HD). Pridopidine is a sigma-1-receptor agonist shown to have beneficial effects in preclinical models of HD. OBJECTIVE To further explore the effect of pridopidine on Total Functional Capacity (TFC) in the recent double-blind, placebo-controlled PRIDE-HD study. METHODS We performed post-hoc analyses to evaluate the effect of pridopidine on TFC at 26 and 52 weeks. Participants were stratified according to baseline TFC score and analyzed using repeated measures (MMRM) and multiple imputation assuming missing not-at-random (MNAR) and worst-case scenarios. RESULTS The pridopidine 45 mg bid dosage demonstrated a beneficial effect on TFC for the entire population at week 52 of 0.87 (nominal p = 0.0032). The effect was more pronounced for early HD participants (HD1/HD2, TFC = 7-13), with a change from placebo of 1.16 (nominal p = 0.0003). This effect remained nominally significant using multiple imputation with missing not at random assumption as a sensitivity analysis. Responder analyses showed pridopidine 45 mg bid reduced the probability of TFC decline in early HD patients at Week 52 (nominal p = 0.02). CONCLUSION Pridopidine 45 mg bid results in a nominally significant reduction in TFC decline at 52 weeks compared to placebo, particularly in patients with early-stage HD.
Collapse
Affiliation(s)
- Andrew McGarry
- Cooper University Healthcare at Rowan University, Camden, NJ, USA
- Clintrex Research Corporation, Sarasota, FL, USA
| | | | | | | | - C. Warren Olanow
- Mount Sinai School of Medicine, New York City, NY, USA
- Clintrex Research Corporation, Sarasota, FL, USA
| | - Michael Hayden
- Prilenia Therapeutics, Herzliya, Israel
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Delprat B, Crouzier L, Su TP, Maurice T. At the Crossing of ER Stress and MAMs: A Key Role of Sigma-1 Receptor? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:699-718. [PMID: 31646531 DOI: 10.1007/978-3-030-12457-1_28] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calcium exchanges and homeostasis are finely regulated between cellular organelles and in response to physiological signals. Besides ionophores, including voltage-gated Ca2+ channels, ionotropic neurotransmitter receptors, or Store-operated Ca2+ entry, activity of regulatory intracellular proteins finely tune Calcium homeostasis. One of the most intriguing, by its unique nature but also most promising by the therapeutic opportunities it bears, is the sigma-1 receptor (Sig-1R). The Sig-1R is a chaperone protein residing at mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), where it interacts with several partners involved in ER stress response, or in Ca2+ exchange between the ER and mitochondria. Small molecules have been identified that specifically and selectively activate Sig-1R (Sig-1R agonists or positive modulators) at the cellular level and that also allow effective pharmacological actions in several pre-clinical models of pathologies. The present review will summarize the recent data on the mechanism of action of Sig-1R in regulating Ca2+ exchanges and protein interactions at MAMs and the ER. As MAMs alterations and ER stress now appear as a common track in most neurodegenerative diseases, the intracellular action of Sig-1R will be discussed in the context of the recently reported efficacy of Sig-1R drugs in pathologies like Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Benjamin Delprat
- MMDN, University of Montpellier, EPHE, INSERM, U1198, Montpellier, France.
| | - Lucie Crouzier
- MMDN, University of Montpellier, EPHE, INSERM, U1198, Montpellier, France
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, IRP, NIDA/NIH, Baltimore, MD, USA
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, U1198, Montpellier, France
| |
Collapse
|
24
|
Ryskamp DA, Zhemkov V, Bezprozvanny I. Mutational Analysis of Sigma-1 Receptor's Role in Synaptic Stability. Front Neurosci 2019; 13:1012. [PMID: 31607852 PMCID: PMC6761230 DOI: 10.3389/fnins.2019.01012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/05/2019] [Indexed: 01/01/2023] Open
Abstract
Sigma-1 receptor (S1R) is an endoplasmic reticulum (ER) resident transmembrane protein. In our previous experiments, we demonstrated neuroprotective effects of pridopidine, an agonist of S1R, in cellular and animal models of Huntington’s disease (HD) and Alzheimer’s disease (AD). Consistent with previous observations, deletion of endogenous S1R with CRISPR/Cas9 in cultured hippocampal neurons resulted in fewer mushroom-shaped dendritic spines. Overexpression of human S1R restored mushroom spine density to control levels. In contrast, overexpression of S1R with the Δ31–50 deletion (linked to distal hereditary motor neuropathy) or the E102Q mutation (linked to amyotrophic lateral sclerosis) destabilized mushroom spines. Recently a crystal structure of S1R was determined in lipidic cubic phase. In the present study, we took an advantage of this structural information and performed docking studies with pridopidine and the S1R structural model. We generated a series of S1R point mutations based on residues predicted to be involved in direct association with pridopidine. We discovered that all ligand binding-site mutants were able to compensate for loss of endogenous S1R. However, most of these mutants were not able to support pridopidine-induced rescue of mushroom spines in presenilin-1-mutant cultures. Our mutational analysis was in agreement with in silico docking based on the published S1R crystal structure, with an exception of R119 residue. Our data also suggest that basal S1R activity is required for mature spine stability, whereas agonist-mediated S1R activity is required for stabilization of mushroom spines in the context of disease-causing mutations.
Collapse
Affiliation(s)
- Daniel A Ryskamp
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Vladimir Zhemkov
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, United States.,Laboratory of Molecular Neurodegeneration, Peter the Great Saint Petersburg State Polytechnic University, Saint Petersburg, Russia
| |
Collapse
|
25
|
Eddings CR, Arbez N, Akimov S, Geva M, Hayden MR, Ross CA. Pridopidine protects neurons from mutant-huntingtin toxicity via the sigma-1 receptor. Neurobiol Dis 2019; 129:118-129. [PMID: 31108174 PMCID: PMC6996243 DOI: 10.1016/j.nbd.2019.05.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by a CAG repeat expansion in the Huntingtin gene (HTT), translated into a Huntingtin protein with a polyglutamine expansion. There is preferential loss of medium spiny neurons within the striatum and cortical pyramidal neurons. Pridopidine is a small molecule showing therapeutic potential in HD preclinical and clinical studies. Pridopidine has nanomolar affinity to the sigma-1 receptor (sigma-1R), which is located predominantly at the endoplasmic reticulum (ER) and mitochondrial associated ER membrane, and activates neuroprotective pathways. Here we evaluate the neuroprotective effects of pridopidine against mutant Huntingtin toxicity in mouse and human derived in vitro cell models. We also investigate the involvement of the sigma-1 receptor in the mechanism of pridopidine. Pridopidine protects mutant Huntingtin transfected mouse primary striatal and cortical neurons, with an EC50 in the mid nanomolar range, as well as HD patient-derived induced pluripotent stem cells (iPSCs). This protection by pridopidine is blocked by NE-100, a purported sigma-1 receptor antagonist, and not blocked by ANA-12, a reported TrkB receptor antagonist. 3PPP, a documented sigma-1 receptor agonist, shows similar neuroprotective effects. Genetic knock out of the sigma-1 receptor dramatically decreases protection from pridopidine and 3PPP, but not protection via brain derived neurotrophic factor (BDNF). The neuroprotection afforded by pridopidine in our HD cell models is robust and sigma-1 receptor dependent. These studies support the further development of pridopidine, and other sigma-1 receptor agonists as neuroprotective agents for HD and perhaps for other disorders.
Collapse
Affiliation(s)
- Chelsy R Eddings
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America
| | - Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America
| | - Sergey Akimov
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America
| | - Michal Geva
- Prilenia Therapeutics Development LTD, Herzliya, Israel
| | - Michael R Hayden
- Prilenia Therapeutics Development LTD, Herzliya, Israel; Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America; Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States of America.
| |
Collapse
|
26
|
Ryskamp DA, Korban S, Zhemkov V, Kraskovskaya N, Bezprozvanny I. Neuronal Sigma-1 Receptors: Signaling Functions and Protective Roles in Neurodegenerative Diseases. Front Neurosci 2019; 13:862. [PMID: 31551669 PMCID: PMC6736580 DOI: 10.3389/fnins.2019.00862] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Sigma-1 receptor (S1R) is a multi-functional, ligand-operated protein situated in endoplasmic reticulum (ER) membranes and changes in its function and/or expression have been associated with various neurological disorders including amyotrophic lateral sclerosis/frontotemporal dementia, Alzheimer's (AD) and Huntington's diseases (HD). S1R agonists are broadly neuroprotective and this is achieved through a diversity of S1R-mediated signaling functions that are generally pro-survival and anti-apoptotic; yet, relatively little is known regarding the exact mechanisms of receptor functioning at the molecular level. This review summarizes therapeutically relevant mechanisms by which S1R modulates neurophysiology and implements neuroprotective functions in neurodegenerative diseases. These mechanisms are diverse due to the fact that S1R can bind to and modulate a large range of client proteins, including many ion channels in both ER and plasma membranes. We summarize the effect of S1R on its interaction partners and consider some of the cell type- and disease-specific aspects of these actions. Besides direct protein interactions in the endoplasmic reticulum, S1R is likely to function at the cellular/interorganellar level by altering the activity of several plasmalemmal ion channels through control of trafficking, which may help to reduce excitotoxicity. Moreover, S1R is situated in lipid rafts where it binds cholesterol and regulates lipid and protein trafficking and calcium flux at the mitochondrial-associated membrane (MAM) domain. This may have important implications for MAM stability and function in neurodegenerative diseases as well as cellular bioenergetics. We also summarize the structural and biochemical features of S1R proposed to underlie its activity. In conclusion, S1R is incredibly versatile in its ability to foster neuronal homeostasis in the context of several neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniel A. Ryskamp
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Svetlana Korban
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - Vladimir Zhemkov
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Nina Kraskovskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, United States
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| |
Collapse
|
27
|
Weber JJ, Clemensson LE, Schiöth HB, Nguyen HP. Olesoxime in neurodegenerative diseases: Scrutinising a promising drug candidate. Biochem Pharmacol 2019; 168:305-318. [PMID: 31283931 DOI: 10.1016/j.bcp.2019.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022]
Abstract
Over the last years, the experimental compound olesoxime, a mitochondria-targeting cholesterol derivative, has emerged as a promising drug candidate for neurodegenerative diseases. Numerous preclinical studies have successfully proved olesoxime's neuroprotective properties in cell and animal models of clinical conditions such as amyotrophic lateral sclerosis, Huntington disease, Parkinson disease, peripheral neuropathy and spinal muscular atrophy. The beneficial effects were attributed to olesoxime's potential impact on oxidative stress, mitochondrial permeability transition or cholesterol homoeostasis. Although no significant benefits have been demonstrated in patients of amyotrophic lateral sclerosis, and only the first 12 months of a phase II/III clinical trial showed an improvement in motor symptoms of spinal muscular atrophy, this orphan drug may still offer undiscovered potential in the treatment of neurological diseases. In our earlier preclinical studies, we demonstrated that administration of olesoxime in mouse and rat models of Huntington disease improved psychiatric and molecular phenotypes. Aside from stabilising mitochondrial function, the drug reduced the overactivation of calpains, a class of calcium-dependent proteases entangled in neurodegenerative conditions. This observation may be credited to olesoxime's action on calcium dyshomeostasis, a further hallmark in neurodegeneration, and linked to its targets TSPO and VDAC, two proteins of the outer mitochondrial membrane associated with mitochondrial calcium handling. Further research into the mode of action of olesoxime under pathological conditions, including its effect on neuronal calcium homeostasis, may strengthen the untapped potential of olesoxime or other similar compounds as a therapeutic for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonasz Jeremiasz Weber
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
| | | | - Helgi Birgir Schiöth
- Department of Neuroscience, Uppsala University, Uppsala, Sweden; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Department of Human Genetics, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
28
|
Smith‐Dijak AI, Sepers MD, Raymond LA. Alterations in synaptic function and plasticity in Huntington disease. J Neurochem 2019; 150:346-365. [DOI: 10.1111/jnc.14723] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/28/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Amy I. Smith‐Dijak
- Graduate Program in Neuroscience the University of British Columbia Vancouver British Columbia Canada
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health the University of British Columbia Vancouver British Columbia Canada
| | - Marja D. Sepers
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health the University of British Columbia Vancouver British Columbia Canada
| | - Lynn A. Raymond
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health the University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
29
|
Smith-Dijak AI, Nassrallah WB, Zhang LYJ, Geva M, Hayden MR, Raymond LA. Impairment and Restoration of Homeostatic Plasticity in Cultured Cortical Neurons From a Mouse Model of Huntington Disease. Front Cell Neurosci 2019; 13:209. [PMID: 31156395 PMCID: PMC6532531 DOI: 10.3389/fncel.2019.00209] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Huntington disease (HD) is an inherited neurodegenerative disorder caused by a mutation in the huntingtin gene. The onset of symptoms is preceded by synaptic dysfunction. Homeostatic synaptic plasticity (HSP) refers to processes that maintain the stability of networks of neurons, thought to be required to enable new learning and cognitive flexibility. One type of HSP is synaptic scaling, in which the strength of all of the synapses onto a cell increases or decreases following changes in the cell’s level of activity. Several pathways implicated in synaptic scaling are dysregulated in HD, including brain-derived neurotrophic factor (BDNF) and calcium signaling. Here, we investigated whether HSP is disrupted in cortical neurons from an HD mouse model. We treated cultured cortical neurons from wild-type (WT) FVB/N or YAC128 HD mice with tetrodotoxin (TTX) for 48 h to silence action potentials and then recorded miniature excitatory postsynaptic currents. In WT cultures, these increased in both amplitude and frequency after TTX treatment, and further experiments showed that this was a result of insertion of AMPA receptors and formation of new synapses, respectively. Manipulation of BDNF concentration in the culture medium revealed that BDNF signaling contributed to these changes. In contrast to WT cortical neurons, YAC128 cultures showed no response to action potential silencing. Strikingly, we were able to restore the TTX-induced changes in YAC128 cultures by treating them with pridopidine, a drug which enhances BDNF signaling through stimulation of the sigma-1 receptor (S1R), and with the S1R agonist 3-PPP. These data provide evidence for disruption of HSP in cortical neurons from an HD mouse model that is restored by stimulation of S1R. Our results suggest a potential new direction for developing therapy to mitigate cognitive deficits in HD.
Collapse
Affiliation(s)
- Amy I Smith-Dijak
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada.,Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| | - Wissam B Nassrallah
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada.,Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| | - Lily Y J Zhang
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| | - Michal Geva
- Research and Development, Teva Pharmaceutical Industries Ltd., Netanya, Israel
| | - Michael R Hayden
- Research and Development, Teva Pharmaceutical Industries Ltd., Netanya, Israel.,Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
| | - Lynn A Raymond
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Johnston TH, Geva M, Steiner L, Orbach A, Papapetropoulos S, Savola JM, Reynolds IJ, Ravenscroft P, Hill M, Fox SH, Brotchie JM, Laufer R, Hayden MR. Pridopidine, a clinic-ready compound, reduces 3,4-dihydroxyphenylalanine-induced dyskinesia in Parkinsonian macaques. Mov Disord 2019; 34:708-716. [PMID: 30575996 DOI: 10.1002/mds.27565] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pridopidine, in development for Huntington's disease, may modulate aberrant l-dopa-induced effects including l-dopa-induced dyskinesia (LID). OBJECTIVE This study investigated whether pridopidine could reduce LID in the MPTP macaque model of Parkinson's disease and characterized the observed behavioral effects in terms of receptor occupancy. METHODS The pharmacokinetic profile and effects of pridopidine (15-30 mg/kg) on parkinsonism, dyskinesia, and quality of on-time, in combination with l-dopa, were assessed in MPTP macaques with LID. Pridopidine receptor occupancy was estimated using known in vitro binding affinities to σ1 and dopamine D2 receptors, in vivo PET imaging, and pharmacokinetic profiling across different species. RESULTS Pridopidine produced a dose-dependent reduction in dyskinesia (up to 71%, 30 mg/kg) and decreased the duration of on-time with disabling dyskinesia evoked by l-dopa by 37% (20 mg/kg) and 60% (30 mg/kg). Pridopidine did not compromise the anti-parkinsonian benefit of l-dopa. Plasma exposures following the ineffective dose (15 mg/kg) were associated with full σ1 occupancy (>80%), suggesting that σ1 engagement alone is unlikely to account for the antidyskinetic benefits of pridopidine. Exposures following effective doses (20-30 mg/kg), while providing full σ1 occupancy, provide only modest dopamine D2 occupancy (<40%). However, effective pridopidine doses clearly engage a range of receptors (including adrenergic-α2C , dopamine-D3 , and serotoninergic-5-HT1A sites) to a higher degree than D2 and might contribute to the antidyskinetic actions. CONCLUSIONS In MPTP macaques, pridopidine produced a significant decrease in LID without compromising the antiparkinsonian benefit of l-dopa. Although the actions of pridopidine were associated with full σ1 occupancy, effective exposures are more likely associated with occupancy of additional, non-sigma receptors. This complex pharmacology may underlie the effectiveness of pridopidine against LID. © 2018 International Parkinson and Movement Disorder Society.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Animals
- Antiparkinson Agents/adverse effects
- Brain/diagnostic imaging
- Brain/metabolism
- Dyskinesia, Drug-Induced/drug therapy
- Dyskinesia, Drug-Induced/etiology
- Levodopa/adverse effects
- MPTP Poisoning/drug therapy
- Macaca fascicularis
- Movement/drug effects
- Parkinsonian Disorders/chemically induced
- Parkinsonian Disorders/drug therapy
- Piperidines/pharmacology
- Positron-Emission Tomography
- Receptor, Muscarinic M2/metabolism
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3/metabolism
- Receptors, Histamine H3/metabolism
- Receptors, sigma/metabolism
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Tom H Johnston
- Atuka Inc, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Michal Geva
- Prilenia Therapeutics Development Ltd., Herzliya, Israel (formerly 4)
| | - Lilach Steiner
- Global Research and Development, Teva Pharmaceutical Industries, Ltd., Netanya, Israel
| | - Aric Orbach
- Global Research and Development, Teva Pharmaceutical Industries, Ltd., Netanya, Israel
| | | | | | | | - Paula Ravenscroft
- Atuka Inc, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Michael Hill
- Atuka Inc, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Susan H Fox
- Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Jonathan M Brotchie
- Atuka Inc, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Ralph Laufer
- Lysogene S.A., Neuilly sur Seine, France (formerly 4)
| | - Michael R Hayden
- Prilenia Therapeutics Development Ltd., Herzliya, Israel (formerly 4)
| |
Collapse
|
31
|
Francardo V, Geva M, Bez F, Denis Q, Steiner L, Hayden MR, Cenci MA. Pridopidine Induces Functional Neurorestoration Via the Sigma-1 Receptor in a Mouse Model of Parkinson's Disease. Neurotherapeutics 2019; 16:465-479. [PMID: 30756361 PMCID: PMC6554374 DOI: 10.1007/s13311-018-00699-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pridopidine is a small molecule in clinical development for the treatment of Huntington's disease. It was recently found to have high binding affinity to the sigma-1 receptor, a chaperone protein involved in cellular defense mechanisms and neuroplasticity. Here, we have evaluated the neuroprotective and neurorestorative effects of pridopidine in a unilateral 6-hydroxydopamine (6-OHDA) lesion model of parkinsonism in mice. By 5 weeks of daily administration, a low dose of pridopidine (0.3 mg/kg) had significantly improved deficits in forelimb use (cylinder test, stepping test) and abolished the ipsilateral rotational bias typical of hemiparkinsonian animals. A higher dose of pridopidine (1 mg/kg) significantly improved only the rotational bias, with a trend towards improvement in forelimb use. The behavioral recovery induced by pridopidine 0.3 mg/kg was accompanied by a significant protection of nigral dopamine cell bodies, an increased dopaminergic fiber density in the striatum, and striatal upregulation of GDNF, BDNF, and phosphorylated ERK1/2. The beneficial effects of pridopidine 0.3 mg/kg were absent in 6-OHDA-lesioned mice lacking the sigma-1 receptor. Pharmacokinetic data confirmed that the effective dose of pridopidine reached brain concentrations sufficient to bind S1R. Our results are the first to show that pridopidine promotes functional neurorestoration in the damaged nigrostriatal system acting via the sigma-1 receptor.
Collapse
Affiliation(s)
- Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC F11, Lund, Sweden
| | | | - Francesco Bez
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC F11, Lund, Sweden
| | - Quentin Denis
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC F11, Lund, Sweden
| | - Lilach Steiner
- Teva Pharmaceutical Industries Global Research and Development, Netanya, Israel
| | | | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, BMC F11, Lund, Sweden.
| |
Collapse
|
32
|
Ryskamp D, Wu L, Wu J, Kim D, Rammes G, Geva M, Hayden M, Bezprozvanny I. Pridopidine stabilizes mushroom spines in mouse models of Alzheimer's disease by acting on the sigma-1 receptor. Neurobiol Dis 2019; 124:489-504. [PMID: 30594810 PMCID: PMC6363865 DOI: 10.1016/j.nbd.2018.12.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/12/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022] Open
Abstract
There is evidence that cognitive decline in Alzheimer's disease (AD) results from deficiencies in synaptic communication (e.g., loss of mushroom-shaped 'memory spines') and neurodegenerative processes. This might be treated with sigma-1 receptor (S1R) agonists, which are broadly neuroprotective and modulate synaptic plasticity. For example, we previously found that the mixed muscarinic/S1R agonist AF710B prevents mushroom spine loss in hippocampal cultures from APP knock-in (APP-KI) and presenilin-1-M146 V knock-in (PS1-KI) mice. We also found that the "dopaminergic stabilizer" pridopidine (structurally similar to the S1R agonist R(+)-3-PPP), is a high-affinity S1R agonist and is synaptoprotective in a mouse model of Huntington disease. Here we tested whether pridopidine and R(+)-3-PPP are synaptoprotective in models of AD and whether this requires S1R. We also examined the effects of pridopidine on long-term potentiation (LTP), endoplasmic reticulum calcium and neuronal store-operated calcium entry (nSOC) in spines, all of which are dysregulated in AD, contributing to synaptic pathology. We report here that pridopidine and 3-PPP protect mushroom spines from Aβ42 oligomer toxicity in primary WT hippocampal cultures from mice. Pridopidine also reversed LTP defects in hippocampal slices resulting from application of Aβ42 oligomers. Pridopidine and 3-PPP rescued mushroom spines in hippocampal cultures from APP-KI and PS1-KI mice. S1R knockdown from lenti-viral shRNA expression destabilized WT mushroom spines and prevented the synaptoprotective effects of pridopidine in PS1-KI cultures. Knockout of PS1/2 destabilized mushroom spines and pridopidine was unable to prevent this. Pridopidine lowered endoplasmic reticulum calcium levels in WT, PS1-KO, PS1-KI and PS2 KO neurons, but not in PS1/2 KO neurons. S1R was required for pridopidine to enhance spine nSOC in PS1-KI neurons. Pridopidine was unable to rescue PS1-KI mushroom spines during pharmacological or genetic inhibition of nSOC. Oral pridopidine treatment rescued mushroom spines in vivo in aged PS1-KI-GFP mice. Pridopidine stabilizes mushroom spines in mouse models of AD and this requires S1R, endoplasmic reticulum calcium leakage through PS1/2 and nSOC. Thus, pridopidine may be useful to explore for the treatment of AD.
Collapse
Affiliation(s)
- Daniel Ryskamp
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lili Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dabin Kim
- Department of Anesthesiology and Intensive Care, Technische Universität München, Munich 81675, Germany
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care, Technische Universität München, Munich 81675, Germany.
| | | | | | - Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.
| |
Collapse
|
33
|
Ionescu A, Gradus T, Altman T, Maimon R, Saraf Avraham N, Geva M, Hayden M, Perlson E. Targeting the Sigma-1 Receptor via Pridopidine Ameliorates Central Features of ALS Pathology in a SOD1 G93A Model. Cell Death Dis 2019; 10:210. [PMID: 30824685 PMCID: PMC6397200 DOI: 10.1038/s41419-019-1451-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/16/2018] [Accepted: 02/12/2019] [Indexed: 12/29/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease affecting both the upper and lower motor neurons (MNs), with no effective treatment currently available. Early pathological events in ALS include perturbations in axonal transport (AT), formation of toxic protein aggregates and Neuromuscular Junction (NMJ) disruption, which all lead to axonal degeneration and motor neuron death. Pridopidine is a small molecule that has been clinically developed for Huntington disease. Here we tested the efficacy of pridopidine for ALS using in vitro and in vivo models. Pridopidine beneficially modulates AT deficits and diminishes NMJ disruption, as well as motor neuron death in SOD1G93A MNs and in neuromuscular co-cultures. Furthermore, we demonstrate that pridopidine activates the ERK pathway and mediates its beneficial effects through the sigma-1 receptor (S1R). Strikingly, in vivo evaluation of pridopidine in SOD1G93A mice reveals a profound reduction in mutant SOD1 aggregation in the spinal cord, and attenuation of NMJ disruption, as well as subsequent muscle wasting. Taken together, we demonstrate for the first time that pridopidine improves several cellular and histological hallmark pathologies of ALS through the S1R.
Collapse
Affiliation(s)
- Ariel Ionescu
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Tal Gradus
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Topaz Altman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Roy Maimon
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Noi Saraf Avraham
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Michal Geva
- Teva Pharmaceuticals Ltd, Petah Tikva, Israel
- Prilenia Therapeutics, Herzliya, Israel
| | - Michael Hayden
- Teva Pharmaceuticals Ltd, Petah Tikva, Israel
- Prilenia Therapeutics, Herzliya, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
34
|
Barker R, Mason SL. The hunt for better treatments for Huntington's disease. Lancet Neurol 2019; 18:131-133. [DOI: 10.1016/s1474-4422(18)30448-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
|
35
|
Reilmann R, McGarry A, Grachev ID, Savola JM, Borowsky B, Eyal E, Gross N, Langbehn D, Schubert R, Wickenberg AT, Papapetropoulos S, Hayden M, Squitieri F, Kieburtz K, Landwehrmeyer GB. Safety and efficacy of pridopidine in patients with Huntington's disease (PRIDE-HD): a phase 2, randomised, placebo-controlled, multicentre, dose-ranging study. Lancet Neurol 2018; 18:165-176. [PMID: 30563778 DOI: 10.1016/s1474-4422(18)30391-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/26/2018] [Accepted: 10/11/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Previous trials have shown that pridopidine might reduce motor impairment in patients with Huntington's disease. The aim of this study was to ascertain whether higher doses of pridopidine than previously tested reduce motor symptoms in a dose-dependent manner while maintaining acceptable safety and tolerability. METHODS PRIDE-HD was a randomised, placebo-controlled, phase 2, dose-ranging study in adults (aged ≥21 years) with Huntington's disease at outpatient clinics in 53 sites across 12 countries (Australia, Austria, Canada, Denmark, France, Germany, Italy, Poland, Russia, the Netherlands, the UK, and the USA). Eligible patients had clinical onset after age 18 years, 36 or more cytosine-adenine-guanine repeats in the huntingtin gene, motor symptoms (Unified Huntington's Disease Rating Scale total motor score [UHDRS-TMS] ≥25 points), and reduced independence (UHDRS independence score ≤90%). Patients were randomly assigned (1:1:1:1:1) with centralised interactive-response technology to receive one of four doses of pridopidine (45, 67·5, 90, or 112·5 mg) or placebo orally twice a day for 52 weeks. Randomisation was stratified within centres by neuroleptic drug use. The primary efficacy endpoint was change in the UHDRS-TMS from baseline to 26 weeks, which was assessed in all randomised patients who received at least one dose of study drug and had at least one post-baseline efficacy assessment (full analysis set). Participants and investigators were masked to treatment assignment. This trial is registered with EudraCT (2013-001888-23) and ClinicalTrials.gov (NCT02006472). FINDINGS Between Feb 13, 2014, and July 5, 2016, 408 patients were enrolled and randomly assigned to receive placebo (n=82) or pridopidine 45 mg (n=81), 67·5 mg (n=82), 90 mg (n=81), or 112·5 mg (n=82) twice daily for 26 weeks. The full analysis set included 397 patients (81 in the placebo group, 75 in the 45 mg group, 79 in the 67·5 mg group, 81 in the 90 mg group, and 81 in the 112·5 mg group). Pridopidine did not significantly change the UHDRS-TMS at 26 weeks compared with placebo at any dose. The most frequent adverse events across all groups were diarrhoea, vomiting, nasopharyngitis, falls, headache, insomnia, and anxiety. The most common treatment-related adverse events were insomnia, diarrhoea, nausea, and dizziness. Serious adverse events occurred in the pridopidine groups only and were most frequently falls (n=5), suicide attempt (n=4), suicidal ideation (n=3), head injury (n=3), and aspiration pneumonia (n=3). No new safety or tolerability concerns emerged in this study. One death in the pridopidine 112·5 mg group due to aspiration pneumonia was considered to be possibly related to the study drug. INTERPRETATION Pridopidine did not improve the UHDRS-TMS at week 26 compared with placebo and, thus, the results of secondary or tertiary analyses in previous trials were not replicated. A potentially strong placebo effect needs to be ruled out in future studies. FUNDING Teva Pharmaceutical Industries.
Collapse
Affiliation(s)
- Ralf Reilmann
- George Huntington Institute, Münster, Germany; Department of Clinical Radiology, University of Münster, Münster, Germany; Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| | - Andrew McGarry
- Movement Disorders Center, Cooper University Health Care, Camden, NJ, USA
| | | | | | | | - Eli Eyal
- Teva Pharmaceutical Industries, Petach Tikva, Israel
| | | | - Douglas Langbehn
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | - Ferdinando Squitieri
- Unita' Operativa Ricerca e Cura Huntington e Malattie Rare, Istituto di Ricovero e Cura a Carattere Scientifico Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Karl Kieburtz
- Center for Health & Technology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | |
Collapse
|
36
|
Atzmon A, Herrero M, Sharet-Eshed R, Gilad Y, Senderowitz H, Elroy-Stein O. Drug Screening Identifies Sigma-1-Receptor as a Target for the Therapy of VWM Leukodystrophy. Front Mol Neurosci 2018; 11:336. [PMID: 30279648 PMCID: PMC6153319 DOI: 10.3389/fnmol.2018.00336] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/27/2018] [Indexed: 01/12/2023] Open
Abstract
Vanishing white matter (VWM) disease is an autosomal genetic leukodystrophy caused by mutations in subunits of eukaryotic translation initiation factor 2B (eIF2B). The clinical symptoms exhibit progressive loss of white matter in both hemispheres of the brain, accompanied by motor functions deterioration, neurological deficits, and early death. To date there is no treatment for VWM disease. The aim of this work was to expedite rational development of a therapeutic opportunity. Our approach was to design a computer-aided strategy for an efficient and reliable screening of drug-like molecules; and to use primary cultures of fibroblasts isolated from the Eif2b5R132H/R132H VWM mouse model for screening. The abnormal mitochondria content phenotype of the mutant cells was chosen as a read-out for a simple cell-based fluorescent assay to assess the effect of the tested compounds. We obtained a hit rate of 0.04% (20 hits out of 50,000 compounds from the selected library). All primary hits decreased mitochondria content and brought it closer to WT levels. Structural similarities between our primary hits and other compounds with known targets allowed the identification of three putative cellular pathways/targets: 11β-hydroxysteroid dehydrogenase type 1, Sonic hedgehog (Shh), and Sigma-1-Receptor (S1R). In addition to initial experimental indication of Shh pathway impairment in VWM mouse brains, the current study provides evidence that S1R is a relevant target for pharmaceutical intervention for potential treatment of the disease. Specifically, we found lower expression level of S1R protein in fibroblasts, astrocytes, and whole brains isolated from Eif2b5R132H/R132H compared to WT mice, and confirmed that one of the hits is a direct binder of S1R, acting as agonist. Furthermore, we provide evidence that treatment of mutant mouse fibroblasts and astrocytes with various S1R agonists corrects the functional impairments of their mitochondria and prevents their need to increase their mitochondria content for compensation purposes. Moreover, S1R activation enhances the survival rate of mutant cells under ER stress conditions, bringing it to WT levels. This study marks S1R as a target for drug development toward treatment of VWM disease. Moreover, it further establishes the important connection between white matter well-being and S1R-mediated proper mitochondria/ER function.
Collapse
Affiliation(s)
- Andrea Atzmon
- The School for Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Melisa Herrero
- The School for Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Reut Sharet-Eshed
- The School for Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yocheved Gilad
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Orna Elroy-Stein
- The School for Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
McGarry A, Kieburtz K, Abler V, Grachev ID, Gandhi S, Auinger P, Papapetropoulos S, Hayden M. Safety and Exploratory Efficacy at 36 Months in Open-HART, an Open-Label Extension Study of Pridopidine in Huntington's Disease. J Huntingtons Dis 2018; 6:189-199. [PMID: 28826192 DOI: 10.3233/jhd-170241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Open-HART is an open-label extension of HART, a randomized, placebo-controlled, dose-ranging, parallel-group study. OBJECTIVE To evaluate safety and exploratory efficacy of open-label pridopidine over 36 months in subjects with Huntington's disease (HD). METHODS Open-HART subjects were treated with pridopidine 45 mg twice daily (BID). After initial evaluation by telephone (Week 1) and in person (Month 1), in-person visits occurred every 3 months, alternating between safety and clinical visits (safety plus Unified Huntington's Disease Rating Scale [UHDRS] assessment). The UHDRS was performed for pre-specified analysis as a secondary outcome measure. Adverse events (AEs), laboratory values, and electrocardiography were monitored throughout. RESULTS Most subjects (89%) reported at least one AE, with 30% experiencing treatment-related AEs. The most common AEs during the first year were falls (12.7%), anxiety (9.3%), insomnia (8.5%), irritability (6.8%), and depression (5.9%). Ninety-nine percent of subjects took concomitant medications. Two seizures were reported as AEs. No arrhythmias or suicide attempts were reported. Five deaths occurred, all considered treatment unrelated. Secondary exploratory analyses of subjects on pridopidine demonstrated motor deterioration (as measured by the UHDRS total motor score) consistent with HD's natural history, as shown in large observational studies. A post-hoc, exploratory analysis of TFC performance compared to placebo groups from other long-term HD studies demonstrated no significant effect for pridopidine on TFC progression after correction for multiple comparisons. CONCLUSIONS Pridopidine 45 mg BID was generally safe and tolerable in HD subjects over 36 months. TMS declined in a manner consistent with the known natural history of HD.
Collapse
Affiliation(s)
- Andrew McGarry
- Cooper University Health Care at Rowan University, Camden, NJ, USA
| | - Karl Kieburtz
- University of Rochester Medical Center, Rochester, NY, USA
| | - Victor Abler
- Teva Pharmaceutical Industries, Kansas City, MO, USA
| | | | | | - Peggy Auinger
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | |
Collapse
|
38
|
Kusko R, Dreymann J, Ross J, Cha Y, Escalante-Chong R, Garcia-Miralles M, Tan LJ, Burczynski ME, Zeskind B, Laifenfeld D, Pouladi M, Geva M, Grossman I, Hayden MR. Large-scale transcriptomic analysis reveals that pridopidine reverses aberrant gene expression and activates neuroprotective pathways in the YAC128 HD mouse. Mol Neurodegener 2018; 13:25. [PMID: 29783994 PMCID: PMC5963017 DOI: 10.1186/s13024-018-0259-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/13/2018] [Indexed: 12/30/2022] Open
Abstract
Background Huntington Disease (HD) is an incurable autosomal dominant neurodegenerative disorder driven by an expansion repeat giving rise to the mutant huntingtin protein (mHtt), which is known to disrupt a multitude of transcriptional pathways. Pridopidine, a small molecule in development for treatment of HD, has been shown to improve motor symptoms in HD patients. In HD animal models, pridopidine exerts neuroprotective effects and improves behavioral and motor functions. Pridopidine binds primarily to the sigma-1 receptor, (IC50 ~ 100 nM), which mediates its neuroprotective properties, such as rescue of spine density and aberrant calcium signaling in HD neuronal cultures. Pridopidine enhances brain-derived neurotrophic factor (BDNF) secretion, which is blocked by putative sigma-1 receptor antagonist NE-100, and was shown to upregulate transcription of genes in the BDNF, glucocorticoid receptor (GR), and dopamine D1 receptor (D1R) pathways in the rat striatum. The impact of different doses of pridopidine on gene expression and transcript splicing in HD across relevant brain regions was explored, utilizing the YAC128 HD mouse model, which carries the entire human mHtt gene containing 128 CAG repeats. Methods RNAseq was analyzed from striatum, cortex, and hippocampus of wild-type and YAC128 mice treated with vehicle, 10 mg/kg or 30 mg/kg pridopidine from the presymptomatic stage (1.5 months of age) until 11.5 months of age in which mice exhibit progressive disease phenotypes. Results The most pronounced transcriptional effect of pridopidine at both doses was observed in the striatum with minimal effects in other regions. In addition, for the first time pridopidine was found to have a dose-dependent impact on alternative exon and junction usage, a regulatory mechanism known to be impaired in HD. In the striatum of YAC128 HD mice, pridopidine treatment initiation prior to symptomatic manifestation rescues the impaired expression of the BDNF, GR, D1R and cAMP pathways. Conclusions Pridopidine has broad effects on restoring transcriptomic disturbances in the striatum, particularly involving synaptic transmission and activating neuroprotective pathways that are disturbed in HD. Benefits of treatment initiation at early disease stages track with trends observed in the clinic. Electronic supplementary material The online version of this article (10.1186/s13024-018-0259-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jennifer Dreymann
- Research and Development, Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | | | | | | | - Marta Garcia-Miralles
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore, 138648, Singapore
| | - Liang Juin Tan
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore, 138648, Singapore
| | | | - Ben Zeskind
- Immuneering Corporation, Cambridge, MA, 02142, USA
| | - Daphna Laifenfeld
- Research and Development, Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | - Mahmoud Pouladi
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore, 138648, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Michal Geva
- Research and Development, Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | - Iris Grossman
- Research and Development, Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | - Michael R Hayden
- Research and Development, Teva Pharmaceutical Industries Ltd, Netanya, Israel. .,Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore, 138648, Singapore. .,Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada. .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
39
|
Sahlholm K, Valle-León M, Fernández-Dueñas V, Ciruela F. Pridopidine Reverses Phencyclidine-Induced Memory Impairment. Front Pharmacol 2018; 9:338. [PMID: 29692729 PMCID: PMC5902730 DOI: 10.3389/fphar.2018.00338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/22/2018] [Indexed: 01/23/2023] Open
Abstract
Pridopidine is in clinical trials for Huntington's disease treatment. Originally developed as a dopamine D2 receptor (D2R) ligand, pridopidine displays about 100-fold higher affinity for the sigma-1 receptor (sigma-1R). Interestingly, pridopidine slows disease progression and improves motor function in Huntington's disease model mice and, in preliminarily reports, Huntington's disease patients. The present study examined the anti-amnesic potential of pridopidine. Thus, memory impairment was produced in mice by administration of phencyclidine (PCP, 10 mg/kg/day) for 10 days, followed by 14 days' treatment with pridopidine (6 mg/kg/day), or saline. Finally, novel object recognition performance was assessed in the animals. Mice receiving PCP and saline exhibited deficits in novel object recognition, as expected, while pridopidine treatment counteracted PCP-induced memory impairment. The effect of pridopidine was attenuated by co-administration of the sigma receptor antagonist, NE-100 (10 mg/kg). Our results suggest that pridopidine exerts anti-amnesic and potentially neuroprotective actions. These data provide new insights into the therapeutic potential of pridopidine as a pro-cognitive drug.
Collapse
Affiliation(s)
- Kristoffer Sahlholm
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Marta Valle-León
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Mackay JP, Nassrallah WB, Raymond LA. Cause or compensation?-Altered neuronal Ca 2+ handling in Huntington's disease. CNS Neurosci Ther 2018; 24:301-310. [PMID: 29427371 DOI: 10.1111/cns.12817] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 02/03/2023] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder of typically middle-aged onset for which there is no disease-modifying treatment. Caudate and putamen medium-sized spiny projection neurons (SPNs) most severely degenerate in HD. However, it is unclear why mutant huntingtin protein (mHTT) is preferentially toxic to these neurons or why symptoms manifest only relatively late in life. mHTT interacts with numerous neuronal proteins. Likewise, multiple SPN cellular processes have been described as altered in various HD models. Among these, altered neuronal Ca2+ influx and intracellular Ca2+ handling feature prominently and are addressed here. Specifically, we focus on extrasynaptic NMDA-type glutamate receptors, endoplasmic reticulum IP3 receptors, and mitochondria. As mHTT is expressed throughout development, compensatory processes will likely be mounted to mitigate any deleterious effects. Although some compensations can lessen mHTT's disruptive effects, others-such as upregulation of the ER-refilling store-operated Ca2+ channel response-contribute to pathogenesis. A causation-based approach is therefore necessary to decipher the complex sequence of events linking mHTT to neurodegeneration, and to design rational therapeutic interventions. With this in mind, we highlight evidence, or lack thereof, that the above alterations in Ca2+ handling occur early in the disease process, clearly interact with mHTT, and show disease-modifying potential when reversed in animals.
Collapse
Affiliation(s)
- James P Mackay
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wissam B Nassrallah
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,Graduate Program in Neuroscience and MD/PhD Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lynn A Raymond
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
41
|
Garcia-Miralles M, Geva M, Tan JY, Yusof NABM, Cha Y, Kusko R, Tan LJ, Xu X, Grossman I, Orbach A, Hayden MR, Pouladi MA. Early pridopidine treatment improves behavioral and transcriptional deficits in YAC128 Huntington disease mice. JCI Insight 2017; 2:95665. [PMID: 29212949 DOI: 10.1172/jci.insight.95665] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022] Open
Abstract
Pridopidine is currently under clinical development for Huntington disease (HD), with on-going studies to better characterize its therapeutic benefit and mode of action. Pridopidine was administered either prior to the appearance of disease phenotypes or in advanced stages of disease in the YAC128 mouse model of HD. In the early treatment cohort, animals received 0, 10, or 30 mg/kg pridopidine for a period of 10.5 months. In the late treatment cohort, animals were treated for 8 weeks with 0 mg/kg or an escalating dose of pridopidine (10 to 30 mg/kg over 3 weeks). Early treatment improved motor coordination and reduced anxiety- and depressive-like phenotypes in YAC128 mice, but it did not rescue striatal and corpus callosum atrophy. Late treatment, conversely, only improved depressive-like symptoms. RNA-seq analysis revealed that early pridopidine treatment reversed striatal transcriptional deficits, upregulating disease-specific genes that are known to be downregulated during HD, a finding that is experimentally confirmed herein. This suggests that pridopidine exerts beneficial effects at the transcriptional level. Taken together, our findings support continued clinical development of pridopidine for HD, particularly in the early stages of disease, and provide valuable insight into the potential therapeutic mode of action of pridopidine.
Collapse
Affiliation(s)
- Marta Garcia-Miralles
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore
| | - Michal Geva
- Teva Pharmaceutical Industries Ltd., Petach Tikva, Israel
| | - Jing Ying Tan
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore
| | | | - Yoonjeong Cha
- Immuneering Corporation, Cambridge, Massachusetts, USA
| | - Rebecca Kusko
- Immuneering Corporation, Cambridge, Massachusetts, USA
| | - Liang Juin Tan
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore
| | - Xiaohong Xu
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore
| | - Iris Grossman
- Teva Pharmaceutical Industries Ltd., Petach Tikva, Israel
| | - Aric Orbach
- Teva Pharmaceutical Industries Ltd., Petach Tikva, Israel
| | - Michael R Hayden
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore.,Teva Pharmaceutical Industries Ltd., Petach Tikva, Israel.,Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
42
|
Rabinovich-Guilatt L, Steiner L, Hallak H, Pastino G, Muglia P, Spiegelstein O. Metoprolol-pridopidine drug-drug interaction and food effect assessments of pridopidine, a new drug for treatment of Huntington's disease. Br J Clin Pharmacol 2017; 83:2214-2224. [PMID: 28449367 PMCID: PMC5595947 DOI: 10.1111/bcp.13317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/24/2017] [Accepted: 04/18/2017] [Indexed: 01/22/2023] Open
Abstract
Aims Pridopidine is an oral drug in clinical development for treatment of patients with Huntington's disease. This study examined the interactions of pridopidine with in vitro cytochrome P450 activity and characterized the effects of pridopidine on CYP2D6 activity in healthy volunteers using metoprolol as a probe substrate. The effect of food on pridopidine exposure was assessed. Methods The ability of pridopidine to inhibit and/or induce in vitro activity of drug metabolizing enzymes was examined in human liver microsomes and fresh hepatocytes. CYP2D6 inhibition potency and reversibility was assessed using dextromethorphan. For the clinical assessment, 22 healthy subjects were given metoprolol 100 mg alone and concomitantly with steady‐state pridopidine 45 mg twice daily. Food effect on a single 90 mg dose of pridopidine was evaluated in a crossover manner. Safety assessments and pharmacokinetic sampling occurred throughout the study. Results Pridopidine was found to be a metabolism dependent inhibitor of CYP2D6, the main enzyme catalysing its own metabolism. Flavin‐containing monooxygenase heat inactivation of liver microsomes did not affect pridopidine metabolism‐dependent inhibition of CYP2D6 and its inhibition of CYP2D6 was not reversible with addition of FeCN3. Exposure to metoprolol was markedly increased when coadministered with pridopidine; the ratio of the geometric means (90% confidence interval) for maximum observed plasma concentration, and area under the plasma concentration–time curve from time 0 to the time of the last quantifiable concentration and extrapolated to infinity were 3.5 (2.9, 4.22), 6.64 (5.27, 8.38) and 6.55 (5.18, 8.28), respectively. Systemic exposure to pridopidine was unaffected by food conditions. Conclusions As pridopidine is a metabolism‐dependent inhibitor of CYP2D6, systemic levels of drugs metabolized by CYP2D6 may increase with chronic coadministration of pridopidine. Pridopidine can be administered without regard to food.
Collapse
Affiliation(s)
| | - Lilach Steiner
- Drug Metabolism and Pharmacokinetics, Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | - Hussein Hallak
- Drug Metabolism and Pharmacokinetics, Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | - Gina Pastino
- Clinical Pharmacology & Pharmacometrics, Teva Pharmaceutical Industries Ltd, Malvern PA, USA
| | - Pierandrea Muglia
- Neuroscience Discovery Medicine UCB Pharma Chemin du Foriest, Belgium
| | - Ofer Spiegelstein
- Clinical Pharmacology & Pharmacometrics, Teva Pharmaceutical Industries Ltd, Netanya, Israel
| |
Collapse
|
43
|
Abstract
The sigma-1 (σ1) receptor has been associated with regulation of intracellular Ca2+ homeostasis, several cellular signaling pathways, and inter-organelle communication, in part through its chaperone activity. In vivo, agonists of the σ1 receptor enhance brain plasticity, with particularly well-described impact on learning and memory. Under pathological conditions, σ1 receptor agonists can induce cytoprotective responses. These protective responses comprise various complementary pathways that appear to be differentially engaged according to pathological mechanism. Recent studies have highlighted the efficacy of drugs that act through the σ1 receptor to mitigate symptoms associated with neurodegenerative disorders with distinct mechanisms of pathogenesis. Here, we will review genetic and pharmacological evidence of σ1 receptor engagement in learning and memory disorders, cognitive impairment, and neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and Huntington's disease.
Collapse
Affiliation(s)
- Tangui Maurice
- INSERM U1198, University of Montpellier, Montpellier, 34095, France.
| | - Nino Goguadze
- INSERM U1198, University of Montpellier, Montpellier, 34095, France
- Institute of Chemical Biology, Ilia State University, Tbilisi, 0162, Georgia
| |
Collapse
|
44
|
Ryskamp D, Wu J, Geva M, Kusko R, Grossman I, Hayden M, Bezprozvanny I. The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease. Neurobiol Dis 2017; 97:46-59. [PMID: 27818324 PMCID: PMC5214572 DOI: 10.1016/j.nbd.2016.10.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/13/2016] [Accepted: 10/30/2016] [Indexed: 11/25/2022] Open
Abstract
The tri-nucleotide repeat expansion underlying Huntington disease (HD) results in corticostriatal synaptic dysfunction and subsequent neurodegeneration of striatal medium spiny neurons (MSNs). HD is a devastating autosomal dominant disease with no disease-modifying treatments. Pridopidine, a postulated "dopamine stabilizer", has been shown to improve motor symptoms in clinical trials of HD. However, the target(s) and mechanism of action of pridopidine remain to be fully elucidated. As binding studies identified sigma-1 receptor (S1R) as a high-affinity receptor for pridopidine, we evaluated the relevance of S1R as a therapeutic target of pridopidine in HD. S1R is an endoplasmic reticulum - (ER) resident transmembrane protein and is regulated by ER calcium homeostasis, which is perturbed in HD. Consistent with ER calcium dysregulation, we observed striatal upregulation of S1R in aged YAC128 transgenic HD mice and HD patients. We previously demonstrated that dendritic MSN spines are lost in aged corticostriatal co-cultures from YAC128 mice. We report here that pridopidine and the chemically similar S1R agonist 3-PPP prevent MSN spine loss in aging YAC128 co-cultures. Spine protection was blocked by neuronal deletion of S1R. Pridopidine treatment suppressed supranormal ER Ca2+ release, restored ER calcium levels and reduced excessive store-operated calcium (SOC) entry in spines, which may account for its synaptoprotective effects. Normalization of ER Ca2+ levels by pridopidine was prevented by S1R deletion. To evaluate long-term effects of pridopidine, we analyzed expression profiles of calcium signaling genes. Pridopidine elevated striatal expression of calbindin and homer1a, whereas their striatal expression was reduced in aged Q175KI and YAC128 HD mouse models compared to WT. Pridopidine and 3-PPP are proposed to prevent calcium dysregulation and synaptic loss in a YAC128 corticostriatal co-culture model of HD. The actions of pridopidine were mediated by S1R and led to normalization of ER Ca2+ release, ER Ca2+ levels and spine SOC entry in YAC128 MSNs. This is a new potential mechanism of action for pridopidine, highlighting S1R as a potential target for HD therapy. Upregulation of striatal proteins that regulate calcium, including calbindin and homer1a, upon chronic therapy with pridopidine, may further contribute to long-term beneficial effects of pridopidine in HD.
Collapse
Affiliation(s)
- Daniel Ryskamp
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Jun Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Michal Geva
- Teva Pharmaceutical Industries, 5 Basel St., Petach Tikva 49131, Israel.
| | | | - Iris Grossman
- Teva Pharmaceutical Industries, 5 Basel St., Petach Tikva 49131, Israel.
| | - Michael Hayden
- Teva Pharmaceutical Industries, 5 Basel St., Petach Tikva 49131, Israel.
| | - Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
45
|
Ramakrishnan NK, Visser AKD, Rybczynska AA, Nyakas CJ, Luiten PGM, Kwizera C, Sijbesma JWA, Elsinga PH, Ishiwata K, Dierckx RAJO, van Waarde A. Sigma-1 Agonist Binding in the Aging Rat Brain: a MicroPET Study with [(11)C]SA4503. Mol Imaging Biol 2016; 18:588-97. [PMID: 26637208 PMCID: PMC4927617 DOI: 10.1007/s11307-015-0917-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE Sigma-1 receptor ligands modulate the release of several neurotransmitters and intracellular calcium signaling. We examined the binding of a radiolabeled sigma-1 agonist in the aging rat brain with positron emission tomography (PET). PROCEDURES Time-dependent uptake of [(11)C]SA4503 was measured in the brain of young (1.5 to 3 months) and aged (18 to 32 months) Wistar Hannover rats, and tracer-kinetic models were fitted to this data, using metabolite-corrected plasma radioactivity as input function. RESULTS In aged animals, the injected probe was less rapidly metabolized and cleared. Logan graphical analysis and a 2-tissue compartment model (2-TCM) fit indicated changes of total distribution volume (V T) and binding potential (BP ND) of the tracer. BP ND was reduced particularly in the (hypo)thalamus, pons, and medulla. CONCLUSIONS Some areas showed reductions of ligand binding with aging whereas binding in other areas (cortex) was not significantly affected.
Collapse
Affiliation(s)
- Nisha K Ramakrishnan
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Division of Imaging Sciences and Biomedical Engineering, King's College London, Strand, London, WC2R 2LS, UK
| | - Anniek K D Visser
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Anna A Rybczynska
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Csaba J Nyakas
- Research Group of Molecular Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- Department of Morphology and Physiology, Semmelweis University, 17 Vas, H-1088, Budapest, Hungary
| | - Paul G M Luiten
- Research Group of Molecular Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- Department of Morphology and Physiology, Semmelweis University, 17 Vas, H-1088, Budapest, Hungary
| | - Chantal Kwizera
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Jurgen W A Sijbesma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Kiichi Ishiwata
- Southern Tohoku Research Institute for Neuroscience, 7-115 Yatsuyamada, Koriyama, 963-8052, Japan
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
46
|
Geva M, Kusko R, Soares H, Fowler KD, Birnberg T, Barash S, -Wagner AM, Fine T, Lysaght A, Weiner B, Cha Y, Kolitz S, Towfic F, Orbach A, Laufer R, Zeskind B, Grossman I, Hayden MR. Pridopidine activates neuroprotective pathways impaired in Huntington Disease. Hum Mol Genet 2016; 25:3975-3987. [PMID: 27466197 PMCID: PMC5291233 DOI: 10.1093/hmg/ddw238] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/23/2016] [Accepted: 07/11/2016] [Indexed: 01/11/2023] Open
Abstract
Pridopidine has demonstrated improvement in Huntington Disease (HD) motor symptoms as measured by secondary endpoints in clinical trials. Originally described as a dopamine stabilizer, this mechanism is insufficient to explain the clinical and preclinical effects of pridopidine. This study therefore explored pridopidine’s potential mechanisms of action. The effect of pridopidine versus sham treatment on genome-wide expression profiling in the rat striatum was analysed and compared to the pathological expression profile in Q175 knock-in (Q175 KI) vs Q25 WT mouse models. A broad, unbiased pathway analysis was conducted, followed by testing the enrichment of relevant pathways. Pridopidine upregulated the BDNF pathway (P = 1.73E-10), and its effect on BDNF secretion was sigma 1 receptor (S1R) dependent. Many of the same genes were independently found to be downregulated in Q175 KI mice compared to WT (5.2e-7 < P < 0.04). In addition, pridopidine treatment upregulated the glucocorticoid receptor (GR) response, D1R-associated genes and the AKT/PI3K pathway (P = 1E-10, P = 0.001, P = 0.004, respectively). Pridopidine upregulates expression of BDNF, D1R, GR and AKT/PI3K pathways, known to promote neuronal plasticity and survival, as well as reported to demonstrate therapeutic benefit in HD animal models. Activation of S1R, necessary for its effect on the BDNF pathway, represents a core component of the mode of action of pridopidine. Since the newly identified pathways are downregulated in neurodegenerative diseases, including HD, these findings suggest that pridopidine may exert neuroprotective effects beyond its role in alleviating some symptoms of HD.
Collapse
Affiliation(s)
- Michal Geva
- Teva Pharmaceutical Industries Ltd, Petach Tikva, Israel
| | | | - Holly Soares
- Teva Pharmaceutical Industries Ltd, Petach Tikva, Israel
| | | | - Tal Birnberg
- Teva Pharmaceutical Industries Ltd, Petach Tikva, Israel
| | - Steve Barash
- Teva Pharmaceutical Industries Ltd, Petach Tikva, Israel
| | | | - Tania Fine
- Teva Pharmaceutical Industries Ltd, Petach Tikva, Israel
| | | | | | | | | | | | - Aric Orbach
- Teva Pharmaceutical Industries Ltd, Petach Tikva, Israel
| | - Ralph Laufer
- Teva Pharmaceutical Industries Ltd, Petach Tikva, Israel
| | | | - Iris Grossman
- Teva Pharmaceutical Industries Ltd, Petach Tikva, Israel
| | | |
Collapse
|
47
|
Su TP, Su TC, Nakamura Y, Tsai SY. The Sigma-1 Receptor as a Pluripotent Modulator in Living Systems. Trends Pharmacol Sci 2016; 37:262-278. [PMID: 26869505 PMCID: PMC4811735 DOI: 10.1016/j.tips.2016.01.003] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/03/2016] [Accepted: 01/05/2016] [Indexed: 01/21/2023]
Abstract
The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum (ER) protein that resides specifically in the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM), an interface between ER and mitochondria. In addition to being able to translocate to the plasma membrane (PM) to interact with ion channels and other receptors, Sig-1R also occurs at the nuclear envelope, where it recruits chromatin-remodeling factors to affect the transcription of genes. Sig-1Rs have also been reported to interact with other membranous or soluble proteins at other loci, including the cytosol, and to be involved in several central nervous system (CNS) diseases. Here, we propose that Sig-1R is a pluripotent modulator with resultant multiple functional manifestations in living systems.
Collapse
Affiliation(s)
- Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA.
| | - Tzu-Chieh Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Yoki Nakamura
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| | - Shang-Yi Tsai
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| |
Collapse
|
48
|
Abstract
INTRODUCTION Huntington's disease is a rare dominantly-inherited neurodegenerative disease with motor, cognitive and behavioral manifestations. It results from an expanded unstable trinucleotide repeat in the coding region of the huntingtin gene. Treatment is symptomatic, but a poor evidence baseguides selection of therapeutic agents. Non-choreic derangements in voluntary movement contribute to overall motor disability and are poorly addressed by current therapies. Pridopidine is a novel agent in the dopidine class believed to have 'state dependent' effects at dopamine receptors, thus show promise in the treatment of these disorders of voluntary movement. AREAS COVERED This review discusses the pharmacokinetics and pharmacodynamics of pridopidine and reviews clinical trials supporting development of the drug for HD. This information was culled from literature searches for dopidines, pridopidine, and HD experimental therapeutics in PubMed and at http://www.clinicaltrials.org . EXPERT OPINION There is a compelling need to discover new treatments for motor disability in HD, particularly for non-choreic motor symptoms. While pridopidine failed to achieve its primary efficacy outcomes in 2 large trials, reproducible effects on secondary motor outcomes have fueled an ongoing trial studying higher doses and more focused clinical endpoints. This and phase III trials will define define the utility of pridopidine for HD.
Collapse
Affiliation(s)
- Kathleen M Shannon
- a Department of Neurological Sciences , Rush Medical College, Rush University Medical Center , Chicago , IL USA
| |
Collapse
|
49
|
Mason SL, Barker RA. Advancing pharmacotherapy for treating Huntington's disease: a review of the existing literature. Expert Opin Pharmacother 2015; 17:41-52. [PMID: 26536068 DOI: 10.1517/14656566.2016.1109630] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Huntington's disease (HD) is an incurable chronic neurodegenerative disorder that typically presents in mid-life with a range of motor, cognitive and affective problems. Patients are currently managed using a combination of drug treatments and non-pharmacological therapies but at present there is no "gold standard" treatment for any aspect of the disease. AREAS COVERED In this review the empirical evidence supporting the use of drugs commonly used to treat HD was discussed. In particular, we focus on therapeutics that have either reached phase 3 clinical trials or are already in clinical use. EXPERT OPINION The results confirmed that there is a striking lack of evidence to support the efficacy of the drugs currently used in the management of HD. In fact, many drugs are prescribed on the basis of case reports, open label studies, small double blind placebo control trials of limited duration, or personal clinical experience. However of late, the establishment of large international databases, capturing all patients and their clinical details regardless of stage or geographical location has led to an increase in the number of clinical trials conducted on new therapies. Unfortunately, the same is not true for the existing therapies which look set to remain untested for the foreseeable future.
Collapse
Affiliation(s)
- Sarah L Mason
- a John Van Geest Centre for Brain Repair , University of Cambridge , Cambridge CB2 0PY , UK
| | - Roger A Barker
- a John Van Geest Centre for Brain Repair , University of Cambridge , Cambridge CB2 0PY , UK.,b Department of Clinical Neuroscience , University of Cambridge , Cambridge CB2 0PY , UK
| |
Collapse
|