1
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
2
|
Carter JS, Costa CC, Lewandowski SI, Nelson KH, Goldsmith ST, Scofield MD, Reichel CM. Estrogen receptor beta signaling enhances extinction memory recall for heroin-conditioned cues in a sex- and region-specific manner. Transl Psychiatry 2024; 14:283. [PMID: 38997258 PMCID: PMC11245532 DOI: 10.1038/s41398-024-03001-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Return to use, or relapse, is a major challenge in the treatment of opioid use disorder (OUD). Relapse can be precipitated by several factors, including exposure to drug-conditioned cues. Identifying successful treatments to mitigate cue-induced relapse has been challenging, perhaps due to extinction memory recall (EMR) deficits. Previously, inhibition of estradiol (E2) signaling in the basolateral amygdala (BLA) impaired heroin-cue EMR. This effect was recapitulated by antagonism of BLA estrogen receptors (ER) in a sex-specific manner such that blocking ERα in males, but ERβ in females, impaired EMR. However, it is unclear whether increased E2 signaling, in the BLA or systemically, enhances heroin-cue EMR. We hypothesized that ERβ agonism would enhance heroin-cue EMR in a sex- and region-specific manner. To determine the capacity of E2 signaling to improve EMR, we pharmacologically manipulated ERβ across several translationally designed experiments. First, male and female rats acquired heroin or sucrose self-administration. Next, during a cued extinction session, we administered diarylpropionitrile (DPN, an ERβ agonist) and tested anxiety-like behavior on an open field. Subsequently, we assessed EMR in a cue-induced reinstatement test and, finally, measured ERβ expression in several brain regions. Across all experiments, females took more heroin and sucrose than males and had greater responses during heroin-cued extinction. Administration of DPN in the BLA enhanced EMR in females only, driven by ERβ's impacts on memory consolidation. Interestingly, however, systemic DPN administration improved EMR for heroin cues in both sexes across several different tests, but did not impact sucrose-cue EMR. Immunohistochemical analysis of ERβ expression across several different brain regions showed that females only had greater expression of ERβ in the basal nucleus of the BLA. Here, in several preclinical experiments, we demonstrated that ERβ agonism enhances heroin-cue EMR and has potential utility in combatting cue-induced relapse.
Collapse
Affiliation(s)
- Jordan S Carter
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Caitlyn C Costa
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Stacia I Lewandowski
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Katharine H Nelson
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Sarah T Goldsmith
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Carmela M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
3
|
Wu PY, Ji L, De Sanctis C, Francesconi A, Inglebert Y, McKinney RA. Loss of synaptopodin impairs mGluR5 and protein synthesis-dependent mGluR-LTD at CA3-CA1 synapses. PNAS NEXUS 2024; 3:pgae062. [PMID: 38384385 PMCID: PMC10879843 DOI: 10.1093/pnasnexus/pgae062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) is an important form of synaptic plasticity that occurs in many regions of the central nervous system and is the underlying mechanism for several learning paradigms. In the hippocampus, mGluR-LTD is manifested by the weakening of synaptic transmission and elimination of dendritic spines. Interestingly, not all spines respond or undergo plasticity equally in response to mGluR-LTD. A subset of dendritic spines containing synaptopodin (SP), an actin-associated protein is critical for mGluR-LTD and protects spines from elimination through mGluR1 activity. The precise cellular function of SP is still enigmatic and it is still unclear how SP contributes to the functional aspect of mGluR-LTD despite its modulation of the structural plasticity. In this study, we show that the lack of SP impairs mGluR-LTD by negatively affecting the mGluR5-dependent activity. Such impairment of mGluR5 activity is accompanied by a significant decrease of surface mGluR5 level in SP knockout (SPKO) mice. Intriguingly, the remaining mGluR-LTD becomes a protein synthesis-independent process in the SPKO and is mediated instead by endocannabinoid signaling. These data indicate that the postsynaptic protein SP can regulate the locus of expression of mGluR-LTD and provide insight into our understanding of spine/synapse-specific plasticity.
Collapse
Affiliation(s)
- Pei You Wu
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Linjia Ji
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Claudia De Sanctis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Anna Francesconi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Yanis Inglebert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
4
|
Wu PY, Ji L, De Sanctis C, Francesconi A, Inglebert Y, McKinney RA. Loss of synaptopodin impairs mGluR5 and protein synthesis dependent mGluR-LTD at CA3-CA1 synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551676. [PMID: 37577654 PMCID: PMC10418280 DOI: 10.1101/2023.08.02.551676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) is an important form of synaptic plasticity that occurs in many regions of the CNS and is the underlying mechanism for several learning paradigms. In the hippocampus, mGluR-LTD is manifested by the weakening of synaptic transmission and elimination of dendritic spines. Interestingly, not all spines respond or undergo plasticity equally in response to mGluR-LTD. A subset of dendritic spines containing synaptopodin (SP), an actin-associated protein, are critical for mGluR-LTD and protect spines from elimination through mGluR1 activity. The precise cellular function of SP is still enigmatic and it is still unclear how SP contributes to the functional aspect of mGluR-LTD despite of its modulation on the structural plasticity. In the present study, we show that the lack of SP impairs mGluR-LTD by negatively affecting the mGluR5-dependent activity. Such impairment of mGluR5 activity is accompanied by a significant decrease of surface mGluR5 level in SP knockout (SPKO) mice. Intriguingly, the remaining mGluR-LTD becomes a protein synthesis-independent process in the SPKO and is mediated instead by endocannabinoid signaling. These data show for the first time that the postsynaptic protein SP can regulate the locus of expression of mGluR-LTD and provide insight to our understanding of spine/synapse-specific plasticity. Significance statement Hippocampal group I metabotropic glutamate receptor dependent long-term depression (mGluR-LTD), a form of learning and memory, is misregulated in many murine models of neurodevelopmental disorders. Despite extensive studies there is a paucity of information on the molecular mechanism underlying mGluR-LTD. Previously, we reported that loss of synaptopodin, an actin-associated protein found in a subset of mature dendritic spines, impairs mGluR-LTD. In the current study, we uncover the molecular and cellular deficits involved. We find that synaptopodin is required for the mGluR5-Homer interaction and uncover synaptopodin as a molecular switch for mGluR-LTD expression, as mGluR-LTD becomes protein synthesis-independent and relies on endocannabinoid signaling in synaptopodin knock-out. This work provides insight into synaptopodin as a gatekeeper to regulate mGluR-LTD at hippocampal synapses.
Collapse
|
5
|
Kim HJJ, Zagzoog A, Black T, Baccetto SL, Laprairie RB. Molecular and cellular mechanisms underlying brain region-specific endocannabinoid system modulation by estradiol across the rodent estrus cycle. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 195:27-45. [PMID: 36707154 DOI: 10.1016/bs.pmbts.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neurological crosstalk between the endocannabinoid and estrogen systems has been a growing topic of discussion over the last decade. Although the main estrogenic ligand, estradiol (E2), influences endocannabinoid signaling in both male and female animals, the latter experiences significant and rhythmic fluctuations in E2 as well as other sex hormones. This is referred to as the menstrual cycle in women and the estrus cycle in rodents such as mice and rats. Consisting of 4 distinct hormone-driven phases, the rodent estrus cycle modulates both endocannabinoid and exogenous cannabinoid signaling resulting in unique behavioral outcomes based on the cycle phase. For example, cannabinoid receptor agonist-induced antinociception is greatest during proestrus and estrus, when circulating and brain levels of E2 are high, as compared to metestrus and diestrus when E2 concentrations are low. Pain processing occurs throughout the cerebral cortex and amygdala of the forebrain; periaqueductal grey of the midbrain; and medulla and spine of the hindbrain. As a result, past molecular investigations on these endocannabinoid-estrogen system interactions have focused on these specific brain regions. Here, we will bridge regional molecular trends with neurophysiological evidence of how plasma membrane estrogen receptor (ER) activation by E2 leads to postsynaptic endocannabinoid synthesis, retrograde signaling, and alterations in inhibitory neurotransmission. These signaling pathways depend on ER heterodimers, current knowledge of which will also be detailed in this review. Overall, the aim of this review article is to systematically summarize how the cannabinoid receptors and endocannabinoids change in expression and function in specific brain regions throughout the estrus cycle.
Collapse
Affiliation(s)
- Hye Ji J Kim
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tallan Black
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sarah L Baccetto
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada; Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
6
|
Xuan SM, Su YW, Liang YM, Gao ZJ, Liu CY, Fan BF, Shi YW, Wang XG, Zhao H. mGluR5 in amygdala modulates fear memory generalization. Front Behav Neurosci 2023; 17:1072642. [PMID: 36891323 PMCID: PMC9986332 DOI: 10.3389/fnbeh.2023.1072642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Fear memory generalization is regarded as the core characteristic of posttraumatic stress disorder (PTSD) development. However, the mechanism that contributes to the generalization of conditioned fear memory is still unclear. The generalization is generally considered to be a mismatch that occurs during memory consolidation. Methods Foot shocks and tones were given as unconditioned stress and conditioned stress, respectively for fear conditioning training. Immunofluorescence staining, western blotting and qPCR were performed to determine the expression of different genes in amygdala of mice after fear conditioning training. Cycloheximide was used as a protein synthesis inhibitor and 2-methyl-6-phenylethynyl-pyridine was injected for mGluR5 inhibition. Results Fear conditioning using caused incremental generalization, which was clearly observed during training. The density of c-Fos+ cells or the synaptic p-NMDAR expression did not differ with stress intensities. Strong-shock fear conditioning could induce significant mGluR5 de novo synthesis in the amygdala, which was not observed in the weak-shock group. Inhibition of mGluR5 impaired fear memory generalization induced by strong-shock fear conditioning, but the generalization level induced by weak-shock training was enhanced. Discussion These results indicated that mGluR5 in the amygdala is critical to the function of inappropriate fear memory generalization and suggested that this may be a potential target for the treatment of PTSD.
Collapse
Affiliation(s)
- Shou-Min Xuan
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ya-Wen Su
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi-Meng Liang
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhen-Jie Gao
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chun-Yan Liu
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bu-Fang Fan
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan-Wei Shi
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Guang Wang
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hu Zhao
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Price ME, McCool BA. Structural, functional, and behavioral significance of sex and gonadal hormones in the basolateral amygdala: A review of preclinical literature. Alcohol 2022; 98:25-41. [PMID: 34371120 DOI: 10.1016/j.alcohol.2021.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
The basolateral amygdala (BLA) is intimately involved in the development of neuropsychiatric disorders such as anxiety and alcohol use disorder (AUD). These disorders have clear sex biases, with women more likely to develop an anxiety disorder and men more likely to develop AUD. Preclinical models have largely confirmed these sex-specific vulnerabilities and emphasize the effects of sex hormones on behaviors influenced by the BLA. This review will discuss sex differences in BLA-related behaviors and highlight potential mechanisms mediated by altered BLA structure and function, including the composition of GABAergic interneuron subpopulations, glutamatergic pyramidal neuron morphology, glutamate/GABA neurotransmission, and neuromodulators. Further, sex hormones differentially organize dimorphic circuits during sensitive developmental periods (organizational effects) and initiate more transient effects throughout adulthood (activational effects). Current literature indicates that estradiol and allopregnanolone, a neuroactive progestogen, generally reduce BLA-related behaviors through a variety of mechanisms, including activation of estrogen receptors or facilitation of GABAA-mediated inhibition, respectively. This enhanced GABAergic inhibition may protect BLA pyramidal neurons from the excitability associated with anxiety and alcohol withdrawal. Understanding sex differences and the effects of sex hormones on BLA structure and function may help explain sex-specific vulnerabilities in BLA-related behaviors and ultimately improve treatments for anxiety and AUD.
Collapse
|
8
|
Zhao X, He C, Wang S, Lei Y, Niu Q. The association between blood lymphocyte NMDAR, group I mGluRs and cognitive function changes in occupationally aluminum-exposed workers and verification in rats. J Trace Elem Med Biol 2022; 69:126875. [PMID: 34673477 DOI: 10.1016/j.jtemb.2021.126875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/27/2021] [Accepted: 10/12/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Many studies have shown that occupational aluminum (Al) exposure could affect the cognitive functions of workers and cause mild cognitive impairment (MCI). Glutamate receptors (GluRs) play an important role in learning and memory functions. METHODS 352 workers in a large Al production enterprise were investigated in this research. MMSE, CDT, DST, VFT, FOM were used to evaluate the cognitive functions of workers. Plasma Al levels as exposure indices were measured by Graphite Furnace Atomic Absorption Method (GFAAS). The expression of GluRs was measured by ELISA. Cognitive function comprehensive scores were obtained through factor analysis. Then a rat model of chronic AlCl3 exposure was established. The detection method of Al levels and protein expression were the same as mentioned-above. RESULTS Compared with the Q1 group, the DST, VFT, and comprehensive cognitive function scores of the Q4 group were lower(P < 0.05). For every 1μg/L increase in plasma Al concentration, the risk of cognitive impairment increases 1.051 times (95 %CI:1.031,1.072). Both NMDAR1 and NMDAR2A protein expression level of Q1 group were higher than those of Q2, Q3, Q4 group (all P < 0.05). The mediating effect ratio of NMDAR1 between plasma Al levels and cognitive function comprehensive scores was a1*b1/c=11.30 %, and the mediating effect ratio of NMDAR2A was |a2*b2/c|=21.77 %. Compared with control group, the escape latency of rats in the high Al dose group was longer day by day (P < 0.05). With the increase of Al dose, the relative expression of NMDAR1, NMDAR2A, NMDAR2B, GluR1 and mGluR5 in cerebral cortex and lymphocytes of rats were decreased (P < 0.05). The result of correlation analysis on NMDAR1 protein expression between brain cortex and lymphocyte showed that the correlation coefficient is r = 0.646(P < 0.05). CONCLUSION Taking together the results from both Al exposed workers and animal, there is a certain correlation between NMDAR1 protein contents of brain cortex and peripheral lymphocytes. We propose that lymphocyte NMDAR1 could be considered as a peripheral potential marker of cognitive impairment for further observation.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Chanting He
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Department of Anatomy, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Shanshan Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yang Lei
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, 030001, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
9
|
Shallcross J, Wu L, Wilkinson CS, Knackstedt LA, Schwendt M. Increased mGlu5 mRNA expression in BLA glutamate neurons facilitates resilience to the long-term effects of a single predator scent stress exposure. Brain Struct Funct 2021; 226:2279-2293. [PMID: 34175993 PMCID: PMC10416208 DOI: 10.1007/s00429-021-02326-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/17/2021] [Indexed: 12/28/2022]
Abstract
Post-traumatic stress disorder (PTSD) develops in a subset of individuals exposed to a trauma with core features being increased anxiety and impaired fear extinction. To model the heterogeneity of PTSD behavioral responses, we exposed male Sprague-Dawley rats to predator scent stress once for 10 min and then assessed anxiety-like behavior 7 days later using the elevated plus maze and acoustic startle response. Rats displaying anxiety-like behavior in both tasks were classified as stress Susceptible, and rats exhibiting behavior no different from un-exposed Controls were classified as stress Resilient. In Resilient rats, we previously found increased mRNA expression of mGlu5 in the amygdala and prefrontal cortex (PFC) and CB1 in the amygdala. Here, we performed fluorescent in situ hybridization (FISH) to determine the subregion and cell-type-specific expression of these genes in Resilient rats 3 weeks after TMT exposure. Resilient rats displayed increased mGlu5 mRNA expression in the basolateral amygdala (BLA) and the infralimbic and prelimbic regions of the PFC and increased BLA CB1 mRNA. These increases were limited to glutamatergic cells. To test the necessity of mGlu5 for attenuating TMT-conditioned contextual fear 3 weeks after TMT conditioning, intra-BLA infusions of the mGlu5 negative allosteric modulator MTEP were administered prior to context re-exposure. In TMT-exposed Resilient rats, but not Controls, MTEP increased freezing on the day of administration, which extinguished over two additional un-drugged sessions. These results suggest that increased mGlu5 expression in BLA glutamate neurons contributes to the behavioral flexibility observed in stress-Resilient animals by facilitating a capacity for extinguishing contextual fear associations.
Collapse
Affiliation(s)
- John Shallcross
- Psychology Department, Behavioral and Cognitive Neuroscience Program, University of Florida, 114 Psychology Building, 945 Center Drive, Gainesville, FL, 32611-2250, USA
| | - Lizhen Wu
- Psychology Department, Behavioral and Cognitive Neuroscience Program, University of Florida, 114 Psychology Building, 945 Center Drive, Gainesville, FL, 32611-2250, USA
| | - Courtney S Wilkinson
- Psychology Department, Behavioral and Cognitive Neuroscience Program, University of Florida, 114 Psychology Building, 945 Center Drive, Gainesville, FL, 32611-2250, USA
- Center for Addiction Research and Education (CARE), University of Florida, Gainesville, USA
| | - Lori A Knackstedt
- Psychology Department, Behavioral and Cognitive Neuroscience Program, University of Florida, 114 Psychology Building, 945 Center Drive, Gainesville, FL, 32611-2250, USA
- Center for Addiction Research and Education (CARE), University of Florida, Gainesville, USA
| | - Marek Schwendt
- Psychology Department, Behavioral and Cognitive Neuroscience Program, University of Florida, 114 Psychology Building, 945 Center Drive, Gainesville, FL, 32611-2250, USA.
- Center for Addiction Research and Education (CARE), University of Florida, Gainesville, USA.
| |
Collapse
|
10
|
Xu X, Fan R, Ruan Y, Xu M, He J, Cao M, Li X, Zhou W, Liu Y. Inhibition of PLCβ1 signaling pathway regulates methamphetamine self-administration and neurotoxicity in rats. Food Chem Toxicol 2021; 149:111970. [PMID: 33421459 DOI: 10.1016/j.fct.2021.111970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022]
Abstract
Studies have shown that the central renin-angiotensin system is involved in neurological disorders. Our previous studies have demonstrated that angiotensin II receptor type 1 (AT1R) in the brain could be a potential target against methamphetamine (METH) use disorder. The present study was designed to investigate the underlying mechanisms of the inhibitory effect of AT1R on various behavioural effects of METH. We first examined the effect of AT1R antagonist, candesartan cilexetil (CAN), on behavioural and neurotoxic effects of METH. Furthermore, we studied the role of phospholipase C beta 1 (PLCβ1) blockade behavioural and neurotoxic effects of METH. The results showed that CAN significantly attenuated METH-induced behavioral disorders and neurotoxicity associated with increased oxidative stress. AT1R and PLCβ1 were significantly upregulated in vivo and in vitro. Inhibition of PLCβ1 effectively alleviated METH-induced neurotoxicity and METH self-administration (SA) by central blockade of the PLCβ1 involved signalling pathway. PLCβ1 blockade significantly decreased the reinforcing and motivation effects of METH. PLCβ1 involved signalling pathway, as well as a more specific role of PLCβ1, involved the inhibitory effects of CAN on METH-induced behavioural dysfunction and neurotoxicity. Collectively, our findings reveal a novel role of PLCβ1 in METH-induced neurotoxicity and METH use disorder.
Collapse
Affiliation(s)
- Xing Xu
- The affiliated Hospital of Medical School, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, PR China; Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China.
| | - Runyue Fan
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Yanqian Ruan
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Mengjie Xu
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Jiajie He
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Mengye Cao
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Xingxing Li
- Ningbo Kangning Hospital, 1 South Zhuangyu Road, Ningbo, Zhejiang, 315201, PR China
| | - Wenhua Zhou
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China; Ningbo Kangning Hospital, 1 South Zhuangyu Road, Ningbo, Zhejiang, 315201, PR China; Ningbo Addiction Research and Treatment Center, 21 Xibei Road, Zhejiang, 315040, PR China
| | - Yu Liu
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China.
| |
Collapse
|
11
|
Mechanisms Underlying Long-Term Synaptic Zinc Plasticity at Mouse Dorsal Cochlear Nucleus Glutamatergic Synapses. J Neurosci 2020; 40:4981-4996. [PMID: 32434779 DOI: 10.1523/jneurosci.0175-20.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/21/2022] Open
Abstract
In many brain areas, such as the neocortex, limbic structures, and auditory brainstem, synaptic zinc is released from presynaptic terminals to modulate neurotransmission. As such, synaptic zinc signaling modulates sensory processing and enhances acuity for discrimination of different sensory stimuli. Whereas sensory experience causes long-term changes in synaptic zinc signaling, the mechanisms underlying this long-term synaptic zinc plasticity remain unknown. To study these mechanisms in male and female mice, we used in vitro and in vivo models of zinc plasticity observed at the zinc-rich glutamatergic dorsal cochlear nucleus (DCN) parallel fiber synapses onto cartwheel cells. High-frequency stimulation of DCN parallel fiber synapses induced LTD of synaptic zinc signaling (Z-LTD), evidenced by reduced zinc-mediated inhibition of EPSCs. Low-frequency stimulation induced LTP of synaptic zinc signaling (Z-LTP), evidenced by enhanced zinc-mediated inhibition of EPSCs. Pharmacological manipulations of Group 1 metabotropic glutamate receptors (G1 mGluRs) demonstrated that G1 mGluR activation is necessary and sufficient for inducing Z-LTD and Z-LTP. Pharmacological manipulations of Ca2+ dynamics indicated that rises in postsynaptic Ca2+ are necessary and sufficient for Z-LTD induction. Electrophysiological measurements assessing postsynaptic expression mechanisms, and imaging studies with a ratiometric extracellular zinc sensor probing zinc release, supported that Z-LTD is expressed, at least in part, via reductions in presynaptic zinc release. Finally, exposure of mice to loud sound caused G1 mGluR-dependent Z-LTD at DCN parallel fiber synapses, thus validating our in vitro results. Together, our results reveal a novel mechanism underlying activity- and experience-dependent plasticity of synaptic zinc signaling.SIGNIFICANCE STATEMENT In the neocortex, limbic structures, and auditory brainstem, glutamatergic nerve terminals corelease zinc to modulate excitatory neurotransmission and sensory responses. Moreover, sensory experience causes bidirectional, long-term changes in synaptic zinc signaling. However, the mechanisms of this long-term synaptic zinc plasticity remain unknown. Here, we identified a novel Group 1 mGluR-dependent mechanism that causes bidirectional, long-term changes in synaptic zinc signaling. Our results highlight new mechanisms of brain adaptation during sensory processing, and potentially point to mechanisms of disorders associated with pathologic adaptation, such as tinnitus.
Collapse
|
12
|
Krolik A, Diamandakis D, Zych A, Stafiej A, Salinska E. The involvement of TRP channels in memory formation and task retrieval in a passive avoidance task in one-day old chicks. Neurobiol Learn Mem 2020; 171:107209. [PMID: 32147584 DOI: 10.1016/j.nlm.2020.107209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
An increase in the intracellular Ca2+ level in neurons is one of the main steps in the memory formation cascade. The increase results from extracellular Ca2+ influx by activation of ionotropic glutamate receptors and release from intracellular stores by the stimulation of IP3 receptors (IP3Rs) via group I metabotropic glutamate receptors (mGluR1/5). Recent data indicate an additional mechanism resulting in Ca2+ influx into neurons, triggered by intracellular signals that are directly connected to the activation of group I mGluRs. This influx occurs through transient receptor potential (TRP) channels, which are permeable to Na+, K+ and, mainly, Ca2+. These channels are activated by increases in intracellular Ca2+, diacylglycerol (DAC) and inositol 1,4,5-triphosphate (IP3) level resulting from a group I mGluR activation. The aim of the present study was to investigate the participation of TRP channels, especially from TRPC and TRPV groups, in memory consolidation and reconsolidation and memory retrieval processes in a passive avoidance task in one-day old chicks. TRP channels were blocked by the injection of the unspecific channel modulators SKF 96365 (2.5 µl 30 µM/hemisphere) and 2-APB (2.5 µl 10 µM/hemisphere) directly into the intermediate medial mesopallium (IMM) region of the chick brain immediately after initial training or after a reminder. The inhibition of specific TRP channels (TRPV1, TRPV3 or TRPC3) was achieved by the application of selective antibodies. Our results demonstrate that the inhibition of TRP channels by the application of both modulators disrupted memory consolidation, resulting in permanent task amnesia. The inhibition of the TRPV1, TRPC3 and TRPV3 channels by specific antibodies resulted in similar amnesia. Moreover, the inhibition of TRP channels by SKF 96365 and 2-APB at different time points after initial training or after the reminder also resulted in amnesia, indicating the role of TRP channels in memory retrieval. The inhibition of calcium influx through these channels resulted in permanent memory disruption, which suggests that the calcium signal generated by TRP channels is crucial for memory formation and retrieval processes. For the first time, the important role of TRPV3 channels in memory formation was demonstrated.
Collapse
Affiliation(s)
- Andrzej Krolik
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Dominik Diamandakis
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Zych
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Stafiej
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Salinska
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
13
|
Choi B, Lee HW, Mo S, Kim JY, Kim HW, Rhyu IJ, Hong E, Lee YK, Choi JS, Kim CH, Kim H. Inositol 1,4,5-trisphosphate 3-kinase A overexpressed in mouse forebrain modulates synaptic transmission and mGluR-LTD of CA1 pyramidal neurons. PLoS One 2018; 13:e0193859. [PMID: 29617377 PMCID: PMC5884490 DOI: 10.1371/journal.pone.0193859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/20/2018] [Indexed: 11/18/2022] Open
Abstract
Inositol 1,4,5-trisphosphate 3-kinase A (IP3K-A) regulates the level of the inositol polyphosphates, inositol trisphosphate (IP3) and inositol tetrakisphosphate to modulate cellular signaling and intracellular calcium homeostasis in the central nervous system. IP3K-A binds to F-actin in an activity-dependent manner and accumulates in dendritic spines, where it is involved in the regulation of synaptic plasticity. IP3K-A knockout mice exhibit deficits in some forms of hippocampus-dependent learning and synaptic plasticity, such as long-term potentiation in the dentate gyrus synapses of the hippocampus. In the present study, to further elucidate the role of IP3K-A in the brain, we developed a transgenic (Tg) mouse line in which IP3K-A is conditionally overexpressed approximately 3-fold in the excitatory neurons of forebrain regions, including the hippocampus. The Tg mice showed an increase in both presynaptic release probability of evoked responses, along with bigger synaptic vesicle pools, and miniature excitatory postsynaptic current amplitude, although the spine density or the expression levels of the postsynaptic density-related proteins NR2B, synaptotagmin 1, and PSD-95 were not affected. Hippocampal-dependent learning and memory tasks, including novel object recognition and radial arm maze tasks, were partially impaired in Tg mice. Furthermore, (R,S)-3,5-dihydroxyphenylglycine-induced metabotropic glutamate receptor long-term depression was inhibited in Tg mice and this inhibition was dependent on protein kinase C but not on the IP3 receptor. Long-term potentiation and depression dependent on N-methyl-d-aspartate receptor were marginally affected in Tg mice. In summary, this study shows that overexpressed IP3K-A plays a role in some forms of hippocampus-dependent learning and memory tasks as well as in synaptic transmission and plasticity by regulating both presynaptic and postsynaptic functions.
Collapse
Affiliation(s)
- Byungil Choi
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
| | - Hyun Woo Lee
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
| | - Seojung Mo
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
| | - Jin Yong Kim
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
| | - Hyun Wook Kim
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
| | - Im Joo Rhyu
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
| | - Eunhwa Hong
- Department of Psychology, Korea University, Seoul, Korea
| | - Yeon Kyung Lee
- Department of Psychology, Korea University, Seoul, Korea
| | - June-Seek Choi
- Department of Psychology, Korea University, Seoul, Korea
| | - Chong-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology and Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Korea
- * E-mail: (C-HK); (HK)
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Brain Korea, Seoul, Korea
- * E-mail: (C-HK); (HK)
| |
Collapse
|
14
|
Yiannakas A, Rosenblum K. The Insula and Taste Learning. Front Mol Neurosci 2017; 10:335. [PMID: 29163022 PMCID: PMC5676397 DOI: 10.3389/fnmol.2017.00335] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/03/2017] [Indexed: 12/29/2022] Open
Abstract
The sense of taste is a key component of the sensory machinery, enabling the evaluation of both the safety as well as forming associations regarding the nutritional value of ingestible substances. Indicative of the salience of the modality, taste conditioning can be achieved in rodents upon a single pairing of a tastant with a chemical stimulus inducing malaise. This robust associative learning paradigm has been heavily linked with activity within the insular cortex (IC), among other regions, such as the amygdala and medial prefrontal cortex. A number of studies have demonstrated taste memory formation to be dependent on protein synthesis at the IC and to correlate with the induction of signaling cascades involved in synaptic plasticity. Taste learning has been shown to require the differential involvement of dopaminergic GABAergic, glutamatergic, muscarinic neurotransmission across an extended taste learning circuit. The subsequent activation of downstream protein kinases (ERK, CaMKII), transcription factors (CREB, Elk-1) and immediate early genes (c-fos, Arc), has been implicated in the regulation of the different phases of taste learning. This review discusses the relevant neurotransmission, molecular signaling pathways and genetic markers involved in novel and aversive taste learning, with a particular focus on the IC. Imaging and other studies in humans have implicated the IC in the pathophysiology of a number of cognitive disorders. We conclude that the IC participates in circuit-wide computations that modulate the interception and encoding of sensory information, as well as the formation of subjective internal representations that control the expression of motivated behaviors.
Collapse
Affiliation(s)
- Adonis Yiannakas
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
15
|
Correa AMB, Guimarães JDS, Dos Santos E Alhadas E, Kushmerick C. Control of neuronal excitability by Group I metabotropic glutamate receptors. Biophys Rev 2017; 9:835-845. [PMID: 28836161 PMCID: PMC5662043 DOI: 10.1007/s12551-017-0301-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors couple through G proteins to regulate a large number of cell functions. Eight mGlu receptor isoforms have been cloned and classified into three Groups based on sequence, signal transduction mechanisms and pharmacology. This review will focus on Group I mGlu receptors, comprising the isoforms mGlu1 and mGlu5. Activation of these receptors initiates both G protein-dependent and -independent signal transduction pathways. The G-protein-dependent pathway involves mainly Gαq, which can activate PLCβ, leading initially to the formation of IP3 and diacylglycerol. IP3 can release Ca2+ from cellular stores resulting in activation of Ca2+-dependent ion channels. Intracellular Ca2+, together with diacylglycerol, activates PKC, which has many protein targets, including ion channels. Thus, activation of the G-protein-dependent pathway affects cellular excitability though several different effectors. In parallel, G protein-independent pathways lead to activation of non-selective cationic currents and metabotropic synaptic currents and potentials. Here, we provide a survey of the membrane transport proteins responsible for these electrical effects of Group I metabotropic glutamate receptors.
Collapse
Affiliation(s)
- Ana Maria Bernal Correa
- Graduate Program in Physiology and Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Christopher Kushmerick
- Graduate Program in Physiology and Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
- Departamento de Fisiologia e Biofísica - ICB, UFMG, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|