1
|
Genders SG, O'Shea R, Brunner S, Kofler B, Hale MW, van den Buuse M, Djouma E. Altered c-Fos expression following alcohol intake in discrete brain regions of galanin 3 receptor knockout mice. Behav Brain Res 2025; 490:115640. [PMID: 40389170 DOI: 10.1016/j.bbr.2025.115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/30/2025] [Accepted: 05/08/2025] [Indexed: 05/21/2025]
Abstract
The aim of this study was to investigate the brain regions involved in the role of galanin (GAL) and specifically GAL3-receptors (GAL3) in alcohol intake. GAL3-KO mice displayed an alcohol-preferring phenotype in a two-bottle, free choice paradigm. In contrast, no genotype differences in ethanol intake were observed in a Drinking In the Dark (DID) model, highlighting the differential involvement of brain GAL activity depending on the experimental model of alcohol consumption. Blood ethanol concentrations were approximately 10 % lower in GAL3-KO mice compared to wildtype (WT) following DID. WT mice drinking ethanol had significantly increased numbers of c-Fos immunoreactive (ir) neurons in the rostral prelimbic (PrL) and infralimbic (IL) regions of the prefrontal cortex (PFC) and decreased numbers of ir neurons in the CA1 region of the dorsal hippocampus (dHIP) compared to water drinking WT littermates, but these effects of ethanol were absent in GAL3-KO mice. Water drinking GAL3-KO mice furthermore had significantly increased numbers of c-Fos ir neurons compared to water drinking WT mice in the rostral PrL as well as the CA3 region of the dHIP. In the core and shell subregions of the nucleus accumbens (NAc), or in the paraventricular nucleus of the hypothalamus (PVN) or basolateral amygdala, there were no changes in the number of c-Fos ir cells or any involvement of GAL3 genotype. These findings support a role of GAL3-receptors in the effects of alcohol and implicate discrete brain regions involved in this interaction.
Collapse
Affiliation(s)
- Shannyn G Genders
- Department of Microbiology, Anatomy, Physiology and Pharmacology (MAPP), School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Ross O'Shea
- Department of Microbiology, Anatomy, Physiology and Pharmacology (MAPP), School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Susanne Brunner
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Matthew W Hale
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Maarten van den Buuse
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Elvan Djouma
- Department of Microbiology, Anatomy, Physiology and Pharmacology (MAPP), School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
2
|
Tu G, Wen P, Halawa A, Takehara-Nishiuchi K. Acetylcholine modulates prefrontal outcome coding during threat learning under uncertainty. eLife 2025; 13:RP102986. [PMID: 40042523 PMCID: PMC11882142 DOI: 10.7554/elife.102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
Outcomes can vary even when choices are repeated. Such ambiguity necessitates adjusting how much to learn from each outcome by tracking its variability. The medial prefrontal cortex (mPFC) has been reported to signal the expected outcome and its discrepancy from the actual outcome (prediction error), two variables essential for controlling the learning rate. However, the source of signals that shape these coding properties remains unknown. Here, we investigated the contribution of cholinergic projections from the basal forebrain because they carry precisely timed signals about outcomes. One-photon calcium imaging revealed that as mice learned different probabilities of threat occurrence on two paths, some mPFC cells responded to threats on one of the paths, while other cells gained responses to threat omission. These threat- and omission-evoked responses were scaled to the unexpectedness of outcomes, some exhibiting a reversal in response direction when encountering surprising threats as opposed to surprising omissions. This selectivity for signed prediction errors was enhanced by optogenetic stimulation of local cholinergic terminals during threats. The enhanced threat-evoked cholinergic signals also made mice erroneously abandon the correct choice after a single threat that violated expectations, thereby decoupling their path choice from the history of threat occurrence on each path. Thus, acetylcholine modulates the encoding of surprising outcomes in the mPFC to control how much they dictate future decisions.
Collapse
Affiliation(s)
- Gaqi Tu
- Department of Psychology, University of TorontoTorontoCanada
- Collaborative Program in Neuroscience, University of TorontoTorontoCanada
| | - Peiying Wen
- Department of Psychology, University of TorontoTorontoCanada
| | - Adel Halawa
- Human Biology Program, University of TorontoTorontoCanada
| | - Kaori Takehara-Nishiuchi
- Department of Psychology, University of TorontoTorontoCanada
- Collaborative Program in Neuroscience, University of TorontoTorontoCanada
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| |
Collapse
|
3
|
Peng Z, Jia Q, Mao J, Luo X, Huang A, Zheng H, Jiang S, Ma Q, Ma C, Yi Q. Neurotransmitters crosstalk and regulation in the reward circuit of subjects with behavioral addiction. Front Psychiatry 2025; 15:1439727. [PMID: 39876994 PMCID: PMC11773674 DOI: 10.3389/fpsyt.2024.1439727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Behavioral addictive disorders (BADs) have become a significant societal challenge over time. The central feature of BADs is the loss of control over engaging in and continuing behaviors, even when facing negative consequences. The neurobiological underpinnings of BADs primarily involve impairments in the reward circuitry, encompassing the ventral tegmental area, nucleus accumbens in the ventral striatum, and prefrontal cortex. These brain regions form networks that communicate through neurotransmitter signaling, leading to neurobiological changes in individuals with behavioral addictions. While dopamine has long been associated with the reward process, recent research highlights the role of other key neurotransmitters like serotonin, glutamate, and endorphins in BADs' development. These neurotransmitters interact within the reward circuitry, creating potential targets for therapeutic intervention. This improved understanding of neurotransmitter systems provides a foundation for developing targeted treatments and helps clinicians select personalized therapeutic approaches.
Collapse
Affiliation(s)
- Zhenlei Peng
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qiyu Jia
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Junxiong Mao
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiao Luo
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Anqi Huang
- Child Mental Health Research Center, Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hao Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang, China
| | - Shijie Jiang
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qi Ma
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Metabolic Disease, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chuang Ma
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qizhong Yi
- Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
4
|
Urueña-Méndez G, Arrondeau C, Marchessaux F, Goutaudier R, Ginovart N. Dissociable Roles of the mPFC-to-VTA Pathway in the Control of Impulsive Action and Risk-Related Decision-Making in Roman High- and Low-Avoidance Rats. Int J Neuropsychopharmacol 2024; 27:pyae034. [PMID: 39155560 PMCID: PMC11450641 DOI: 10.1093/ijnp/pyae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Impulsive action and risk-related decision-making (RDM) are associated with various psychiatric disorders, including drug abuse. Both behavioral traits have also been linked to reduced frontocortical activity and alterations in dopamine function in the ventral tegmental area (VTA). However, despite direct projections from the medial prefrontal cortex (mPFC) to the VTA, the specific role of the mPFC-to-VTA pathway in controlling impulsive action and RDM remains unexplored. METHODS We used positron emission tomography with [18F]-fluorodeoxyglucose to evaluate brain metabolic activity in Roman high- (RHA) and low-avoidance (RLA) rats, which exhibit innate differences in impulsive action and RDM. Notably, we used a viral-based double dissociation chemogenetic strategy to isolate, for the first time to our knowledge, the role of the mPFC-to-VTA pathway in controlling these behaviors. We selectively activated the mPFC-to-VTA pathway in RHA rats and inhibited it in RLA rats, assessing the effects on impulsive action and RDM in the rat gambling task. RESULTS Our results showed that RHA rats displayed higher impulsive action, less optimal decision-making, and lower cortical activity than RLA rats at baseline. Chemogenetic activation of the mPFC-to-VTA pathway reduced impulsive action in RHA rats, whereas chemogenetic inhibition had the opposite effect in RLA rats. However, these manipulations did not affect RDM. Thus, by specifically targeting the mPFC-to-VTA pathway in a phenotype-dependent way, we reverted innate patterns of impulsive action but not RDM. CONCLUSION Our findings suggest a dissociable role of the mPFC-to-VTA pathway in impulsive action and RDM, highlighting its potential as a target for investigating impulsivity-related disorders.
Collapse
Affiliation(s)
- Ginna Urueña-Méndez
- Departments of Psychiatry and Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Chloé Arrondeau
- Departments of Psychiatry and Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Florian Marchessaux
- Departments of Psychiatry and Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Raphaël Goutaudier
- Departments of Psychiatry and Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nathalie Ginovart
- Departments of Psychiatry and Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Arrondeau C, Urueña-Méndez G, Marchessaux F, Goutaudier R, Ginovart N. Activation of the mPFC-NAc Pathway Reduces Motor Impulsivity but Does Not Affect Risk-Related Decision-Making in Innately High-Impulsive Male Rats. J Neurosci Res 2024; 102:e25387. [PMID: 39314180 DOI: 10.1002/jnr.25387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) and substance use disorders (SUD) are characterized by exacerbated motor and risk-related impulsivities, which are associated with decreased cortical activity. In rodents, the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) have been separately implicated in impulsive behaviors, but studies on the specific role of the mPFC-NAc pathway in these behaviors are limited. Here, we investigated whether heightened impulsive behaviors are associated with reduced mPFC activity in rodents and determined the involvement of the mPFC-NAc pathway in motor and risk-related impulsivities. We used the Roman High- (RHA) and Low-Avoidance (RLA) rat lines, which display divergent phenotypes in impulsivity. To investigate alterations in cortical activity in relation to impulsivity, regional brain glucose metabolism was measured using positron emission tomography and [18F]-fluorodeoxyglucose ([18F]FDG). Using chemogenetics, the activity of the mPFC-NAc pathway was either selectively activated in high-impulsive RHA rats or inhibited in low-impulsive RLA rats, and the effects of these manipulations on motor and risk-related impulsivity were concurrently assessed using the rat gambling task. We showed that basal [18F]FDG uptake was lower in the mPFC and NAc of RHA compared to RLA rats. Activation of the mPFC-NAc pathway in RHA rats reduced motor impulsivity, without affecting risk-related decision-making. Conversely, inhibition of the mPFC-NAc pathway had no effect in RLA rats. Our results suggest that the mPFC-NAc pathway controls motor impulsivity, but has limited involvement in risk-related decision-making in our current model. Our findings suggest that reducing fronto-striatal activity may help attenuate motor impulsivity in patients with impulse control dysregulation.
Collapse
Affiliation(s)
- Chloé Arrondeau
- Faculty of Medicine, Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Ginna Urueña-Méndez
- Faculty of Medicine, Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Florian Marchessaux
- Faculty of Medicine, Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Raphaël Goutaudier
- Faculty of Medicine, Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Nathalie Ginovart
- Faculty of Medicine, Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Faculty of Medicine, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Dong J, Wei X, Huang Z, Tian J, Zhang W. Age-related changes of dopamine D1 and D2 receptors expression in parvalbumin-positive cells of the orbitofrontal and prelimbic cortices of mice. Front Neurosci 2024; 18:1364067. [PMID: 38903598 PMCID: PMC11187244 DOI: 10.3389/fnins.2024.1364067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
Dopamine (DA) plays a pivotal role in reward processing, cognitive functions, and emotional regulation. The prefrontal cortex (PFC) is a critical brain region for these processes. Parvalbumin-positive (PV+) neurons are one of the major classes of inhibitory GABAergic neurons in the cortex, they modulate the activity of neighboring neurons, influencing various brain functions. While DA receptor expression exhibits age-related changes, the age-related changes of these receptors in PV+ neurons, especially in the PFC, remain unclear. To address this, we investigated the expression of DA D1 (D1R) and D2 (D2R) receptors in PV+ neurons within the orbitofrontal (OFC) and prelimbic (PrL) cortices at different postnatal ages (P28, P42, P56, and P365). We found that the expression of D1R and D2R in PV+ neurons showed both age- and region-related changes. PV+ neurons in the OFC expressed a higher abundance of D1 than those in the PrL, and those neurons in the OFC also showed higher co-expression of D1R and D2R than those in the PrL. In the OFC and PrL, D1R in PV+ neurons increased from P28 and reached a plateau at P42, then receded to express at P365. Meanwhile, D2R did not show significant age-related changes between the two regions except at P56. These results showed dopamine receptors in the prefrontal cortex exhibit age- and region-specific changes, which may contribute to the difference of these brain regions in reward-related brain functions.
Collapse
Affiliation(s)
- Jihui Dong
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Xiaoyan Wei
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Ziran Huang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Jing Tian
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Wen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| |
Collapse
|
7
|
Knapp CP, Papadopoulos E, Loweth JA, Raghupathi R, Floresco SB, Waterhouse BD, Navarra RL. Perturbations in risk/reward decision making and frontal cortical catecholamine regulation induced by mild traumatic brain injury. Behav Brain Res 2024; 467:115002. [PMID: 38636779 DOI: 10.1016/j.bbr.2024.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Mild traumatic brain injury (mTBI) disrupts cognitive processes that influence risk taking behavior. Little is known regarding the effects of repetitive mild injury (rmTBI) or whether these outcomes are sex specific. Risk/reward decision making is mediated by the prefrontal cortex (PFC), which is densely innervated by catecholaminergic fibers. Aberrant PFC catecholamine activity has been documented following TBI and may underlie TBI-induced risky behavior. The present study characterized the effects of rmTBI on risk/reward decision making behavior and catecholamine transmitter regulatory proteins within the PFC. Rats were exposed to sham, single (smTBI), or three closed-head controlled cortical impact (CH-CCI) injuries and assessed for injury-induced effects on risk/reward decision making using a probabilistic discounting task (PDT). In the first week post-final surgery, mTBI increased risky choice preference. By the fourth week, males exhibited increased latencies to make risky choices following rmTBI, demonstrating a delayed effect on processing speed. When levels of tyrosine hydroxylase (TH) and the norepinephrine reuptake transporter (NET) were measured within subregions of the PFC, females exhibited dramatic increases of TH levels within the orbitofrontal cortex (OFC) following smTBI. However, both males and females demonstrated reduced levels of OFC NET following rmTBI. These results indicate the OFC is susceptible to catecholamine instability after rmTBI and suggests that not all areas of the PFC contribute equally to TBI-induced imbalances. Overall, the CH-CCI model of rmTBI has revealed time-dependent and sex-specific changes in risk/reward decision making and catecholamine regulation following repetitive mild head injuries.
Collapse
Affiliation(s)
- Christopher P Knapp
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ, USA.
| | - Eleni Papadopoulos
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ, USA
| | - Jessica A Loweth
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ, USA
| | - Ramesh Raghupathi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Barry D Waterhouse
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ, USA
| | - Rachel L Navarra
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ, USA.
| |
Collapse
|
8
|
Münster A, Huster J, Sommer S, Traxler C, Votteler A, Hauber W. Enhanced Risky Choice in Male Rats Elicited by the Acute Pharmacological Stressor Yohimbine Involves Prefrontal Dopamine D1 Receptor Activation. Int J Neuropsychopharmacol 2024; 27:pyae006. [PMID: 38214654 PMCID: PMC10852621 DOI: 10.1093/ijnp/pyae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Acute stress alters risk-based decision-making; however, the underlying neural and neurochemical substrates are underexplored. Given their well-documented stress-inducing effects in humans and laboratory animals, glucocorticoids such as cortisol and corticosterone and the α2-adrenoceptor antagonist yohimbine represent potent pharmacological tools to mimic some characteristics of acute stress. METHODS Here, we analyzed the effects of the pharmacological stressors corticosterone and yohimbine given systemically on risk-based decision-making in male rats. Moreover, we investigated whether pharmacological stressor effects on risk-based decision-making involve dopamine D1 receptor stimulation in the dorsal prelimbic cortex (PL). We used a risk discounting task that requires choosing between a certain/small reward lever that always delivered 1 pellet and a risky/large reward lever that delivered 4 pellets with a decreasing probability across subsequent trials. RESULTS Systemic administration of yohimbine increased the preference for the risky/large reward lever. By contrast, systemic single administration of corticosterone did not significantly promote risky choice. Moreover, co-administration of corticosterone did not enhance the effects of yohimbine on risky choice. The data further show that the increased preference for the risky/large reward lever under systemic yohimbine was lowered by a concurrent pharmacological blockade of dopamine D1 receptors in the PL. CONCLUSIONS Our rodent data provide causal evidence that stimulation of PL D1 receptors may represent a neurochemical mechanism by which the acute pharmacological stressor yohimbine, and possibly nonpharmacological stressors as well, promote risky choice.
Collapse
Affiliation(s)
| | | | - Susanne Sommer
- Department of Neurobiology, University of Stuttgart, Stuttgart, Germany
| | | | - Angeline Votteler
- Department of Neurobiology, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
9
|
Urueña-Méndez G, Arrondeau C, Bellés L, Ginovart N. Decoupling Dopamine Synthesis from Impulsive Action, Risk-Related Decision-Making, and Propensity to Cocaine Intake: A Longitudinal [ 18F]-FDOPA PET Study in Roman High- and Low-Avoidance Rats. eNeuro 2024; 11:ENEURO.0492-23.2023. [PMID: 38253584 PMCID: PMC10867553 DOI: 10.1523/eneuro.0492-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Impulsive action and risk-related decision-making (RDM) are two facets of impulsivity linked to a hyperdopaminergic release in the striatum and an increased propensity to cocaine intake. We previously showed that with repeated cocaine exposure, this initial hyperdopaminergic release is blunted in impulsive animals, potentially signaling drug-induced tolerance. Whether such dopaminergic dynamics involve changes in dopamine (DA) synthesis as a function of impulsivity is currently unknown. Here, we investigated the predictive value of DA synthesis for impulsive action, RDM, and the propensity to take cocaine in a rat model of vulnerability to cocaine abuse. Additionally, we assessed the effects of cocaine intake on these variables. Rats were tested sequentially in the rat Gambling Task (rGT) and were scanned with positron emission tomography and [18F]-FDOPA to respectively assess both impulsivity facets and striatal DA synthesis before and after cocaine self-administration (SA). Our results revealed that baseline striatal levels of DA synthesis did not significantly predict impulsive action, RDM, or a greater propensity to cocaine SA in impulsive animals. Besides, we showed that impulsive action, but not RDM, predicted higher rates of cocaine taking. However, chronic cocaine exposure had no impact on DA synthesis, nor affected impulsive action and RDM. These findings indicate that the hyper-responsive DA system associated with impulsivity and a propensity for cocaine consumption, along with the reduction in this hyper-responsive DA state in impulsive animals with a history of cocaine use, might not be mediated by dynamic changes in DA synthesis.
Collapse
Affiliation(s)
- Ginna Urueña-Méndez
- Departments of Psychiatry, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
- Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
| | - Chloé Arrondeau
- Departments of Psychiatry, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
- Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
| | - Lidia Bellés
- Departments of Psychiatry, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
- Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
| | - Nathalie Ginovart
- Departments of Psychiatry, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
- Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva CH1206, Switzerland
| |
Collapse
|
10
|
Arrondeau C, Urueña-Méndez G, Bellés L, Marchessaux F, Goutaudier R, Ginovart N. Motor impulsivity but not risk-related impulsive choice is associated to drug intake and drug-primed relapse. Front Behav Neurosci 2023; 17:1200392. [PMID: 37333480 PMCID: PMC10275384 DOI: 10.3389/fnbeh.2023.1200392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Motor impulsivity and risk-related impulsive choice have been proposed as vulnerability factors for drug abuse, due to their high prevalence in drug abusers. However, how these two facets of impulsivity are associated to drug abuse remains unclear. Here, we investigated the predictive value of both motor impulsivity and risk-related impulsive choice on characteristics of drug abuse including initiation and maintenance of drug use, motivation for the drug, extinction of drug-seeking behavior following drug discontinuation and, finally, propensity to relapse. Methods We used the Roman High- (RHA) and Low- Avoidance (RLA) rat lines, which display innate phenotypical differences in motor impulsivity, risk-related impulsive choice, and propensity to self-administer drugs. Individual levels of motor impulsivity and risk-related impulsive choice were measured using the rat Gambling task. Then, rats were allowed to self-administer cocaine (0.3 mg/kg/infusion; 14 days) to evaluate acquisition and maintenance of cocaine self-administration, after which motivation for cocaine was assessed using a progressive ratio schedule of reinforcement. Subsequently, rats were tested for their resistance to extinction, followed by cue-induced and drug-primed reinstatement sessions to evaluate relapse. Finally, we evaluated the effect of the dopamine stabilizer aripiprazole on reinstatement of drug-seeking behaviors. Results We found that motor impulsivity and risk-related impulsive choice were positively correlated at baseline. Furthermore, innate high levels of motor impulsivity were associated with higher drug use and increased vulnerability to cocaine-primed reinstatement of drug-seeking. However, no relationships were observed between motor impulsivity and the motivation for the drug, extinction or cue-induced reinstatement of drug-seeking. High levels of risk-related impulsive choice were not associated to any aspects of drug abuse measured in our study. Additionally, aripiprazole similarly blocked cocaine-primed reinstatement of drug-seeking in both high- and low-impulsive animals, suggesting that aripiprazole acts as a D2/3R antagonist to prevent relapse independently of the levels of impulsivity and propensity to self-administer drugs. Discussion Altogether, our study highlights motor impulsivity as an important predictive factor for drug abuse and drug-primed relapse. On the other hand, the involvement of risk-related impulsive choice as a risk factor for drug abuse appears to be limited.
Collapse
Affiliation(s)
- Chloé Arrondeau
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ginna Urueña-Méndez
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lidia Bellés
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Florian Marchessaux
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Raphaël Goutaudier
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nathalie Ginovart
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Ma X, Wang Z, Lou S, Guo H, Yang Y. Prelimbic neuron assemblies with delayed activation encode the economic decision-making process in a bandit game. Behav Brain Res 2023; 447:114419. [PMID: 37023860 DOI: 10.1016/j.bbr.2023.114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
The medial prefrontal cortex (mPFC) is critical to an animal's value-based decision-making process. However, due to heterogeneity of local mPFC neurons, which neuron group and how it contributes to the alteration of the animal's decision is yet to be explored. And the effect of empty reward in this process is often neglected. Here, we adopted a two-port bandit game paradigm for mice and applied synchronized calcium imaging to the prelimbic area of the mPFC. The results showed that neurons recruited in the bandit game exhibit three distinct firing patterns. Specially, neurons with delayed activation (deA neurons1) carried exclusive information on reward type and changes of choice value. We demonstrated that these deA neurons were essential for the construction of choice-outcome correlation and the trial-to-trial modification of decision. Additionally, we found that in a long-term gambling game, members of the deA neuron assembly were dynamically shifting while maintaining the function, and the importance of empty reward feedbacks were gradually elevated to the same level as reward. Together, these results revealed a vital role for prelimbic deA neurons in the gambling tasks and a new perspective on the encoding of economic decision-making.
Collapse
|
12
|
Chang VN, Peters J. Neural circuits controlling choice behavior in opioid addiction. Neuropharmacology 2023; 226:109407. [PMID: 36592884 PMCID: PMC9898219 DOI: 10.1016/j.neuropharm.2022.109407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
As the opioid epidemic presents an ever-expanding public health threat, there is a growing need to identify effective new treatments for opioid use disorder (OUD). OUD is characterized by a behavioral misallocation in choice behavior between opioids and other rewards, as opioid use leads to negative consequences, such as job loss, family neglect, and potential overdose. Preclinical models of addiction that incorporate choice behavior, as opposed to self-administration of a single drug reward, are needed to understand the neural circuits governing opioid choice. These choice models recapitulate scenarios that humans suffering from OUD encounter in their daily lives. Indeed, patients with substance use disorders (SUDs) exhibit a propensity to choose drug under certain conditions. While most preclinical addiction models have focused on relapse as the outcome measure, our data suggest that choice is an independent metric of addiction severity, perhaps relating to loss of cognitive control over choice, as opposed to excessive motivational drive to seek drugs during relapse. In this review, we examine both preclinical and clinical literature on choice behavior for drugs, with a focus on opioids, and the neural circuits that mediate drug choice versus relapse. We argue that preclinical models of opioid choice are needed to identify promising new avenues for OUD therapy that are translationally relevant. Both forward and reverse translation will be necessary to identify novel treatment interventions. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Victoria N Chang
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jamie Peters
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
13
|
Bercovici DA, Princz-Lebel O, Schumacher JD, Lo VM, Floresco SB. Temporal Dynamics Underlying Prelimbic Prefrontal Cortical Regulation of Action Selection and Outcome Evaluation during Risk/Reward Decision-Making. J Neurosci 2023; 43:1238-1255. [PMID: 36609453 PMCID: PMC9962784 DOI: 10.1523/jneurosci.0802-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Risk/reward decision-making is a dynamic process that includes periods of deliberation before action selection and evaluation of the action outcomes that bias subsequent choices. Inactivation of the prelimbic (PL) cortex has revealed its integral role in updating decision biases in the face of changes in probabilistic reward contingencies, yet how phasic PL signals during different phases of the decision process influence choice remains unclear. We used temporally specific optogenetic inhibition to selectively disrupt PL activity coinciding with action selection and outcome phases to examine how these signals influence choice. Male rats expressing the inhibitory opsin eArchT within PL excitatory neurons were well trained on a probabilistic discounting task, entailing choice between small/certain versus large/risky rewards, the probability of which varied over a session (50-12.5%). During testing, brief light pulses suppressed PL activity before choice or after different outcomes. Prechoice suppression reduced bias toward more preferred/higher utility options and disrupted how recent outcomes influenced subsequent choice. Inhibition during risky losses induced a similar profile, but here, the impact of reward omissions were either amplified or diminished, relative to the context of the estimated profitability of the risky option. Inhibition during large or small reward receipt reduced risky choice when this option was more profitable, suggesting these signals can both reinforce rewarded risky choices and also act as a relative value comparator signal that augments incentive for larger rewards. These findings reveal multifaceted contributions by the PL in implementing decisions and integrating action-outcome feedback to assign context to the decision space.SIGNIFICANCE STATEMENT The PL prefrontal cortex plays an integral role in guiding risk/reward decisions, but how activity in this region during different phases of the decision process influences choice is unclear. By using temporally specific optogenetic manipulations of this activity, the present study unveiled previously uncharacterized and differential contributions by PL in implementing decision policies and how evaluation of decision outcomes shape subsequent choice. These findings provide novel insight into the dynamic processes engaged by the PL that underlie action selection in situations involving reward uncertainty that may aid in understanding the mechanism underlying normal and aberrant decision-making processes.
Collapse
Affiliation(s)
- Debra A Bercovici
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Oren Princz-Lebel
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Jackson D Schumacher
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Valerie M Lo
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
14
|
Kuo CC, Chan H, Hung WC, Chen RF, Yang HW, Min MY. Carbachol increases locus coeruleus activation by targeting noradrenergic neurons, inhibitory interneurons and inhibitory synaptic transmission. Eur J Neurosci 2023; 57:32-53. [PMID: 36382388 DOI: 10.1111/ejn.15866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/11/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
The locus coeruleus (LC) consists of noradrenergic (NA) neurons and plays an important role in controlling behaviours. Although much of the knowledge regarding LC functions comes from studying behavioural outcomes upon administration of muscarinic acetylcholine receptor (mAChR) agonists into the nucleus, the exact mechanisms remain unclear. Here, we report that the application of carbachol (CCh), an mAChR agonist, increased the spontaneous action potentials (sAPs) of both LC-NA neurons and local inhibitory interneurons (LC I-INs) in acute brain slices by activating M1/M3 mAChRs (m1/3 AChRs). Optogenetic activation of LC I-INs evoked inhibitory postsynaptic currents (IPSCs) in LC-NA neurons that were mediated by γ-aminobutyric acid type A (GABAA ) and glycine receptors, and CCh application decreased the IPSC amplitude through a presynaptic mechanism by activating M4 mAChRs (m4 AChRs). LC-NA neurons also exhibited spontaneous phasic-like activity (sPLA); CCh application increased the incidence of this activity. This effect of CCh application was not observed with blockade of GABAA and glycine receptors, suggesting that the sPLA enhancement occurred likely because of the decreased synaptic transmission of LC I-INs onto LC-NA neurons by the m4 AChR activation and/or increased spiking rate of LC I-INs by the m1/3 AChR activation, which could lead to fatigue of the synaptic transmission. In conclusion, we report that CCh application, while inhibiting their synaptic transmission, increases sAP rates of LC-NA neurons and LC I-INs. Collectively, these effects provide insight into the cellular mechanisms underlying the behaviour modulations following the administration of muscarinic receptor agonists into the LC reported by the previous studies.
Collapse
Affiliation(s)
- Chao-Cheng Kuo
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hao Chan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Wei-Chen Hung
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ruei-Feng Chen
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Hsiu-Wen Yang
- Department of Biomedical Sciences, Chung-Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Yuan Min
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Bellés L, Arrondeau C, Urueña-Méndez G, Ginovart N. Concurrent measures of impulsive action and choice are partially related and differentially modulated by dopamine D 1- and D 2-like receptors in a rat model of impulsivity. Pharmacol Biochem Behav 2023; 222:173508. [PMID: 36473517 DOI: 10.1016/j.pbb.2022.173508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Impulsivity is a multidimensional construct, but the relationships between its constructs and their respective underlying dopaminergic underpinnings in the general population remain unclear. A cohort of Roman high- (RHA) and low- (RLA) avoidance rats were tested for impulsive action and risky decision-making in the rat gambling task, and then for delay discounting in the delay-discounting task to concurrently measure the relationships among the three constructs of impulsivity using a within-subject design. Then, we evaluated the effects of dopaminergic drugs on the three constructs of impulsivity, considering innate differences in impulsive behaviors at baseline. Risky decision-making and delay-discounting were positively correlated, indicating that both constructs of impulsive choice are related. Impulsive action positively correlated with risky decision-making but not with delay discounting, suggesting partial overlap between impulsive action and impulsive choice. RHAs showed a more impulsive phenotype in the three constructs of impulsivity compared to RLAs, demonstrating the comorbid nature of impulsivity in a population of rats. Amphetamine increased impulsive action and had no effect on risky decision-making regardless of baseline levels of impulsivity, but it decreased delay discounting only in high impulsive RHAs. In contrast, while D1R and D3R agonism as well as D2/3R partial agonism decreased impulsive action regardless of baseline levels of impulsivity, D2/3R agonism decreased impulsive action exclusively in high impulsive RHAs. Irrespective of baseline levels of impulsivity, risky decision-making was increased by D1R and D2/3R agonism but not by D3R agonism or D2/3R partial agonism. Finally, while D1R and D3R agonism, D2/3R partial agonism and D2R blockade increased delay discounting irrespective of baseline levels of impulsivity, D2/3R agonism decreased it in low impulsive RLAs only. These findings indicate that the acute effects of dopamine drugs were partially overlapping across dimensions of impulsivity, and that only D2/3R agonism showed baseline-dependent effects on impulsive action and impulsive choice.
Collapse
Affiliation(s)
- Lidia Bellés
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Chloé Arrondeau
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Ginna Urueña-Méndez
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Nathalie Ginovart
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| |
Collapse
|
16
|
Hultman C, Tjernström N, Vadlin S, Rehn M, Nilsson KW, Roman E, Åslund C. Exploring decision-making strategies in the Iowa gambling task and rat gambling task. Front Behav Neurosci 2022; 16:964348. [PMID: 36408452 PMCID: PMC9669572 DOI: 10.3389/fnbeh.2022.964348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/11/2022] [Indexed: 07/16/2024] Open
Abstract
Decision-making requires that individuals perceive the probabilities and risks associated with different options. Experimental human and animal laboratory testing provide complimentary insights on the psychobiological underpinnings of decision-making. The Iowa gambling task (IGT) is a widely used instrument that assesses decision-making under uncertainty and risk. In the task participants are faced with a choice conflict between cards with varying monetary reinforcer/loss contingencies. The rat gambling task (rGT) is a pre-clinical version using palatable reinforcers as wins and timeouts mimicking losses. However, interspecies studies elaborating on human and rat behavior in these tasks are lacking. This study explores decision-making strategies among young adults (N = 270) performing a computerized version of the IGT, and adult outbred male Lister Hooded rats (N = 72) performing the rGT. Both group and individual data were explored by normative scoring approaches and subgroup formations based on individual choices were investigated. Overall results showed that most humans and rats learned to favor the advantageous choices, but to a widely different extent. Human performance was characterized by both exploration and learning as the task progressed, while rats showed relatively consistent pronounced preferences for the advantageous choices throughout the task. Nevertheless, humans and rats showed similar variability in individual choice preferences during end performance. Procedural differences impacting on the performance in both tasks and their potential to study different aspects of decision-making are discussed. This is a first attempt to increase the understanding of similarities and differences regarding decision-making processes in the IGT and rGT from an explorative perspective.
Collapse
Affiliation(s)
- Cathrine Hultman
- Centre for Clinical Research, Västmanland Hospital Västerås, Region Västmanland, Uppsala University, Västerås, Sweden
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Nikita Tjernström
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Sofia Vadlin
- Centre for Clinical Research, Västmanland Hospital Västerås, Region Västmanland, Uppsala University, Västerås, Sweden
| | - Mattias Rehn
- Centre for Clinical Research, Västmanland Hospital Västerås, Region Västmanland, Uppsala University, Västerås, Sweden
| | - Kent W. Nilsson
- Centre for Clinical Research, Västmanland Hospital Västerås, Region Västmanland, Uppsala University, Västerås, Sweden
- School of Health, Care and Social Welfare, Mälardalen University, Västerås, Sweden
| | - Erika Roman
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Cecilia Åslund
- Centre for Clinical Research, Västmanland Hospital Västerås, Region Västmanland, Uppsala University, Västerås, Sweden
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Orsini CA, Truckenbrod LM, Wheeler AR. Regulation of sex differences in risk-based decision making by gonadal hormones: Insights from rodent models. Behav Processes 2022; 200:104663. [PMID: 35661794 PMCID: PMC9893517 DOI: 10.1016/j.beproc.2022.104663] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/22/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
Men and women differ in their ability to evaluate options that vary in their rewards and the risks that are associated with these outcomes. Most studies have shown that women are more risk averse than men and that gonadal hormones significantly contribute to this sex difference. Gonadal hormones can influence risk-based decision making (i.e., risk taking) by modulating the neurobiological substrates underlying this cognitive process. Indeed, estradiol, progesterone and testosterone modulate activity in the prefrontal cortex, amygdala and nucleus accumbens associated with reward and risk-related information. The use of animal models of decision making has advanced our understanding of the intersection between the behavioral, neural and hormonal mechanisms underlying sex differences in risk taking. This review will outline the current state of this literature, identify the current gaps in knowledge and suggest the neurobiological mechanisms by which hormones regulate risky decision making. Collectively, this knowledge can be used to understand the potential consequences of significant hormonal changes, whether endogenously or exogenously induced, on risk-based decision making as well as the neuroendocrinological basis of neuropsychiatric diseases that are characterized by impaired risk taking, such as substance use disorder and schizophrenia.
Collapse
Affiliation(s)
- Caitlin A. Orsini
- Department of Psychology, University of Texas at Austin, Austin, TX, USA,Department of Neurology, University of Texas at Austin, Austin, TX, USA,Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA,Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA,Correspondence to: Department of Psychology & Neurology, Waggoner Center for Alcohol and Addiction Research, 108 E. Dean Keaton St., Stop A8000, Austin, TX 78712, USA. (C.A. Orsini)
| | - Leah M. Truckenbrod
- Department of Neurology, University of Texas at Austin, Austin, TX, USA,Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA,Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Alexa-Rae Wheeler
- Department of Neurology, University of Texas at Austin, Austin, TX, USA,Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA,Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
18
|
Hernandez CM, McQuail JA, Ten Eyck TW, Wheeler AR, Labiste CC, Setlow B, Bizon J. GABA B receptors in prelimbic cortex and basolateral amygdala differentially influence intertemporal decision making and decline with age. Neuropharmacology 2022; 209:109001. [PMID: 35189132 DOI: 10.1016/j.neuropharm.2022.109001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022]
Abstract
The ability to decide adaptively between immediate vs. delayed gratification (intertemporal choice) is critical for well-being and is associated with a range of factors that influence quality of life. In contrast to young adults, many older adults show enhanced preference for delayed gratification; however, the neural mechanisms underlying this age difference in intertemporal choice are largely un-studied. Changes in signaling through GABAB receptors (GABABRs) mediate several age-associated differences in cognitive processes linked to intertemporal choice. The current study used a rat model to determine how GABABRs in two brain regions known to regulate intertemporal choice (prelimbic cortex; PrL and basolateral amygdala; BLA) contribute to age differences in this form of decision making in male rats. As in humans, aged rats showed enhanced preference for large, delayed over small, immediate rewards during performance in an intertemporal choice task in operant test chambers. Activation of PrL GABABRs via microinfusion of the agonist baclofen increased choice of large, delayed rewards in young adult rats but did not influence choice in aged rats. Conversely, infusion of baclofen into the BLA strongly reduced choice of large, delayed rewards in both young adult and aged rats. Aged rats further showed a significant reduction in expression of GABABR1 subunit isoforms in the prefrontal cortex, a discovery that is consonant with the null effect of intra-PrL baclofen on intertemporal choice in aged rats. In contrast, expression of GABABR subunits was generally conserved with age in the BLA. Jointly, these findings elucidate a role for GABABRs in intertemporal choice and identify fundamental features of brain maturation and aging that mediate an improved ability to delay gratification.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA; Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Joseph A McQuail
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA; Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine - Columbia, Columbia, SC, 29208, USA
| | - Tyler W Ten Eyck
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Alexa-Rae Wheeler
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Chase C Labiste
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
| | - Barry Setlow
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA; Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Jennifer Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
19
|
Nett KE, LaLumiere RT. Infralimbic cortex functioning across motivated behaviors: Can the differences be reconciled? Neurosci Biobehav Rev 2021; 131:704-721. [PMID: 34624366 PMCID: PMC8642304 DOI: 10.1016/j.neubiorev.2021.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/10/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
The rodent infralimbic cortex (IL) is implicated in higher order executive functions such as reward seeking and flexible decision making. However, the precise nature of its role in these processes is unclear. Early evidence indicated that the IL promotes the extinction and ongoing inhibition of fear conditioning and cocaine seeking. However, evidence spanning other behavioral domains, such as natural reward seeking and habit-based learning, suggests a more nuanced understanding of IL function. As techniques have advanced and more studies have examined IL function, identifying a unifying explanation for its behavioral function has become increasingly difficult. Here, we discuss evidence of IL function across motivated behaviors, including associative learning, drug seeking, natural reward seeking, and goal-directed versus habit-based behaviors, and emphasize how context-specific encoding and heterogeneous IL neuronal populations may underlie seemingly conflicting findings in the literature. Together, the evidence suggests that a major IL function is to facilitate the encoding and updating of contingencies between cues and behaviors to guide subsequent behaviors.
Collapse
Affiliation(s)
- Kelle E Nett
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA 52242, United States.
| | - Ryan T LaLumiere
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA 52242, United States; Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
20
|
Jobson DD, Hase Y, Clarkson AN, Kalaria RN. The role of the medial prefrontal cortex in cognition, ageing and dementia. Brain Commun 2021; 3:fcab125. [PMID: 34222873 PMCID: PMC8249104 DOI: 10.1093/braincomms/fcab125] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 01/18/2023] Open
Abstract
Humans require a plethora of higher cognitive skills to perform executive functions, such as reasoning, planning, language and social interactions, which are regulated predominantly by the prefrontal cortex. The prefrontal cortex comprises the lateral, medial and orbitofrontal regions. In higher primates, the lateral prefrontal cortex is further separated into the respective dorsal and ventral subregions. However, all these regions have variably been implicated in several fronto-subcortical circuits. Dysfunction of these circuits has been highlighted in vascular and other neurocognitive disorders. Recent advances suggest the medial prefrontal cortex plays an important regulatory role in numerous cognitive functions, including attention, inhibitory control, habit formation and working, spatial or long-term memory. The medial prefrontal cortex appears highly interconnected with subcortical regions (thalamus, amygdala and hippocampus) and exerts top-down executive control over various cognitive domains and stimuli. Much of our knowledge comes from rodent models using precise lesions and electrophysiology readouts from specific medial prefrontal cortex locations. Although, anatomical disparities of the rodent medial prefrontal cortex compared to the primate homologue are apparent, current rodent models have effectively implicated the medial prefrontal cortex as a neural substrate of cognitive decline within ageing and dementia. Human brain connectivity-based neuroimaging has demonstrated that large-scale medial prefrontal cortex networks, such as the default mode network, are equally important for cognition. However, there is little consensus on how medial prefrontal cortex functional connectivity specifically changes during brain pathological states. In context with previous work in rodents and non-human primates, we attempt to convey a consensus on the current understanding of the role of predominantly the medial prefrontal cortex and its functional connectivity measured by resting-state functional MRI in ageing associated disorders, including prodromal dementia states, Alzheimer's disease, post-ischaemic stroke, Parkinsonism and frontotemporal dementia. Previous cross-sectional studies suggest that medial prefrontal cortex functional connectivity abnormalities are consistently found in the default mode network across both ageing and neurocognitive disorders such as Alzheimer's disease and vascular cognitive impairment. Distinct disease-specific patterns of medial prefrontal cortex functional connectivity alterations within specific large-scale networks appear to consistently feature in the default mode network, whilst detrimental connectivity alterations are associated with cognitive impairments independently from structural pathological aberrations, such as grey matter atrophy. These disease-specific patterns of medial prefrontal cortex functional connectivity also precede structural pathological changes and may be driven by ageing-related vascular mechanisms. The default mode network supports utility as a potential biomarker and therapeutic target for dementia-associated conditions. Yet, these associations still require validation in longitudinal studies using larger sample sizes.
Collapse
Affiliation(s)
- Dan D Jobson
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| | - Yoshiki Hase
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre
and Brain Research New Zealand, University of Otago, Dunedin 9054,
New Zealand
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute,
Newcastle University, Campus for Ageing & Vitality,
Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
21
|
Piantadosi PT, Halladay LR, Radke AK, Holmes A. Advances in understanding meso-cortico-limbic-striatal systems mediating risky reward seeking. J Neurochem 2021; 157:1547-1571. [PMID: 33704784 PMCID: PMC8981567 DOI: 10.1111/jnc.15342] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023]
Abstract
The risk of an aversive consequence occurring as the result of a reward-seeking action can have a profound effect on subsequent behavior. Such aversive events can be described as punishers, as they decrease the probability that the same action will be produced again in the future and increase the exploration of less risky alternatives. Punishment can involve the omission of an expected rewarding event ("negative" punishment) or the addition of an unpleasant event ("positive" punishment). Although many individuals adaptively navigate situations associated with the risk of negative or positive punishment, those suffering from substance use disorders or behavioral addictions tend to be less able to curtail addictive behaviors despite the aversive consequences associated with them. Here, we discuss the psychological processes underpinning reward seeking despite the risk of negative and positive punishment and consider how behavioral assays in animals have been employed to provide insights into the neural mechanisms underlying addictive disorders. We then review the critical contributions of dopamine signaling to punishment learning and risky reward seeking, and address the roles of interconnected ventral striatal, cortical, and amygdala regions to these processes. We conclude by discussing the ample opportunities for future study to clarify critical gaps in the literature, particularly as related to delineating neural contributions to distinct phases of the risky decision-making process.
Collapse
Affiliation(s)
- Patrick T. Piantadosi
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Lindsay R. Halladay
- Department of Psychology, Santa Clara University, Santa Clara, California 95053, USA
| | - Anna K. Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
22
|
Rinehart L, Spencer S. Which came first: Cannabis use or deficits in impulse control? Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110066. [PMID: 32795592 PMCID: PMC7750254 DOI: 10.1016/j.pnpbp.2020.110066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/12/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Impulse control deficits are often found to co-occur with substance use disorders (SUDs). On the one hand, it is well known that chronic intake of drugs of abuse remodels the brain with significant consequences for a range of cognitive behaviors. On the other hand, individual variation in impulse control may contribute to differences in susceptibility to SUDs. Both of these relationships have been described, thus leading to a "chicken or the egg" debate which remains to be fully resolved. Does impulsivity precede drug use or does it manifest as a function of problematic drug usage? The link between impulsivity and SUDs has been most strongly established for cocaine and alcohol use disorders using both preclinical models and clinical data. Much less is known about the potential link between impulsivity and cannabis use disorder (CUD) or the directionality of this relationship. The initiation of cannabis use occurs most often during adolescence prior to the brain's maturation, which is recognized as a critical period of development. The long-term effects of chronic cannabis use on the brain and behavior have started to be explored. In this review we will summarize these observations, especially as they pertain to the relationship between impulsivity and CUD, from both a psychological and biological perspective. We will discuss impulsivity as a multi-dimensional construct and attempt to reconcile the results obtained across modalities. Finally, we will discuss possible avenues for future research with emerging longitudinal data.
Collapse
Affiliation(s)
- Linda Rinehart
- University of Minnesota, Department of Psychiatry and Behavioral Sciences
| | - Sade Spencer
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, USA.
| |
Collapse
|
23
|
Pettorruso M, Zoratto F, Miuli A, De Risio L, Santorelli M, Pierotti A, Martinotti G, Adriani W, di Giannantonio M. Exploring dopaminergic transmission in gambling addiction: A systematic translational review. Neurosci Biobehav Rev 2020; 119:481-511. [PMID: 33035523 DOI: 10.1016/j.neubiorev.2020.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/16/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022]
Abstract
Dopamine has a crucial and well-documented role in the development and maintenance of Gambling Disorder (GD). This systematic review adopts a translational approach aimed at providing a comprehensive synthesis of current clinical and preclinical knowledge on dopaminergic function in GD at a neurobiological level. To this end, we present and discuss converging dopaminergic alterations and phenotypes. Preclinical and clinical review protocols were registered on the PROSPERO database (CRD42019124404, CRD42019124405). The literature search was conducted in accordance with PRISMA guidelines using three databases (PubMed, Web of Science, Scopus). We identified 67 preclinical studies using pharmacological and non-pharmacological manipulations of the gambling-like phenotype and 33 human studies investigating either genetic polymorphisms or functional brain imaging data. Dopamine transporter and D2, D3, D4 receptor alterations showed strongest translational concordance. Though no postsynaptic dopaminergic alterations were observed, several studies point at dysfunctions in presynaptic dopamine trafficking in GD, suggestive of hyperdopaminergic states. Developing meaningful translational models is essential to working towards the development of an integrated conceptual framework for GD and neurobiologically-based treatment interventions.
Collapse
Affiliation(s)
- Mauro Pettorruso
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, I-66100, Chieti, Italy.
| | - Francesca Zoratto
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161, Rome, Italy.
| | - Andrea Miuli
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, I-66100, Chieti, Italy
| | - Luisa De Risio
- Department of Psychiatry and Addiction, ASL Roma 5, Via degli Esplosivi 9/B, I-00034, Colleferro (Rome), Italy
| | - Mario Santorelli
- School of Medicine and Surgery, University of Milano Bicocca, Via Roncaglia 18, I-20146, Milano, Italy
| | - Alice Pierotti
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161, Rome, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, I-66100, Chieti, Italy; Department of Pharmacy, Pharmacology, Clinical Science, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, United Kingdom
| | - Walter Adriani
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161, Rome, Italy
| | - Massimo di Giannantonio
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, I-66100, Chieti, Italy
| |
Collapse
|
24
|
Kuo CC, Hsieh JC, Tsai HC, Kuo YS, Yau HJ, Chen CC, Chen RF, Yang HW, Min MY. Inhibitory interneurons regulate phasic activity of noradrenergic neurons in the mouse locus coeruleus and functional implications. J Physiol 2020; 598:4003-4029. [PMID: 32598024 DOI: 10.1113/jp279557] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/25/2020] [Indexed: 01/16/2023] Open
Abstract
KEY POINTS The locus coeruleus (LC) contains noradrenergic (NA) neurons that respond to novel stimuli in the environment with phasic activation to initiate an orienting response; phasic LC activation is also triggered by stimuli, representing the outcome of task-related decision processes, to facilitate ensuing behaviours and help optimize task performance. Here, we report that LC-NA neurons exhibit bursts of action potentials in vitro resembling phasic LC activation in vivo, and the activity is gated by inhibitory interneurons (I-INs) located in the peri-LC. We also observe that inhibition of peri-LC I-INs enhances prepulse inhibition and axons from cortical areas that play important roles in evaluating the cost/reward of a stimulus synapse on both peri-LC I-INs and LC-NA neurons. The results help us understand the cellular mechanisms underlying the generation and regulation of phasic LC activation with a focus on the role of peri-LC I-INs. ABSTRACT Noradrenergic (NA) neurons in the locus coeruleus (LC) have global axonal projection to the brain. These neurons discharge action potentials phasically in response to either novel stimuli in the environment to initiate an orienting behaviour or stimuli representing the outcome of task-related decision processes to facilitate ensuing behaviours and help optimize task performance. Nevertheless, the cellular mechanisms underlying the generation and regulation of phasic LC activation remain unknown. We report here that LC-NA neurons recorded in brain slices exhibit bursts of action potentials that resembled the phasic activation-pause profile observed in animals. The activity was referred to as phasic-like activity (PLA) and was suppressed and enhanced by blocking excitatory and inhibitory synaptic transmissions, respectively. These results suggest the existence of a local circuit to drive PLA, and the activity could be regulated by the excitatory-inhibitory balance of the circuit. In support of this notion, we located a population of inhibitory interneurons (I-INs) in the medial part of the peri-LC that exerted feedforward inhibition of LC-NA neurons through GABAergic and glycinergic transmissions. Selective inhibition of peri-LC I-INs with chemogenetic methods could enhance PLA in brain slices and increase prepulse inhibition in animals. Moreover, axons from the orbitofrontal and prelimbic cortices, which play important roles in evaluating the cost/reward of a stimulus, synapse on both peri-LC I-INs and LC-NA neurons. These observations demonstrate functional roles of peri-LC I-INs in integrating inputs of the frontal cortex onto LC-NA neurons and gating the phasic LC output.
Collapse
Affiliation(s)
- Chao-Cheng Kuo
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Jung-Chien Hsieh
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsing-Chun Tsai
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Shan Kuo
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.,Departments of Biomedical Sciences and Medical Research, Chung-Shan Medical University and Chung-Shan Medical University Hospital, Taichung, 40201, Taiwan
| | - Hau-Jie Yau
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Ruei-Feng Chen
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsiu-Wen Yang
- Departments of Biomedical Sciences and Medical Research, Chung-Shan Medical University and Chung-Shan Medical University Hospital, Taichung, 40201, Taiwan
| | - Ming-Yuan Min
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
25
|
Ishikawa J, Sakurai Y, Ishikawa A, Mitsushima D. Contribution of the prefrontal cortex and basolateral amygdala to behavioral decision-making under reward/punishment conflict. Psychopharmacology (Berl) 2020; 237:639-654. [PMID: 31912190 DOI: 10.1007/s00213-019-05398-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023]
Abstract
RATIONALE Control of reward-seeking behavior under conditions of punishment is an important function for survival. OBJECTIVES AND METHODS We designed a task in which rats could choose to either press a lever and obtain a food pellet accompanied by a footshock or refrain from pressing the lever to avoid footshock, in response to tone presentation. In the task, footshock intensity steadily increased, and the task was terminated when the lever press probability reached < 25% (last intensity). Rats were trained until the last intensity was stable. Subsequently, we investigated the effects of the pharmacological inactivation of the ventromedial prefrontal cortex (vmPFC), lateral orbitofrontal cortex (lOFC), and basolateral amygdala (BLA) on task performance. RESULTS Bilateral inactivation of the vmPFC, lOFC, and BLA did not alter lever press responses at the early stage of the task. The number of lever presses increased following vmPFC and BLA inactivation but decreased following lOFC inactivation during the later stage of the task. The last intensity was elevated by vmPFC or BLA inactivation but lowered by lOFC inactivation. Disconnection of the vmPFC-BLA pathway induced behavioral alterations that were similar to vmPFC or BLA inactivation. Inactivation of any regions did not alter footshock sensitivity and anxiety levels. CONCLUSIONS Our results demonstrate a strong role of the vmPFC and BLA and their interactions in reward restraint to avoid punishment and a prominent role of the lOFC in reward-seeking under reward/punishment conflict situations.
Collapse
Affiliation(s)
- Junko Ishikawa
- Neurophysiology, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Yoshio Sakurai
- Laboratory of Neural Information, Systems Neuroscience, Doshisha University Graduate School of Brain Science, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Akinori Ishikawa
- Neurophysiology, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Dai Mitsushima
- Neurophysiology, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
26
|
van Holstein M, Floresco SB. Dissociable roles for the ventral and dorsal medial prefrontal cortex in cue-guided risk/reward decision making. Neuropsychopharmacology 2020; 45:683-693. [PMID: 31652433 PMCID: PMC7021677 DOI: 10.1038/s41386-019-0557-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 11/09/2022]
Abstract
Converging evidence from studies with animals and humans have implicated separate regions of the medial prefrontal cortex (mPFC) corresponding to the anterior cingulate cortex (ACC), in mediating different aspects of reward-related decisions involving uncertainty or risk. However, the dissociable contributions of subregions of the ACC remain unclear, as discrepancies exist between human neuroimaging findings and preclinical rodent studies. To clarify how ventral vs. dorsal regions of the mPFC contribute to risk/reward decision making, the present study assessed the effects of inactivation of different subregions on performance of a "Blackjack task" that measured cue-guided decision making and shares similarities with paradigms used with humans. Male, Long-Evans rats were well-trained to choose between a Small/Certain reward vs a Large/Risky reward delivered with variable probabilities (i.e., good vs. poor-odds, 50% vs. 12.5%). The odds of obtaining the larger reward was signaled by auditory cues at the start of each trial. Inactivation of the ventral, infralimbic region of the mPFC increased risky choice selectively when the odds of winning were poor. By contrast, inactivation of the prelimbic and anterior cingulate regions of the dorsal mPFC led to suboptimal reductions in risky choice on good-odds trials. The effects of prelimbic vs anterior cingulate inactivations were associated with context-dependent alterations in reward vs negative feedback, respectively. These results further clarify the distinct yet complementary manners in which separate ACC regions promote optimal risk/reward decision making and complement neuroimaging findings that activity in human ventral vs dorsal ACC promotes risk aversion or risky choices.
Collapse
Affiliation(s)
- Mieke van Holstein
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada.
| | - Stan B. Floresco
- 0000 0001 2288 9830grid.17091.3eDepartment of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3 Canada
| |
Collapse
|
27
|
Effects of 5-HT 2C, 5-HT 1A receptor challenges and modafinil on the initiation and persistence of gambling behaviours. Psychopharmacology (Berl) 2020; 237:1745-1756. [PMID: 32123974 PMCID: PMC7239826 DOI: 10.1007/s00213-020-05496-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/19/2020] [Indexed: 11/07/2022]
Abstract
RATIONALE Problematic patterns of gambling are characterised by loss of control and persistent gambling often to recover losses. However, little is known about the mechanisms that mediate initial choices to begin gambling and then continue to gamble in the face of losing outcomes. OBJECTIVES These experiments first assessed gambling and loss-chasing performance under different win/lose probabilities in C57Bl/6 mice, and then investigated the effects of antagonism of 5-HT2CR with SB242084, 5-HT1AR agonism with 8-OH-DPAT and modafinil, a putative cognitive enhancer. RESULTS As seen in humans and other species, mice demonstrated the expected patterns of behaviour as the odds for winning were altered increasing gambling and loss-chasing when winning was more likely. SB242084 decreased the likelihood to initially gamble, but had no effects on subsequent gambling choices in the face of repeated losses. In contrast, 8-OH-DPAT had no effects on choosing to gamble in the first place, but once started 8-OH-DPAT increased gambling choices in a dose-sensitive manner. Modafinil effects were different to the serotonergic drugs in both decreasing the propensity to initiate gambling and chase losses. CONCLUSIONS We present evidence for dissociable effects of systemic drug administration on different aspects of gambling behaviour. These data extend and reinforce the importance of serotonergic mechanisms in mediating discrete components of gambling behaviour. They further demonstrate the ability of modafinil to reduce gambling behaviour. Our work using a novel mouse paradigm may be of utility in modelling the complex psychological and neurobiological underpinnings of gambling problems, including the analysis of genetic and environmental factors.
Collapse
|
28
|
Why we need nonhuman primates to study the role of ventromedial prefrontal cortex in the regulation of threat- and reward-elicited responses. Proc Natl Acad Sci U S A 2019; 116:26297-26304. [PMID: 31871181 DOI: 10.1073/pnas.1902288116] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The ventromedial prefrontal cortex (vmPFC) is consistently implicated in the cognitive and emotional symptoms of many psychiatric disorders, but the causal mechanisms of its involvement remain unknown. In part, this is because of the poor characterization of the disorders and their symptoms, and the focus of experimental studies in animals on subcortical (rather than cortical) dysregulation. Moreover, even in those experimental studies that have focused on the vmPFC, the preferred animal model for such research has been the rodent, in which there are marked differences in the organization of this region to that seen in humans, and thus the extent of functional homology is unclear. There is also a paucity of well-defined behavioral paradigms suitable for translating disorder-relevant findings across species. With these considerations in mind, we discuss the value of nonhuman primates (NHPs) in bridging the translational gap between human and rodent studies. We focus on recent investigations into the involvement in reward and threat processing of 2 major regions of the vmPFC, areas 25 and 32 in NHPs and their anatomical homologs, the infralimbic and prelimbic cortex, in rodents. We highlight potential similarities, but also differences between species, and consider them in light of the extent to which anatomical homology reflects functional homology, the expansion of the PFC in human and NHPs, and most importantly how they can guide future studies to improve the translatability of findings from preclinical animal studies into the clinic.
Collapse
|
29
|
Kuhn BN, Kalivas PW, Bobadilla AC. Understanding Addiction Using Animal Models. Front Behav Neurosci 2019; 13:262. [PMID: 31849622 PMCID: PMC6895146 DOI: 10.3389/fnbeh.2019.00262] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Drug addiction is a neuropsychiatric disorder with grave personal consequences that has an extraordinary global economic impact. Despite decades of research, the options available to treat addiction are often ineffective because our rudimentary understanding of drug-induced pathology in brain circuits and synaptic physiology inhibits the rational design of successful therapies. This understanding will arise first from animal models of addiction where experimentation at the level of circuits and molecular biology is possible. We will review the most common preclinical models of addictive behavior and discuss the advantages and disadvantages of each. This includes non-contingent models in which animals are passively exposed to rewarding substances, as well as widely used contingent models such as drug self-administration and relapse. For the latter, we elaborate on the different ways of mimicking craving and relapse, which include using acute stress, drug administration or exposure to cues and contexts previously paired with drug self-administration. We further describe paradigms where drug-taking is challenged by alternative rewards, such as appetitive foods or social interaction. In an attempt to better model the individual vulnerability to drug abuse that characterizes human addiction, the field has also established preclinical paradigms in which drug-induced behaviors are ranked by various criteria of drug use in the presence of negative consequences. Separation of more vulnerable animals according to these criteria, along with other innate predispositions including goal- or sign-tracking, sensation-seeking behavior or impulsivity, has established individual genetic susceptibilities to developing drug addiction and relapse vulnerability. We further examine current models of behavioral addictions such as gambling, a disorder included in the DSM-5, and exercise, mentioned in the DSM-5 but not included yet due to insufficient peer-reviewed evidence. Finally, after reviewing the face validity of the aforementioned models, we consider the most common standardized tests used by pharmaceutical companies to assess the addictive potential of a drug during clinical trials.
Collapse
Affiliation(s)
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Ana-Clara Bobadilla
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
30
|
Investigating the influence of 'losses disguised as wins' on decision making and motivation in rats. Behav Pharmacol 2019; 29:732-744. [PMID: 30376458 DOI: 10.1097/fbp.0000000000000455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Multiline slot machines encourage continued play through 'losses disguised as wins' (LDWs), outcomes in which the money returned is less than that wagered. Individuals with gambling problems may be susceptible to this game feature. The cognitive and neurobiological mechanisms through which LDWs act are unknown. In a novel rat operant task, animals chose between a 'certain' lever, which always delivered two sugar pellets, or an 'uncertain' lever, resulting in four sugar pellets on 50% of trials. LDWs were then introduced as a return of three sugar pellets on 30-40% of uncertain rewarded trials. For half the rats, winning outcomes were paired with audiovisual feedback (cues). In a second study, the basolateral amygdala (BLA) was inactivated during initial presentation of LDWs. While LDWs shifted most rats' choice toward the certain lever, a subgroup of LDW vulnerable rats continued to choose the uncertain option, when the reward rate diminished. This profile of LDW vulnerability was reproduced after inactivating the BLA. Persistent choice of uncertain outcomes despite lower reward rates may reflect impaired functioning within the BLA. Future work using this model may provide insight into the neurobiological mechanisms contributing to the motivational properties of LDWs and their contribution to problematic gambling.
Collapse
|
31
|
Toward an animal model of borderline personality disorder. Psychopharmacology (Berl) 2019; 236:2485-2500. [PMID: 31201478 PMCID: PMC6697600 DOI: 10.1007/s00213-019-05289-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 05/30/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Borderline personality disorder (BPD) is a pervasive psychiatric disorder characterized by emotion dysregulation, impulsivity, impaired self-perceptions, and interpersonal relationships and currently affects 1-3% of the US population as reported by Torgersen et al. (Arch Gen Psychiatry 58:590-596, Torgersen et al. 2001), Lenzenweger et al. (Biol Psychiatry 62:553-564, Lenzenweger et al. 2007), and Tomko et al. (J Personal Disord 28:734-750, Tomko et al. 2014). One major obstacle to our understanding of the neural underpinnings of BPD is a lack of valid animal models that translate the key known features of the disorder to a system that is amenable to study. OBJECTIVE To summarize the etiology, major symptoms, and symptom triggers of BPD and then propose a blueprint for building an animal model of BPD by choosing key components of the disorder that can be implemented in rodents. RESULTS We identify the role of early life stress and subsequent mild stress in adulthood as contributing etiological factors and the potential use of altered communication between frontal cortices and the amygdala in extinction and habituation, increased impulsivity, dysregulation of the hypothalamic pituitary axis (HPA), and increased neuroinflammation as biological markers of BPD. Building upon these features of BPD, we propose a two-hit animal model that uses maternal abandonment to alter maturation of the HPA axis and mild secondary adult stress to evoke behavioral symptoms such as increased impulsivity and impaired extinction, habituation, and social interactions. CONCLUSION Through exploration of the etiology, symptom presentation, and altered neurological function, we propose an animal model of BPD. We believe that a number of existing animal paradigms that model other mental health disorders should be combined in a unique way to reflect the etiology, symptom presentation, and altered neurological function that is evident in BPD. These model, when compared with available human data, will inform research and treatment in humans for better understanding of systems from the micro-molecular level to more global physiology underlying BPD.
Collapse
|
32
|
Walters CJ, Jubran J, Sheehan A, Erickson MT, Redish AD. Avoid-approach conflict behaviors differentially affected by anxiolytics: implications for a computational model of risky decision-making. Psychopharmacology (Berl) 2019; 236:2513-2525. [PMID: 30863879 PMCID: PMC6697581 DOI: 10.1007/s00213-019-05197-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/13/2019] [Indexed: 01/14/2023]
Abstract
Whether fear or anxiety is expressed is thought to depend on an animal's proximity to threat. In general, fear is elicited when threat is proximal, while anxiety is a response to threat that is distal and uncertain. This threat gradient model suggests that fear and anxiety involve non-overlapping neural circuitry, yet few behavioral paradigms exist that elicit both states. We studied avoid-approach conflict in rats that were behaving in a predator-inhabited foraging arena task that involved tangible threat and reward incentives. In the task, rats exhibited a variety of both fearful and anxious behaviors corresponding to proximal and distal threat, respectively. We then administered ethanol or diazepam to the rats in order to study how anxiolytics affected these fear and anxiety behaviors. We discovered that both ethanol and diazepam attenuated proximal-threat fear-like behaviors. Furthermore, we found that diazepam, but not ethanol, increased distal-threat anxiety-like behavior but also made rats less risk-averse. Finally, we describe how decisional conflict can be modeled as a partially observable Markov decision process and characterize a potential relationship between anxious behavior, diazepam's ability to suppress hippocampal theta oscillations, and hippocampal representations of the future.
Collapse
Affiliation(s)
- Cody J Walters
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Ayaka Sheehan
- University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - A David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
33
|
Orsini CA, Hernandez CM, Bizon JL, Setlow B. Deconstructing value-based decision making via temporally selective manipulation of neural activity: Insights from rodent models. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:459-476. [PMID: 30341621 PMCID: PMC6472996 DOI: 10.3758/s13415-018-00649-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ability to choose among options that differ in their rewards and costs (value-based decision making) has long been a topic of interest for neuroscientists, psychologists, and economists alike. This is likely because this is a cognitive process in which all animals (including humans) engage on a daily basis, be it routine (which road to take to work) or consequential (which graduate school to attend). Studies of value-based decision making (particularly at the preclinical level) often treat it as a uniform process. The results of such studies have been invaluable for our understanding of the brain substrates and neurochemical systems that contribute to decision making involving a range of different rewards and costs. Value-based decision making is not a unitary process, however, but is instead composed of distinct cognitive operations that function in concert to guide choice behavior. Within this conceptual framework, it is therefore important to consider that the known neural substrates supporting decision making may contribute to temporally distinct and dissociable components of the decision process. This review will describe this approach for investigating decision making, drawing from published studies that have used techniques that allow temporal dissection of the decision process, with an emphasis on the literature in animal models. The review will conclude with a discussion of the implications of this work for understanding pathological conditions that are characterized by impaired decision making.
Collapse
Affiliation(s)
- Caitlin A Orsini
- Department of Psychiatry, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL, 32610-0256, USA.
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32610, USA.
| | - Caesar M Hernandez
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Jennifer L Bizon
- Department of Psychiatry, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL, 32610-0256, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL, 32610-0256, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- Department of Psychology, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
34
|
Passecker J, Mikus N, Malagon-Vina H, Anner P, Dimidschstein J, Fishell G, Dorffner G, Klausberger T. Activity of Prefrontal Neurons Predict Future Choices during Gambling. Neuron 2019; 101:152-164.e7. [PMID: 30528555 PMCID: PMC6318061 DOI: 10.1016/j.neuron.2018.10.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/23/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022]
Abstract
Neuronal signals in the prefrontal cortex have been reported to predict upcoming decisions. Such activity patterns are often coupled to perceptual cues indicating correct choices or values of different options. How does the prefrontal cortex signal future decisions when no cues are present but when decisions are made based on internal valuations of past experiences with stochastic outcomes? We trained rats to perform a two-arm bandit-task, successfully adjusting choices between certain-small or possible-big rewards with changing long-term advantages. We discovered specialized prefrontal neurons, whose firing during the encounter of no-reward predicted the subsequent choice of animals, even for unlikely or uncertain decisions and several seconds before choice execution. Optogenetic silencing of the prelimbic cortex exclusively timed to encounters of no reward, provoked animals to excessive gambling for large rewards. Firing of prefrontal neurons during outcome evaluation signals subsequent choices during gambling and is essential for dynamically adjusting decisions based on internal valuations.
Collapse
Affiliation(s)
- Johannes Passecker
- Center for Brain Research, Division of Cognitive Neurobiology, Medical University Vienna, Vienna, Austria.
| | - Nace Mikus
- Center for Brain Research, Division of Cognitive Neurobiology, Medical University Vienna, Vienna, Austria; Department of Basic Psychological Research and Research Methods, University of Vienna, Vienna, Austria
| | - Hugo Malagon-Vina
- Center for Brain Research, Division of Cognitive Neurobiology, Medical University Vienna, Vienna, Austria
| | - Philip Anner
- Center for Brain Research, Division of Cognitive Neurobiology, Medical University Vienna, Vienna, Austria; Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | | | - Gordon Fishell
- NYU Neuroscience Institute, NYU School of Medicine, New York City, NY, USA
| | - Georg Dorffner
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Thomas Klausberger
- Center for Brain Research, Division of Cognitive Neurobiology, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
35
|
Quintero Garzola GC. Review: brain neurobiology of gambling disorder based on rodent models. Neuropsychiatr Dis Treat 2019; 15:1751-1770. [PMID: 31308669 PMCID: PMC6612953 DOI: 10.2147/ndt.s192746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/16/2019] [Indexed: 11/23/2022] Open
Abstract
Different literature reviews of gambling disorder (GD) neurobiology have been focused on human studies, others have focused on rodents, and others combined human and rodent studies. The main question of this review was: which are the main neurotransmitters systems and brain structures relevant for GD based on recent rodent studies? This work aims to review the experimental findings regarding the rodent´s neurobiology of GD. A search in the Pub Med database was set (October 2012-October 2017) and 162 references were obtained. After screening, 121 references were excluded, and only 41 references remained from the initial output. More, other 25 references were added to complement (introduction section, neuroanatomical descriptions) the principal part of the work. At the end, a total of 66 references remained for the review. The main conclusions are: 1) according to studies that used noninvasive methods for drug administration, some of the neurotransmitters and receptors involved in behaviors related to GD are: muscarinic, N-methyl-D-aspartate (NMDA), cannabinoid receptor 1 (CB1), cannabinoid receptor 2 (CB2), dopamine 2 receptor (D2), dopamine 3 receptor (D3), and dopamine 4 receptor (D4); 2) moreover, there are other neurotransmitters and receptors involved in GD based on studies that use invasive methods of drug administration (eg, brain microinjection); example of these are: serotonin 1A receptor (5-HT1A), noradrenaline receptors, gamma-aminobutyric acid receptor A (GABAA), and gamma-aminobutyric acid receptor B (GABAB); 3) different brain structures are relevant to behaviors linked to GD, like: amygdala (including basolateral amygdala (BLA)), anterior cingulate cortex (ACC), hippocampus, infralimbic area, insular cortex (anterior and rostral agranular), nucleus accumbens (NAc), olfactory tubercle (island of Calleja), orbitofrontal cortex (OFC), medial prefrontal cortex (mPFC), prefrontal cortex (PFC) - subcortical network, striatum (ventral) and the subthalamic nucleus (STN); and 4) the search for GD treatments should consider this diversity of receptor/neurotransmitter systems and brain areas.
Collapse
|
36
|
Pandey S, Badve PS, Curtis GR, Leibowitz SF, Barson JR. Neurotensin in the posterior thalamic paraventricular nucleus: inhibitor of pharmacologically relevant ethanol drinking. Addict Biol 2019; 24:3-16. [PMID: 28877396 DOI: 10.1111/adb.12546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/23/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022]
Abstract
Individuals prone to ethanol overconsumption may have preexisting neurochemical disturbances that contribute to their vulnerability. This study examined the paraventricular nucleus of the thalamus (PVT), a limbic structure recently shown to participate in ethanol intake. To identify individuals prone to ethanol overconsumption, we tested Long-Evans rats in behavioral paradigms and found high levels of vertical time (rearing behavior) in a novel activity chamber to be a consistent predictor of subsequent excessive 20 percent ethanol drinking under the intermittent access model. Examining neurochemicals in the PVT, we found before ethanol exposure that prone rats with high rearing, compared with non-prone rats, had significantly lower levels of neurotensin (NTS) mRNA and peptide in the posterior (pPVT) but not anterior (aPVT) subregion of the PVT. Our additional finding that ethanol intake has no significant impact on either rearing or NTS levels indicates that these measures, which are different in prone rats before ethanol consumption, remain stable after ethanol consumption. The possibility that NTS directly controls ethanol drinking is supported by our finding that NTS administration specifically suppresses ethanol drinking when injected into the pPVT but not aPVT, with this effect occurring exclusively in higher drinkers that presumably have lower endogenous levels of NTS. Further, an NTS antagonist in the pPVT augments intake in lower drinkers with presumably more endogenous NTS, while NTS in the pPVT inhibits novelty-induced rearing that predicts excessive drinking. Together, these results provide strong evidence that low endogenous levels of NTS in the pPVT contribute to an increased propensity toward excessive ethanol drinking.
Collapse
Affiliation(s)
- Surya Pandey
- Department of Neurobiology and Anatomy; Drexel University College of Medicine; Philadelphia PA USA
| | - Preeti S. Badve
- Department of Neurobiology and Anatomy; Drexel University College of Medicine; Philadelphia PA USA
| | - Genevieve R. Curtis
- Department of Neurobiology and Anatomy; Drexel University College of Medicine; Philadelphia PA USA
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology; The Rockefeller University; New York NY USA
| | - Jessica R. Barson
- Department of Neurobiology and Anatomy; Drexel University College of Medicine; Philadelphia PA USA
- Laboratory of Behavioral Neurobiology; The Rockefeller University; New York NY USA
| |
Collapse
|
37
|
Wallin-Miller K, Li G, Kelishani D, Wood RI. Anabolic-androgenic steroids alter decision making in a balanced rodent model of the Iowa gambling task. Behav Neurosci 2018; 132:152-160. [PMID: 29809043 DOI: 10.1037/bne0000243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anabolic-androgenic steroid (AAS) abuse is implicated in maladaptive decision making such as increased risk taking and problem gambling. Endogenous testosterone correlates with economic risk taking in both the stock market (Coates & Herbert, 2008) and in the laboratory, as measured by the Iowa Gambling Task (Stanton, Liening, & Schultheiss, 2011). Additionally, AAS use has been associated with problem gambling behavior in adolescents (Proimos, DuRant, Pierce, & Goodman, 1998). Thus, AAS may impair economic decision making. However, studies of human AAS users cannot control for preexisting risky behavior or normalize androgen levels. Accordingly, the present study investigated AAS effects on decision making in rats using a novel, balanced rodent model of the IGT. Adolescent male Long-Evans rats were treated chronically with high-dose testosterone (7.5 mg/kg) or vehicle (13% cyclodextrin in water) sc, and trained to work for sugar pellets in an operant chamber equipped with 4 levers, each associated with a different schedule of reward magnitude (number of pellets), probability, and punishment (time-out) duration. By RM-ANOVA, there was a main effect of lever (F3,78 = 25.33, p < .05), such that all rats preferred lever L4 offering a large reward (4 pellets), but with low probability (45%) and a long (35 sec) time-out. There was also a significant interaction of testosterone × lever (F3,78 = 2.78, p < .05), with testosterone increasing preference for L4 and decreasing preference for the other levers, relative to vehicle-treated controls. These data extend our previous findings of altered decision making in AAS-treated rats, and suggest that AAS may alter economic decision making in human users. (PsycINFO Database Record
Collapse
Affiliation(s)
| | - Grace Li
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California
| | - Diana Kelishani
- Department of Pharmaceutical Biosciences, Uppsala University
| | - Ruth I Wood
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California
| |
Collapse
|
38
|
Yates JR, Prior NA, Chitwood MR, Day HA, Heidel JR, Hopkins SE, Muncie BT, Paradella-Bradley TA, Sestito AP, Vecchiola AN, Wells EE. Effects of GluN2B-selective antagonists on delay and probability discounting in male rats: Modulation by delay/probability presentation order. Exp Clin Psychopharmacol 2018; 26:525-540. [PMID: 30035577 PMCID: PMC6283694 DOI: 10.1037/pha0000216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The contribution of the GluN2B subunit of the NMDA receptor to impulsivity has recently been examined. Ro 63-1908, a highly selective antagonist for the GluN2B, decreases impulsive choice. Because the order in which delays are presented modulates drug effects in discounting procedures, one goal of the current study was to determine the effects of Ro 63-1908 in delay discounting procedures in which the delays to obtaining the large reinforcer either increase or decrease across the session. We also determined if Ro 63-1908 differentially alters risky choice in probability discounting procedures that use ascending/descending schedules. Male rats were trained in either delay (n = 24) or probability (n = 24) discounting in which the delay to/odds against reinforcement were presented in either ascending or descending order (n = 12 each schedule). Following training, rats received the GluN2B antagonists Ro 63-1908 (0-1.0 mg/kg) and CP-101,606 (0-3.0 mg/kg). In delay discounting, Ro 63-1908 (1.0 mg/kg), but not CP-101,606, decreased choice for the large reinforcer, but only when the delays decreased across the session. In probability discounting, Ro 63-1908 (0.3 mg/kg)/CP-101,606 (1.0 mg/kg) increased choice for the large reinforcer when the probability of obtaining this alternative decreased across the session, but Ro 63-1908 (1.0 mg/kg)/CP-101,606 (3.0 mg/kg) decreased choice when the probabilities increased. These results show that the GluN2B is a mediator of impulsive/risky choice, but the effects of GluN2B antagonists are dependent on the order in which delays/probabilities are presented. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Collapse
|
39
|
Shaver TK, Ozga JE, Zhu B, Anderson KG, Martens KM, Vonder Haar C. Long-term deficits in risky decision-making after traumatic brain injury on a rat analog of the Iowa gambling task. Brain Res 2018; 1704:103-113. [PMID: 30296430 DOI: 10.1016/j.brainres.2018.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/28/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) affects 2.8 million people annually in the United States, with significant populations suffering from ongoing cognitive dysfunction. Impairments in decision-making can have major implications for patients and their caregivers, often enduring for years to decades, yet are rarely explored in experimental TBI. In the current study, the Rodent Gambling Task (RGT), an Iowa Gambling Task analog, was used to assess risk-based decision-making and motor impulsivity after TBI. During testing, rats chose between options associated with different probabilities of reinforcement (sucrose) or punishment (timeout). To determine effects of TBI on learned behaviors versus the learning process, rats were trained either before, or after, a bilateral frontal controlled cortical impact TBI, and then assessed for 12 weeks. To evaluate the degree to which monoamine systems, such as dopamine, were affected by TBI, rats were given an amphetamine challenge, and behavior recorded. Injury immediately and chronically decreased optimal decision-making, and biased rats towards both riskier, and safer (but suboptimal) choices, regardless of prior learning history. TBI also increased motor impulsivity across time, reflecting ongoing neural changes. Despite these similarities in trained and acquisition rats, those that learned the task after injury demonstrated reduced effects of amphetamine on optimal decision-making, suggesting a lesser role of monoamines in post-injury learning. Amphetamine also dose-dependently reduced motor impulsivity in injured rats. This study opens up the investigation of psychiatric-like dysfunction in animal models of TBI and tasks such as the RGT will be useful in identifying therapeutics for the chronic post-injury period.
Collapse
Affiliation(s)
- Trinity K Shaver
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Jenny E Ozga
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Binxing Zhu
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Karen G Anderson
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Kris M Martens
- Department of Psychology, West Virginia University, Morgantown, WV, USA
| | - Cole Vonder Haar
- Department of Psychology, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
40
|
Diehl MM, Lempert KM, Parr AC, Ballard I, Steele VR, Smith DV. Toward an integrative perspective on the neural mechanisms underlying persistent maladaptive behaviors. Eur J Neurosci 2018; 48:1870-1883. [PMID: 30044022 PMCID: PMC6113118 DOI: 10.1111/ejn.14083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/13/2018] [Accepted: 06/26/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Maria M. Diehl
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, PR 00936
| | - Karolina M. Lempert
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ashley C. Parr
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario
| | - Ian Ballard
- Neurosciences Graduate Training Program, Stanford University, Stanford, CA 94305
| | - Vaughn R. Steele
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - David V. Smith
- Department of Psychology, Temple University, Philadelphia, PA 19122
| |
Collapse
|
41
|
Contributions of medial prefrontal cortex to decision making involving risk of punishment. Neuropharmacology 2018; 139:205-216. [PMID: 30009836 DOI: 10.1016/j.neuropharm.2018.07.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022]
Abstract
The prefrontal cortex (PFC) plays an important role in several forms of cost-benefit decision making. Its contributions to decision making under risk of explicit punishment, however, are not well understood. A rat model was used to investigate the role of the medial PFC (mPFC) and its monoaminergic innervation in a Risky Decision-making Task (RDT), in which rats chose between a small, "safe" food reward and a large, "risky" food reward accompanied by varying probabilities of mild footshock punishment. Inactivation of mPFC increased choice of the large, risky reward when the punishment probability increased across the session ("ascending RDT"), but decreased choice of the large, risky reward when the punishment probability decreased across the session ("descending RDT"). In contrast, enhancement of monoamine availability via intra-mPFC amphetamine reduced choice of the large, risky reward only in the descending RDT. Systemic administration of amphetamine reduced choice of the large, risky reward in both the ascending and descending RDT; however, this reduction was not attenuated by concurrent mPFC inactivation, indicating that mPFC is not a critical locus of amphetamine's effects on risk taking. These findings suggest that mPFC plays an important role in adapting choice behavior in response to shifting risk contingencies, but not necessarily in risk-taking behavior per se.
Collapse
|
42
|
Altering gain of the infralimbic-to-accumbens shell circuit alters economically dissociable decision-making algorithms. Proc Natl Acad Sci U S A 2018; 115:E6347-E6355. [PMID: 29915034 DOI: 10.1073/pnas.1803084115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The nucleus accumbens shell (NAcSh) is involved in reward valuation. Excitatory projections from infralimbic cortex (IL) to NAcSh undergo synaptic remodeling in rodent models of addiction and enable the extinction of disadvantageous behaviors. However, how the strength of synaptic transmission of the IL-NAcSh circuit affects decision-making information processing and reward valuation remains unknown, particularly because these processes can conflict within a given trial and particularly given recent data suggesting that decisions arise from separable information-processing algorithms. The approach of many neuromodulation studies is to disrupt information flow during on-going behaviors; however, this limits the interpretation of endogenous encoding of computational processes. Furthermore, many studies are limited by the use of simple behavioral tests of value which are unable to dissociate neurally distinct decision-making algorithms. We optogenetically altered the strength of synaptic transmission between glutamatergic IL-NAcSh projections in mice trained on a neuroeconomic task capable of separating multiple valuation processes. We found that induction of long-term depression in these synapses produced lasting changes in foraging processes without disrupting deliberative processes. Mice displayed inflated reevaluations to stay when deciding whether to abandon continued reward-seeking investments but displayed no changes during initial commitment decisions. We also developed an ensemble-level measure of circuit-specific plasticity that revealed individual differences in foraging valuation tendencies. Our results demonstrate that alterations in projection-specific synaptic strength between the IL and the NAcSh are capable of augmenting self-control economic valuations within a particular decision-making modality and suggest that the valuation mechanisms for these multiple decision-making modalities arise from different circuits.
Collapse
|
43
|
Diehl MM, Bravo-Rivera C, Rodriguez-Romaguera J, Pagan-Rivera PA, Burgos-Robles A, Roman-Ortiz C, Quirk GJ. Active avoidance requires inhibitory signaling in the rodent prelimbic prefrontal cortex. eLife 2018; 7:34657. [PMID: 29851381 PMCID: PMC5980229 DOI: 10.7554/elife.34657] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/06/2018] [Indexed: 12/27/2022] Open
Abstract
Much is known about the neural circuits of conditioned fear and its relevance to understanding anxiety disorders, but less is known about other anxiety-related behaviors such as active avoidance. Using a tone-signaled, platform-mediated avoidance task, we observed that pharmacological inactivation of the prelimbic prefrontal cortex (PL) delayed avoidance. Surprisingly, optogenetic silencing of PL glutamatergic neurons did not delay avoidance. Consistent with this, inhibitory but not excitatory responses of rostral PL neurons were associated with avoidance training. To test the importance of these inhibitory responses, we optogenetically stimulated PL neurons to counteract the tone-elicited reduction in firing rate. Photoactivation of rostral (but not caudal) PL neurons at 4 Hz impaired avoidance. These findings suggest that inhibitory responses of rostral PL neurons signal the avoidability of a potential threat and underscore the importance of designing behavioral optogenetic studies based on neuronal firing responses.
Collapse
Affiliation(s)
- Maria M Diehl
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Christian Bravo-Rivera
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Jose Rodriguez-Romaguera
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Pablo A Pagan-Rivera
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Anthony Burgos-Robles
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Ciorana Roman-Ortiz
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Gregory J Quirk
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| |
Collapse
|
44
|
Neural Activity in Ventral Medial Prefrontal Cortex Is Modulated More Before Approach Than Avoidance During Reinforced and Extinction Trial Blocks. J Neurosci 2018; 38:4584-4597. [PMID: 29661965 DOI: 10.1523/jneurosci.2579-17.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 11/21/2022] Open
Abstract
Ventromedial prefrontal cortex (vmPFC) is thought to provide regulatory control over Pavlovian fear responses and has recently been implicated in appetitive approach behavior, but much less is known about its role in contexts in which appetitive and aversive outcomes can be obtained and avoided, respectively. To address this issue, we recorded from single neurons in vmPFC while male rats performed our combined approach and avoidance task under reinforced and non-reinforced (extinction) conditions. Surprisingly, we found that cues predicting reward modulated cell firing in vmPFC more often and more robustly than cues preceding avoidable shock; in addition, firing of vmPFC neurons was both response (press or no-press) and outcome (reinforced or extinction) selective. These results suggest a complex role for vmPFC in regulating behavior and support its role in appetitive contexts during both reinforced and non-reinforced conditions.SIGNIFICANCE STATEMENT Selecting context-appropriate behaviors to gain reward or avoid punishment is critical for survival. Although the role of ventromedial prefrontal cortex (vmPFC) in mediating fear responses is well established, vmPFC has also been implicated in the regulation of reward-guided approach and extinction. Many studies have used indirect methods and simple behavioral procedures to study vmPFC, which leaves the literature incomplete. We recorded vmFPC neural activity during a complex cue-driven combined approach and avoidance task and during extinction. Surprisingly, we found very little vmPFC modulation to cues predicting avoidable shock, whereas cues predicting reward approach robustly modulated vmPFC firing in a response- and outcome-selective manner. This suggests a more complex role for vmPFC than current theories suggest, specifically regarding context-specific behavioral optimization.
Collapse
|
45
|
Di Ciano P, Le Foll B. The Rat Gambling Task as a model for the preclinical development of treatments for gambling disorder. INTERNATIONAL GAMBLING STUDIES 2018. [DOI: 10.1080/14459795.2018.1448428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Patricia Di Ciano
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health (CAMH) , Toronto, Canada
| | - Bernard Le Foll
- Addiction Division, Centre for Addiction and Mental Health (CAMH) , Toronto, Canada
- Departments of Pharmacology and Toxicology, Psychiatry, Family and Community Medicine, Institute of Medical Sciences, University of Toronto , Toronto, Canada
| |
Collapse
|
46
|
Watt MJ, Weber MA, Davies SR, Forster GL. Impact of juvenile chronic stress on adult cortico-accumbal function: Implications for cognition and addiction. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79. [PMID: 28642080 PMCID: PMC5610933 DOI: 10.1016/j.pnpbp.2017.06.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Repeated exposure to stress during childhood is associated with increased risk for neuropsychiatric illness, substance use disorders and other behavioral problems in adulthood. However, it is not clear how chronic childhood stress can lead to emergence of such a wide range of symptoms and disorders in later life. One possible explanation lies in stress-induced disruption to the development of specific brain regions associated with executive function and reward processing, deficits in which are common to the disorders promoted by childhood stress. Evidence of aberrations in prefrontal cortex and nucleus accumbens function following repeated exposure of juvenile (pre- and adolescent) organisms to a variety of different stressors would account not only for the similarity in symptoms across the wide range of childhood stress-associated mental illnesses, but also their persistence into adulthood in the absence of further stress. Therefore, the goal of this review is to evaluate the current knowledge regarding disruption to executive function and reward processing in adult animals or humans exposed to chronic stress over the juvenile period, and the underlying neurobiology, with particular emphasis on the prefrontal cortex and nucleus accumbens. First, the role of these brain regions in mediating executive function and reward processing is highlighted. Second, the neurobehavioral development of these systems is discussed to illustrate how juvenile stress may exert long-lasting effects on prefrontal cortex-accumbal activity and related behavioral functions. Finally, a critical review of current animal and human findings is presented, which strongly supports the supposition that exposure to chronic stress (particularly social aggression and isolation in animal studies) in the juvenile period produces impairments in executive function in adulthood, especially in working memory and inhibitory control. Chronic juvenile stress also results in aberrations to reward processing and seeking, with increased sensitivity to drugs of abuse particularly noted in animal models, which is in line with greater incidence of substance use disorders seen in clinical studies. These consequences are potentially mediated by monoamine and glutamatergic dysfunction in the prefrontal cortex and nucleus accumbens, providing translatable therapeutic targets. However, the predominant use of male subjects and social-based stressors in preclinical studies points to a clear need for determining how both sex differences and stressor heterogeneity may differentially contribute to stress-induced changes to substrates mediating executive function and reward processing, before the impact of chronic juvenile stress in promoting adult psychopathology can be fully understood.
Collapse
|
47
|
Deciphering Decision Making: Variation in Animal Models of Effort- and Uncertainty-Based Choice Reveals Distinct Neural Circuitries Underlying Core Cognitive Processes. J Neurosci 2017; 36:12069-12079. [PMID: 27903717 DOI: 10.1523/jneurosci.1713-16.2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/06/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022] Open
Abstract
Maladaptive decision-making is increasingly recognized to play a significant role in numerous psychiatric disorders, such that therapeutics capable of ameliorating core impairments in judgment may be beneficial in a range of patient populations. The field of "decision neuroscience" is therefore in its ascendancy, with researchers from diverse fields bringing their expertise to bear on this complex and fascinating problem. In addition to the advances in neuroimaging and computational neuroscience that contribute enormously to this area, an increase in the complexity and sophistication of behavioral paradigms designed for nonhuman laboratory animals has also had a significant impact on researchers' ability to test the causal nature of hypotheses pertaining to the neural circuitry underlying the choice process. Multiple such decision-making assays have been developed to investigate the neural and neurochemical bases of different types of cost/benefit decisions. However, what may seem like relatively trivial variation in behavioral methodologies can actually result in recruitment of distinct cognitive mechanisms, and alter the neurobiological processes that regulate choice. Here we focus on two areas of particular interest, namely, decisions that involve an assessment of uncertainty or effort, and compare some of the most prominent behavioral paradigms that have been used to investigate these processes in laboratory rodents. We illustrate how an appreciation of the diversity in the nature of these tasks can lead to important insights into the circumstances under which different neural regions make critical contributions to decision making.
Collapse
|
48
|
Adams WK, Vonder Haar C, Tremblay M, Cocker PJ, Silveira MM, Kaur S, Baunez C, Winstanley CA. Deep-Brain Stimulation of the Subthalamic Nucleus Selectively Decreases Risky Choice in Risk-Preferring Rats. eNeuro 2017; 4:ENEURO.0094-17.2017. [PMID: 28791332 PMCID: PMC5547195 DOI: 10.1523/eneuro.0094-17.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/15/2017] [Accepted: 07/03/2017] [Indexed: 11/21/2022] Open
Abstract
Deep brain stimulation of the subthalamic nucleus (STN-DBS) can improve the motor symptoms of Parkinson's disease (PD) and negate the problematic side effects of dopamine replacement therapy. Although there is concern that STN-DBS may enhance the development of gambling disorder and other impulse control disorders in this patient group, recent data suggest that STN-DBS may actually reduce iatrogenic impulse control disorders, and alleviate obsessive-compulsive disorder (OCD). Here, we sought to determine whether STN-DBS was beneficial or detrimental to performance of the rat gambling task (rGT), a rodent analogue of the Iowa Gambling Task (IGT) used to assess risky decision making clinically. Rats chose between four options associated with different amounts and probabilities of sugar pellet rewards versus timeout punishments. As in the IGT, the optimal approach was to favor options associated with smaller per-trial gains but lower timeout penalties. Once a stable behavioral baseline was established, electrodes were implanted bilaterally into the STN, and the effects of STN-DBS assessed on-task over 10 consecutive sessions using an A-B-A design. STN-DBS did not affect choice in optimal decision makers that correctly favored options associated with smaller per-trial gains but also lower penalties. However, a minority (∼25%) preferred the maladaptive "high-risk, high-reward" options at baseline. STN-DBS significantly and progressively improved choice in these risk-preferring rats. These data support the hypothesis that STN-DBS may be beneficial in ameliorating maladaptive decision making associated with compulsive and addiction disorders.
Collapse
Affiliation(s)
- Wendy K. Adams
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Cole Vonder Haar
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Melanie Tremblay
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Paul J. Cocker
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Mason M. Silveira
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Sukhbir Kaur
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Christelle Baunez
- Institut de Neurosciences de la Timone, UMR7289 Centre National de la Recherche Scientifique and Aix-Marseille Université, 13005, Marseille, France
| | - Catharine A. Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
49
|
Nautiyal KM, Okuda M, Hen R, Blanco C. Gambling disorder: an integrative review of animal and human studies. Ann N Y Acad Sci 2017; 1394:106-127. [PMID: 28486792 PMCID: PMC5466885 DOI: 10.1111/nyas.13356] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/08/2017] [Accepted: 03/22/2017] [Indexed: 11/29/2022]
Abstract
Gambling disorder (GD), previously called pathological gambling and classified as an impulse control disorder in DSM-III and DSM-IV, has recently been reclassified as an addictive disorder in the DSM-5. It is widely recognized as an important public health problem associated with substantial personal and social costs, high rates of psychiatric comorbidity, poor physical health, and elevated suicide rates. A number of risk factors have been identified, including some genetic polymorphisms. Animal models have been developed in order to study the underlying neural basis of GD. Here, we discuss recent advances in our understanding of the risk factors, disease course, and pathophysiology. A focus on a phenotype-based dissection of the disorder is included in which known neural correlates from animal and human studies are reviewed. Finally, current treatment approaches are discussed, as well as future directions for GD research.
Collapse
Affiliation(s)
- Katherine M. Nautiyal
- New York State Psychiatric Institute, New York, New York
- Department of Psychiatry, Columbia University, New York, New York
| | - Mayumi Okuda
- New York State Psychiatric Institute, New York, New York
- Department of Psychiatry, Columbia University, New York, New York
| | - Rene Hen
- New York State Psychiatric Institute, New York, New York
- Department of Psychiatry, Columbia University, New York, New York
- Departments of Neuroscience and Pharmacology, Columbia University, New York, New York
| | - Carlos Blanco
- National Institute on Drug Abuse, Rockville, Maryland
| |
Collapse
|
50
|
|